
 

DISSERTATION / DOCTORAL THESIS 

Titel der Dissertation /Title of the Doctoral Thesis 

Spectral Analysis of Infinite Quantum Graphs 

verfasst von / submitted by 

Noema Nicolussi, MSc 

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of 

Doktorin der Naturwissenschaften (Dr. rer. nat.) 
   

Wien, 2020 / Vienna, 2020

Studienkennzahl lt. Studienblatt / 
degree programme code as it appears on the 
student record sheet:

UA 796 605 405

Dissertationsgebiet  lt. Studienblatt / 
field of study as it appears on the student re-
cord sheet:

Mathematik

Betreut von / Supervisor: 

Betreut von / Supervisor: 

Dr. Oleksiy Kostenko, Privatdoz. 

Univ.-Prof. Dipl.-Ing. Dr. Gerald Teschl





Contents

Acknowledgments ii

Abstract iii

Zusammenfassung iv

Introduction v

Spectral estimates for infinite quantum graphs

Aleksey Kostenko and Noema Nicolussi 1

Strong isoperimetric inequality for tessellating quantum graphs

Noema Nicolussi 39

Quantum graphs on radially symmetric antitrees

Aleksey Kostenko and Noema Nicolussi 55

Self-adjoint and Markovian extensions of infinite quantum graphs

Aleksey Kostenko, Delio Mugnolo, and Noema Nicolussi 91

A note on the Gaffney Laplacian on metric graphs

Aleksey Kostenko and Noema Nicolussi 137

i



ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude towards my advisor
Aleksey Kostenko, for his excellent guidance and an incredible amount of support
in the last years. I thank him for sharing his knowledge in various discussions,
for always being open to new directions, quickly providing help and suggestions in
countless situations, and especially for encouraging me to be passionate and curious
about mathematics. It has been a great pleasure to work and discuss with him and
I am very grateful for this experience.

I want to thank Matthias Keller and Omid Amini for the possibility to visit their
research groups and many discussions, giving me a great opportunity to discover
new and exciting mathematics. I am grateful to Matthias Keller and Wolfgang
Woess for refereeing my thesis and serving as committee members for my defense.
I thank my co-advisor Gerald Teschl for his support throughout the years.

I would also like to extend my thanks to my parents for their unconditional love
and support, in everything I am doing and feel passionate about. I wish to thank my
incredible sister, who is so courageous and an inspiration every day. Furthermore, I
am grateful to my colleagues at university for the beautiful experience of discovering
mathematics with them. I am indebted to all my friends for their support and being
there for me at all times.

My final, deepest and most special thanks go to Christof, for turning every day
into a wonderful adventure and bringing so much happiness and coffee cups into
my life.

ii



ABSTRACT

A “quantum graph” is a Laplacian differential operator on a metric graph, that
is a combinatorial graph where edges are identified with intervals of certain lengths.
Introduced by L. Pauling in the 1930s, this concept has found various applications
in chemistry, physics and biology. Finite quantum graphs (i.e., the metric graph
has finitely many vertices and edges) are rather widely studied. On the other hand,
less is known about quantum graphs on infinite metric graphs and in particular, a
large part of the existing literature relies on an additional geometrical assumption,
the existence of a uniform positive lower bound on the edge lengths. However, this
is known to exclude certain interesting phenomena and spectral properties.

The present thesis is concerned with several aspects of the spectral theory of
infinite quantum graphs. Particular focus lies on infinite graphs without additional
geometrical assumptions and the specific phenomena arising in this situation.

The first part of the thesis is devoted to spectral estimates for the Kirchhoff
Laplacian. We introduce a notion of an isoperimetric constant for infinite metric
graphs and obtain a Cheeger-type estimate. This leads in particular to purely
combinatorial criteria for the Kirchhoff Laplacian to have uniformly positive or
discrete spectrum.

The second part contains a study of the isoperimetric constant for tessellating
metric graphs. Motivated by similar concepts in the setting of combinatorial graphs,
this is carried out in terms of a curvature-like quantity.

In the third part we investigate radially symmetric antitrees, a special class of
infinite graphs with a high degree of symmetry. We perform a detailed spectral
analysis and provide examples of antitrees for which the Kirchhoff Laplacian has
absolutely continuous spectrum equal to the positive halfline.

The goal of the fourth part is to develop basic extension theory for the minimal
Kirchhoff Laplacian. The geometric standard assumption implies self-adjointness
and hence there has been little prior work on this subject. In our approach, we
study the connection between self-adjoint extensions and the notion of graph ends,
an ideal boundary for infinite graphs introduced independently by Freudenthal and
Halin. We obtain a sharp lower estimate on the deficiency indices and a geometric
characterization of uniqueness of a Markovian extension.

The fifth part can be seen as a complement to the previous. We introduce the
Gaffney Laplacian on an infinite metric graph, prove results regarding its closedness
and provide an explicit formula for the deficiency indices of the minimal Gaffney
Laplacian in terms of graph ends.
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ZUSAMMENFASSUNG

Der Begriff „Quantengraph” bezeichnet einen Laplace-Differentialoperator auf
einem metrischen Graphen (ein kombinatorischer Graph, dessen Kanten als Inter-
valle unterschiedlicher Länge aufgefasst werden). Dieses Konzept wurde von L.
Pauling in den 1930er-Jahren eingeführt und fand zahlreiche Anwendungen in der
Chemie, Physik und Biologie. Endliche Quantengraphen (d.h., der metrische Graph
besitzt endlich viele Knoten und Kanten) wurden in den letzten Jahren intensiv
studiert. Über die Eigenschaften von Quantengraphen auf unendlichen Graphen ist
weniger bekannt und ein großer Teil der existierenden Literatur behandelt diese nur
unter einer zusätzlichen geometrischen Annahme, der Existenz einer strikt positiven
unteren Schranke für die Kantenlängen. Gleichzeitig ist jedoch bekannt, dass dies
gewisse interessante Phänomene und spektrale Eigenschaften bereits ausschließt.

Die vorliegende Arbeit befasst sich mit verschiedenen Aspekten der Spektraltheo-
rie von unendlichen Quantengraphen. Besonderer Fokus liegt dabei auf unendlichen
Graphen ohne zusätzliche geometrische Bedingungen und den besonderen Phänome-
nen, die in diesem Fall auftreten können.

Der erste Teil der Arbeit widmet sich Spektralabschätzungen für den Kirchhoff
Laplace-Operator. Wir definieren eine isoperimetische Konstante für unendliche
Quantengraphen und beweisen eine Cheeger-Abschätzung. Dies ergibt insbeson-
dere rein kombinatorische Bedingungen unter denen der Kirchhoff Laplace-Operator
strikt positives oder rein diskretes Spektrum besitzt.

Im zweite Teil studieren wir die isoperimetrische Konstante für den Spezialfall
von planaren metrische Graphen näher. Motiviert durch ähnliche Konzepte für
kombinatorische Graphen benützen dafür wir eine Krümmungsgröße.

Im dritten Teil untersuchen wir radialsymmetrische Antibäume, eine spezielle
Klasse von unendlichen Graphen mit besonderen Symmetrieeigenschaften. Wir
analysieren grundlegende spektrale Eigenschaften und konstruieren Beispiele von
Antibäumen, für die das absolutstetige Spektrum des Kirchhoff Laplace-Operators
gleich der positiven Halbachse ist.

Das Ziel des vierten Teils ist die Entwicklung grundlegender Erweiterungsthe-
orie für den minimalen Kirchhoff Laplace-Operator. Unter der oben erwähnten
geometrischen Annahme ist dieser Operator selbst-adjungiert und daher gibt es zu
diesem Thema bisher nur wenige Resultate. Wir studieren den Zusammenhang
zwischen selbst-adjungierten Erweiterungen und Graphenden, einem klassischen
Randbegriff für unendliche Graphen, der unabhängig von Freudenthal und Halin
eingeführt wurde. Dabei erhalten wir eine scharfe untere Abschätzung für die De-
fektindizes und eine geometrische Charakterisierung der Existenz einer eindeutigen
markowschen Erweiterung.

Der fünfte und letzte Teil stellt ein Komplement zum vorigen dar. Wir definieren
den Gaffney Laplace-Operator im Kontext von unendlichen metrischen Graphen,
beweisen Resultate im Zusammenhang mit seiner Abgeschlossenheit und finden
unter der Verwendung von Graphenden eine explizite Formel für die Defektindizes
des minimalen Gaffney Laplace-Operators.
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INTRODUCTION

In the last few decades, the study of quantum graphs has developed into an im-
portant and active mathematical field. A quantum graph is a Schrödinger operator
on a metric graph (i.e. a discrete graph where edges are identified with intervals
of certain lengths), acting on edgewise smooth functions satisfying certain coupling
conditions at the vertices. The most studied quantum graph is the Kirchhoff Lapla-
cian, which corresponds to a Laplacian without potential or weights and provides
the analog of the Laplace–Beltrami operator in this setting.

The notion of quantum graphs was introduced by Pauling in the 1930s in or-
der to model free electrons in organic molecules [76]. After being rediscovered in
the 1980s (see e.g. [44, 51, 77]), the concept was used in various other branches
of physics, mathematical biology and material sciences, where many applications
are based on a one-dimensional graph approximation of a thin wire-like material.
Having a different motivation in mind, Kottos and Smilansky provoked further in-
terest in the subject in [67, 68], where they proposed quantum graphs as interesting
but still comparably accessible models to study complex phenomena in quantum
chaos. For an overview and further references on quantum graphs in applications
and quantum chaos we refer to [18, 21, 42, 52, 78].

From a more theoretical point of view, an interesting aspect of quantum graphs
is their close relationship to (weighted) discrete Laplacians (for details on discrete
Laplacians see e.g. [14, 34, 83]). Whereas in some situations discrete Laplacians
are easier to study, since they are based on difference expressions rather than differ-
ential equations, the situation is in fact opposite from the perspective of stochastic
properties. The framework of Dirichlet forms [49] links both operator classes to cer-
tain stochastic processes: in this sense quantum graphs relate to Brownian motions
on metric graphs and moreover, the Dirichlet form of a quantum graph is typically
strongly local, e.g. [53]. This allows to use a large number of general results, see for
instance [82]. On the other hand, weighted discrete Laplacian lead to continuous-
time random walks and pure jump forms [14, 48, 58, 87], which are typically much
harder to analyze. Nevertheless, it turns out that certain stochastic aspects of
quantum graphs and discrete Laplacians are related. In this context, metric graphs
are also referred to as “cable graphs” and sometimes allow to transfer results from
the continuous to the discrete setting and back [15, 17, 40, 48, 55, 70, 71].

Moreover, it turns out that these two operator classes are connected in terms
of basic spectral properties. In fact, there is a close link between the eigenvalues
of the Kirchhoff Laplacian on an equilateral (i.e., all edges have the same length)
metric graph and the normalized (also known as physical) discrete Laplacian: they
can be computed from each other in terms of a simple formula [85]. These relations
were generalized considerably in [27, 31, 78] and in particular it was shown in [69]
that these two operators are in a certain sense locally unitarily equivalent. In
the non-equilateral case, connections between quantum graphs and a specific class
of weighted discrete Laplacians were established in [43]. For eigenvalue estimates
involving another type of weighted discrete Laplacians see also [4].
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In the last two decades the study of graphs has also become an important topic
in tropical and algebraic geometry. Discrete and metrics graph appear for instance
as degenerations of algebraic curves and allow certain parallels to compact Rie-
mann surfaces in terms of divisor theory, see e.g. [2, 3, 6, 7, 8, 9, 11, 33, 80, 89].
In this context, discrete Laplacians are used in the definition of the divisor of a
rational function on a graph [9, page 768], which can be seen as a generalization of
the Laplace–Deligne formula [9, Remark 1.4]. Quantum graphs were related to the
Arakelov–Green function in [10] and the notion of divisorial gonality in [5].

Due to these motivations, in the last years a tremendous amount of works was
dedicated to finite quantum graphs (i.e., the metric graph has finitely many vertices
and edges). In this setting, the Kirchhoff Laplacian is always self-adjoint with purely
discrete spectrum and its spectral theory has been developed in many different
directions. For an overview and further references we refer to [18, 21, 42, 52, 78];
for more recent articles see e.g. spectral gap estimates [5, 19, 20, 41, 60, 79], new
results in quantum chaos [23, 24, 56, 84] and other topics [1, 4, 13, 22].

In contrast to this, less is known about the properties of quantum graph operators
on infinite graphs (i.e., the metric graph has countably many vertices and edges).
The major part of the existing literature treats infinite metric graphs only under
rather restrictive geometric assumptions. The best understood models are radially
symmetric metric trees: due to strong symmetry assumptions, the corresponding
Kirchhoff Laplacian reduces to an infinite sum of one-dimensional Sturm–Liouville
operators [28, 72, 81], which allows a rather detailed treatment of this example (see,
e.g. [25, 28, 36, 39, 45, 72, 73, 81]).

Apart from this rather explicit model, the most common geometric assumption
is the existence of a strictly positive lower bound on the lengths of the edges (com-
pare e.g. [21, Assumption 1.4.12] and [78, Assumption 2.1.1]). This permits for
instance to study periodic quantum graphs: their spectra are known to have band-
gap structure [21, Chapter 4]. More recent articles investigate universal properties
of the relative density of the bands [12], explicit constructions of Bethe–Sommerfeld
graphs (i.e. the number of gaps in the spectrum is finite) [47] and examples of pe-
riodic quantum graphs with empty absolutely continuous spectrum [46].

However, in general the existence of a uniform lower bound on the edge lengths
is a rather restrictive condition and already excludes several interesting models and
effects. For instance, it already implies that the Kirchhoff Laplacian is self-adjoint
[21, Theorem 1.4.19] and has non-empty essential spectrum [43, Corollary 4.1]. As
another consequence, the metric graph is complete with its standard metric and
hence the results from [82] directly apply. Metric graphs violating this assumption
are sometimes called fractal metric graphs [78, Section 1.6.7] and appear for exam-
ple as models in mathematical biology [57, 78]. The literature explicitly dedicated
to this case is rather scarce and we refer to [29, 30, 43].

The present thesis is devoted to several topics in the spectral analysis of infinite
quantum graphs. Particular focus lies on infinite metric graphs without any addi-
tional geometric assumptions and the specific spectral phenomena arising in this
situation. The thesis consists of five research articles which were written during the
course of my doctoral studies. They have been included under their original title
as the following chapters:
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1. Spectral estimates for infinite quantum graphs [63],
2. Strong Isoperimetric Inequality for Tessellating Quantum Graphs [75],
3. Quantum graphs on radially symmetric antitrees [64],
4. Self-adjoint and Markovian extensions of infinite quantum graphs [66],
5. A note on the Gaffney Laplacian on metric graphs [65].

We finish this introduction with an overview of the manuscripts and a description
of the main results. Detailed information on their publication status is contained
as well. The articles [63, 64, 65] were written in joint work with my advisor Aleksey
Kostenko, and [66] in additional collaboration with Delio Mugnolo.

1. Spectral estimates for infinite quantum graphs,
(joint with A. Kostenko)
Calc. Var. Partial Differential Equations 58, no. 1, Art. 15 (2019).
The first article [63] is concerned with spectral estimates for the Kirch-
hoff Laplacian on an infinite metric graph, which play a crucial role in
the study of the corresponding heat semigroup. We introduce a notion of
an isoperimetric constant and obtain a Cheeger-type inequality (Theorem
3.4). Whereas due to certain geometric parallels [16, 32, 74] this result
is expected, the main discovery is that in contrast to manifolds and finite
metric graphs [32, 74] the isoperimetric constant of an infinite metric graph
has a combinatorial structure.

