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v





CHAPTER 1

Introduction

The goal of the present thesis is to determine whether the number of eigen-
values below the essential spectrum of the Jacobi operators on `2(N) associated
with

(τu)(n) = a(n)u(n+ 1) + a(n− 1)u(n− 1)− b(n)u(n), (1.1)

where
a(n) ∈ R\{0}, b(n) ∈ R, n ∈ N, (1.2)

is finite or not.
We will assume a(n) < 0 (which is no restriction by [20], Lemma 1.6). One

of the main cases of interest is if a(n) = −1 and one usually starts with the
operator H0 associated with b0 = 2. The spectrum is given by σ(H0) = [0, 4]. In
particular, there are no eigenvalues below the essential spectrum. Perturbing b0
we can add any finite number of eigenvalues even if our perturbation is of compact
support. However, the question is, can we at least determine whether the number
of eigenvalues is finite or not, by looking at the asymptotics of the perturbation?
Moreover, what is the precise asymptotics separating the two cases?

The natural tool for investigating such questions is oscillation theory since
finiteness of the number of eigenvalues is equivalent to the operator being nonoscil-
latory. This fact appears first in [6]. The precise relation between the number of
eigenvalues and the number of nodes was established only recently by one of us in
[19].

In the case of Sturm-Liouville (SL) operators there is a famous theorem by
Kneser [13] which gives a simple and beautiful answer to this question, with many
subsequent extensions by others. The most recent one being by [5], who give a
unified result containing all previously known ones as special cases. However,
much to our surprise, in case of Jacobi operators not even Kneser’s result which
is more than one hundred years old is known! Our present paper aims at filling
this gap.

But first let us review the proof of Kneser’s theorem and explain why the
discrete case cannot be handled analogously. In the SL case the key idea is that
the SL equation

τ0u = −d
2u

dx2
+
µu

x2
= 0 (1.3)

is of Euler type and hence explicitly solvable with a fundamental system given by

x
1
2
±

q
µ+ 1

4 . (1.4)

Hence there are two cases to distinguish. If µ ≥ −1/4 all solutions are nonoscil-
latory. If µ < −1/4 one has to take real/imaginary parts and all solutions are
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2 1. INTRODUCTION

oscillatory. Hence a straightforward application of Sturm’s comparison theorem
between τ0 and

τu = −d
2u

dx2
+ q(x)u(x) (1.5)

yields

lim
x→∞

inf
sup

(
x2q(x)

) >
<

− 1
4

implies nonoscillation
oscillation of τ near ∞. (1.6)

Since Sturm’s comparison theorem is also available for Jacobi operators (see, e.g,
[20], Lemma 4.4) it seems easy to generalize this result by considering the discrete
Euler equation

u(n+ 1)− 2u(n) + u(n− 1)− µ

n(n− 1)
u(n− 1) = 0. (1.7)

However, unfortunately, this equation is not symmetric! The corresponding results
for this equation can be found as special cases in [1], Section 6.11. Hence a
straightforward generalization is not possible.

Several results in this direction have been obtained by Hinton and Lewis [9]
and Hooker and Patula [10] (see also [8], [11], [16], and [17]). However, the
generalization of Kneser’s results remained unknown.

Our present paper was motivated by the work of Gesztesy and Ünal mentioned
earlier. In fact, it can be viewed as a discrete generalization of their results.
However, again a straightforward generalization is not possible since their proofs
also rely on explicit solubility of the involved equations.



CHAPTER 2

Jacobi operators: Why?

The aim of this chapter is to give a brief introduction into Jacobi equations
and Jacobi operators and to set the stage. Jacobi operators appear in a variety of
applications. They can be viewed as the discrete analogue of Sturm-Liouville op-
erators and their investigation has many similarities with Sturm-Liouville theory.
Spectral and inverse spectral theory plays a fundamental role in the investigation
of completely integrable nonlinear lattices, in particular the Toda lattice. In the
next two sections we present the relations between Jacobi operators and Sturm-
Liouville operators and the Toda lattice.

2.1. Sturm-Liouville and Jacobi equations

In the following sense Jacobi equations are the discrete analogue of Sturm-
Liouville equations. An equation of the form

(p(x)u′(x))′ + q(x)u(x) = 0, (2.1)

where we assume p(x) > 0 in [a, b] and p(x), q(x) are continuous on [a, b], is a so
called Sturm-Liouville equation. For small h = b−a

n we can approximate the
derivation of u(x) by

u′(x) ≈ u(x)− u(x− h)
h

. (2.2)

This yields the following for a Sturm-Liouville equation,

(p(x)u′(x))′ ≈ p(x+ h)
u(x+ h)− u(x)

h
− p(x)

u(x)− u(x− h)
h

=
1
h2

[p(x+ h)u(x+ h)− (p(x+ h) + p(x))u(x) + p(x)u(x− h)] .

In our discrete model of a Sturm-Liouville equation we investigate its behavior at
the points {a, a+h, a+2h, · · · , a+nh = b} in the interval [a, b] and therefore our
solution u(x) will be considered on the set {a, a+ h, a+ 2h, · · · , a+ nh = b}, i.e.
we set

y(t) = u(a+ th), (2.3)
p(t− 1) = p(a+ th), (2.4)
q(t) = h2q(a+ th), (2.5)

for t ∈ [0, n]. Now the discrete Sturm-Liouville equations reads as

p(t)y(t+ 1)− (p(t) + p(t− 1))y(t) + p(t− 1)y(t− 1) + q(t)y(t) ≈ 0. (2.6)

Finally, we can write this in the form

∆(p(t− 1)∆y(t− 1)) + q(t)y(t) ≈ 0. (2.7)
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4 2. JACOBI OPERATORS: WHY?

The last two equations are so called Jacobi equations. The last equation estab-
lishes a closer connection between Sturm-Liouville and Jacobi equations, since if
one takes the forward difference operator ∆u(n) = u(n+ 1)− u(n) as the discrete
analogue of the derivation operator. Many theorems about differential equations
can be discretized by substituting ∆ for the derivation operator but not all re-
lations between differential operators allow such a straightforward translation to
difference operators.

2.2. The Toda lattice

This section has no relation to our further investigations. We want to summa-
rize some material about nonlinear equations and Toda lattices to obtain another
approach to Jacobi equations and to justify the study of Jacobi equations with a
highly nontrivial application. The presentation relies on Chapter 12 of [20]. In
1955 E. Fermi, J. Pasta and S. Ulam did one of the first experiments in which
the computer played a central role. They considered a one-dimensional dynamical
system of 64 particles with a nonlinear nearest neighbor interaction. They excited
the lowest mode and looked at the behavior of the system. It was shown that some
energy is exchanged from the lowest mode to some higher modes, but periodically
almost all energy flows back to the lowest mode. The difference between the initial
condition and the condition after one period can be described by the quasiperiodic
flow on a torus-like-surface, [2]. Ten years later N.J. Zabusky and M.D. Kruskal
showed that the behavior observed by FPU can be described by solitons. All this
research led people to consider nonlinear lattices more thoroughly. The equations
of a nonlinear lattice are readily derived, but it proved to be hard to find a nonlin-
ear lattice that is completely integrable. Trial and error led M. Toda to consider
a lattice with an exponential spring potential [21]. The solutions are explicitly
described by elliptic functions that seem to be the natural extension of harmonic
functions in a linear lattice. One finds solitons and cnoidal waves as a special
class of solutions. The Toda lattice can be analyzed by spectral methods [20] and
this generates a connection between the Toda flow and the symmetric eigenvalue
problem.

The Toda lattice is a simple model for a nonlinear one-dimensional crystal.
It describes the motion of a chain of particles with nearest neighbor interaction.
The equation of motion of such a system is given by

m
d2

dt2
x(n, t) = V ′(x(n+ 1, t)− x(n, t))− V ′(x(n, t)− x(n− 1, t)) (2.8)

where m denotes the mass of each particle and x(n, t) is the displacement of the
n− th particle from its equilibrium position and V (r) is the interaction potential.
As discovered by M. Toda, this system gets particularly interesting if one chooses
an exponential interaction,

V (r) =
mρ2

τ2

(
e−r/ρ +

r

ρ
− 1
)

=
mρ2

τ2

(
(
r

ρ
)2 +O(

r

ρ
)3
)
, τ, ρ ∈ R. (2.9)

This model is of course only valid as long as relative displacement is not too large,
i.e. at least smaller than the distance of the particles in the equilibrium position.
For small displacements it is equal to a harmonic crystal with force constant m

τ2 .



2.2. THE TODA LATTICE 5

Remark 2.1. If τ and ρ are positive, then the repulsive force is much stronger
than the attractive force. We can consider the limit where the repulsive force
becomes infinitely sharp and the attractive force is not present. This is obtained
by letting b → ∞ and a → 0 but ab finite. It can be shown that the particles
move freely until there is a collision, during which velocity is exchanged. This is
the so called hard sphere limit. Due to the asymmetric form of the potential
in the Toda equation, it can be shown that if energy is put in the chain, then the
average distance between neighbors will increase if ρ > 0 and decrease if ρ < 0.
This behavior is not present in linear chains, where the average distance between
particles is fixed to the equilibrium distance.