This in particular leads to combinatorial criteria for the Kirchhoff Lapla-
cian to have strictly positive or purely discrete spectrum (Corollary 4.5).
For instance, if the isoperimetric constant of the underlying combinatorial
graph is strictly positive, then the spectrum is strictly positive if and only if
edge lengths are uniformly bounded above; the spectrum is purely discrete
if and only if edge lengths go to zero upon removing compact subgraphs.
This class of graphs includes several important examples such as regular
tessellations of hyperbolic space and Cayley graphs of non-amenable count-
able finitely generated groups. In case of Cayley graphs we also mention
that by Lemma 8.12, the group is amenable if and only if for every choice
of edge lengths (with edge lengths bounded above) the Kirchhoff Laplacian
has strictly positive spectrum. This can in some sense be interpreted as a
metric graph analog of the classical criteria by Kesten involving the discrete
normalized Laplacian, which is the generator of the simple random walk on
the Cayley graph [61, 62].

2. Strong Isoperimetric Inequality for Tessellating Quantum Graphs,
Proceedings of the 2017 Bielefeld Conference in the Theory of Networks,
Oper. Theory: Adv. Appl., Birkhäuser, to appear
(accepted on 24. December 2018).
The results of [63] make it natural to search for lower estimates for the
isoperimetric constant. For discrete Laplacians on tessellating graphs such
estimates are available in terms of discrete curvature notions [54, 59, 86].
In the second article [75], we provide similar results for metric tessellating
graphs. We modify the edge curvature introduced in [86] and define a no-
tion of a characteristic value for edges of tessellating metric graphs (Section
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2.2). In terms of this notion, we obtain a lower estimate on the isoperimet-
ric constant (Theorem 3.3).

3. Quantum graphs on radially symmetric antitrees,
(joint with A. Kostenko)
J. Spectral Theory, to appear (accepted on 24. May 2019).
The third article [64] is devoted to radially symmetric antitrees, a special
class of infinite metric graphs with particular symmetry properties. His-
torically, (discrete) antitrees appear first as (counter-) examples in context
with the question of stochastic completeness for continuous-time random
walks [88]. Our goal in this article is to provide a class of graphs which can
be fully analyzed, but at the same time features very different properties
in comparison with the frequently considered class of symmetric trees.

Based on a decomposition of the Kirchhoff Laplacian into one-dimensional
Sturm–Liouville operators (Theorem 3.2), we are able to perform a detailed
spectral analysis by employing spectral theory of Krein strings. For in-
stance, we prove that the Kirchhoff Laplacian is self-adjoint if and only if
the total volume of the antitree is infinite (Theorem 4.1). This characteri-
zation is in some sense surprising: the condition of infinite total volume is
a much weaker assumption than the Gaffney-type self-adjointness criteria
(for general graphs) discussed in [66], which require completeness of the
graph for suitable metrics. This can be interpreted as a hint that metric
completion (a radially symmetric antitree is metrically complete exactly
when it has infinite diameter) might not be the right notion of a graph
boundary for the self-adjointness problem. In the finite volume case, we
prove that deficiency indices are equal to 1 and describe all self-adjoint
extensions (Theorem 4.1 (ii)). Moreover, we compute the isoperimetric
constant in terms of sphere numbers and edge lengths (Section 7) and con-
struct non-periodic antitrees with a large amount of absolutely continuous
spectrum (Section 9). In this context we also refer to [37], where the de-
composition result, Theorem 3.2, was employed to construct antitrees for
which the Kirchhoff Laplacian has zero Lebesgue measure spectrum and
nontrivial singular continuous spectrum.

During the submission process of [64], we also learned about the recent
article [26], where the authors prove a decomposition result (similar to The-
orem 3.2) for an abstract class of metric graphs satisfying certain symmetry
assumptions. Radially symmetric antitrees are particular examples of this
graph class, but we stress that our focus is on the spectral analysis, wheras
the main aim of [26] is to provide a decomposition result in a rather gen-
eral situation. In fact, it appears that the methods of [64] can easily be
generalized to the setting of [26], leading to a detailed spectral description
of the Kirchhoff Laplacian on this abstract graph class.

4. Self-adjoint and Markovian extensions of infinite quantum graphs,
(joint with A. Kostenko and D. Mugnolo), submitted.
The objective of the fourth article [66] is to study the self-adjointness prob-
lem for the Kirchhoff Laplacian. There has been little prior work on this
subject and most of the known results rely on the common assumption
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of a positive uniform lower bound on edge lengths (which implies self-
adjointness). Recently, a few results based on completeness properties with
respect to suitable metrics have appeared (cf. [43, §4]). Motivated by the
results on radially symmetric antitrees [64], we pursue a different approach
and employ the notion of graph ends, a classical graph boundary intro-
duced independently by Freudenthal and Halin. Modifying this concept
slightly, we introduce the notion of graph ends of finite volume (Defini-
tion 3.7) and investigate their connection to self-adjoint extensions of the
Kirchhoff Laplacian.

Our first main result is a lower estimate on the deficiency indices in
terms of the number of finite volume graph ends (Theorem 4.1). This esti-
mate is sharp and we also provide a criterion for the equality to hold. In
particular equality holds for radially symmetric antitrees, which explains
the criteria from [64] (see Example 4.11 and Section 7). Our second main
result is a geometric characterization of the uniqueness of Markovian ex-
tensions: this holds true if and only if all graph ends have infinite volume
(Corollary 5.5; see also [38] for detailed information on the importance and
relationship of self-adjoint and Markovian uniqueness). In particular, for
graphs with only one graph end (e.g. tessellating graphs, antitrees, Cayley
graphs of amenable groups which are not virtually infinite cyclic) this con-
dition reduces to the simple assumption that the graph has infinite total
volume (Remark 3.8). Moreover, in case of only finitely many ends of finite
volume, we provide an explicit description of the so-called finite energy ex-
tensions, a special class of self-adjoint extensions containing all Markovian
extensions (Theorem 6.11). In particular, the Markovian extensions form a
rather small one-parameter family for the above examples of graphs having
just one end (Section 7 contains an example of an antitree such that the
corresponding Kirchhoff Laplacian has infinite deficiency indices).

5. A note on the Gaffney Laplacian on metric graphs,
(joint with A. Kostenko), in preparation.
The fifth article [65] is a complement to [66] and investigates the Gaffney
Laplacian on a metric graph (see Section 3), which is the analog of the
Laplacian on Riemannian manifolds studied by Gaffney in [50]. Namely,
the Gaffney Laplacian is the restriction of the maximal Kirchhoff Laplacian
to functions having finite energy (Dirichlet integral). The main goal is to
provide a new, transparent perspective on the main results of [66]: first
of all, the self-adjointness of the Gaffney Laplacian is equivalent to the
uniqueness of Markovian extensions of the Kirchhoff Laplacian (Lemma 3.4)
and its deficiency indices coincide exactly with the number of graph ends of
finite volume (Theorem 3.8). Moreover, the finite energy extensions studied
in [66] are exactly the self-adjoint restrictions of the Gaffney Laplacian
(Lemma 3.5). However, the main disadvantage of the Gaffney Laplacian is
that it is not necessarily closed and we address this question in Theorem 3.9
(see also Proposition 4.1 and Remark 4.2). In case of finite total volume,
closedness of the Gaffney Laplacian is equivalent to the number of graph
ends being finite (Corollary 3.10). All these results are demonstrated by
examples in the final section.
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If the Gaffney Laplacian is not closed, the next natural question is the de-
scription of its closure. In the one-dimensional setting, the Gaffney operator
coincides with the maximal one and based on a certain kind of dimension
reduction [28, 72, 81], we show that for radially symmetric trees (in fact,
for the general class of radially symmetric metric graphs of [26]) this effect
prevails in the sense that the closure of the Gaffney Laplacian coincides
with the maximal Kirchhoff Laplacian (Lemma 4.6 and Remark 4.7).
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SPECTRAL ESTIMATES FOR INFINITE QUANTUM GRAPHS

ALEKSEY KOSTENKO AND NOEMA NICOLUSSI

Abstract. We investigate the bottom of the spectra of infinite quantum
graphs, i.e., Laplace operators on metric graphs having infinitely many edges
and vertices. We introduce a new definition of the isoperimetric constant for
quantum graphs and then prove the Cheeger-type estimate. Our definition
of the isoperimetric constant is purely combinatorial and thus it establishes
connections with the combinatorial isoperimetric constant, one of the central
objects in spectral graph theory and in the theory of simple random walks on
graphs. The latter enables us to prove a number of criteria for quantum graphs
to be uniformly positive or to have purely discrete spectrum. We demonstrate
our findings by considering trees, antitrees and Cayley graphs of finitely gen-
erated groups.
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1. Introduction

The main focus of our paper is on the study of spectra of quantum graphs. The
notion of “quantum graph” refers to a graph G considered as a one-dimensional
simplicial complex and equipped with a differential operator. The spectral and
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scattering properties of Schrödinger operators on such structures attracted a con-
siderable interest during the last two decades, as they provide, in particular, rel-
evant models of nanostructured systems (we only mention recent collected works
and monographs with a comprehensive bibliography: [9], [10], [25], [58]).

Let G be a locally finite connected metric graph, that is, a locally finite con-
nected combinatorial graph Gd = (V, E), where each edge e ∈ E is identified with a
copy of the interval [0, |e|] and | · | denotes the edge length. We shall always assume
throughout the paper that each edge has finite length, that is, | · | : E → (0,∞). In
the Hilbert space L2(G) =

⊕
e∈E L

2(e), we can define the Hamiltonian H which acts
in this space as the (negative) second derivative − d2

dx2
e

on every edge e ∈ E . To give
H the meaning of a quantum mechanical energy operator, it must be self-adjoint
and hence one needs to impose appropriate boundary conditions at the vertices.
Kirchhoff (also known as Kirchhoff–Neumann) conditions (2.6) are the most stan-
dard ones (cf. [10]) and the corresponding operator denoted by H is usually called
a Kirchhoff (Kirchhoff–Neumann) Laplacian (we refer to Sections 2.2–2.4 for a pre-
cise definition of the operator H). If the graph G is finite (G has finitely many
vertices and edges), then the spectrum of H is purely discrete (see, e.g., [10]). Dur-
ing the last few years, a lot of effort has been put in estimating the first nonzero
eigenvalue of the operator H (notice that 0 is always a simple eigenvalue if Gd is
connected) and also in understanding its dependence on various characteristics of
the corresponding metric graph including the number of essential vertices of the
graph (vertices of degree 2 are called inessential); the number or the total length of
the graph’s edges; the edge connectivity of the underlying (combinatorial) graph,
etc. For further information we refer to a brief selection of recent articles [3], [4],
[8], [41], [42], [45], [59].

If the graph G is infinite (there are infinitely many vertices and edges), then
the corresponding pre-minimal operator H0 defined by (2.7) is not automatically
essentially self-adjoint. One of the standard conditions to ensure the essential self-
adjointness of H0 is the existence of a positive lower bound on the edges lengths,
`∗(G) = infe∈E |e| > 0 (see [10]). Only recently several self-adjointness conditions
without this rather restrictive assumption have been established in [26], [44] (see
Section 2.3 for further details). Of course, the next natural question is the structure
of the spectrum of the operator H. Clearly, the spectrum of an infinite quantum
graph is not necessarily discrete and hence one is interested in the location of the
bottom of the spectrum, λ0(H), as well as of the bottom of the essential spec-
trum, λess

0 (H), of H. Since the graph is infinite, many quantities of interest for
finite quantum graphs (e.g., the number of vertices, edges, or its total length) are
no longer suitable for these purposes and the corresponding bounds usually lead
to trivial estimates. However, it is widely known that quantum graphs in a cer-
tain sense interpolate between Laplacians on Riemannian manifolds and difference
Laplacians on combinatorial graphs and hence quantum graphs can be investigated
by modifying techniques that have been developed for operators on manifolds and
graphs and we explore these analogies in the present paper. Notice that this insight
has already proved to be very fruitful and it has led to many important results in
spectral theory of operators on metric graphs (see, e.g., [10]). Although quantum
graphs are essentially operators on one dimensional manifolds, our point of view is
that the corresponding results and estimates should be of combinatorial nature.
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Our central result is a Cheeger-type estimate for quantum graphs, which estab-
lishes lower bounds for λ0(H) and λess

0 (H) in terms of the isoperimetric constant
α(G) of the metric graph G (Theorem 3.4). Although the Cheeger-type bound for
(finite) quantum graphs was proved 30 years ago by S. Nicaise (see [51, Theorem
3.2]), we give a new purely combinatorial definition of the isoperimetric constant
(see Definition 3.2) and as a result this establishes a connection with isoperimetric
constants for combinatorial graphs (see Lemma 4.2 and also (4.10)–(4.11)). To a
certain extent this connection is expected (cf. Theorem 2.11 and also [6, 15, 11, 58]).
Moreover, it was observed recently in [26, 44] by using the ideas from [43] that
spectral properties of the operator H are closely connected with the corresponding
properties of the discrete Laplacian defined in `2(V;m) by the expression

(τGf)(v) :=
1

m(v)

∑
u∼v

f(v)− f(u)

|eu,v|
, v ∈ V, (1.1)

where the weight function m : V → R>0 is given by

m : v 7→
∑
u∼v

|eu,v|. (1.2)

Using this connection, several criteria for λ0(H) and λess
0 (H) to be positive have

been established in [26], however, in terms of isoperimetric constants and volume
growth of the combinatorial graphs, which were introduced, respectively, in [5] and
[28], [34] (in this paper we obtain these results as simple corollaries of our estimate
(3.8)).

Despite the combinatorial nature of (3.3) and (3.4), it is known that computation
of the combinatorial isoperimetric constant is an NP-hard problem [49] (see also
[35, 37] for further details). Motivated by [5] and [21], we introduce a quantity,
which sometimes is interpreted as a curvature of a graph, leading to estimates for
the isoperimetric constants α(G) and αess(G). It also turns out to be very useful
in many situations of interest as we show by the examples of trees and antitrees.
Another way to estimate isoperimetric constants is provided by the volume growth.
Namely, we can apply the exponential volume growth estimates for regular Dirichlet
forms from [63] (see also [34], [52]) to prove upper bounds (Brooks-type estimates
[7]) for quantum graphs (see Theorem 7.1). However, this can be done under the
additional assumption that the metric graph is complete with respect to the natural
path metric (notice that in this case H0 is essentially self-adjoint and H coincides
with its closure, see Corollary 2.3).

The quantities λ0(H) and λess
0 (H) are of fundamental importance for several

reasons. From the spectral theory point of view, the positivity of λ0(H) or λess
0 (H)

corresponds to bounded invertibility or Fredholmness of the operator H. Moreover,
λess
0 (H) = +∞ holds precisely when the spectrum of H is purely discrete, which

is further equivalent to the compactness of the embedding H1
0 (G) into L2(G) (the

definition of the form domain H1
0 (G) is given in Section 2.4). It is difficult to

overestimate the importance of λ0(H) and λess
0 (H) in applications. For example, in

the theory of parabolic equations λ0(H) gives the speed of convergence of the system
towards equilibrium. On the other hand, Cheeger-type inequalities have a venerable
history. Starting from the seminal work of J. Cheeger [16], where a connection
between the isoperimetric constant of a compact manifold and a first nontrivial
eigenvalue of the Laplace–Beltrami operator was found, this topic became an active
area of research in both manifolds and graphs settings. One of the most fruitful
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applications of Cheeger’s inequality in graph theory (this inequality was first proved
independently in [20, 22] and [1, 2]) is in the study of networks connectivity, namely,
in constructing expanders (see [17, 19, 35, 47]). Notice also that the positivity of
the isoperimetric constant (also known as a strong isoperimetric inequality) is of
fundamental importance in the study of random walks on graphs (we refer to [65]
for further details).

Let us now finish the introduction by describing the content of the article. First
of all, we review necessary notions and facts on infinite quantum graphs in Section 2,
where we introduce the pre-minimal operator H0 (Section 2.2), discuss its essential
self-adjointness (Section 2.3) and the corresponding quadratic form tG (Section 2.4),
and also touch upon its connection with the difference Laplacian (1.1) (Section 2.5).

Section 3 contains our first main result, Theorem 3.4, which provides the Cheeger-
type estimate for quantum graphs. Its proof follows closely the line of arguments
as in the manifold case with the only exception, Lemma 3.7, which enables us to
replace the isoperimetric constant (3.12) having the form similar to that of in [51]
(see also [41, 57]) by the quantity (3.3) having a combinatorial structure. The latter
also reveals connections with the combinatorial isoperimetric constant αcomb from
[2, 20], which measures connectedness of the underlying combinatorial graph, and
with the discrete isoperimetric constant αd introduced recently in [5] for the dif-
ference Laplacian (1.1). Bearing in mind the importance of both αcomb and αd in
applications as well as the fact that these quantities are widely studied, we discuss
these connections in Sections 4.

Similar to manifolds and combinatorial Laplacians, one can estimate λ0(H) and
λess
0 (H) by using the isoperimetric constant not only from below but also from

above (Lemma 5.1). However, the price we have to pay is the existence of a positive
lower bound on the edges lengths, infe∈E |e| > 0. Combining these estimates with
the results from Section 4, we conclude that in this case the positivity of λ0(H)
(resp., λess

0 (H)) is equivalent to the validity of a strong isoperimetric inequality,
i.e., αcomb > 0 (resp., αess

comb > 0).
In Section 6, we introduce a quantity which may be interpreted as a curvature

of a metric graph. Firstly, using this quantity we are able to obtain estimates on
the isoperimetric constant. Secondly, we discuss its connection with the curva-
tures introduced for combinatorial Laplacians in [21] and for unbounded difference
Laplacians in [5]. The latter, in particular, enables us to obtain simple discreteness
criteria for σ(H) (see Lemma 6.5 and Corollary 6.6), which to a certain extent can
be seen as the analogs of the discreteness criteria from [23] and [31].

The estimates in terms of the volume growth are given in Section 7. In Section 8,
we consider several illustrative examples. The case of trees is treated in Section 8.1.
We show that for trees without inessential vertices and loose ends (vertices having
degree 1), λ0(H) > 0 if and only if supe |e| < ∞. Moreover, the spectrum of H
is purely discrete if and only if the number #{e ∈ E : |e| > ε} is finite for every
ε > 0. Notice that under the additional symmetry assumption that a given metric
tree is regular similar results, however, for the so-called Neumann Laplacian were
observed by M. Solomyak [62]. The case of antitrees is considered in Section 8.2.
We provide some general estimates and also focus on two particular examples of
exponentially and polynomially growing antitrees. In particular, it turns out that
for a polynomially growing antitree, our results provide rather good estimates for
λ0(H) and λess

0 (H) (see Example 8.9). In the last subsection, we consider the case
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of Cayley graphs of finitely generated groups. Similar to combinatorial Laplacians,
the amenability/non-amenability of the underlying group plays a crucial role.

Finally, in Appendix A we provide a slight improvement to the Cheeger estimates
from [5] by noting that one can replace intrinsic path metrics in the definition of
isoperimetric constants simply by edge weight functions having an intrinsic prop-
erty.

2. Quantum graphs

2.1. Combinatorial and metric graphs. In what follows, Gd = (V, E) will be
an unoriented graph with countably infinite sets of vertices V and edges E . For two
vertices u, v ∈ V we shall write u ∼ v if there is an edge eu,v ∈ E connecting u with
v. For every v ∈ V, we denote the set of edges incident to the vertex v by Ev and

degG(v) := #{e| e ∈ Ev} (2.1)

is called the degree (or combinatorial degree) of a vertex v ∈ V. When there is no
risk of confusion which graph is involved, we shall write deg instead of degG . By
#(S) we denote the cardinality of a given set S. A path P of length n ∈ Z>0∪{∞}
is a sequence of vertices {v0, v1, . . . , vn} such that vk−1 ∼ vk for all k ∈ {1, . . . , n}.
If v0 = vn, then P is called a cycle.

We shall always make the following assumption.

Hypothesis 2.1. The infinite graph Gd is locally finite (deg(v) < ∞ for every
v ∈ V), connected (for any two vertices u, v ∈ V there is a path connecting u and
v), and simple (there are no loops or multiple edges).

Next we assign each edge e ∈ E a finite length |e| ∈ (0,∞). In this case G :=
(V, E , | · |) = (Gd, | · |) is called a metric graph. The latter enables us to equip G with
a topology and metric. Namely, by assigning each edge a direction and calling one
of its vertices the initial vertex e0 and the other one the terminal vertex ei, every
edge e ∈ E can be identified with a copy of the interval Ie = [0, |e|]; moreover,
the ends of the edges that correspond to the same vertex v are identified as well.
Thus, G can be equipped with the natural path metric %0 (the distance between
two points x, y ∈ G is defined as the length of the “shortest” path connecting x
and y). Moreover, a metric graph G can be considered as a topological space (one-
dimensional simplicial complex). For further details we refer to, e.g., [10, Chapter
1.3].

Also throughout this paper we shall assume the following conditions.

Hypothesis 2.2. There is a finite upper bound for lengths of graph edges:

`∗(G) := sup
e∈E

|e| < ∞. (2.2)

In fact, Hypothesis 2.2 is not a restriction for our purposes (see Lemma 2.8 and
also Remark 2.9(i)).

Hypothesis 2.3. All edges in G are essential, that is, deg(v) 6= 2 for all v ∈ V.

This assumption is not a restriction at all since vertices of degree 2 are irrelevant
for the spectral properties of the Kirchhoff Laplacian and hence can be removed
(see, e.g., [41]).
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2.2. Kirchhoff’s Laplacian. Let G be a metric graph satisfying Hypothesis 2.1–2.3.
Upon identifying every e ∈ E with a copy of the interval Ie and considering G as the
union of all edges glued together at certain endpoints, let us introduce the Hilbert
space L2(G) of functions f : G → C such that

L2(G) =
⊕
e∈E

L2(e) =
{
f = {fe}e∈E

∣∣ fe ∈ L2(e),
∑
e∈E

‖fe‖2L2(e) < ∞
}
.

The subspace of compactly supported L2(G) functions will be denoted by

L2
c(G) =

{
f ∈ L2(G)| f 6= 0 only on finitely many edges e ∈ E

}
.

Next let us equip G with the Laplace operator. For every e ∈ E consider the
maximal operator He,max acting on functions f ∈ H2(e) as a negative second de-
rivative. Here and below Hn(e) for n ∈ Z≥0 denotes the usual Sobolev space. In
particular, H0(e) = L2(e) and

H1(e) = {f ∈ AC(e) : f ′ ∈ L2(e)}, H2(e) = {f ∈ H1(e) : f ′ ∈ H1(e)}.
Now consider the maximal operator on G defined by

Hmax =
⊕
e∈E

He,max, He,max = − d2

dx2
e

, dom(He,max) = H2(e). (2.3)

For every fe ∈ H2(e) the following quantities
fe(eo) := lim

x→eo
fe(x), fe(ei) := lim

x→ei
fe(x), (2.4)

and

f ′
e(eo) := lim

x→eo

fe(x)− fe(eo)

|x− eo|
, f ′

e(ei) := lim
x→ei

fe(x)− fe(ei)

|x− ei|
, (2.5)

are well defined. The Kirchhoff (or Kirchhoff–Neumann) boundary conditions at
every vertex v ∈ V are then given byf is continuous at v,∑

e∈Ev
f ′
e(v) = 0.

(2.6)

Imposing these boundary conditions on the maximal domain dom(Hmax) and
then restricting to compactly supported functions we get the pre-minimal operator

H0 = Hmax � dom(H0),

dom(H0) = {f ∈ dom(Hmax) ∩ L2
c(G)| f satisfies (2.6), v ∈ V}.

(2.7)

Integrating by parts one obtains that H0 is symmetric. We call its closure the
minimal Kirchhoff Laplacian. Notice that the values of f at the vertices (2.4)
and one-sided derivatives (2.5) do not depend on the choice of orientation on G.
Moreover, the second derivative is also independent of orientation on G and hence
so is the operator H0.

Remark 2.1. If deg(v) = 1, then Kirchhoff’s condition (2.6) at v is simply the
Neumann condition

f ′
e(v) = 0. (2.8)

Let us mention that one can replace it by the Dirichlet condition
fe(v) = 0 (2.9)
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and we shall consider the operator H0 with mixed boundary conditions (either
Neumann or Dirichlet) at the vertices v ∈ V of the graph G such that deg(v) = 1.

In the rest of our paper, we shall denote by VD (respectively, by VN ) the set of
vertices v ∈ V such that deg(v) = 1 and the Dirichlet condition (2.9) (respectively,
the Neumann condition (2.8)) is imposed at v. The sets of corresponding edges will
be denoted by ED and EN , respectively.

2.3. Self-adjointness. In the rest of our paper we shall always assume that the
graph Gd is infinite, that is, both sets V and E are infinite (since Gd is assumed to be
locally finite). In this case the operator H0 is not necessarily essentially self-adjoint
(that is, its closure may have nonzero deficiency indices) and finding self-adjointness
criteria is a challenging open problem. The next results were proved recently in
[26]. Define the weight function m : V → R>0 by

m : v 7→
∑
e∈Ev

|e|, (2.10)

and then let pm : E → R>0 be given by

pm : eu,v 7→ m(u) +m(v). (2.11)

The path metric %m on V generated by pm is defined by

%m(u, v) := inf
P={v0,...,vn} : v0=u vn=v

∑
k

pm(evk−1,vk), (2.12)

where the infimum is taken over all paths connecting u and v.

Theorem 2.2 ([26]). If (V, %m) is complete as a metric space, then H0 is essentially
self-adjoint. In particular, H0 is essentially self-adjoint if

inf
v∈V

m(v) > 0. (2.13)

Replacing pm in (2.12) by the edge length | · |, we end up with the natural path
metric %0 on V. Clearly, (V, %m) is complete if so is (V, %0) and hence we arrive at
the following Gaffney-type theorem for quantum graphs.

Corollary 2.3 ([26]). If G equipped with a natural path metric is complete as a
metric space, then H0 is essentially self-adjoint.

The next well known result (see [10, Theorem 1.4.19]) also immediately follows
from Theorem 2.2.

Corollary 2.4. If
`∗(G) := inf

e∈E
|e| > 0, (2.14)

then H0 is essentially self-adjoint.

2.4. Quadratic forms. In this section we present the variational definition of the
Kirchhoff Laplacian. Consider the quadratic form

t0G [f ] := (H0f, f)L2(G), f ∈ dom(t0G) := dom(H0). (2.15)

For every f ∈ dom(H0), an integration by parts gives

t0G [f ] =

∫
G
|f ′(x)|2 dx = ‖f ′‖2L2(G). (2.16)
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Clearly, the form t0G is nonnegative. Moreover, it is closable since H0 is symmetric.
Let us denote its closure by tG and the corresponding domain by H1

0 (G) := dom(tG).
By the first representation theorem, there is a unique nonnegative self-adjoint op-
erator corresponding to the form tG .
Definition 2.5. The self-adjoint nonnegative operator H associated with the form
tG in L2(G) will be called the Kirchhoff Laplacian.

If the pre-minimal operator H0 is essentially self-adjoint, then H coincides with
its closure. In the case when H0 is a symmetric operator with nontrivial deficiency
indices, the operator H is the Friedrichs extension of H0.
Remark 2.6. Of course, one may consider the maximally defined form

t
(N)
G [f ] :=

∫
G
|f ′(x)|2 dx, f ∈ dom(t

(N)
G ), (2.17)

where
dom(t

(N)
G ) := {f ∈ L2(G)| f ∈ H1

loc(G), f ′ ∈ L2(G)} =: H1(G), (2.18)

and then associate a self-adjoint positive operator, let us denote it by HN , with
this form in L2(G). Clearly, the forms tG and t

(N)
G coincide if and only if H

is the unique positive self-adjoint extension of H0 (this in particular holds if H0

is essentially self-adjoint). We are not aware of a description of the self-adjoint
operator HN associated with the form t

(N)
G if the pre-minimal operator has nontrivial

deficiency indices (however, see the recent work [13, 38]). Moreover, to the best
of our knowledge, the description of deficiency indices of H0 and its self-adjoint
extensions is a widely open problem.

If at some vertices v ∈ V with deg(v) = 1 the Neumann condition (2.8) is
replaced by the Dirichlet condition (2.9), then the corresponding form domain will
be denoted by H̃1

0 (G). Notice that

H̃1
0 (G) = {f ∈ H1

0 (G)| fe(v) = 0, v ∈ VD}. (2.19)
By abusing the notation, we shall denote the corresponding self-adjoint operator by
H. The bottom of the spectrum of H can be found by using the Rayleigh quotient

λ0(H) := inf σ(H) = inf
f∈H̃1

0 (G)
f 6=0

(Hf, f)L2(G)

‖f‖2L2(G)
= inf

f∈H̃1
0 (G)

f 6=0

‖f ′‖2L2(G)

‖f‖2L2(G)
. (2.20)

Moreover, the bottom of the essential spectrum is given by

λess
0 (H) := inf σess(H) = sup

G̃⊂G
inf

f∈H̃1
0 (G\G̃)
f 6=0

‖f ′‖2
L2(G\G̃)

‖f‖2
L2(G\G̃)

, (2.21)

where the sup is taken over all finite subgraphs G̃ of G. Here for any G̃ ⊂ G we
define H̃1

0 (G \ G̃) as the set of H1
0 (G \ G̃) functions satisfying the following boundary

conditions: for vertices in G \ G̃ having one or more edges in G̃, we change the
boundary conditions from Kirchhoff–Neumann to Dirichlet; for all other vertices in
G\G̃, we leave them the same. This equality is known as a Persson-type theorem (or
Glazman’s decomposition principle in the Russian literature, see [33]) and its proof
in the case of quantum graphs is analogous to the case of Schrödinger operators
(see, e.g., [18, Theorem 3.12]).
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Remark 2.7. Let us mention that the following equivalence holds true
λ0(H) = 0 ⇐⇒ λess

0 (H) = 0. (2.22)
The implication “ ⇐ ” is obvious. However, λ0(H) = 0 and λess

0 (H) 6= 0 holds
only if 0 is an isolated eigenvalue. On the other hand, (2.16) implies that 0 is an
eigenvalue of H only if 1 ∈ L2(G). The latter happens exactly when

mes(G) :=
∑
e∈E

|e| < ∞.

and hence the equivalence (2.22) holds true whenever mes(G) = ∞,
On the other hand, it turns out that 1 /∈ H1

0 (G) if mes(G) < ∞ and hence 0 is
never an eigenvalue of H (see Corollary 3.5(iv)). In particular, the latter implies
that tG 6= t

(N)
G if the metric graph G has finite total volume, mes(G) < ∞. The

analysis of this case is postponed to a separate publication.

If G1, G2 are finite subgraphs with G1 ⊆ G2 ⊂ G, then H̃1
0 (G \ G2) ⊆ H̃1

0 (G \ G1)

in the sense that every function in H̃1
0 (G \ G2) can be extended to be in H̃1

0 (G \ G1)
by setting it zero on remaining edges. Thus,

inf
f∈H̃1

0 (G\G2)
f 6=0

‖f ′‖2L2(G\G2)

‖f‖2L2(G\G2)

≥ inf
f∈H̃1

0 (G\G1)
f 6=0

‖f ′‖2L2(G\G1)

‖f‖2L2(G\G1)

.