After a scaling transformation t 7→ t/τ, x 7→ x/ρ, we can assume m = τ = ρ = 1.
If we suppose x(n, t)− x(n− 1, t) → 0, ẋ(n, t) → 0 sufficiently fast as n→∞, we
can introduce the Hamiltonian (q = x, p = ẋ)

H (p, q) =
∑
n∈Z

(p(n, t)2
2

+ e−(q(n+1,t)−q(n,t)) − 1
)

(2.10)

and rewrite the equation of motion in the Hamiltonian form

d

dt
p(n, t) = −∂H (p, q)

∂q(n, t)
(2.11)

= e−(q(n,t)−q(n−1,t)) − e−(q(n+1,t)−q(n,t)), (2.12)

d

dt
q(n, t) =

∂H (p, q)
∂p(n, t)

= p(n, t). (2.13)

We remark that these equations are invariant under the transformation

p(n, t) 7→ p(n, t) + p0, q(n, t) 7→ q(n, t) + q0 + p0t, (p0, q0) ∈ R2, (2.14)

which reflects the fact that the dynamics remains unchanged by a uniform motion
or the entire crystal. The fact which makes the Toda lattice particularly interesting
is the existence of soliton solutions. These are pulslike waves traveling through
the crystal without changing their shape. Such solitons are rather special since
from a generic linear equation one would expect spreading of wave packets and
from a generic nonlinear equation one would expect that solutions only exist for
a finite time (breaking of waves). The simplest example of such a solitary wave is
a one-soliton solution

q1(n, t) = q0 − log
1 + γ exp(−2κn± 2 sinh(κ)t)

1 + γ exp(−2κ(n− 1) + 2 sinh(κ)t)
, κ, γ > 0. (2.15)

It describes a single bump traveling through the crystal with speed ± sinh(κ)/κ
and width proportional to 1

κ . That is, the smaller the soliton the faster it propa-
gates. It results in a total displacement of the crystal, which can be equivalently
interpreted as the total compression of the crystal around the bump. The total
moment and energy are given by∑

n∈Z
p1(n, t) = 2 sinh(κ), H (p1, q1) = 2 sinh(κ) cosh(κ)− κ). (2.16)
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Existence of such solutions is usually connected to complete integrability of the
system which is indeed the case here. To see this, we introduce Flaschka’s variables

a(n, t) =
1
2
e−(q(n+1,t)−q(n,t))/2, b(n, t) = −1

2
p(n, t) (2.17)

and obtain the form most convenient for us

ȧ(n, t) = a(n, t)
(
b(n+ 1, t)− b(n, t)

)
(2.18)

ḃ(n, t) = 2
(
a(n, t)2 − a(n− 1, t)2

)
. (2.19)

To show complete integrability it suffices to find a so-called Lax pair, that is, two
operators H(t), P (t) such that the Lax equation

d

dt
H(t) = P (t)H(t)−H(t)P (t) (2.20)

is equivalent to the equation of motion in Flaschka variables. One can easily
convince oneself that the choice

H(t) : `2(Z) → `2(Z) (2.21)
f(n) 7→ a(n, t)f(n+ 1, t) + a(n− 1, t)f(n− 1, t) + b(n, t)f(n)(2.22)

P (t) : `2(Z) → `2(Z) (2.23)
a(n, t)f(n+ 1)− a(n− 1, t)f(n− 1) (2.24)

does the trick. Now the Lax equation implies that the operators H(t) for different
t ∈ R are all unitarily equivalent and that

tr(H(t)j −Hj
0), j ∈ N, (2.25)

are conserved quantities, where H0 is the operator corresponding to the constant
solution a0(n, t) = 1

2 , b0(n, t) = 0. The operator H(t) is a Jacobi operator. For
more details on the Toda lattice and spectral theory of Jacobi operators we refer
the reader to the monograph [20].



CHAPTER 3

Jacobi operators

3.1. General properties of Jacobi operators

In the sequel we set the notation and state some elementary properties of
Jacobi operators. We follow [20], Chapter 1. We consider the vector space of
real-valued sequences Vs and some of its subspaces.

Definition 3.1. (i) `1(N) = {u ∈ Vs|‖u‖1 =
∑∞

n=0 |u(n)| <∞}
(ii) `2(N) = {u ∈ Vs|‖u‖2 =

∑∞
n=0 |u(n)|2 <∞}

(iii) `∞(N) = {u ∈ Vs|‖u‖∞ = supn∈N u(n) <∞}
(iv) `0(N) = {u ∈ Vs| limn→∞ u(n) = 0}

And the following difference operators acting on u ∈ Vs:
(i) forward difference: (∆u)(n) = u(n+ 1)− u(n),
(ii) backward difference: (∇u)(n) = u(n)− u(n− 1).

Remark 3.2. The vector spaces (i)-(iv) are Banach spaces. The space (ii) is
actually a Hilbert space with respect to the scalar product

〈u, v〉 =
∞∑
n=0

u(n)v(n). (3.1)

As we mentioned in the preface and the introduction we are interested in second
order difference expressions

a(n+ 1)u(n+ 1) + b(n)u(n) + c(n− 1)u(n− 1), (3.2)

or equivalently
∇(p(n)∆u)(n) + q(n)u(n), (3.3)

for suitable sequences p(n), q(n). Most of the time we use the operator free ex-
pression (3.2), but at some places it is more convenient to use the operator form.
Appendix 1 contains some connections between difference operators and difference
expressions.

A difference expression a(n− 1)u(n− 1) + b(n)u(n) + c(n+ 1)u(n+ 1) can be
associated with the following matrix X and vector f

X =

 a(0) b(1) c(2)
a(1) b(2) c(3)
. . . . . . . . .

 . (3.4)

u =

 u(0)
u(1)

...

 , (3.5)

7



8 3. JACOBI OPERATORS

which yields for our difference expression

Xf. (3.6)

X is a tridiagonal matrix, but which choice of the sequence c(n) yields a symmetric
matrix? The answer follows in an apparent manner from the condition X = XT ,
which is equivalent to c(n+ 1) = a(n), i.e.

a(n)u(n+ 1) + a(n− 1)u(n− 1) + b(n)u(n). (3.7)

bywith H. .

Definition 3.3.

(i) An expression of the form τu(n) = a(n)u(n + 1) + a(n − 1)u(n − 1) −
b(n)u(n) for n ∈ N is called a Jacobi difference expression associated
to the sequences a, b ∈ `(N).

(ii) We call τu(n) = 0 a Jacobi equation on N, with z ∈ C and n ∈ N.
(iii) The matrixH associated to a Jacobi difference equation is called a semi-

infinite Jacobi matrix.
Jacobi equations are second order linear difference equations, thus they have

two linearly independent solutions and solutions are determined by two initial
conditions u(n0) and u(n0 +1). A short calculation shows the validity of Green’s
formula

n∑
j=m

(
u(j)(τv)(j)− v(j(τu)(j)

)
= Wn(u, v)−Wm(u, v) (3.8)

for u, v ∈ `(N), where we have introduced the Wronskian

Wn(u, v) = a(n)
(
u(n)v(n+ 1)− u(n+ 1)v(n)

)
. (3.9)

The Wronskian is much more than a suitable abbreviation as the following theorem
shows.

Theorem 3.4. Let u, v be solutions of τu(n) = 0, then the following conditions
are equivalent:

(i) u, v are linearly independent,
(ii) Wn(u, v) = 0 for some n,
(iii) Wn(u, v) = 0 for all n.

The Wronskian also indicates linear independence of solutions of Jacobi equations.

Theorem 3.5. Let u, v be solutions of τu(n) = 0 then the following are equiv-
alent:

(i) u, v are linearly independent.
(ii) Wn(u, v) 6= 0.

Moreover the Wronskian is constant and therefore we have a C ∈ R with

W (u, v) = C. (3.10)

Another example for the usefulness of the Wronskian is Lagrange’s Identity

u(n)(τv)(n)− v(n)(τu)(n) = ∆
(
Wn−1(u, v)

)
, (3.11)

which follows from some easy manipulation of Jacobi operators. As an application
we state a theorem due to G. Polya.
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Theorem 3.6. Polya Assume v be a positive solution of τu(n) = 0, then there
exist sequences ρ1, ρ2 with ρ1, ρ2 > 0, such that for any sequence u on N

τu(n) =
1

v(n)
∆
(
ρ2(n)∆(ρ1(n− 1)u(n− 1))

)
. (3.12)

Proof. Since v is a positive solution of τu(n) = 0, we have by Lagrange’s
identity that

τu(n) =
1

v(n)
∆
(
Wn−1(u, v)

)
. (3.13)

We also have

∆
(u(n− 1)
v(n− 1)

)
=

Wn−1(u, v)
a(n− 1)v(n− 1)v(n)

, (3.14)

which implies

τu(n) = ρ1(n)∆
(
ρ2(n)∆(ρ1(n− 1)u(n− 1))

)
, (3.15)

where
ρ1(n) =

1
v(n)

, ρ2(n) = (n− 1)v(n− 1)v(n). (3.16)

�

Now we draw some consequences out from the fact that the space of solutions of
τu(n) = 0 is two dimensional. Therefore we can pick two linearly independent
solutions of τu(n) = 0 and write any solution u as a linear combination of these
two solutions

u(n) =
W (u, s)
W (c, s)

c(n)− W (u, c)
W (c, s)

s(n). (3.17)

For this purpose it is convenient to introduce the following fundamental solu-
tions c, s ∈ `(N)

τc(n, n0) = 0, τs(n, n0) = 0, (3.18)
fulfilling the initial conditions

s(n, n0) = 0, s(n, n0 + 1) = 1, (3.19)

c(n, n0) = 1, c(n, n0 + 1) = 0. (3.20)
The equation

τu(n) = v(n) (3.21)
for v ∈ `(N) is referred to as Inhomogeneous Jacobi equation. Its solution
can be completely reduced to the solution of the corresponding homogeneous
Jacobi equation

τu(n) = 0. (3.22)
We introduce

K(n,m) =
s(n,m)
a(m)

, (3.23)

where s(n, n0) is the fundamental solution of

τs(n, n0) = 0. (3.24)

Then the sequence

u(n) = u(n0)c(n, n0) + u(n0 + 1)s(n, n0) +
n−1∑

m=n0+1

K(n,m)v(m), (3.25)
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where we assume n > n0 is a solution of the inhomogeneous Jacobi equation. The
summation kernel has the following properties

(i) K(n, n) = 0,
(ii) K(n+ 1, n) = a(n)−1,
(iii) K(n,m) = K(m,n),
(iv) K(n,m) = u(m)v(n)−u(n)v(m)

W (u,v) for any pair u(n), v(n) of linearly indepen-
dent solutions of τu(n) = 0.

For v(n) = û(n) the summation kernel simplifies to

K(n,m) = u(n)u(m)
n−1∑

j=m+1

1
a(j)u(j)u(j + 1)

(3.26)

and

u(n) = u(n0)c(n, n0) + u(n0 + 1)s(n, n0) +
n−1∑

m=n0+1

K(n,m)û(m) (3.27)

is a solution of

τu(n) = û(n). (3.28)

In the proof of our main theorem a similar inhomogeneous Jacobi equation will
occur. Another ingredient in the proof of our main theorem is the following fact
about Jacobi equations.

3.2. Variation of constants

Let u1(n) 6= 0 be a solution of τu(n) = 0 then one wants to construct another
linearly independent solution u2(n). One way is the following:

∆
(u2(n)
u1(n)

)
=

u2(n+ 1)u1(n)− u2(n)u1(n+ 1)
u1(n)u1(n+ 1)

=
Wn(u1, u2)

a(n)u(n)u(n+ 1)

=
C

a(n)u1(n)u1(n+ 1)

u2(n) = u1(n)
n−1∑
j=0

C

a(j)u(j)u(j + 1)
. (3.29)

The solution u2 depends on the structure of u1(n) and to make this more trans-
parent we denote solutions of the form u2 with C = 1 by û1(n).

Definition 3.7. Let u1(n) be a positive solution of τu(n) = 0, then we set

û1(n) = u1(n)
n−1∑
j=0

1
a(j)u1(j)u1(j + 1)

(3.30)

for the second linearly independent solution.
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Remark 3.8. To illustrate the method, we compute û(n) for u(n+ 1) + u(n−
1)− 2u(n) = 0. The function u1 = 1 is a solution then

û1(n) = u1(n)
n−1∑
j=0

1
u(j)u(j + 1)

= 1 · (1 + ...+ 1) = n. (3.31)

3.3. Sum equations

Next we study sum equations especially Volterra sum equations because
we need them in the proof of our main theorem.

Definition 3.9. A Volterra sum-equation is an equation of the form

u(n) = v(n) +
∞∑
m=0

K(n,m)h(m)u(m). (3.32)

The following theorem is fundamental in the theory of sum-equations and will
play a major role in the proof of our oscillation criteria.

Theorem 3.10. Suppose there is a sequence K̂(n,m) such that

|K(n,m)| ≤ K̂(n,m), K̂(n+ 1,m) ≤ K̂(n,m), K̂(n, .) ∈ `1(N) (3.33)

and v ∈ `1(0,∞) and w(n) ∈ `∞, then

u(n) = v(n) +
∞∑
m=0

K(n,m)w(m)u(m) (3.34)

has a unique solution u in `∞(0,∞). If v(n) and K(n,m) depend continuously on
a parameter and if K̂(n,m) does not depend on this parameter, then the solution
depends continuously on this parameter.

Proof. See [20], p.126. �

3.4. Spectral theory

In the sequel we assume that a, b are bounded sequences.
Hypothesis H.2.1. Suppose a, b ∈ `∞(N,R), a(n) 6= 0. Associated with a, b
is the Jacobi operator

H : `2(N) → `2(N)
u 7→ τu.

Definition 3.11. ‖H‖ denotes the operator norm of H.

Theorem 3.12. (i) ‖a‖∞ ≤ ‖H‖
(ii) ‖b‖∞ ≤ ‖H‖
(iii) ‖H‖ ≤ 2‖a‖∞ + ‖b‖∞.
(iv) H is self-adjoint.

Proof. (i) and (ii) follow from the definition. (iii) a(n−1)2 +a(n)2 +b(n)2 =
‖Hδn‖ ≤ ‖H‖2 and

|〈u,Hu〉| ≤ (2‖a‖∞ + ‖b‖∞)‖u‖2. (3.35)

�
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Remark 3.13. H is bounded if and only if the sequences a, b are bounded.

H is a bounded self-adjoint operator on a Hilbert space, but such operators are
well studied objects and simplify the functional analytical treatment tremendous.
The following theorems are a few examples for the well-behavdness of bounded
self-adjoint operators.

Theorem 3.14. All the eigenvalues of H are real and two eigenvectors of H
corresponding to distinct eigenvalues are orthogonal.

Proof. If Hu = zu and f 6= 0, then

z〈u, u〉 = 〈Hu, u〉 = 〈u,Hu〉 = 〈u, zu〉 = z〈u, u〉 (3.36)

and hence z ∈ R. Moreover, if

Hu1 = z1u1, Hu2 = z2u2, z1 6= z2, (3.37)

then

z1〈u1, u2〉 = 〈Hu1, u2〉 = 〈u1,Hu2〉 = 〈u1, z2u2〉 = z2〈u1, u2〉 (3.38)

and hence u1 and u2 are orthogonal. �

If one deals with operators, one always wants to know the spectrum, i.e the
set

σ(H) = {z ∈ C| (H − z)−1does not exist or is unbounded}. (3.39)
The spectrum of H is in general a non empty compact subset of C, and consists
of

(i) z is an eigenvalue of H, i.e. Hu = zu and z ∈ `2(N)
(ii) z is a point of the continuous spectrum, i.e (H − z)−1 exists but fails to

be continuous.
For bounded operators H one knows, that the spectrum is contained in the disk
of radius ‖H‖, but in our case we know much more.

Lemma 3.15. Let

c±(n) = b(n)± (|a(n)|+ |a(n− 1)|) (3.40)

Then we have
σ(H) ⊆ [ inf

n∈N
c−(n), sup

n∈N
c+(n)] (3.41)

Proof. We will first show that H is bounded from above by sup c+.

〈u,Hu〉 =
∑
n∈N

(
−a(n)|u(n+1)−u(n)|2 +(a(n−1)+a(n)+ b(n))|u(n)|2

)
. (3.42)

Then a(n) > 0 shows
〈u,Hu〉 ≤ sup

∈N
c+(n)‖u‖2. (3.43)

Similarly, choosing a(n) < 0 shows that H is semibounded from below by inf c−,
which completes the proof. �

Remark 3.16. For more information about spectral theory of Jacobi equation
I refer the reader to [20].



CHAPTER 4

Oscillation Theory

We are interested in the behavior of solutions of τu = 0. For example the
solutions of u(n + 1) + u(n − 1) − 2u(n) = 0 are positive and nonvanishing for
n ∈ N. On the other hand

u(n+ 1)− u(n− 1) = 0, n ∈ N (4.1)

has the solutions u1(n) = cos(nπ2 ) and u2(n) = sin(nπ2 ), which possess infinitely
many zeros. If a Jacobi difference equation τu = 0 has a nonvanishing solution
u1(n) then every linearly independent solution u2(n) is nonvanishing, too. With-
out loss of generality we assume u1(n) > 0, since if u1(n) is a solution then −u1(n)
is also solution of τu(n) = 0. We consider

∆
(u2(n)
u1(n)

)
=

c

a(n)u(n)u(n+ 1)
, (4.2)

which is of fixed sign and therefore u2(n)
u1(n) is monotone, which is not possible if

u2(n) possesses an infinite number of zeros.

Definition 4.1. Let u1(n) be a solution of τu = 0.
(i) If for any n ∈ N there exists an n1 ∈ N such that u1(n1)u1(n1 + 1) < 0

then τ is called oscillatory.
(ii) If u1(n) is not oscillatory, then τ is called nonoscillatory.

Remark 4.2. There are linear second order difference equations with a positive
and an oscillatory solution. For example

∆2u(n) +
8
3
∆u(n) +

4
3
u(n) = 0 (4.3)

has an oscillatory solution u(n) = (−1)n and a nonoscillatory solution v(n) = 3−n.