Let KG be the set of all finite, connected subgraphs of G ordered by the inclusion
relation “⊆” and hence KG is a net. Moreover,

λess
0 (H) = sup

G̃∈KG

inf
f∈H̃1

0 (G\G̃)
f 6=0

‖f ′‖2
L2(G\G̃)

‖f‖2
L2(G\G̃)

= lim
G̃∈KG

inf
f∈H̃1

0 (G\G̃)
f 6=0

‖f ′‖2
L2(G\G̃)

‖f‖2
L2(G\G̃)

, (2.23)

where the limit is understood in the sense of nets and in this case we will say that
G̃ tends to G.

The next result provides an estimate, which easily follows from (2.20)–(2.21).

Lemma 2.8. Set
`∗ess(G) := inf

Ẽ
sup

e∈E\Ẽ
|e|, (2.24)

where the infimum is taken over all finite subsets Ẽ of E. Then

λ0(H) ≤ π2

`∗(G)2
, λess

0 (H) ≤ π2

`∗ess(G)2
. (2.25)

Proof. By construction, the set H̃1
c (G) := H̃1

0 (G)∩L2
c(G) is a core for tG . Moreover,

every f ∈ H̃1
0 (G) admits a unique decomposition f = flin + f0, where flin ∈ H̃1

0 (G)
is piecewise linear on G (that is, it is linear on every edge e ∈ E) and f0 ∈ H̃1

0 (G)
takes zero values at the vertices V. It is straightforward to check that

tG [f ] =

∫
G
|f ′(x)|2dx =

∫
G
|f ′

lin(x)|2dx+

∫
G
|f ′

0(x)|2dx = tG [flin] + tG [f0]. (2.26)

Now the estimates (2.25) and (2.24) easily follow from the decomposition (2.26).
Indeed, for every f = f0 ∈ H̃1

0 (G)

tG [f0] =
∑
e∈E

‖f ′
0,e‖2L2(e), (2.27)
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where f0,e := f0 � e ∈ H1
0 (e). Noting that

inf
f∈H1

0 ([0,l])

‖f ′‖2L2

‖f‖2L2

=
(π
l

)2
,

and then taking into account (2.20) and (2.21), we arrive at (2.25). �

Remark 2.9. A few remarks are in order:
(i) The estimate (2.25) shows that the condition (2.2) is not a restriction

since in the case `∗(G) = ∞ one immediately gets λ0(H) = λess
0 (H) = 0.

Moreover, in this case σ(H) coincides with the positive semi-axis R≥0 (see
[61, Theorem 5.2]).

(ii) The second inequality in (2.25) implies that (2.24) is necessary for the
spectrum of H to be purely discrete. Notice that `∗ess(G) = 0 means that the
number #{e ∈ E| |e| > ε} is finite for every ε > 0.

(iii) The estimates (2.25) can be slightly improved by noting that we can use
other test functions on the edges e ∈ EN to improve the bound (π/|e|)2 by
(π/2|e|)2. For example, we get the following estimate

λ0(H) ≤ min
{

inf
e∈E\EN

(
π

|e|

)2

, inf
e∈EN

(
π

2|e|

)2 }
. (2.28)

2.5. Connection with the difference Laplacian. In this section we restrict for
simplicity to the case of Neumann boundary conditions at the loose ends, that is,
f ′
e(v) = 0 for all v ∈ V with deg(v) = 1. Let the weight function m : V → R>0

be given by (2.10). Consider the difference Laplacian defined in `2(V;m) by the
expression

(τGf)(v) :=
1

m(v)

∑
u∼v

f(v)− f(u)

|eu,v|
, v ∈ V. (2.29)

Namely, τG generates in `2(V;m) the pre-minimal operator

h0 : dom(h0) → `2(V;m)
f 7→ τGf

, dom(h0) := Cc(V), (2.30)

where Cc(V) is the space of finitely supported functions on V. The operator h0 is
a nonnegative symmetric operator. Denote its Friedrichs extension by h.

It was observed in [26] that the operators H and h are closely connected (for
instance, by [26, Corollary 4.1(i)], H0 and h0 are essentially self-adjoint only simul-
taneously). In fact, it is not difficult to notice a connection between H and h by con-
sidering their quadratic forms (see [26, Remark 3.7]). Namely, let L = ker(Hmax)
be the kernel of Hmax, which consists of piecewise linear functions on G. Every
f ∈ L can be identified with its values {f(ei), f(eo)}e∈E on V and, moreover,

‖f‖2L2(G) =
∑
e∈E

|e| |f(ei)|
2 +Re(f(ei)f(eo)

∗) + |f(eo)|2

3
. (2.31)

Now restrict ourselves to the subspace Lcont = L ∩ Cc(G). Clearly,∑
e∈E

|e|(|f(ei)|2 + |f(eo)|2) =
∑
v∈V

|f(v)|2
∑
e∈Ev

|e| = ‖f‖2`2(V;m)
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defines an equivalent norm on Lcont since the Cauchy–Schwarz inequality immedi-
ately implies

1

6
‖f‖2`2(V;m) ≤ ‖f‖2L2(G) ≤

1

2
‖f‖2`2(V;m). (2.32)

On the other hand, for every f ∈ Lcont we get

tG [f ] = (Hf, f)L2(G) =
∑
e∈E

∫
e

|f ′(xe)|2dxe =
∑
e∈E

|f(eo)− f(ei)|2

|e|

=
1

2

∑
u,v∈V

|f(v)− f(u)|2

|eu,v|
= (hf, f)`2(V;m) =: th[f ].

(2.33)

Hence we end up with the following estimate.

Lemma 2.10.

λ0(H) ≤ 6λ0(h), λess
0 (H) ≤ 6λess

0 (h). (2.34)

Proof. Clearly, the Rayleigh quotient (2.20) together with (2.32) and (2.33) imply

λ0(H) = inf
f∈H1

0 (G)

tG [f ]

‖f‖2L2(G)
≤ inf

f∈Lcont

tG [f ]

‖f‖2L2(G)

≤ inf
f∈Cc(V)

th[f ]
1
6‖f‖

2
`2(V;m)

= 6λ0(h). �

If G is equilateral (that is, |e| = 1 for all e ∈ E), then m(v) = deg(v) for all v ∈ V
and hence τG coincides with the combinatorial Laplacian

(τcombf)(v) :=
1

degG(v)

∑
u∼v

f(v)− f(u), v ∈ V. (2.35)

In this particular case spectral relations between H and h have already been ob-
served by many authors (see [6], [15, Theorem 1], [24] and [11, Theorem 3.18]).

Theorem 2.11. If |e| = 1 for all e ∈ E, then

λ0(h) = 1− cos
(√

λ0(H)
)
, λess

0 (h) = 1− cos
(√

λess
0 (H)

)
. (2.36)

Remark 2.12. Actually, far more than (2.36) is known in the case of equilateral
quantum graphs. In fact, there is a sort of unitary equivalence between equilateral
quantum graphs and the corresponding combinatorial Laplacians (see [53, 54] and
also [46]).

Hence for equilateral graphs we obtain

λ0(h) ≤
1

2
λ0(H), λess

0 (h) ≤ 1

2
λess
0 (H).

The latter together with (2.34) imply that for equilateral graphs the following equiv-
alence holds true

λ0(H) > 0
(
λess
0 (H) > 0

)
⇐⇒ λ0(h) > 0

(
λess
0 (h) > 0

)
. (2.37)

In fact, it was proved recently in [26, Corollary 4.1] that the equivalence (2.37)
holds true if the metric graph G satisfies Hypothesis 2.2. Unfortunately, there is no
such simple connection like (2.36) if G is not equilateral.
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Remark 2.13. Spectral gap estimates for combinatorial Laplacians is an established
topic with a vast literature because of their numerous applications (see [1, 2, 17, 19,
20, 27, 35, 65] and references therein). Recently there was a considerable interest
in the study of spectral bounds for discrete (unbounded) Laplacians on weighted
graphs (see [5, 40]). On the one hand, (2.36) and (2.37) indicate that there must
be analogous estimates for quantum graphs, however, we should stress that (2.36)
holds only for equilateral graphs. On the other hand, these connections also indicate
that spectral estimates for quantum graphs should have a combinatorial nature.

Remark 2.14. Since 4
π2x ≤ 1 − cos(

√
x) for all x ∈ [0, π2/4], (2.36) implies the

following estimate for equilateral quantum graphs

λ0(H) ≤ π2

4
λ0(h), λess

0 (H) ≤ π2

4
λess
0 (h),

which improves (2.34). Moreover, the constant π2/4 is sharp in the equilateral case.
However, it remains unclear to us how sharp is the estimate (2.34).

3. The Cheeger-type bound

For every G̃ ∈ KG we define the boundary of G̃ with respect to the graph G as the
set of all vertices v ∈ Ṽ \ VN such that either degG̃(v) = 1 or degG̃(v) < degG(v),
that is,

∂G G̃ :=
{
v ∈ Ṽ| v ∈ VD or degG̃(v) < degG(v)

}
. (3.1)

For a given finite subgraph G̃ ⊂ G we then set

deg(∂G G̃) :=
∑

v∈∂G G̃

degG̃(v). (3.2)

Remark 3.1. Let us stress that our definition of a boundary is different from the
combinatorial one. In particular, we define the boundary as the set of vertices
whereas the combinatorial definition counts the number of edges connecting Ṽ with
its complement V \ Ṽ.

Definition 3.2. (i) The isoperimetric (or Cheeger) constant of a metric graph
G is defined by

α(G) := inf
G̃∈KG

deg(∂G G̃)
mes(G̃)

∈ [0,∞), (3.3)

where mes(G̃) denotes the Lebesgue measure of G̃, mes(G̃) :=
∑

e∈Ẽ |e|.
(ii) The isoperimetric constant at infinity is defined by

αess(G) := sup
G̃∈KG

α(G \ G̃) ∈ [0,∞]. (3.4)

Recall that for any G̃ ∈ KG we consider G \ G̃ with the following boundary
conditions: for vertices in G \ G̃ having one or more edges in G̃, we change the
boundary conditions from Kirchhoff–Neumann to Dirichlet; for all other vertices
in G \ G̃, we leave them the same. These boundary conditions imply that for a
subgraph Y ∈ KG\G̃ ,

∂G\G̃Y = ∂GY, (3.5)
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where the left-hand side is the boundary of Y with respect to G \ G̃ (with the new
Dirichlet conditions) and the right-hand side is the boundary with respect to the
original graph G. Hence,

α(G \ G̃) = inf
Y∈KG\G̃

deg(∂G\G̃Y)

mes(Y)
= inf

Y∈KG\G̃

deg(∂GY)

mes(Y)

and α(G \ G1) ≤ α(G \ G2) whenever G1 ⊆ G2. Thus,

αess(G) = sup
G̃∈KG

α(G \ G̃) = lim
G̃∈KG

α(G \ G̃). (3.6)

Remark 3.3. Choosing G̃ as an edge e ∈ E or a star Ev with some v ∈ V, one gets
the following simple bounds on the isoperimetric constant

α(G) ≤ 2

`∗(G)
, α(G) ≤ inf

v∈V

degG(v)

m(v)
. (3.7)

The next result is the analog of the famous Cheeger estimate for Laplacians on
manifolds [16].

Theorem 3.4.

λ0(H) ≥ 1

4
α(G)2, λess

0 (H) ≥ 1

4
αess(G)2. (3.8)

As an immediate corollary we get the following result.

Corollary 3.5. (i) H is uniformly positive whenever α(G) > 0.
(ii) λess

0 (H) > 0 if αess(G) > 0.
(iii) The spectrum of H is purely discrete if αess(G) = ∞.
(iv) If the metric graph G has finite total volume, mes(G) < ∞, then H is a

uniformly positive operator with purely discrete spectrum.

Proof. Clearly, we only need to prove (iv). Since mes(G) < ∞ and taking (3.3) into
account, we immediately obtain

α(G) ≥ 1

mes(G)
, (3.9)

which together with (3.8) implies the inequality λ0(H) > 0. Next, using (3.4)
together with the estimate (3.9) and the net property of KG , one gets αess(G) = ∞,
which finishes the proof. �

Before proving the estimates (3.8) we need several preliminary lemmas. In what
follows, for every U ⊆ G, we shall denote by ∂U the boundary of a set U in the
sense of the natural metric topology on G (see Section 2.1). For every measurable
function h : G → R and every t ∈ R let us define the set

Ωh(t) := {x ∈ G| h(x) > t}. (3.10)
The next statement is known as the co-area formula and we give its proof for the
sake of completeness.

Lemma 3.6. If h : G → R is continuous on G and continuously differentiable on
every edge e ∈ E, then ∫

G
|h′(x)| dx =

∫
R
#(∂Ωh(t)) dt. (3.11)
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Proof. Assume first that supp(h) ⊂ e for some e ∈ E . We can identify e with the
open interval (0, |e|) and hence

Me := {x ∈ e| h′(x) 6= 0}

can be written as Me =
⋃

n In for (at most countably many) disjoint open intervals
In ⊆ (0, |e|). Since h is strictly monotone on each of these intervals,∫

G
|h′(x)| dx =

∫
e

|h′(x)| dx =

∫
Me

|h′(x)| dx

=
∑
n

∫
In

|h′(x)| dx =
∑
n

mes(h(In)) =
∑
n

∫
R
1h(In)(s) ds.

Here mes(X) denotes the Lebesgue measure of X ⊆ R. Moreover, by continuity
of h, it is straightforward to check that 1h(In)(t) = #(∂Ωh(t) ∩ In) for all t ∈ R.
Hence we end up with∑

n

∫
R
1h(In)(t) dt =

∑
n

∫
R
#(∂Ωh(t) ∩ In) dt =

∫
R
#(∂Ωh(t) ∩Me) dt.

Now assume that t ∈ R is such that ∂Ωh(t) ∩M c
e 6= ∅, where

M c
e := e \Me = {x ∈ e| h′(x) = 0}

is the set of critical points of h. By Sard’s Theorem [60], h(M c
e ) has Lebesgue

measure zero and hence∫
R
#(∂Ωh(t) ∩Me) dt =

∫
R
#(∂Ωh(t) ∩ e) dt.

Assume now that h : G → R is an arbitrary function satisfying the assumptions.
Then we get∫

G
|h′(x)| dx =

∑
e∈E

∫
e

|h′(x)| dx

=
∑
e∈E

∫
R
#(∂Ωh(t) ∩ e) dt =

∫
R
#(∂Ωh(t) ∩ (G\V)) dt.

If ∂Ωh(t) ∩ V 6= ∅, then t ∈ h(V). Since V is countable, we arrive at (3.11). �

Next it will turn out useful to rewrite the Cheeger constant (3.3) in the following
way. Let

α̃(G) := inf
U∈UG

#(∂U)

mes(U)
, (3.12)

where UG = ∪G̃∈KG
UG̃ and

UG̃ = {U ⊆ G̃| U is open, U ∩ VD = ∅ and ∂U ∩ V = ∅}. (3.13)

Lemma 3.7. Let α(G) be defined by (3.3). Then

α(G) = α̃(G). (3.14)

Proof. (i) It easily follows from the definition of α̃(G) that

α̃(G) ≤ α(G).
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Indeed, assume first that G̃ ∈ KG and identify G̃ with a closed subset of the graph.
For a sufficiently small ε > 0, we cut out a ball Bε(v) of radius ε at each point in
v ∈ ∂G G̃ and obtain the set

U := G̃\
⋃

v∈∂GG̃

Bε(v).

We have U ∈ UG and, moreover, ∂U has precisely deg(∂G G̃) points. In total,

#(∂U)

mes(U)
=

deg(∂G G̃)
mes(G̃)− ε deg(∂G G̃)

.

Letting ε tend to zero, we obtain the desired inequality.
(ii) To prove the other inequality, let U ∈ UG and G̃ = (Ṽ, Ẽ) be the finite

subgraph consisting of all edges e ∈ E with e ∩ U 6= ∅ and all vertices incident to
such an edge. Clearly, mes(U) ≤ mes(G̃). Also, by (3.2),

deg(∂G G̃) =
∑
v∈∂G̃

degG̃(v) =#{e ∈ Ẽ| e connects ∂G G̃ and G̃\∂G G̃}

+ 2#{e ∈ Ẽ| both vertices are in ∂G G̃}.