If we assume a(n) < 0 and τ nonoscillatory, then there exists a positive solution
u1(n) of τu = 0 and therefore a(n)u(n + 1) + a(n − 1)u(n − 1) is negative but
this implies b(n)u(n) < 0, but u(n) > 0 and therefore b(n) < 0. This proves the
following

Lemma 4.3. Let a(n) < 0 and u(n) be a positive solution of τu(n) = 0, then
(i) τ is nonoscillatory if and only if b(n) < 0.
(ii) τ is oscillatory if and only if b(n) is positive.

4.1. Minimal and maximal solutions

Definition 4.4. Suppose a(n) < 0, λ ≤ σ(H) and let u(λ, n) be a solution
with u(λ, n) ≥ 0 for n ∈ N. We call a solution u(λ, n) minimal near ∞ if∑∞

j=0
−1

a(j)u(j)u(j+1) = ∞.

13
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Theorem 4.5. Suppose a(n) < 0, λ ≤ σ(H) and let u(λ, n) be a solution with
u(λ, n) ≥ 0 for n ∈ N. Then the following conditions are equivalent

(i) u(λ, n) is minimal near ∞.
(ii) u(λ,n)

v(λ,n) ≤
u(λ,0)
v(λ,0) for any solution v(λ, n) > 0 and n ∈ N.

(iii) We have limn→∞
u(λ,n)
v(λ,n) = 0 for a positive solution v(λ, n) and n ∈ N.

Proof. See [20]. �

Remark 4.6. The solution v(n) of the last theorem is called minimal near
∞ and satisfies

∞∑
j

−1
a(j)v(j)v(j + 1)

∈ `1(N). (4.4)

Minimal and maximal solutions are unique up to a constant factor.

In our example −u(n + 1) − u(n − 1) + 2u(n) = 0 the solution u1(n) ≡ 1 is
minimal near ∞ and û1(n) = n is maximal near ∞. This is a special case of

Theorem 4.7. (i) If τ is nonoscillatory and u1(n) is a minimal solution
near ∞, then

û1(n) = u1(n)
n−1∑
j=0

−1
a(j)u1(j)u1(j + 1)

(4.5)

is maximal near ∞.
(ii) If τ is nonoscillatory and u2(n) is maximal near ∞ then

u1(n) = u2(n)
∞∑
j=n

−1
a(j)u2(j)u2(j + 1)

(4.6)

is minimal near ∞.

Proof. (i) If u1(n) is minimal near ∞, i.e.
∞∑
j

−1
a(j)u(j)u(j + 1)

= ∞, (4.7)

then û1(n) = u1
∑n−1

j=0
−1

a(j)u(j)u(j+1) is a solution of τu = 0, which yields

lim
n→∞

û1(n)
u1(n)

= ∞ (4.8)

and thus û1(n) is maximal near ∞.
(ii) Can be proved similarly.

�

Remark 4.8. If all solutions of τu(n) = 0 are bounded, then the maximal
solution is in `0(N).

In more precious form holds

Theorem 4.9. If λ < σ(H) then there exists a minimal and maximal solution
u1(n) and u2(n) of τu(n) = 0 such that

(i) u1(n) > 0 and u1(n+ 1) > u1(n),
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(ii) u2(n) > 0 and u2(n+ 1) < u2(n).

Corollary 4.10.

(i) limn→∞ u1(n) = ∞,
(ii) limn→∞ u2(n) = 0.

Some of the material is from [1], Chapter 6.
Now we state some sufficient conditions for τ be oscillatory.

Theorem 4.11. If b(n) ≤ min(a(n− 1), a(n)) for sufficiently large n ∈ N then
τu = 0 is oscillatory.

Proof. Let u1(n) be a positive solution of τu = 0. We can assume b(n) < 0
for all large n ∈ N. However τu = 0 implies that

u1(n+ 1) <
b(n)
a(n)

u1(n), u1(n− 1) <
b(n)

a(n− 1)
u(n) (4.9)

holds for all large n ∈ N. But, b(n)
a(n) ≤ 1 and b(n)

a(n−1) ≤ 1 yields u(n+1) < u(n) and
u(n− 1) < u(n) for all large n ∈ N. This contradiction completes the proof. �

Corollary 4.12. If b(n) ≤ a(n) and if a(n) is nonincreasing then τ is oscil-
latory.

Proof. Straightforward. �

Corollary 4.13. If b(n) ≤ a(n − 1) and a(n) is nondecreasing then tau is
oscillatory.

Proof. Straightforward. �

Remark 4.14. The notions of maximal and minimal solutions near ∞ are
introduced in [15].

If one wants a discrete analogue of Sturm’s comparison theorem the notion
of a zero of a solution is not sufficient and has to be enlarged. For the following
definitions and proofs of the theorems see [20].

Definition 4.15. Let us call a point n ∈ N a node of a solution of τu(n) = 0,
a(n) < 0, if one of the following conditions holds

(i) u(n) = 0
(ii) a(n)u(n)u(n+ 1) > 0

Definition 4.16. Let us call τ oscillatory if a solution of τu(n) = 0 has an
infinite number of nodes.

One observes that solutions of Jacobi equations split into two cases
(i) All solutions are nonoscillatory.
(ii) All solutions are oscillatory.

The essential tool in the justification of this observation is Sturm’s comparison
theorem. We only formulate Sturm’s separation and comparison theorem.

Definition 4.17. A node n0 lies between m and n if
(i) m < n0 < n
(ii) n0 = m and u(m) 6= 0.
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Denote by #m,nu the number of nodes between m and n.

Theorem 4.18. Sturm’s Separation Theorem Let m < n be nodes of u1 a
solution of τu(n) = λ1u(n), or zeros of W (u1, u2) with u2 a solution of τu(n) =
λ2u(n), with λ1 ≤ λ2, such that u1 has no further nodes in [m,n].

(i) u2 has at least one node in [m,n+ 1].
(ii) #(m,n)u2 ≥ #(m,n)u1 − 1.

Proof. By contradiction. See [20]. �

Theorem 4.19. Sturm’s Comparison Theorem
Let

τ1u(n) = a(n)u(n+ 1) + a(n− 1)u(n− 1)− b1(n)u(n) = 0 (4.10)

be nonoscillatory and

τ2(n) = a(n)u(n+ 1) + a(n− 1)u(n− 1)− b2(n)u(n) = 0, (4.11)

where b2(n) ≥ b1(n) then τ2 is nonoscillatory, too.

Proof. See for example [12]. �

As a corollary we get a proof of the observation above.

Corollary 4.20. Let τu(n) = 0 have a nonoscillatory solution then any other
solution is nonoscillatory.

Proof. b1(n) = b2(n) = b(n) and therefore Sturm’s comparison theorem
yields the desired result. �

4.2. Nonoscillatory solutions and Infinite series

This section is based on the fact that minimal and maximal solutions of a
Jacobi equation τu(n) = 0 are indicated by the divergence or convergence of the
infinite series

∞∑
j=1

−1
a(j)u(j)u(j + 1)

. (4.12)

This characterization of nonoscillatory solutions gives one the theory of conver-
gence and divergence criteria for deriving conditions for a sequence to be a minimal
or maximal solution. The most elementary criteria for convergence and divergence
of infinite series rely on the following observation.

Theorem 4.21. Let
∑
c(n) be a given convergent series and let

∑
d(n) be a

given divergent series then
∑
s(n) is

(i) convergent if s(n) ≤ c(n) and
(ii) divergent if s(n) ≥ d(n).

Or, equivalently, if a series has a convergent majorant it is convergent and if it
possesses a divergent minorant it diverges. The usefulness of such criteria relies on
the choice of sequences c(n) and d(n). The convergent series should grow very fast
and the divergent series should grow very slowly. The most important example
for c(n) and d(n) are the Abel series. We refer to the Appendix 2 for definition
and properties of Abel series, which are also called logarithmic series. The next
theorem states the main theorem in this context.
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Theorem 4.22. Let
∑
s(n) be a series of positive numbers, then

s(n) ≤≥
1

n · log(n) · · · logk(n)
for α > 1

α ≤ 1 implies
convergence
divergence (4.13)

of
∑
s(n).

In our case s(n) =
(
a(n)u(n)u(n + 1)

)−1 and we are interested on monotone
increasing solutions. These assumption allows us to derive explicit upper bounds
for minimal and lower bounds for maximal solutions of Jacobi equations.

Theorem 4.23. Let u(n) be a positive solution of τu(n) = 0 that satisfies

u(n) ≤

√
1 · n · · · logk(n)

a(n)
, (4.14)

then u(n) is a minimal solution.

Proof. The assumptions imply

1 · n · · · logk(n) ≥ a(n)u(n)u(n+ 1) (4.15)

and therefore
∞∑
n

1
a(n)u(n)u(n+ 1)

≥
∞∑
n

1
1 · n · · · logk(n)

. (4.16)

And the last theorem implies
∞∑
n

1
a(n)u(n)u(n+ 1)

= ∞, (4.17)

i.e. the minimality of u(n).
�

The theorem of Abel and Dini, see Appendix 2, relates to a divergent series in
a canonical way a convergent series, which in our case is

∞∑
n

1
1 · n · · · logk(n) log2α

k+1(n)
, α >

1
2
. (4.18)

The last series is a natural choice for a convergent majorant and therefore we
obtain the following lower bound for maximal solutions.