Since U is open, every point of ∂G G̃ is not in U . Therefore, every edge in the
subgraph G̃ connected to a vertex in ∂G G̃ must contain at least one boundary point
of U . If both vertices of the edge are in ∂G G̃, it must even contain at least two
boundary points of U . Also, since V ∩ ∂U = ∅, the boundary points lie in the
strict interior of each edge and therefore cannot coincide for different edges. Thus,
deg(∂G G̃) ≤ #(∂U).

Finally, notice that G̃ might be disconnected. If it is the case, then write G̃ =

∪̇nG̃n as a disjoint, finite union of connected subgraphs G̃n ∈ KG . Then

#(∂U)

mes(U)
≥ deg(∂G G̃)

mes(G̃)
=

∑
n deg(∂G G̃n)∑
n mes(G̃n)

≥ min
n

deg(∂G G̃n)

mes(G̃n)
,

which implies that α̃(G) ≥ α(G). �

Now we are in position to prove the Cheeger-type estimates (3.8).

Proof of Theorem 3.4. Let us show that the following inequality

α(G) ‖f‖L2(G) ≤ 2‖f ′‖L2(G) (3.15)

holds true for all f ∈ dom(t0G) = dom(H0). Without loss of generality we can
restrict ourselves to real-valued functions. So, suppose f ∈ dom(H0) is real-valued.
Observe that (see, e.g., [32, Lemma I.4.1])

‖f‖2L2(G) =

∫
G
f(x)2 dx =

∫ ∞

0

mes(Ωf2(t)) dt.

Next we want to use Lemma 3.7 with h = f2. If t > 0 is such that ∂Ωf2(t)∩V 6= ∅,
then t ∈ f2(V) by continuity of f2. Since V and hence f2(V) are countable, we get
that Ωf2(t) ∈ UG for almost every t > 0. Thus, in view of Lemma 3.7

α(G)‖f‖2L2 ≤
∫ ∞

0

#(∂Ωf2(t)) dt. (3.16)
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On the other hand, applying Lemma 3.6 to h = f2 and then the Cauchy–Schwarz
inequality, we get∫ ∞

0

#(∂Ωf2(t))dt = 2

∫
G
|f(x)f ′(x)|dx ≤ 2‖f‖L2(G)‖f ′‖L2(G). (3.17)

Combining the last two inequalities, we arrive at (3.15), which together with the
Rayleigh quotient (2.20) proves the first inequality in (3.8).

The proof of the second inequality in (3.8) follows the same line of reasoning
since by (2.21)

λess
0 (H) ≥ inf

f∈H̃1
0 (G\G̃)
f 6=0

‖f ′‖2
L2(G\G̃)

‖f‖2
L2(G\G̃)

,

for every finite subgraph G̃ of G. Notice that the boundary conditions on G \ G̃ are
defined after (3.4). �

Remark 3.8. The Cheeger estimate for finite quantum graphs was first proved in
[51] (see also [57, §6] and [40]). Our result extends [51, Theorem 3.2] to the case of
infinite graphs and also provides a bound on the essential spectrum of H. However,
our definition of the isoperimetric constant (3.8) is purely combinatorial since the
infimum is taken over finite connected subgraphs of G, although the definition in
[51] (see also [41, 57]) is similar to (3.12).

Let us mention that one can obtain a similar statement for the operator HN that
is related to the maximally defined quadratic form (see Remark 2.6). However, one
needs to take the infimum in the definition of the isoperimetric constant over all
subgraphs of finite volume.

Taking into account the equivalence (2.22), let us finish this section with the
next observation.

Lemma 3.9. The following equivalence holds true

α(G) = 0 ⇐⇒ αess(G) = 0. (3.18)

Proof. Clearly, we only need to prove the implication α(G) = 0 ⇒ αess(G) = 0.
Assume the converse, that is, there is an infinite graph G satisfying Hypotheses
2.1–2.3 such that α(G) = 0 and αess(G) > 0. Then by (3.3), there is a sequence
{Gn} ⊂ KG such that

α(G) = lim
n→∞

deg(∂GGn)

mes(Gn)
= 0.

On the other hand, (3.4) implies that there is G̃ ∈ KG such that α(G \ G̃) = α0 > 0.
In particular, taking into account (3.5), the latter is equivalent to the fact that

deg(∂G\G̃Y)

mes(Y)
=

deg(∂GY)

mes(Y)
≥ α0 > 0

for every finite subgraph Y ⊂ G \ G̃.
Next observe that

lim
n→∞

deg(∂G(Gn \ G̃))
mes(Gn \ G̃)

= 0,
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which leads to a contradiction. Indeed, by construction, limn→∞ mes(Gn) = ∞ and
hence mes(Gn \ G̃) = mes(Gn)(1 + o(1)) as n → ∞. It remains to note that

deg(∂GGn)− deg(G̃) ≤ deg(∂G(Gn \ G̃)) ≤ deg(∂GGn) + deg(G̃). �

4. Connections with discrete isoperimetric constants

For every vertex set X ⊆ V, we define its boundary and interior edges by

Eb(X) = {e ∈ E| e connects X and V\X},
Ei(X) = {e ∈ E| all vertices incident to e are in X}.

Also, for a vertex set X ⊆ V we set

m(X) :=
∑
v∈X

m(v),

where m : V → (0,∞) is defined by (2.10) (in fact, m(v) = mes(Ev) for every v ∈ V).
The (discrete) isoperimetric constant αd(Y ) of Y ⊆ V is defined by

αd(Y ) := inf
X⊆Y

X is finite

#(Eb(X))

m(X)
∈ [0,∞). (4.1)

The discrete isoperimetric constant of the graph G is then given by

αd(V) := inf
X⊆V

X is finite

#(Eb(X))

m(X)
∈ [0,∞). (4.2)

Moreover, we need the discrete isoperimetric constant at infinity

αess
d (V) := sup

X⊆V
X is finite

αd(V \X) ∈ [0,∞]. (4.3)

Remark 4.1. Our definition of the isoperimetric constants follows the one provided
in Appendix A (see Remark A.4). This definition is slightly different from the one
given in [5], which uses the notion of an intrinsic metric on V (cf. [29]). In
particular, the natural path metric %0 (cf. Section 2.3) is intrinsic in the sense
of [5, 29] and in certain cases (if, for example, Gd is a tree) the corresponding
definitions from [5] coincide with (4.2) and (4.3). Notice that the following Cheeger-
type estimates for the discrete Laplacian (2.29)–(2.30) (see [5, Theorems 3.1 and
3.3] and Theorem A.1) hold true

λ0(h) ≥
1

2
αd(V)2, λess

0 (h) ≥ 1

2
αess
d (V)2. (4.4)

The next result provides a connection between isoperimetric constants.

Lemma 4.2. The isoperimetric constants (3.3) and (4.2) can be related by
1

2
α(G) ≤ αd(V),

2

α(G)
≤ 1

αd(V)
+ `∗(G). (4.5)

In particular, the isoperimetric constants at infinity (3.4) and (4.3) satisfy
1

2
αess(G) ≤ αess

d (V), 2

αess(G)
≤ 1

αess
d (V)

+ `∗ess(G). (4.6)
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Proof. (i) First, let X ⊂ V be finite. Let also G̃ = (Ṽ, Ẽ) be the finite subgraph of
G consisting of all edges with at least one vertex in the set X. Observe that

Ẽ =
⋃
v∈X

Ev = Ei(X) ∪ Eb(X).

Then
m(X) =

∑
v∈X

m(v) = 2
∑

e∈Ei(X)

|e|+
∑

e∈Eb(X)

|e| ≤ 2
∑
e∈Ẽ

|e| = 2mes(G̃).

Note that for every v ∈ X, the whole star Ev attached to it is in G̃. Therefore, every
vertex from ∂G G̃ is not in X. Now consider an edge e in the subgraph G̃ which is
connected to a vertex v ∈ ∂G G̃. Then its other endpoint must be in X (because of
the definition of G̃). Hence

deg(∂G G̃) =
∑
v∈∂G̃

degG̃(v) =
∑
v∈∂G̃

#{e| e connects v and X}

≤ #{e ∈ Ẽ| e connects X and V\X} = #(Eb(X)).

Splitting G̃ in finitely many connected components as in the proof of Lemma 3.7,
we arrive at the first inequality in (4.5).

To prove the second inequality, assume G̃ ∈ KG . Write Ẽ = Ẽ0 ∪ Ẽ1 ∪ Ẽ2, where
Ẽ0, Ẽ1, Ẽ2 are the sets of edges in the subgraph with, respectively, none, one, and
two vertices in ∂G G̃. Clearly,

deg(∂G G̃) = #(Ẽ1) + 2#(Ẽ2). (4.7)

Now define the finite vertex set X := Ṽ\∂G G̃. We have

Ei(X) = Ẽ0, Eb(X) = Ẽ1.
Thus,

2
mes(G̃)
deg(∂G G̃)

= 2

∑
e∈Ẽ0

|e|+
∑

e∈Ẽ1
|e|+

∑
e∈Ẽ2

|e|
#(Ẽ1) + 2#(Ẽ2)

=
2
∑

e∈Ei(X) |e|+
∑

e∈Eb(X) |e|

#(Eb(X)) + 2#(Ẽ2)
+

∑
e∈Eb(X) |e|+ 2

∑
e∈Ẽ2

|e|

#(Eb(X)) + 2#(Ẽ2)

=
m(X)

#(Eb(X)) + 2#(Ẽ2)
+

∑
e∈Eb(X) |e|+ 2

∑
e∈Ẽ2

|e|

#(Eb(X)) + 2#(Ẽ2)

≤ m(X)

#(Eb(X))
+

∑
e∈Eb(X) |e|+ 2

∑
e∈Ẽ2

|e|

#(Eb(X)) + 2#(Ẽ2)
≤ m(X)

#(Eb(X))
+ sup

e∈E
|e|.

(ii) To prove (4.6), let first X ⊆ V be a finite and connected (in the sense that
for two vertices in X, there always exists a path connecting them and only passing
through vertices in X) set of vertices. Then the subgraph G̃X ⊆ G consisting of all
edges with both vertices in X is finite and connected. Now note that for a finite
vertex set Y ⊆ V \X, the subgraph G̃Y defined above is contained in G \ G̃X . Hence
taking into account (3.5) and using the same line of reasoning as in (i), we get
α(G \ G̃X) ≤ 2αd(V \X). Finally, choose an increasing sequence {Xn} ⊆ V of finite
and connected vertex sets such that every finite vertex set X ⊆ V is eventually
contained in Xn. Then the corresponding sequence {G̃n} ⊆ KG of subgraphs is
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increasing and every finite, connected subgraph G̃ ∈ KG is eventually contained in
G̃n. In view of (3.6), we obtain the first inequality in (4.6) by taking limits.

To prove the second, for a subgraph G0 ∈ KG , choose X to be the set of vertices
in G0. Let G̃ ∈ KG\G0

. If a vertex v is both in Ṽ and in X, then it has at least one
incident edge which lies in the cut out graph G0 and therefore v ∈ ∂G G̃. Thus, the
vertex set Y = Ṽ\∂G G̃ satisfies Y ∩X = ∅. Refining the previous estimate,

2
mes(G̃)
deg(∂G G̃)

≤ m(Y )

#(Eb(Y ))
+

∑
e∈Eb(Y ) |e|+ 2

∑
e∈Ẽ2

|e|

#(Eb(Y )) + 2#(Ẽ2)
≤ m(Y )

#(Eb(Y ))
+ `∗(G \ G0).

and hence
2

α(G \ G0)
≤ 1

αd(V \X)
+ `∗(G \ G0).

Choosing an increasing sequence {Gn} ⊆ KG such that every G0 ∈ KG is eventually
contained in Gn and applying the same limit argument as before, we arrive at the
second inequality in (4.6). �

Remark 4.3. It can be seen by examples that the estimates (4.5) and (4.6) are
sharp. Indeed, on the equilateral Bethe lattice (see Example 8.3), one gets equalities
in the second inequalities (4.5) and (4.6) (cf. (8.3)).

Combining (4.5) with Corollary 3.5, we obtain Theorem 4.18 from [26].

Corollary 4.4 ([26]). (i) λ0(H) > 0 if αd(V) > 0.
(ii) λess

0 (H) > 0 if αess
d (V) > 0.

(iii) The spectrum of H is purely discrete if the number #{e ∈ E : |e| > ε} is
finite for every ε > 0 and αess

d (V) = ∞.

Proof. We only need to mention that `∗ess(G) = 0 if and only if the number #{e ∈
E : |e| > ε} is finite for every ε > 0. Moreover, in this case it follows from (4.6) that
αess(G) = αess

d (V). �

Finally, let us mention that in the case of equilateral graphs the discrete isoperi-
metric constants coincide with the combinatorial isoperimetric constants introduced
in [22]:

αcomb(V) = inf
X∈V

#(∂X)

deg(X)
, αess

comb(V) = sup
X⊆V

X is finite

αcomb(V \X) (4.8)

Comparing (4.8) with (4.2) and (4.3) and noting that

`∗(G) degG(v) ≤ m(v) ≤ `∗(G) degG(v)

for all v ∈ V, one easily derives the estimates
αcomb(V)
`∗(G)

≤ αd(V) ≤
αcomb(V)
`∗(G)

,
αess
comb(V)
`∗ess(G)

≤ αess
d (V) ≤ αess

comb(V)
`ess∗ (G)

.

Here
`ess∗ (G) := sup

Ẽ
inf

e∈E\Ẽ
|e|, (4.9)

and the supremum is taken over all finite subsets Ẽ of E . Moreover, taking into
account Lemma 4.2, we get the following connection between our isoperimetric
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constants and the combinatorial ones:
2αcomb(V)

`∗(G)(1 + αcomb(V))
≤ α(G) ≤ 2αcomb(V)

`∗(G)
(4.10)

and
2αess

comb(V)
`∗ess(G)(1 + αess

comb(V))
≤ αess(G) ≤ 2αess

comb(V)
`ess∗ (G)

. (4.11)

Since αcomb(V) ∈ [0, 1), we end up with the following result.

Corollary 4.5. Let G be a metric graph such that `∗(G) < ∞. Then:
(i) λ0(H) > 0 if αcomb(V) > 0.
(ii) λess

0 (H) > 0 whenever αess
comb(V) > 0.

(iii) The spectrum of H is purely discrete if `∗ess(G) = 0 and αess
comb(V) > 0.

5. Upper bounds via the isoperimetric constant

It is possible to use the isoperimetric constants to estimate λ0(H) and λess
0 (H)

from above, however, for this we need to impose additional restrictions on the
metric graph.

Lemma 5.1. Suppose that `∗(G) = infe∈E |e| > 0. Then

λ0(H) ≤ π2

2 `∗(G)
α(G), λess

0 (H) ≤ π2

2 `ess∗ (G)
αess(G). (5.1)

Proof. To estimate λ0(H), choose any φ ∈ H1([0, 1]) with φ(0) = 0, φ(1) = 1 and
‖φ‖L2(0,1) = 1 and set

φ̃(x) := 1[0,1/2](x)φ(2x) + 1(1/2,1](x)φ(2− 2x), x ∈ [0, 1].