Theorem 4.24. Let τu(n) = 0 and u(n) be a positive solution, that satisfies

û(n) ≥

√
1 · n · · · logk(n)

a(n)
logαk+1(n), α >

1
2
, (4.19)

then u(n) is a maximal solution of τu(n) = 0.

Proof. The assumption implies

a(n)u(n+ 1)u(n) ≥ a(n)u(n)2 ≥ 1 · n · · · logk(n) log2α
k+1(n), (4.20)

and therefore
∞∑
n

1
a(n)u(n)u(n+ 1)

≤
∞∑
n

1
1 · n · · · logk(n) log2α

k+1(n)
. (4.21)
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The assumption α > 1
2 implies the convergence of the right side of the last in-

equality and there fore u(n) is a maximal solution. �

Next we want to bring the following fact about convergent series to investiga-
tion of nonoscillatory solutions of Jacobi equations.

Theorem 4.25. Let s(n) be a positive and monotone decreasing sequence with∑
s(n) <∞. Then

s(n) → 0, n · s(n) → 0, · · · n · log(n) · · · logk(n)s(n) → 0, (4.22)

if the convergence of
∑
s(n) is determined with the logarithmic scale.

In general the relation ns(n) → 0 is only a necessary but not a sufficient
condition for convergence, i.e. ns(n) → s 6= 0 implies the divergence of s(n).

Proof. See [14] p.321, ex.141. �

The application of this fact to Jacobi equations is the following theorem.

Theorem 4.26. Let τu(n) = 0 be a nonoscillatory Jacobi equation and u(n)
a maximal monotone increasing solution, then

(i) 1
a(n)u(n)u(n+1) → 0,

(ii) 1·n
a(n)u(n)u(n+1) → 0,

(iii) 1·n··· logk(n)
a(n)u(n)u(n+1) → 0.

Remark 4.27. If s(n)
t(n) → 0 one says that t(n) tends faster to zero as s(n) which

in our case gives an explicit statement about the growth of maximal solutions, if
we assume monotony of solutions.

Theorem 4.28. A maximal and monotone increasing solution of a Jacobi
equation τu(n) = 0 tends faster to zero as

√
1·n·log(n)··· logk(n)

a(n)

Proof. Reformulation of the last theorem. �

4.3. Riccati equation

It is often useful to transform an object to reveal all its properties. In the case
of Jacobi equations the following are of great usefulness. If u(n) > 0 has no zeros
for n ∈ N we introduce

(i) φ1(n) = u(n+1)
u(n) ,

(ii) φ2(n) = a(n)u(n+1)
u(n) ,

(iii) φ3(n) = b(n+1)u(n+1)
a(n)u(n) ,

called Riccati transformations, which lead to nonlinear difference equations,
called Riccati equations

(i) a(n)φ1(n) + a(n− 1)φ−1
1 (n− 1) = b(n)− λ,

(ii) φ2(n) + a(n− 1)2 1
φ2(n−1) = b(n)− λ,

(iii) q(n)φ3(n) + 1
φ3(n−1) = 1 + λ

b(n) , with q(n) = a(n)2

b(n)b(n+1)

related to

a(n)u(n+ 1) + a(n− 1)u(n− 1) = b(n)u(n)− λu(n). (4.23)
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Remark 4.29. The transformation φ2(n) = a(n+1)u(n+1)
u(n) is perhaps the nearest

analogue for difference equations to the classical Riccati transformation φ(t) = x′(t)
x(t)

which transforms the self-adjoint differential equation (px′)′+qx = 0 with p(t) 6= 0
into the Riccati equation

φ′(t) +
φ(t)2

p(t)
+ q(t) = 0, (4.24)

because of

φ2(n) + a(n− 1)2
1

φ2(n− 1)
= b(n)− λ, (4.25)

∆φ2(n− 1) +
φ2(n− 1)φ2(n)

b(n)
− φ2(n) +

a(n− 1)2

b(n)
+ λ = 0. (4.26)

(4.27)

Theorem 4.30. The following conditions are equivalent:
(i) τ is oscillatory.
(ii) a(n)φ1(n) + a(n−1)

φ1(n−1) = b(n) has a positive solution φ1(n), n ∈ N.
(iii) φ2(n) + a(n− 1)2 1

φ2(n−1) = b(n) has a positive solution φ2(n), n ∈ N.
(iv) q(n)φ3(n) + 1

φ3(n−1) = 1, has a positive solution φ3(n), n ∈ N.

Proof. If τu = 0 is nonoscillatory then u(n)u(n + 1) > 0 for all n ∈ N and
the necessity follows immediately from the Riccati transformations. Now assume,
that φ1(n) > 0 is a solution of a(n)φ1(n)+ a(n−1)

φ1(n−1) = b(n),then we may let u(0) = 1
and u(n+ 1) = u(n)φ1(n) for all n ∈ N. u(n) is a positive solution and therefore
τ is nonoscillatory. Similar arguments hold for the remaining equations. �

Theorem 4.31. If b(n)b(n+1) ≤ (4− ε)a2(n) for some ε > 0 and n ∈ N then
τ is oscillatory.

Proof. See [1], Thm.6.5.3. �

Remark 4.32. Consider the Jacobi equation
√
nu(n+ 1) +

√
nu(n− 1)− (

√
n+ 1−

√
n− 1)u(n) = 0, (4.28)

which is nonoscillatory since it has a solution u1(n) =
√
n for n ∈ N. But

b(n)b(n + 1) < 4 and ε(n) = 4 − b(n)b(n + 1) tends to zero as n → ∞ and we
have b(n)b(n+ 1) = 4− ε(n), but τ is nonoscillatory and therefore the inequality
condition cannot be replaced by the weaker condition

b(n)b(n+ 1) ≤ (4− ε(n))a2(n), (4.29)

where ε(n) > 0 and ε(n) → 0 as n→∞.

Theorem 4.33. If b(n+1)b(n) ≥ 4a2(n) for all n ∈ N then τ is nonoscillatory.

Proof. See [1], Thm.6.5.5. �





CHAPTER 5

Main results and applications

Before we can write down our main result, we need to fix some notation. Recall
that τ is called oscillatory if one (and hence any) real-valued solution of τu = 0
has an infinite number of nodes, that is, points n ∈ N, such that either

u(n) = 0 or a(n)u(n)u(n+ 1) > 0. (5.1)

In the special case a(n) < 0, n ∈ Z a node of u is precisely a sign flip of u as one
would expect. In the general case, however, one has to take the sign of a(n) into
account.

Recall that if u0(n) > 0 solves

(τ0u)(n) = a(n)u0(n+ 1) + a(n− 1)u0(n− 1)− b0(n)u0(n) = 0 (5.2)

then

û0(n) = u0(n)Q0(n), Q0(n) =
n−1∑
j=0

−1
a(j)u0(j)u0(j + 1)

, (5.3)

is a second, linearly independent positive solution. A positive solution is called
minimal if

lim
n→∞

Q0(n) = ∞. (5.4)

Minimal solutions are unique up to a multiple. See [20], Section 2.3 for more
information. With this notation our main result reads as follows:

Theorem 5.1. Suppose a0 < |a(n)| < A0. Let u0(n) be a monotone non-
decreasing minimal positive solution of τ0u0 = 0 and abbreviate

A(n) =
2a(n− 1)a(n+ 1)
a(n− 1) + a(n+ 1)

. (5.5)

Then τ is nonoscillatory if

lim inf
n→∞

−A(n)u4
0(n)Q2

0(n)(b(n)− b0(n)) > −1
4

(5.6)

and oscillatory if

lim sup
n→∞

−A(n)u4
0(n)Q2

0(n)(b(n)− b0(n)) < −1
4
. (5.7)

The proof will be given in Section 5.1 below.
As a first application, let us show how this result can be used to answer our

question posed in the introduction. We choose

a(n) = −1, b0(n) = 2. (5.8)

Then we have
u0(n) = 1 and û0(n) = n (5.9)

21
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and thus

lim
n→∞

inf
sup

(
n2(b(n)− 2)

) >
<

− 1
4

implies nonoscillation
oscillation of τ near ∞, (5.10)

which is the claimed generalization of Kneser’s result. Clearly, the next question
is what happens in the limiting case, where limn→∞ n2(b(n) − 2) = −4−1? This
can be answered by our result as well:

Recall the iterated logarithm

ln0(x) = x, lnk(x) = lnk−1(ln(x)), (5.11)

where lnk(x) is defined for x > ek, with e1 = 0, ek = eek−1 .