Assume a subgraph G0 ∈ KG and a finite, connected subgraph G̃ = (Ṽ, Ẽ) of G \ G0.
Then define g ∈ H̃1

c (G \ G0) by setting

g(xe) :=



0, e ∈ EG\G0
, e /∈ Ẽ

1, e ∈ Ẽ0
φ( |xe−u|

|e| ), e = eu,ũ ∈ Ẽ1, u ∈ ∂G̃

φ̃( |xe−eo|
|e| ), e ∈ Ẽ2

,

where Ẽ0, Ẽ1, Ẽ2 are defined as in the previous subsection and |xe − y| denotes the
distance between xe ∈ e and some y ∈ e. If G0 6= ∅ and v ∈ G \ G0 is a vertex with
at least one incident edge in G0, then either v is not in Ṽ or v is a boundary vertex
of G̃. In both cases, g vanishes at v. Therefore, g ∈ H̃1(G \ G0). Next we get

‖g‖2L2(G\G0)
=
∑
e∈Ẽ0

|e|+
∑
e∈Ẽ1

|e|‖φ‖2L2(0,1) +
∑
e∈Ẽ2

2
|e|
2
‖φ‖2L2(0,1) = mes(G̃),

and, in view of (4.7),

‖g′‖2L2(G\G0)
=
∑
e∈Ẽ1

1

|e|
‖φ′‖2L2(0,1) +

∑
e∈Ẽ2

4

|e|
‖φ′‖2L2(0,1)

≤
‖φ′‖2L2(0,1)

`∗(G \ G0)
(#(Ẽ1) + 4#(Ẽ2)) ≤

2‖φ′‖2L2(0,1)

`∗(G \ G0)
deg(∂G G̃).
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Choosing φ(x) =
√
2 sin(π2x), we obtain the estimate

‖g′‖2L2(G\G0)

‖g‖2L2(G\G0)

≤ π2

2 `∗(G \ G0)

deg(∂G G̃)
mes(G̃)

.

Choosing G0 = ∅, (2.20) and (3.8) imply the first inequality in (5.1). Now assume
G0 6= ∅. Then

inf
f∈H̃1(G\G0)

f 6=0

‖f ′‖2L2(G\G0)

‖f‖2L2(G\G0)

≤ π2

2 `∗(G \ G0)
α(G \ G0).

Finally, using (2.23) and (3.6) we end up with

λess
0 (H) ≤ lim

G0∈KG

π2

2 `∗(G \ G0)
α(G \ G0) =

π2

2 `ess∗ (G)
αess(G). �

Combining Lemma 5.1 with the Cheeger-type bounds (3.8) and the estimates
(4.10)–(4.11) and taking into account Lemma 3.9, we immediately get the following
result.

Corollary 5.2. If `∗(G) > 0 and `∗(G) < ∞, then the following are equivalent:
(i) λ0(H) > 0,
(ii) λess

0 (H) > 0,
(iii) αcomb(G) > 0,
(iv) αess

comb(G) > 0.

Remark 5.3. A few remarks are in order:
(i) If `∗(G) = 0, then the estimate in (5.1) becomes trivial.
(ii) Notice that (5.1) is better than (2.25) only if the isoperimetric constant

satisfies

α(G) < 2 `∗(G)
`∗(G)2

.

(iii) In [12], Buser noticed that the isoperimetric constant can be used for ob-
taining upper estimates on the spectral gap for Laplacians on compact Rie-
mannian manifolds. Hence estimates of the type (5.1) are often called
Buser-type estimates. Let us mention that for combinatorial Laplacians a
Buser-type estimate was first proved in [2] (see also [17, 19]). For finite
quantum graphs, a Buser-type bound can be found in [41, Proposition 0.3],
which is, however, different from our estimate (5.1).

6. Bounds by curvature

Despite the combinatorial nature of isoperimetric constants (3.3) and (3.4), it
is known that computation of the combinatorial isoperimetric constant (4.8) is an
NP-hard problem (see [35, 37, 49] for further details). Our next aim is to introduce
a quantity, which provides estimates for α(G) and αess(G) and also turns out to be
very useful in many situations (see Section 8).

Suppose now that our graph is oriented, that is, every edge is assigned a direction.
For every v ∈ V, let E+

v and E−
v be the sets of outgoing and incoming edges,

respectively. Next define the function K: V → R ∪ {−∞} by

K: v 7→ #(E+
v )−#(E−

v )

#(E+
v )

inf
e∈E+

v

1

|e|
. (6.1)

21



Note that K can take both positive and negative values, and K(v) = −∞ whenever
#(E+

v ) = ∅.

Lemma 6.1. Assume G is an oriented graph such that the function K is positive.
Then the isoperimetric constant (3.3) satisfies

α(G) ≥ K(G) := inf
v∈V

K(v) ≥ 0. (6.2)

Proof. Let G̃ ∈ KG be a finite and connected subgraph. For every v ∈ Ṽ, denote by
E+
v (G̃) and E−

v (G̃) the sets of outgoing and incoming edges in G̃. Since K(v) > 0 is
positive, we get

sup
e∈E+

v

|e| ≤ 1

K(v)

(
1− #(E−

v )

#(E+
v )

)
,

for all v ∈ V. Therefore,

mes(G̃) =
∑
e∈Ẽ

|e| =
∑
v∈Ṽ

∑
e∈E+

v (G̃)

|e| ≤ 1

K(G)
∑
v∈Ṽ

∑
e∈E+

v (G̃)

1− #(E−
v )

#(E+
v )

=
1

K(G)
∑
v∈Ṽ

#(E+
v (G̃))

(
1− #(E−

v )

#(E+
v )

)
.

First observe that ∑
v∈Ṽ

#(E+
v (G̃)) =

∑
v∈Ṽ

#(E−
v (G̃)) = #(Ẽ).

Moreover, for any non-boundary point v ∈ Ṽ \ ∂G G̃, the whole star Ev is contained
in G̃ and hence E±

v (G̃) = E±
v . Therefore, we get∑

v∈Ṽ

#(E+
v (G̃))

(
1− #(E−

v )

#(E+
v )

)
=
∑
v∈Ṽ

#(E+
v (G̃))−

∑
v∈Ṽ

#(E+
v (G̃))#(E−

v )

#(E+
v )

=
∑
v∈Ṽ

#(E−
v (G̃))−

∑
v∈Ṽ

#(E+
v (G̃))#(E−

v )

#(E+
v )

=
∑

v∈∂G G̃

#(E−
v (G̃))−#(E+

v (G̃))#(E−
v )

#(E+
v )

≤
∑

v∈∂G G̃

degG̃(v) = deg(∂G G̃).

Combining this with the previous estimates, we end up with the following bound

mes(G̃) ≤ 1

K(G)
deg(∂G G̃),

which proves the claim. �

Remark 6.2. The function K is sometimes interpreted as curvature. Several
notions of curvature have been introduced for discrete and combinatorial Laplacians.
Perhaps, the closest one to (6.1) have been introduced in [39]. Namely, since the
natural path metric %0 is intrinsic, define the function Kd : V → R by

Kd : v 7→ #(E+
v )−#(E−

v )

m(v)
. (6.3)
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Moreover, m(v) = deg(v) for all v ∈ V if the corresponding metric graph is equi-
lateral (i.e., |e| ≡ 1), and hence (6.3) coincides with the definition suggested for
combinatorial Laplacians in [21]. Notice that for equilateral graphs (6.1) reads

K(v) = Kcomb(v) := 1− #(E−
v )

#(E+
v )

, v ∈ V, (6.4)

and hence in this case
2

K(v)
=

2

Kcomb(v)
= 1 +

1

Kd(v)
, v ∈ V. (6.5)

It seems there is no nice connection between K and Kd in the general case.
Remark 6.3. Let us also mention that Lemma 6.1 can be seen as the analog of
[5, Theorem 6.2], where the following bound for the discrete isoperimetric constant
was established:

αd(V) ≥ Kd(V) := inf
v∈V

Kd(v), (6.6)

if Kd is nonnegative on V. Combining (6.6) with the second inequality in (4.5), we
end up with the following bound

2

α(G)
≤ 1

Kd(V)
+ `∗(G). (6.7)

In what follows we shall call the function Kcomb : V → Q ∪ {−∞} defined by
(6.4) as the combinatorial curvature (in [21, p. 32], Kd is called a curvature of the
combinatorial distance spheres). Note that the curvature can take both positive
and negative values, and Kcomb(v) = −∞ whenever #(E+

v ) = ∅. The next simple
estimate turns out to be very useful in applications.
Lemma 6.4. Assume Kcomb is positive on V and

Kcomb(V) := inf
v∈V

Kcomb(v).

Then the isoperimetric constant (3.3) satisfies

α(G) ≥ Kcomb(V)
`∗(G)

. (6.8)

Proof. Noting that Kcomb is positive and comparing (6.4) with (6.1), we get
Kcomb(v)

`∗(G)
≤ K(v) (6.9)

for all v ∈ V. Hence the claim follows from Lemma 6.1. �

With a little extra effort and using an argument similar to that in the proof of
(4.5) one can show the following bounds.
Lemma 6.5. Assume G is an oriented graph such that the function K (and hence
Kcomb) is positive on V and set

Kess(G) := lim inf
v∈V

K(v), Kess
comb(V) := lim inf

v∈V
Kcomb(v). (6.10)

Then the isoperimetric constant at infinity (3.4) satisfies
αess(G) ≥ Kess(G), (6.11)

and
Kess

comb(V)
`∗ess(G)

≤ αess(G) ≤
2

`∗ess(G)
, (6.12)
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Combining Lemma 6.5 with the Cheeger-type estimate, we immediately get the
following result.

Corollary 6.6. If G is an oriented graph such that the function Kcomb is nonneg-
ative on V, then

λ0(H) ≥ Kcomb(V)2

4 `∗(G)2
, λess

0 (H) ≥ Kess
comb(V)2

4 `∗ess(G)2
. (6.13)

In particular, if Kess
comb(V) > 0, then the spectrum of H is purely discrete precisely

when `∗ess(G) = 0.

Remark 6.7. Let us mention that in the case when Kess
comb(V) = 0 the condition

`∗ess(G) = 0 is no longer sufficient for the discreteness. For further details we refer to
Section 8.2 and, more specifically, to the example of polynomially growing antitrees
(see Example 8.7).

7. Growth volume estimates

Here we plan to exploit the results from [63] to get upper bounds on the spectra
of quantum graphs in terms of the exponential volume growth rates, the so-called
Brooks-type estimates (cf. [7], [34], [63] for further details and references). Fol-
lowing [63], we introduce the following notation. For every x ∈ G and r > 0,
let

Br(x) := {y ∈ G| %0(x, y) < r}. (7.1)
Here %0 is the natural path metric on G. Let also

volx(r) := mes(Br(x)), (7.2)
and

vol∗(r) := inf
x∈G

mes(Br(x))

mes(B1(x))
. (7.3)

Next we define the following numbers

µx(G) := lim inf
r→∞

log(volx(r))

r
, µ∗(G) := lim inf

r→∞

log(vol∗(r))

r
. (7.4)

Notice that µx(G) does not depend on x ∈ G if G = ∪r>0Br(x) for some (and hence
for all) x ∈ G. If both conditions are satisfied, then we shall write µ(G) instead of
µx(G).

Theorem 7.1. Suppose (V, %0) is complete as a metric space. Then

λ0(H) ≤ λess
0 (H) ≤ 1

4
µ∗(G)2 ≤ 1

4
µ(G)2. (7.5)

Proof. The first and the last inequalities in (7.5) are obvious and hence it remains
to show that

λess
0 (H) ≤ 1

4
µ∗(G)2.

Notice that by Corollary 2.3, the pre-minimal operator H0 is essentially self-adjoint
and hence H is its closure. Let us consider the corresponding quadratic form tG
defined as the closure in L2(G) of the form t0G (see (2.15) and (2.16)). It is not
difficult to check that the form tG is a strongly local regular Dirichlet form (see
[30] for definitions). On the other hand, using the Hopf–Rinow type theorem for
graphs (see [36]), with a little work one can show that every ball Br(x) is relatively
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compact if (V, %0) is complete. Therefore, by [63, Theorem 5] and [52, Theorem 1],
[34, Theorem 1.1], we get

λ0(H) ≤ 1

4
µ∗(G)2, λess

0 (H) ≤ 1

4
µ(G)2.

Noting that mes(B1(x)) ≥ 1 for all x ∈ G and taking into account [34, Remark (e)
on p.885], we arrive at the desired estimate. �

The next result is straightforward from Theorem 7.1.

Corollary 7.2. Let (V, %0) be complete as a metric space. Then:
(i) λ0(H) = λess

0 (H) = 0 if µ(G) = 0.
(ii) The spectrum of H is not discrete if µ∗(G) < ∞.

Remark 7.3. Clearly, to compute or estimate µ∗(G) is a much more involved
problem comparing to that of µ(G). However, it might happen that µ∗(G) < µ(G)
and hence µ∗(G) provides a better bound (see Example 8.4).

Remark 7.4. Let us mention that these results have several further consequences
for the heat semigroup e−tH generated by the operator H. For example, µ∗(G) = 0
implies the exponential instability of the corresponding heat semigroup on Lp(G) for
all p ∈ [1,∞] (see [63, Corollary 2]).

We finish this section with comparing the estimates (7.5) with the ones obtained
in [26] in terms of the volume growth of the corresponding discrete graph. Following
[34] (see also [26, §4.3]), define the constant

µd(G) := lim inf
r→∞

logm(Br(v))

r
(7.6)

for a fixed v ∈ V. Here

m(Br(v)) =
∑

u∈Br(v)

m(u), v ∈ V.

Notice that µd(G) does not depend on the choice of v ∈ V if G = ∪r>0Br(x).

Lemma 7.5. If `∗(G) < ∞ and (V, %0) is complete as a metric space, then

µ(G) = µd(G). (7.7)

Proof. First observe that

m(Br(v)) = 2
∑

{u,ũ}⊂Br(v)

|eu,ũ|+
∑

{u,ũ}6⊂Br(v)
{u,ũ}∩Br(v)6=∅

|eu,ũ| ≥ mes(Br(v)) = volv(r).

for all v ∈ V and r > 0, which immediately implies µ(G) ≤ µd(G). Similarly, we
also get

m(Br(v)) ≤ 2mes(Br+`∗(v)) (7.8)
for all v ∈ V and r > 0 and hence

µd(G) ≤ lim inf
r→∞

log(2volv(r + `∗))

r
= µ(G),

which finishes the proof of (7.7). �

Remark 7.6. A few remarks are in order.
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(i) On the one hand, it does not look too surprising that the exponential growth
rates for two Dirichlet forms tG and th coincide. In particular this reflects
the equivalence (2.37) in the case of sub-exponential growth rates. However,
comparing (7.7) with the fact that there is no equality between λ0(H) and
λ0(h) (see Section 2.5), one can conclude that in the case of an exponential
growth of volume balls, (7.5) might not lead to qualified estimates (and
examples of trees and antitrees in the next section confirm this observation).

(ii) Combining (7.7) with Corollary 7.2 we obtain Theorem 4.19 from [26].

8. Examples

In this section we are going to apply our results to certain classes of graphs
(trees, antitrees, and Cayley graphs of finitely generated groups). Let us also recall
that we always assume Hypotheses 2.1–2.3 to be satisfied.

8.1. Trees. Let us first recall some basic notions. A connected graph without
cycles is called a tree. We shall denote trees (both combinatorial and metric) by
T . Notice that for any two vertices u, v on a tree T = (V, E) there is exactly one
path P connecting u and v. A tree T = (V, E) with a distinguished vertex o ∈ V is
called a rooted tree and o is called the root of T . In a rooted tree the vertices can
be ordered according to (combinatorial) spheres. Namely, let d(·) := d(o, ·) be the
combinatorial distance to the root o and Sn be the n-th (combinatorial) sphere, i.e.,
the set of vertices v ∈ V with d(v) = n. A vertex in the (n+ 1)-th sphere, which is
connected to v in the n-th sphere, is called a forward neighbor of v. In what follows,
we define an orientation on a rooted tree according to combinatorial spheres, that
is, for every edge e its initial vertex belongs to the smaller combinatorial sphere.

We begin with the following simple estimate for rooted trees. According to the
choice of orientation, we get Kcomb(o) = deg(o) and

Kcomb(v) =
#(E+

v )−#(E−
v )

#(E+
v )

=
deg(v)− 2

deg(v)− 1

for all v ∈ V \ {o}. Therefore, Kcomb is nonnegative on V if there are no loose ends,
that is, deg(v) 6= 1 for all v ∈ V. Let

deg∗(V) := inf
v∈V

deg(v), degess∗ (V) := lim inf
v∈V

deg(v).

Hence we easily get

Kcomb(T ) =
deg∗(V)− 2

deg∗(V)− 1
, Kess

comb(T ) =
degess∗ (V)− 2

degess∗ (V)− 1
,

and therefore we end up with the following estimate.

Lemma 8.1. Assume T is a rooted tree without loose ends. Then

λ0(H) ≥ Kcomb(T )2

4 `∗(G)2
, λess

0 (H) ≥ Kess
comb(T )2

4 `∗ess(G)2
. (8.1)

In particular, λ0(H) > 0 if and only if `∗(G) < ∞ and the spectrum of H is purely
discrete if and only if `∗ess(G) = 0.
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Proof. The proof immediately follows from Corollary 6.6, Remark 2.9(i) and the
fact that the combinatorial curvature admits the following bound (take also into
account Hypothesis 2.3)

1

2
≤ Kcomb(T ) < 1. �

Remark 8.2. A few remarks are in order.
(i) In the case of regular metric trees (these are rooted trees with an additional

symmetry – all the vertices from the same distance sphere have equal degrees
as well as all the edges of the same generation are of the same length), the
second claim in Lemma 8.1 was observed by M. Solomyak in [62]. In fact,
under Hypothesis 2.3, conditions (5.1) and (5.5) of [62] hold true if and
only if, respectively, `∗(G) < ∞ and `∗ess(G) = 0. However, the case of the
Neumann Laplacian is considered in [62], and it follows that criteria for
the positivity and discreteness for the Neumann and Dirichlet Laplacians
coincide.

(ii) Let us mention that the positivity (however, without estimates) of a com-
binatorial isoperimetric constant for the type of trees considered in Lemma
8.1 is known (see [65, Theorem 10.9])

In the case of trees the estimates (8.1) can be improved, however, instead of
providing these generalizations we are going to consider only one particular case.

Example 8.3 (Bethe lattices). Fix β ∈ Z≥3 and consider the combinatorial graph,
which is a rooted tree such that all vertices have degree β. This type of trees is
called Bethe lattices (also known as Cayley trees or homogeneous trees) and they will
be denoted by Tβ . Suppose that the corresponding metric graph is equilateral, that
is, |e| = 1 for all e ∈ E . By abusing the notation, we shall denote the corresponding
metric graph by Tβ too. Then one computes

Kcomb(Tβ) = Kess
comb(Tβ) =

β − 2

β − 1
=: Kβ .

Noting that Kβ ∈ [1/2, 1) and applying Lemma 8.1, we arrive at the following
estimate

λess
0 (Tβ) ≥ λ0(Tβ) ≥

1

4
K2

β . (8.2)

On the other hand, it is straightforward to check that (see, e.g., [21])

α(Tβ) = Kcomb(Tβ) =
β − 2

β − 1
, αd(Tβ) =

β − 2

β
. (8.3)

In particular, this implies that the equality holds in the second inequality in (4.5).
Moreover, the spectra of both operators H and h can be computed explicitly (see,
e.g., [62, Example 6.3] or [21, Theorem 1.14] together with Theorem 2.11) and, in
particular,

λ0(H) = λess
0 (H) = arccos2

(2√β − 1

β

)
.

Comparing the last equality with the estimate (8.2), one can notice a gap between
these estimates.

Let us mention that

µ(Tβ) = µo(Tβ) = µ∗(Tβ) = β − 1,
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v0 v1 v2 v3 v4 v5

Figure 1. Tree with loose ends.

and thus the volume growth estimates (7.5) do not provide a reasonable upper
bound for large values of β. ♦

Finally, we would like to mention that the absence of loose ends in Lemma 8.1
is essential as the next example shows.

Example 8.4 (A “sparse” tree with loose ends). Consider the half-line R≥0 as an
equilateral graph with vertices at the integers. Let us write vn for the vertex placed
at n ∈ Z≥0. Then, we will modify this graph by attaching edges to the vertices vn
with n ≥ 1. More precisely, to the j2-th vertex vj2 with j ∈ Z≥1, we attach 2j

2

edges and to every other vertex vn with n /∈ {j2}j≥1, we attach exactly one edge
(see Figure 1).

Clearly, we end up with a tree graph T . For simplicity, we shall assume that the
corresponding metric graph is equilateral, that is, |e| = 1 for all e ∈ T . This tree is
in a certain sense sparse and as a result it turns out that

µ∗(T ) = 0,

and hence, by Theorem 7.1,
λ0(H) = λess

0 (H) = 0.

In fact, it is enough to show that vol∗(r) = 1 for all r > 1. Namely, take r > 1 and
set jr := 1+b(r+1)/2c, where b·c is the usual floor function. Since j2r−(jr−1)2 > r,
we get

1 ≤ vol∗(r) ≤ inf
n≥jr

mes(Br(vn2))

B1(vn2)
= inf

n≥jr

2n
2

+ 2r + 2(r − 1)

2n2 + 2
= 1.

It is interesting to mention that in this case µ(T ) = log(2) > 0. Indeed,

2r − 1 +

b
√
rc−1∑
k=1

(2k
2

− 1) ≤ volo(r) = mes(Br(v0)) ≤ 2r − 1 +

b
√
rc∑

k=1

(2k
2

− 1)

and hence for all r > 1 we get

2(b
√
rc−1)2 < volo(r) ≤ 2b

√
rc2+1,

which implies the desired equality. ♦

8.2. Antitrees. Let Gd = (V, E) be a connected combinatorial graph. Fix a root
vertex o ∈ V and then order the graph with respect to the combinatorial spheres
Sn, n ∈ Z≥0 (notice that S0 = {o}). The connected graph Gd is called an antitree if
every vertex in Sn is connected to every vertex in Sn+1 and there are no horizontal
edges, i.e., there are no edges with all endpoints in the same sphere (see Figure 2).
Clearly, an antitree is uniquely determined by the sequence sn := #(Sn), n ∈ Z≥1.
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S0

S1

S2

S3

Figure 2. Example of an antitree with sn = n+ 1.

Let us denote antitrees by the letter A and also define the edge orientation
according to the combinatorial ordering, that is, for every edge e its initial edge
is the one in the smaller combinatorial sphere. It turns out that the curvatures of
antitrees can be computed explicitly. Namely, define the following quantities:

`n := sup
e∈E+

v : v∈Sn

|e|, (8.4)

and

K0 := 1, Kn+1 := 1− sn
sn+2

(8.5)

for all n ∈ Z≥0.

Lemma 8.5. If A is an antitree, then

Kcomb(A) = inf
n≥0

Kn, Kess
comb(A) = lim inf

n→∞
Kn, (8.6)

and

K(A) = inf
n≥0

Kn

`n
, Kess(A) = lim inf

n→∞

Kn

`n
. (8.7)

Proof. The proof follows by a direct inspection since Kcomb(v) = Kn for all v ∈ Sn

and n ∈ Z≥0. �

Combining Lemma 8.5 with the estimates for the corresponding isoperimetric
constants (e.g., Corollary 6.6), we immediately end up with the estimates for λ0(H)
and λess

0 (H). Let us demonstrate this by considering two examples.

Example 8.6 (Exponentially growing antitrees). Fix β ∈ Z≥2 and let Aβ be an
antitree with sphere numbers sn = βn. Then K0 = 1 and

Kn = 1− β−2 (8.8)

for all n ∈ Z≥1. Hence by Lemma 8.5

1− β−2

`∗(Aβ)
≤ K(Aβ) ≤

1

`∗(Aβ)

and

Kess(Aβ) =
1− β−2

`∗ess(Aβ)
.
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Applying Lemmas 6.1 and 6.5 together with Theorem 3.4 and Lemma 2.8, we get

(1− β−2)2

4 `∗(Aβ)2
≤ λ0(Hβ) ≤

π2

`∗(Aβ)2
, (8.9)

and
(1− β−2)2

4 `∗ess(Aβ)2
≤ λess

0 (Hβ) ≤
π2

`∗ess(Aβ)2
. (8.10)

In particular, these bounds imply that the Kirchhoff Laplacian Hβ is uniformly
positive if and only if `∗(Aβ) < ∞. Moreover, its spectrum is purely discrete
exactly when `∗ess(Aβ) = 0 (cf. Corollary 6.6).

Finally, let us compare these estimates with the volume growth estimates under
the assumption that the tree is equilateral. In this case,

K(Aβ) = Kess(Aβ) = 1− β−2.

On the other hand,

mes(Bn(o)) =
n−1∑
k=0

β2k+1 = β
β2n − 1

β2 − 1
,

and then (7.4) implies that µ(Aβ) = 2 log(β). With a little more work one can
show that

µ∗(Aβ) = µ(Aβ) = 2 log(β).

Indeed, it suffices to note that µ∗(Aβ) ≤ µ(Aβ). Moreover, for all x ∈ eu,v where e
connects Sn with Sn+1, n ∈ Z≥0 we have

mes(B1(x)) ≤ mes(B1(v)) = βn + βn+2 = βn(β2 + 1)

and for all r > 2

mes(Br(x)) ≥ mes(Bbrc(u)) = mes(Bn+brc(o))−mes(Bn−brc(o))

≥ mes(Bn+brc(o))−mes(Bn(o)) =

n+brc−1∑
k=n

β2k+1 = β2n+1 β
2brc − 1

β2 − 1
.

Thus, we obtain

vol∗(r) = inf
x∈G

mes(Br(x))

mes(B1(x))
≥ inf

n≥0

β2n+1 β2brc−1
β2−1

βn(β2 + 1)
=

β2brc+1 − β

β4 − 1
,

which shows that µ∗(Aβ) ≥ 2 log(β) and hence we are done.
Notice that the volume growth estimates (7.5) do not provide a reasonable upper

bound for large values of β. ♦

Example 8.7 (Polynomially growing antitrees). Fix q ∈ Z>0 and let Aq be the
antitree with sphere numbers sn = (n + 1)q, n ≥ 0 (the case q = 1 is depicted on
Figure 2). Then

Kn = 1− nq

(n+ 2)q
= 1−

( n

n+ 2

)q
=

2q

n
+O(n−2), (8.11)

as n → ∞. Hence, by Lemma 8.5,

Kcomb(Aq) = Kess
comb(Aq) = 0
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and

K(Aq) = inf
n≥0

1

`n

(
1−

( n

n+ 2

)q)
, Kess(Aq) = lim inf

n→∞

1

`n

(
1−

( n

n+ 2

)q)
.

Clearly, further analysis heavily depends on the behavior of the sequence {`n}.
Let us consider one particular case. Fix an s ≥ 0 and assume now that

|e| = (n+ 1)−s

for each edge e connecting Sn and Sn+1. Let us denote the corresponding Kirchhoff
Laplacian by Hq,s. It is not difficult to show by applying Theorem 2.2 that the
corresponding pre-minimal operator is essentially self-adjoint whenever s ≤ q + 1,
however, (Vq, %0) is complete exactly when s ∈ [0, 1].

Remark 8.8. In our forthcoming publication we shall show that the pre-minimal
operator H0 is essentially self-adjoint exactly when the corresponding metric graph
has infinite volume, that is, when s ≤ 2q + 1. Moreover, in the case s > 2q + 1,
the deficiency indices of H0 are equal to 1 and one can describe all self-adjoint
extensions of H0.

Since `n = (n+ 1)−s for all n ∈ Z≥0, we get

`∗(Aq) = 1, `∗ess(Aq) =

{
1, s = 0

0, s > 0
,

and

Kess(Aq) = lim
n→∞

(n+ 1)s
(
1−

( n

n+ 2

)q)
=


0, s ∈ [0, 1),

2q, s = 1,

+∞, s > 1.

(8.12)

In the case s = 1, it is easy to show that the sequence {Kn/`n} is strictly increasing
and hence this is also true for all s > 1. Hence

K(Aq) = K(o) = 1, s ≥ 1.

Moreover, the corresponding isoperimetric constant is given by α(Aq) = K(Aq) = 1
(to see this just take the ball B1(o) as a subgraph G and then one gets α(Aq) ≤ 1,
which together with (6.2) implies the equality).

Next let us compute µ(Aq) assuming that s ∈ [0, 1] (otherwise we can’t apply
the result from Section 7). Set

rn :=

n−1∑
k=0

`k =

n−1∑
k=0

1

(1 + k)s
= (1 + o(1))×

{
n1−s

1−s , s ∈ [0, 1),

log(n), s = 1,

as n → ∞. Then

volo(rn) =
n−1∑
k=0

`ksksk+1 =
n−1∑
k=0

(k + 1)q−s(k + 2)q =
n2q−s+1

2q − s+ 1
(1 + o(1))

as n → ∞. Therefore, it is not difficult to show that

µ(Aq) = µo(Aq) = lim
n→∞

log(volo(rn))

rn
=

{
0, s ∈ [0, 1),

2q, s = 1.
(8.13)

Applying Theorem 7.1 together with Lemma 6.1 and Lemma 6.5, we end up with
the following estimates.
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Lemma 8.9. Assume q ∈ Z≥1 and s ∈ R≥0. Then

λ0(Hq,s) = λess
0 (Hq,s) = 0 (8.14)

if and only if s ∈ [0, 1). If s ≥ 1, then the operator Hq,s is uniformly positive and

1

4
≤ λ0(Hq,s) ≤ π2, λess

0 (Hq,s) =

{
q2, s = 1,

+∞, s > 1.
(8.15)

Remark 8.10. The exact value of λ0(Hq,s) for s ≥ 1 or at least its asymptotic
behavior with respect to q remains an open problem. ♦

8.3. Cayley graphs. Suppose Γ is a finitely generated (infinite) group with the
set of generators S. The Cayley graph C(Γ, S) of Γ with respect to S is the vertex
set Γ and u ∼ v exactly when u−1v ∈ S. This graph is connected, locally finite and
regular (deg(v) = #S for all v ∈ Γ). We assume that the unit element o does not
belong to the set S (this excludes loops). The lattice Zd is the standard example
of a Cayley graph. Notice also that the Bethe lattice Tβ is a Cayley graph if either
S = {a1, . . . , aβ | a2i = o, i = 1, . . . , β} or β = 2N and Γ = FN is a free group of N
generators.

It is known that the positivity of a combinatorial isoperimetric constant αcomb is
closely connected with the amenability of the group Γ (this is a variant of Følner’s
criterion, see, e.g., [65, Proposition 12.4]).

Theorem 8.11. If Gd = C(Γ, S) is the Cayley graph of a finitely generated group
Γ, then αcomb(Γ) = 0 if and only if Γ is an amenable group.

Notice that the class of amenable groups contains all Abelian groups, all sub-
groups of amenable groups, all solvable groups etc. In turn, the class of non-
amenable groups includes countable discrete groups containing free subgroups of
two generators. For further information on amenability and Cayley graphs we refer
to [48, 50, 55, 56, 64, 65].

Combining Theorem 8.11 with Corollary 4.5 and Corollary 5.2, we arrive at the
following result.

Lemma 8.12. Let Gd be a Cayley graph C(Γ, S) of a finitely generated group Γ.
Also, let | · | : E → R>0 and G = (Gd, | · |) be a metric graph. Then:

(i) If Γ is non-amenable, then λ0(H) > 0 if and only if `∗(G) < ∞. Moreover,
the spectrum of H is purely discrete if and only if `∗ess(G) = 0.