Corollary 5.2. Let

a(n) = −1, bk(n) = 2− 1
4

k−1∑
j=0

1∏j
`=0 log`(n)2

. (5.12)

Then τ is nonoscillatory if

lim inf
n→∞

( k∏
j=0

logj(n)
)2(b(n)− bk(n)) > −1

4
(5.13)

and oscillatory if

lim sup
n→∞

( k∏
j=0

lnj(n)
)2(b(n)− bk(n)) < −1

4
. (5.14)

Proof. To show how this follows from our result we consider

uk(n) =

√√√√ k∏
j=0

logj(n), (5.15)

which is a solution of τ̃k associated with

a(n), b̃k(n) =
uk(n+ 1) + uk(n− 1)

uk(n)
. (5.16)

To prove the claim it suffices to show

b̃k(n) = bk(n) +O(n−3)
Qk(n) = logk(n) +O(1) (5.17)

since the differences will not contribute to the limits from above.
To establish (5.17) we first recall the following formulas for the first and second

derivative of lnk:

ln′k(x) =
k−1∏
j=0

1
logj(x)

,

ln′′k(x) = − log′k(x)
k∑
j=1

ln′j(x), x > ek. (5.18)

Now we can show (5.17). First of all we have

Qk(n) =
∫ n dx

uk(x)2
+O(1) = logk(n) +O(1). (5.19)
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The second claim is a bit harder. We begin with

uk(n± 1)
uk(n)

=

 k∏
j=0

logj(n± 1)
logj(n)

1/2

=
k∏
j=0

( ∞∑
`=0

(−1)`

`!
log(`)

j (n)
logj(n)

)1/2

=
k∏
j=0

(
1±

ln′j(n)
lnj(n)

+
1
2

ln′′j (n)
lnj(n)

+O(n−3)

)1/2

=
k∏
j=0

(
1± 1

2
log′j+1(n) +

1
4

(
log′′j (n)
lnj(n)

−
log′j+1(n)2

2

)
+O(n−3)

)

= 1± 1
2

k∑
j=0

log′j+1(n) +
1
4

k∑
j=0

(
log′′j (n)
lnj(n)

−
log′j+1(n)2

2

)
+

+
1
4

k∑
j=0

log′j+1(n)
j−1∑
`=0

log′`+1(n) +O(n−3). (5.20)

Now combining both formulas we obtain the desired result

b̃k(n) = 2− 1
2

k∑
j=0

(
log′j+1(n)

j∑
`=1

ln′`(n) +
log′j+1(n)2

2
−

j−1∑
`=0

log′`+1(n)

)
+O(n−3)

= bk(n) +O(n−3). (5.21)

�

Another interesting example is the case

b0(n) = −a(n)− a(n− 1). (5.22)

Again we can take u0(n) = 1 to obtain

Corollary 5.3. Let a0 ≤ |a(n)| ≤ A0 and abbreviate

A(n) =
2a(n− 1)a(n+ 1)
a(n− 1) + a(n+ 1)

, Q0(n) =
n−1∑
j=0

−1
a(j)

. (5.23)

Then τ is nonoscillatory if

lim inf
n→∞

−A(n)Q0(n)2(b(n) + a(n− 1) + a(n)) > −1
4

(5.24)

and oscillatory if

lim sup
n→∞

−A(n)Q0(n)2(b(n) + a(n− 1) + a(n)) < −1
4
. (5.25)

Of course one could take two arbitrary sequence a(n) < 0 and u0(n) > 0 such
that u0 is non-decreasing and (5.4) is satisfied, compute b0(n) = −(a(n)u0(n +
1)+a(n−1)u0(n−1))/u0(n), and apply Theorem 5.1 to get a new (non)oscillation
criterion.
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5.1. Proof of the main theorem

We assume
a0 ≤ |a(n)| ≤ A0, b0(n) (5.26)

are given and that u0 is a minimal positive non-decreasing solution of τ0u0 = 0
as in the previous section. Note that the corresponding second positive solution
û0(n) is increasing.

First we collect some basic facts which will be needed later on.

Lemma 5.4. Let u0 be a minimal positive non-decreasing solution, then we
have

lim
n→∞

u0(n+ 1)
u0(n)

= lim
n→∞

u0(n)
u0(n− 1)

= 1 (5.27)

and
u0(n)û0(n) = u2

0(n)Q0(n) ≥ n

A0
. (5.28)

Proof. Monotonicity of u0 implies
1

u0(j + 1)2
≤ 1
u0(j)u0(j + 1)

≤ 1
u0(j)2

(5.29)

Summing the last expression from 0 to n− 1 and subtracting the right side yields

0 ≤
n−1∑
j=0

1
u0(j)u0(j + 1)

(
u0(j + 1)
u0(j)

− 1
)
≤ 1
u0(0)2

− 1
u0(n)2

≤ 1
u0(0)2

(5.30)

Since u(n) is minimal,
n−1∑
j=0

1
u0(j)u0(j + 1)

≥ a0Q0(n) →∞ (5.31)

implies the first result.
For the second claim we use

Q0(n) =
n−1∑
j=0

−1
a(j)u0(j)u0(j + 1)

≥ 1
A0

n−1∑
j=0

1
u0(j + 1)2

≥ n

A0u0(n)2
(5.32)

finishing the proof. �

Our next goal is to find a suitable comparison equation. We do this by trying
the ansatz

u1(n) = u0(n)Q0(n)α. (5.33)
Then u1(n) satisfies

τ1u(n) = a(n)u1(n+ 1) + a(n− 1)u1(n− 1) + b1(n)u1(n) = 0 (5.34)

with b1(n) given by

b1(n) = −a(n)u0(n+ 1)
u0(n)

(
1− 1

a(n)u0(n+ 1)2Q0(n)

)α
− a(n− 1)u0(n− 1)

u0(n)

(
1 +

1
a(n− 1)u0(n− 1)2Q0(n)

)α
. (5.35)

In order to get an oscillating comparison equation we need to admit α ∈ C.
However, this will also render b1(n) complex and hence it will be of no use for us.
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To overcome this problem we look at the asymptotic behavior of b1(n) for n→∞,
which is given by

b1(n) = b0(n) + µU(n) +O(
1

u6
0(n)Q3

0(n)
), µ = α(α− 1), (5.36)

where

U(n) =
1

2u4
0(n)Q2

0(n)

(
−u0(n)

a(n+ 1)u0(n+ 1)
+

−u0(n)
a(n− 1)u0(n− 1)

)
. (5.37)

If α ∈ R we can choose b1(n) directly as comparison potential to obtain that τ is
nonoscillatory if

lim inf
n→∞

b(n)− b0(n)
b1(n)− b0(n)

> µ. (5.38)

Using the optimal value α = 1
2 plus the expansion from above we end up with

lim inf
n→∞

b(n)− b0(n)
U(n)

> −1
4
. (5.39)

This settles the first part of our theorem. Now we come to the harder one.
As already noticed, in order to get an oscillating comparison equation we need to
choose complex values for α. Our strategy is to choose α = 1

2 + iε such that at
least µ = −1

4 − ε2 remains real and take b̃1(n) = b0(n) + µU(n) as comparison
equation. Of course we don’t know the solutions of this equation, but our hope is
that they asymptotically are given by the real/imaginary parts of

u1(n) = u0(n)
√
Q0(n) (cos(ε lnQ0(n)) + i sin(ε lnQ0(n))) . (5.40)

Hence if we can show that there are solutions ũ1 of τ̃1ũ1 = 0 satisfying

ũ1(n) = u1(n)(1 +O(
1
n

)) (5.41)

we are done.
To show this we begin with

τ1ũ1(n) = ∆(n)ũ1(n), ∆(n) = b1(n)− b̃1(n), (5.42)

and rewrite this equation as (compare [20], Section 1.1)

ũ1(n) = u1(n)−
∞∑

j=n+1

u1(n)u1(j)(Q1(n)−Q1(j))∆(n)ũ1(n). (5.43)

Moreover, setting
ũ1(n) = u1(n)v(n) (5.44)

we obtain

v(n) = 1−
∞∑

j=n+1

u1(n)2(Q1(n)−Q1(j))∆(n)v(n). (5.45)

To show existence of a solution v(n) = 1+o(1) it remains to verify the assumptions
of [20], Lemma 7.8. To do this we need to estimate the kernel of the above sum
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equation. Using

|Q1(n)−Q1(j)| ≤
j∑

k=n

1
a(k)u0(k)u0(k + 1)

√
Q0(k)Q0(k + 1)

≤ 1
a0

j∑
k=n

1
u0(k)2Q0(k)

(5.46)

and
|∆(n)| ≤ const

u0(j)6Q0(j)3
(5.47)

we obtain by Lemma 5.4

|u1(n)2(Q1(n)−Q1(j))∆(n)| ≤ const

u0(j)4Q0(j)2

j∑
k=n

1
u0(k)2Q0(k)

≤ const
ln(j)
j2

. (5.48)

Thus we can apply [20], Lemma 7.8 to conclude existence of a solution of type
(5.41) which finishes the proof.



CHAPTER 6

Hardy’s inequality

6.1. Hardy’s original inequality

We follow the classic treatment [7].

Theorem 6.1. Let a(n) > 0 and A(n) = a(1) + a(2) + · · · + a(n), then for
p > 1

∞∑
n=1

(
A(n)
n

)p
<

(
p

p− 1

)p ∞∑
n=1

a(n)p. (6.1)

Proof. Without loss of generality, we assume a(n) decreases and that the
continuous analog

Theorem 6.2. If f(x) ≥ 0, and F (x) =
∫ x
0 f(t)dt, then∫ ∞

0

(
F (x)
x

)p
dx <

(
p

p− 1

)p ∫ ∞

0
fp(x)dx, (6.2)

unless f ≡ 0.

has been proved. The restriction a(n) decreases causes no loss of generality,
because the following holds:

Lemma 6.3. If the a(n) are given except in arrangement, and φ(t) is a positive
increasing function, then

∞∑
n=1

φ

(
A(n)
n

)
(6.3)

is greatest when the a(n) are arranged in decreasing order.

Proof. If p > q and a(p) > a(q), the effect of exchanging a(p) and a(q)
is to leave A(n) unchanged when n < q or n ≥ p, and to increase A(n) when
q ≤ n < p. �

We define f(x) by

f(x) = a(n), n− 1 ≤ x < n, (6.4)

then
∞∑
n=1

a(n)p =
∫ ∞

0
fp(x)dx. (6.5)

If n < x < n+ 1, then
F (x)
x

=
a(1) + · · ·+ a(n) + (x− n)a(n+ 1)

x
=
A(n)− na(n+ 1) + xa(n+ 1)

x
(6.6)

and
A(n)− na(n+ 1) ≥ 0, (6.7)

27
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so that F (x)/x decreases from A(n)/n to A(n+ 1)/(n+ 1) when x increases from
n to n+ 1. Hence

F (x)
x

≥ A(n+ 1)
n+ 1

(6.8)

and so ∫ ∞

0

(
F (x)
x

)p
dx ≥

∞∑
n=1

(
A(n)
n

)p
. (6.9)

From ∫ ∞

0

(
F (x)
x

)p
dx <

(
p

p− 1

)p ∫ ∞

0
fp(x)dx (6.10)

we obtain
∞∑
n=1

(
A(n)
n

)p
≤
∫ ∞

0

(
F (x)
x

)p
dx <

(
p

p− 1

)p ∫ ∞

0
fp(x)dx =

(
p

p− 1

)p ∞∑
n=1

a(n)p.

(6.11)
�

Remark 6.4. Hardy’s inequality has an important corollary, the inequality of
Carleman: If we write a(n) for a(n)p, we obtain∑(

a(1)1/p + · · ·+ a(n)1/p

n

)p
<

(
p

p− 1

)p∑
a(n). (6.12)

If we make p → ∞ and use the inequality of the geometric and arithmetic mean,
we obtain

Theorem 6.5. ∑
(a(1) · · · a(n))1/n ≤ e

∑
a(n). (6.13)

The last inequality is Carleman’s inequality.

Remark 6.6. In the words of functional analysis Hardy’s inequality states as

(i)

(Tf)(x) =
1
x

∫ x

0
f(y)dy (6.14)

is a map in Lp(0,∞) of norm p
p−1 for p > 1.

(ii)

T : a(n) 7→ b(n) =
1
n

n∑
j=0

a(j) (6.15)

is a map of `p(N) of norm p
p−1 for p > 1.

6.2. Generalization of Hardy’s inequality

F. Gesztesy and M. Ünal proved a generalization of Hardy’s inequality for the
case p = 2, [5].
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Theorem 6.7. Let ψ0(x) be a positive solution of (p0ψ
′)′ − q0ψ = 0.Let∫∞ dt

p0(t)ψ0(t)2
= ∞ and

∫
a

dt
p0(t)ψ0(t)2

< ∞ and ψ0(x) > 0 on (a,∞). Then for
all 0 6= φ ∈ C∞0

(
(a,∞)

)
,∫ ∞

a
p0(x)|φ′(x)|2dx

>

∫ ∞

a
[

1

4p0(x)ψ0(x)4
(∫ x
a

dt
p0(t)ψ0(t)2

)2 − q0(x)]|φ(x)|2dx. (6.16)

The constant 1/4 is sharp.

This is a general statement about Sturm-Liouville equation, but to be more
concrete, one needs Sturm-Liouville equations with known solutions. The simplest
example provides p0 = 1 and q0 = 0 then ψ0(x) = 1 is a positive solution of ψ” = 0
and

∫∞ dt
ψ2

0(t)
= ∞ and therefore all assumptions of the last theorem are fulfilled

and we get Hardy’s inequality∫ ∞

a
φ′2(x)dx >

1
4

∫ ∞

a

φ2(x)
x2

dx. (6.17)

The simplest nonoscillatory equation gives Hardy’s inequality and therefore one
gets generalizations of Hardy’s inequality if one uses other nonoscillatory equa-
tions with known solutions. M. Ünal states in his thesis, [22], a whole scale of
nonoscillatory equations with known solutions. We only state the result and refer
to [22] p.22 Lem.3.2 for details.

Lemma 6.8.

ψn(x) =
( n−1∏
k=0

logk(x)
)1/2(x), (6.18)

is a solution of the equation

−ψ′′n(x) + qn(x)ψn(x) = 0, x 6= 0, (6.19)

where

qn(x) = −
[ n∑
k=1

( k−1∏
j=0

logj(x)
)−2
]
/4, (6.20)

or more precisely,

q1(x) = − 1
4x2

, q2(x) = − 1
4x2

− 1
4x2(log(|x|))2

, . . . , etc. (6.21)

The last lemma combined with the last theorem gives following Hardy-type
inequality

Theorem 6.9. Let 0 6= φ ∈ C∞0
(
(a,∞)

)
and Φ(x) =

∫ x
a φ(t)dt,∫ ∞

a
φ2(x) >

k

4

∫ ∞

a

Φ2(t)(∏k−1
j=0 logk(x)

)−2 , (6.22)

for a > ek.

We obtained the discrete Hardy inequality from the continuous version via
estimates relying on the behavior of the solutions of ψ”(x) = 0 therefore the last
theorem is the key ingredient in the proof of the next theorem.
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Theorem 6.10. Let a(n) be a positive sequence and A(n) =
∑n

j=0 a(j) then
∞∑
ek+1

a(n)2 >
k

4

∞∑
ek+1

A(n)2

n · log(n · · · logk−1(n))
. (6.23)

Proof. W.l.o.g we assume a(n) to be monotone decreasing and the argument
is based on the lemma used in the proof of Hardy’s inequality in the last chapter.
Let φ(x) = a(n) n ≤ x < n+ 1, then

∞∑
1

a(n)2 =
∫ ∞

0
φ(t)2dt. (6.24)

If n < x < n+ 1 then
Φ(x)

x · log(x) · · · logk−1(x)
=
A(n)− na(n+ 1) + xa(n)
x · log(x) · · · logk−1(x)

, (6.25)

but a(n) is monotone decreasing and therefore
Φ(x)

x · log(x) · · · logk−1(x)
≥ Φ(n+ 1)

(n+ 1) · log(n+ 1) · · · logk−1(n+ 1)
. (6.26)

The last inequality yields∫ ∞

ek

( Φ(x)
x · log(x) · · · logk−1(x)

)2 ≥ ∞∑
ek+1

( A(n)
n · log(n) · · · logk−1(n)

)2
, (6.27)

which implies
∞∑

n=ek+1

a(n)2 =
∫ ∞

ek

φ(t)2dt ≥
∫ ∞

ek

( Φ(x)
x · log(x) · · · logk−1(x)

)2
≥

∞∑
ek+1

( A(n)
n · log(n) · · · logk−1(n)

)2
, (6.28)

our desired result. �



CHAPTER 7

Appendices

7.1. Appendix 1

This section contains some material about differences and difference equations
and their relations to differentials and differential equations. The exposition will
be more informal as the former chapters.

7.1.1. Differences and Difference Equations. What is the first difference
of a function? Fix a number h > 0 (called the step size). The first difference of
the given function ϕ with step size h is the function whose value at the point t is
ϕ(t+ h)− ϕ(t). The first difference is denoted ∆ϕ. The second difference ∆2ϕ is
defined as ∆(∆ϕ). This gives

∆(∆ϕ) = ϕ(t+ 2h)− 2ϕ(t+ h) + ϕ(t). (7.1)

The nth difference is defined similarly: ∆nϕ = ∆(∆n−1ϕ). As h→ 0 the expression
∆ϕ
∆t becomes the derivative of ϕ at the point t. And analog is the n− th derivative
of ϕ at the point t the limit of the difference quotient of the n− th order as h→ 0.

A first order difference equation is an equation of the form ∆ϕ
∆t = f(t;ϕ(t)).

From such an equation knowing only the number ϕ(t0), it is possible to find
ϕ(t0 + h), and from the latter ϕ(t0 + 2h), etc. As h → 0 a difference equation
becomes a differential equation. It is therefore not surprising that the solution
of a first order differential equation is also determined by the value of one single
number at the initial instant. A second order difference equation has the
form

∆2ϕ

(∆t)2
=
ϕ(t+ 2h)− 2ϕ(t+ h) + ϕ(t)

h2
= F

(
t;ϕ,

∆ϕ
∆t
)
. (7.2)

Knowing the value of ϕ at two instants separated by a time interval of length h,
we can find the value of ϕ after another interval h from this equation. Thus all
the values ϕ(t+kh) are determined by the first two of them. As h→ 0 the second
order difference equation becomes a second order differential equation. And so
the differential equation is also determined by giving two numbers at the initial
instant. And last, a nth order difference equation is an expression of the form
∆nϕ
(∆t)n = F

(
t;ϕ, ..., ∆n−1ϕ

(∆t)n−1

)
and n is determined by giving n numbers. It also

becomes a differential equation for h→ 0.
In the last section we expressed the derivative of a function in terms of differ-

ences with arbitrary small step size. It is also possible to express derivatives in
terms of differences of a fixed value of h. If ϕ(t) is an analytic function of t, then
by Taylor’s theorem

ϕ(t+ h) = ϕ(t) + hϕ′(t) +
h2

2!
ϕ′′(t) + · · · . (7.3)

31
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Let D denote differentiation; thus Dϕ(t) = ϕ′(t). Then Taylor’s theorem may be
written as

ϕ(t+ h) = [1 + hD +
h2

2!
D2 + · · · ]ϕ(t), (7.4)

but ϕ(t+ h) = ϕ(t+ h)− ϕ(t) + ϕ(t) = (1 + ∆)ϕ(t), which yields the formula

(1 + ∆)ϕ(t) = ehDϕ(t). (7.5)

Suppressing ϕ(t), we get the operational relation

ehD = 1 + ∆. (7.6)

Or the following equivalent expression

hD = log(1 + ∆) = ∆− ∆2

2
+− · · · ; (7.7)

applying this to ϕ(t), we obtain the desired formula for the derivative of ϕ(t) in
terms of differences, namely,

ϕ′(t) =
1
h

[∆ϕ(t)− 1
2
∆2 +− · · · ]. (7.8)

Note that the relation ehD = 1 + ∆ gives directly

∆ϕ = (ehD − 1)ϕ = (hD +
h2

2
D2 + · · · )ϕ(t). (7.9)

7.1.2. Inverse of a Difference Operator. Suppose we are given a function
ψ(t) such that

ϕ(t+ 1)− ϕ(t) = ψ(t) (7.10)
for all values of t. (Hereafter, unless otherwise stated, we assume without loss of
generality differences of length one.) How can we find ψ(t)? Formally, we may
write

ϕ(t) = ∆−1ψ(t), (7.11)
but this is meaningless until ∆−1 has been interpreted. To do so, let us return to
the definition of difference. The definition gives

ϕ(t)− ϕ(t− 1) = ψ(t− 1)
ϕ(t− 2)− ϕ(t− 1) = ψ(t− 2)

ϕ(1)− ϕ(0) = ψ(0).

Adding these equations together, we find that

ϕ(t)− ϕ(0) =
t−1∑
k=0

ψ(k) = ∆−1ψ(t)− ϕ(0). (7.12)

Thus the inverse of differencing is summing. This corresponds to the fact that the
inverse of differentiating is integrating. Notice that in summation, as in integra-
tion, the result is uniquely defined except for the additive constant ϕ(0).
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7.1.3. Difference Calculus. In analogy to the calculus of differentiation you
can develop a calculus of differences.

(i) ∆(ϕ1 + ϕ2) = ∆ϕ1 + ∆ϕ2

(ii) ∆(cϕ) = c∆ϕ
The last to properties are obtained by simple computation, but the consequences
are of fundamental importance. If we consider ∆ as an operator acting on a set
of functions. The essence of the last to relations is the linearity of the operation
of taking differences.
The difference of a product and of a quotient of two functions ϕ1, ϕ2 is

(i) ∆(ϕ1ϕ2)(t) = ∆ϕ1(t)ϕ2(t) + ϕ1(t + 1)∆ϕ2(t) = ϕ1(t + 1)∆ϕ2(t) +
∆ϕ1(t)ϕ2(t)

(ii) ∆(ϕ1

ϕ2
) = ∆ϕ1(t)ϕ2(t)−ϕ1(t+1)∆ϕ2(t)

ϕ2(t)ϕ2(t+1)

Remark 7.1. The results can be generalized to the product or quotient of n
functions.

What functions are invariant under taking differences, i.e what is the analogue
of the exponential et? Two classes of functions are invariant under differences:

(i) The periodic functions with primitive period 1 (or in general with prim-
itive period h) and

(ii) ϕ(t) = 2t, since ϕ(t + 1) − ϕ(t) = ϕ(t) gives ϕ(t + 1) = 2ϕ(t) and the
initial condition ϕ(0) = 1.

Remark 7.2. The last result establishes another connection between difference
and differential equations, because ex is invariant under differentiation and 2n is
invariant under taking forward differences, but 2n = benc.

7.2. Appendix 2

7.2.1. The logarithmic scale. The iterated logarithm occurs in theorems
about oscillation criteria for differential and difference equations or about conver-
gence and divergence criteria for series. The reason for its appearance in conver-
gence criteria is the subject of this section. Our presentation is mainly based on
Knopp, [14]. The following theorems are the key of an understanding, why the
logarithmic scale is of importance in the theory of series and gives a justification
of the statement ”The harmonic series

∑∞
n=1

1
n is the simplest divergent series.”.

Theorem 7.3. (N.H. Abel, U. Dini)

Let (dn) be a real, positive sequence with divergent series
∑
dn and Dn =∑n

j=0 dj then
∞∑
j=1

dj
Dα
j

α > 1
α ≤ 1

convergent
divergent. (7.13)

We only present a proof of the divergence part to give a feeling for proofs of
such theorems and refer for the proof of the convergence to [14] p. 301.
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Proof. First we observe that the divergence of the series for α = 1 implies
the divergence for α < 1, since Dn is monotone increasing and Dα

n ≤ Dn for α < 1
yields

∞∑
j=1

dj
Dj

≤
∞∑
j=1

dj
Dα
j

, (7.14)

but
∑∞

j=1
dj

Dj
is a divergent minorant for

∑∞
j=1

dj

Dα
j

and therefore
∑∞

j=1
dj

Dα
j

is di-
vergent for α < 1. Now we proof the divergence for α = 1.

dn+1

Dn+1
+ · · ·+ dn+k

Dn+k
≥ dn+1 + · · ·+ dn+k

Dn
= 1− Dn

Dn+k
. (7.15)

According to the assumption Dn → ∞ implies that we can always find a kn to a
given n with

Dn

Dn+kn

<
1
2

for k ≥ kn. (7.16)

The last inequality implies

dn+1

Dn+1
+ · · ·+ dn+k

Dn+k
≥ 1

2
for k ≥ kn, (7.17)

and therefore
( n∑
j=1

dj
Dj

)
is not a Cauchy sequence and therefore divergent. �

The simplest choice for dn is to set dn ≡ 1 then Dn = n and the last theorem
gives us a complete characterization of the convergence and divergence behavior of∑∞

j=1
1
nα and a justification of the statement that

∑∞
n=1

1
n is the simplest divergent

series.

Remark 7.4. A replacement of D′
n for Dn, where D′

n is asymptotically equiv-
alent to Dn does not cause any changes in the convergence behavior as stated in
the last theorem.

The theorem of Abel and Dini taught us that divergence of
∑
dn implies that

of
∑ dn

Dn
but what is the relation between these two series? The next theorem gives

an answer under the condition dn
Dn

→ 0, that is fulfilled if the dn are bounded from
above. A condition, that most of the studied sequences satisfy.

Theorem 7.5. Let dn and Dn be as in the theorem of Abel and Dini and
assume dn

Dn
→ 0 then

d1

D1
+ · · ·+ dn

Dn
≈ logDn. (7.18)

The proof is a nonelementary and relies on some not so commonly known facts
about limits.For a proof we therefore refer the reader to [14]. As a corollary we
obtain the asymptotic behavior of

∑ 1
n .

Corollary 7.6.

1 +
1
2

+ · · ·+ 1
n
≈ log n. (7.19)
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This result and the remark to Abel-Dini’s theorem enables us to choose dn = 1
n

which yields:
∞∑
j=1

1
n logα n

α > 1
α ≤ 1

convergent
divergent. (7.20)

Iteration of the last two steps gives a scale of series, where each series is proceeded
by one, that is more slowly convergent or divergent, resp. to α. The series are
built out of log x and its iterations and therefore is called logarithmic series. We
introduce logk x = log(logk−1(x)) for k > 1 and ek(x) = ek−1(ex) to give the
following results a simpler form.

Theorem 7.7.
n∑

n=ek+1

1
n log(n) · · · logk(n)

≈ logk+1(n). (7.21)

The next result is the reason for the importance of the logarithmic scale.

Theorem 7.8.
∞∑

n=ek+1

1
n log(n) · · · logαk (n))

α > 1
α ≤ 1

convergent
divergent. (7.22)

A nice application of the last theorem is a complete characterization of the
behavior of

∞∑
n=ek+1

1
nα0 logα1(n) · · · logαk

k (n)
, (7.23)

often called Abel Series.

Theorem 7.9. Let α0, α1, · · · , αk be arbitrary real numbers then
∞∑

n=ek+1

1
nα0 logα1(n) · · · logαk

k (n)
(7.24)

is convergent if the first from 1 different exponent is greater than 1 and is divergent
if all αj are less or equal 1.

Remark 7.10. The last theorem gives the convergence of
∞∑

n=ek(+1)

1
n2 log2(n) · · · log2(n)k(n)

, (7.25)

because αk = 2 for k = 0, 1, · · · , p. The last series is of great importance in our
treatment of oscillation criteria for Jacobi equations.
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