(ii) If Γ is amenable, then λ0(H) = λess
0 (H) = 0 whenever `∗(G) > 0.

Remark 8.13. (i) If Γ is an amenable group, then the analysis of λ0(H) and
λess
0 (H) in the case `∗(G) = 0 remains an open (and, in our opinion, rather

complicated) problem.
(ii) The volume growth provides a number of amenability criteria. For example,

groups of polynomial or subexponential growth are amenable. For further
results and references we refer to [56].

(iii) Using a completely different approach, the inequality λ0(H) > 0 was proved
recently in [14, Theorem 4.16] for Cayley graphs of free groups under the
additional symmetry assumption that edges in the same edge orbit have the
same length.
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Appendix A. Cheeger’s inequality for discrete Laplacians

Let Gd = (V, E) be an (unoriented) graph with countably infinite sets of vertices
V and edges E . Also, assume that Hypothesis 2.1 is satisfied. Let m : V → R>0 and
b : V ×V → R≥0 be weight functions such that b(u, v) = b(v, u) for all u, v ∈ V and
b(u, v) 6= 0 only if u ∼ v. In fact, b can be considered as a weight function on the
edge set E . Usually, the triple (V,m, b) is called a weighted graph. With every such
a triple one can associate a Laplace operator defined by the difference expression

(τf)(v) :=
1

m(v)

∑
u∼v

b(u, v)(f(v)− f(u)), v ∈ V. (A.1)

Since the graph Gd is locally finite, τ is well defined on compactly supported func-
tions and hence gives rise to a nonnegative symmetric pre-minimal operator in
`2(V;m). Let us denote its Friedrichs extension by h.

The Cheeger inequality for h was proved recently in [5] by using the notion of
intrinsic metrics on graphs (see Theorem 3.1 and Theorem 3.3 in [5]). The main
aim of this section is to give a slight improvement to this estimate. Namely, let
d : E → R>0 be a weight (or edge lengths). Similar to [5], we shall call d intrinsic
on Gd (with respect to m and b) if the following inequality∑

e∈Ev

d(e)2b(e) ≤ m(v) (A.2)

holds for all v ∈ V.
For every X ⊆ V, we define its boundary edges by

Eb(X) = {e ∈ E| e connects X and V\X}.
For any U ⊆ V, define

αd(U) := inf
X⊆U

X finite

(d · b)(Eb(X))

m(X)
, (A.3)

where for X ⊆ V,

m(X) =
∑
v∈X

m(v), (d · b)(Eb(X)) =
∑

e∈Eb(X)

d(e)b(e).

We define the isoperimetric constant with respect to d by
α := αd(V). (A.4)

The isoperimetric constant at infinity is given by
αess := sup

X⊆V
X finite

αd(V\X). (A.5)

Theorem A.1. If d is an intrinsic weight, then

λ0(h) ≥
1

2
α2, λess

0 (h) ≥ 1

2
α2
ess. (A.6)

Remark A.2. As it was already mentioned, the Cheeger estimates for weighted
graph Laplacians were proved in [5]. However, the definition of the isoperimet-
ric constants in [5] uses metrics and hence one has to replace d in (A.3) by the
corresponding path metric %d defined on V in a standard way

%d(u, v) := inf
P={v0,...,vn} : v0=u vn=v

∑
k

d(evk−1,vk). (A.7)
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Clearly, %d is intrinsic (in the sense of [5]) if so is the weight d since

%d(u, v) ≤ d(u, v) (A.8)

for all u ∼ v. Of course, in certain cases this leads to the same isoperimetric con-
stant (e.g., if Gd is a tree), however, for graphs having a lot of cycles a construction
of an intrinsic metric becomes a highly nontrivial task, which automatically implies
complications in calculating the corresponding isoperimetric constant. On the other
hand, to construct an intrinsic weight (in the sense of (A.2)) is a rather simple
task, in particular, for the weighted Laplacian (2.29) (see Remark A.4).

The proof of Theorem A.1 is literally the same as of Theorem 3.1 and Theorem
3.3 from [5], however, we shall give it below for the sake of completeness.

Lemma A.3 (Co-area formulae). Let m and d be weight functions on V and E,
respectively. For any f : V → R≥0 and t ≥ 0, let Ωt := Ωt(f) = {v ∈ V| f(v) > t}.
Then ∑

v∈V
f(v)m(v) =

∫ ∞

0

m(Ωt) dt, (A.9)

∑
e∈E

d(e)|f(ei)− f(e0)| =
∫ ∞

0

d(Eb(Ωt)) dt, (A.10)

where the value +∞ on both sides of the equation is allowed.

Proof. For an interval I ⊆ R, let 1I(s) be its indicator function. Then∑
v∈V

f(v)m(v) =
∑
v∈V

m(v)

∫ f(v)

0

dt =
∑
v∈V

m(v)

∫ ∞

0

1[0,f(v))(t) dt

=

∫ ∞

0

∑
v∈V

m(v)1[0,f(v))(t) dt =

∫ ∞

0

∑
v∈Ωt

m(v) dt =

∫ ∞

0

m(Ωt) dt.

For every e ∈ E , put Ie := [min{f(e0), f(ei)},max{f(e0), f(ei)}) ⊂ R. We have
t ∈ Ie if and only if e ∈ Eb(Ωt). Hence∑

e∈E
d(e)|f(ei)− f(e0)| =

∑
e∈E

d(e)

∫
Ie

dt =
∑
e∈E

d(e)

∫ ∞

0

1Ie(t) dt

=

∫ ∞

0

∑
e∈E

d(e)1Ie(t) dt =

∫ ∞

0

∑
e∈Eb(Ωt)

d(e) dt =

∫ ∞

0

d(Eb(Ωt)) dt. �

Proof of Theorem A.1. We start by proving the first estimate in (A.6). The Rayleigh
quotient implies that it suffices to show that

2 th[u] ≥ α2‖u‖2`2(V,m) (A.11)

holds for all real-valued u with finite support, where

th[u] = (hu, u)`2(V,m) =
∑
e∈E

b(e)|u(ei)− u(e0)|2

is the corresponding quadratic form. Let us now exploit Lemma A.3 with f := u2.
Notice that the set Ωt is finite for all t ≥ 0 and hence by (A.3) and (A.4) we have
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(d · b)(Eb(Ωt)) ≥ αm(Ωt) for all t ≥ 0. Therefore we get from the co-area formulas

α ‖u‖2`2(V,m) = α
∑
v∈V

u(v)2m(v) = α

∫ ∞

0

m(Ωt) dt

≤
∫ ∞

0

(d · b)(Eb(Ωt)) dt =
∑
e∈E

d(e)b(e)|u(ei)2 − u(e0)
2|

=
∑
e∈E

√
b(e)|u(ei)− u(e0)| · d(e)

√
b(e)|u(ei) + u(e0)|

≤ th[u]
1/2

(∑
e∈E

d(e)2b(e)(u(ei) + u(e0))
2

)1/2

by employing the Cauchy–Schwarz inequality in the last step. On the other hand,∑
e∈E

d(e)2b(e)(u(ei) + u(e0))
2 ≤ 2

∑
e∈E

d(e)2b(e)(u(ei)
2 + u(e0)

2)

= 2
∑
v∈V

u(v)2
∑
e∈Ev

d(e)2b(e) ≤ 2‖u‖2`2(V,m),

where we used (A.2) in the last step.
To get the second inequality, assume X ⊆ V finite. Let P denote the orthogonal

projection onto the subspace of functions vanishing on X. Then hV\X := PhP
with dom(hV\X) = dom(h) is a relatively compact perturbation of h. Thus we
have

λess
0 (h) = λess

0 (hV\X) ≥ λ0(hV\X) = inf
u6=0

th[u]

‖u‖`2(V;m)
,

where the infimum is taken over all real-valued u with finite support which vanish
on X. For such u, note that Ωt(f) is contained in V\X. Hence (A.11) is valid
with α(V\X) instead of α. Then 2λess

0 (h) ≥ α(V\X)2 and the second estimate
follows. �

Remark A.4. For the difference expression τG defined in Section 2.5, the function
m is given by (2.10) and the edge weight b is defined by b(e) := 1/|e| for all e ∈ E.
Hence setting d(e) := |e| for e ∈ E, we conclude that | · | is intrinsic in the sense of
(A.2) since ∑

e∈Ev

d(e)2b(e) =
∑
e∈Ev

|e|2 1

|e|
=
∑
e∈Ev

|e| = m(v)

for all v ∈ V. Moreover, in this case we have

(d · b)(Eb(X)) =
∑

e∈Eb(X)

d(e)b(e) =
∑

e∈Eb(X)

|e| 1
|e|

= #(Eb(X)),

and hence (A.4) and (A.5) coincide with (4.2) and (4.3), respectively. In particular,
Theorem A.1 implies the estimate (4.4).
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STRONG ISOPERIMETRIC INEQUALITY
FOR TESSELLATING QUANTUM GRAPHS

NOEMA NICOLUSSI

Abstract. We investigate isoperimetric constants of infinite tessellating met-
ric graphs. We introduce a curvature-like quantity, which plays the role of a
metric graph analogue of discrete curvature notions for combinatorial tessel-
lating graphs. Based on the definition in [26], we then prove a lower estimate
and a criterium for positivity of the isoperimetric constant.

1. Introduction

Isoperimetric constants, which relate surface area and volume of sets, are among
the most fundamental tools in spectral geometry of manifolds and graphs. They
first appeared in this context in [7], where Cheeger obtained a lower bound on the
spectral gap of Laplace–Beltrami operators. For discrete Laplacians on graphs,
versions of Cheeger’s inequality are known in various settings, e.g. [1, 2, 3, 9, 10,
13, 23, 30, 32]. They find application in many fields (such as the study of expander
graphs and random walks on graphs, see [28] and [38] for more information) and
consequently, there is a very large interest in graph isoperimetric constants.

In the case of tessellating graphs (i.e. edge graphs of tessellations of R2), they
have been investigated using certain notions of discrete curvature (see for example
[17, 24, 34, 37, 39]). On the other hand, the idea of plane graph curvature already
appears earlier in several unrelated works [14, 20, 36] and was also employed to
describe other geometric properties, for instance discrete analogues of the Gauss–
Bonnet formula and the Bonnet–Myers theorem, e.g. [4, 8, 19, 22, 24, 36].

Another framework for isoperimetric constants are metric graphs G, i.e. combi-
natorial graphs Gd = (V, E) with vertex set V and edge set E , where each edge
e ∈ E is identified with an interval Ie = (0, |e|) of length 0 < |e| < ∞ . Topo-
logically, G may be considered as a “network” of intervals glued together at the
vertices. The analogue of the Laplace–Beltrami operator for metric graphs is the
Kirchhoff–Neumann Laplacian H (also known as a quantum graph). It acts as an
edgewise (negative) second derivative fe 7→ − d2

dx2
e
fe, e ∈ E , and is defined on edge-

wise H2-functions satisfying continuity and Kirchhoff conditions at the vertices (we
refer to [5, 6, 11, 35] for more information and references; see also [12] for the case
that G is infinite). A well-known result for finite metric graphs (i.e. V and E are
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finite sets) is a spectral gap estimate for H in terms of an isoperimetric constant
due to Nicaise [33] (see also [25, 27]).

In this work, we are interested in infinite metric graphs (infinitely many vertices
and edges). A notion of an isoperimetric constant α(G) in this context was intro-
duced recently in [26] (see (2.5) below for a precise definition) together with the
following Cheeger-type estimate

1

4
α(G)2 ≤ λ0(H) ≤ π2

2 infe∈E |e|
α(G), (1.1)

which holds for every connected, simple, locally finite, infinite metric graph. Here
λ0(H) := inf σ(H) is the bottom of the spectrum of H.

However, let us stress that explicit computation of isoperimetric constants in
general is a difficult problem (known to be NP-hard for combinatorial graphs [31]).
Hence the question arises, whether one can find bounds on α(G) in terms of less
complicated quantities. On the other hand, the definition of α(G) is purely com-
binatorial and moreover α(G) is related to the isoperimetric constant αcomb(Gd) of
the combinatorial graph Gd (see [26] for further details). This strongly suggests to
use discrete methods for further study. For combinatorial tessellating graphs, such
tools are available in the form of discrete curvature and it is natural to ask whether
similar techniques also apply to metric graphs. Moreover, the class of plane graphs
contains important examples such as trees and edge graphs of regular tessellations.

Motivated by this, the subject of our paper are isoperimetric constants of infi-
nite tessellating metric graphs (see Definition 2.1). Our main contribution is the
definition of a characteristic value c(·) of the edges of a given metric graph (see
(2.9)), which takes over the role of the classical discrete curvature (up to sign con-
vention; as opposed to e.g. [17, 22, 24], our results on α(G) are formulated in terms
of positive curvature). In the simple case of equilateral metric graphs (i.e. |e| = 1
for all e ∈ E), c coincides with the characteristic edge value introduced by Woess
in [37]. Moreover, for a finite tessellating metric graph (Corollary 3.9),∑

e∈E
−c(e)|e| = 1, (1.2)

which can be interpreted as a metric graph analogue of the combinatorial Gauss–
Bonnet formula known in the discrete case (see e.g. [22]).

In terms of these characteristic values, we then formulate our two main results:
Theorem 3.1 contains a criterium for positivity of α(G) based on the averaged value
of c(·) on large subgraphs G̃ ⊂ G. In Theorem 3.3, we obtain explicit lower bounds
on α(G). A simplified version of this estimate is the following inequality:

α(G) ≥ inf
e∈E

c(e). (1.3)

Theorem 3.3 can be interpreted as a metric graph analogue of the estimate in [24,
Theorem 1] and a result by McKean in the manifold case [29].

Finally, we demonstrate the use of our theory by examples. First, we consider the
case of equilateral (p, q)-regular graphs. Here, α(G) is closely related to αcomb(Gd)
and hence can be computed explicitly. It turns out for large p and q, the estimate
in Theorem 3.3 is quite close to the actual value. Second, we show how to construct
an example where α(G) and αcomb(Gd) behave differently.

Let us finish the introduction by describing the structure of the paper. In Section
2, we recall a few basic notions and give a precise definition of infinite tessellating
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metric graphs. Moreover, we review the definition of α(G) and define the charac-
teristic values. Section 3 contains our main results and proofs. In the final section,
we consider examples.

2. Preliminaries

2.1. (Combinatorial) planar graphs. Let Gd = (V, E) be an infinite, unoriented
graph with countably infinite sets of vertices V and edges E . For a vertex v ∈ V,
we set

Ev := {e ∈ E| e is incident to v} (2.1)
and denote by deg(v) := #Ev the combinatorial degree of v ∈ V. Throughout
the paper, #A denotes the number of elements of a given set A. We will always
assume that Gd is connected, simple (no loops or multiple edges) and locally finite
(deg(v) < ∞ for all v ∈ V).

Moreover, we suppose that Gd is planar and consider a fixed planar embedding.
Hence Gd can be regarded as a subset of the plane R2, which we assume to be closed.
Denote by T the set of faces of Gd, i.e. the closures of the connected components
of R2 \ Gd. Note that unbounded faces of Gd are included in T as well. Motivated
by the next definition, we will refer to the elements T ∈ T as the tiles of Gd.

Definition 2.1. A planar graph Gd is tessellating if the following additional con-
ditions hold:

(i) T is locally finite, i.e. each compact subset K in R2 intersects only finitely
many tiles.

(ii) Each bounded tile T ∈ T is a closed topological disc and its boundary ∂T
consists of a finite cycle of at least three edges.

(iii) Each unbounded tile T ∈ T is a closed topological half-plane and its boundary
∂T consists of a (countably) infinite chain of edges.

(iv) Each edge e ∈ E is contained in the boundary of precisely two different tiles.
(v) Each vertex v ∈ V has degree ≥ 3.

Here, a subset A ⊆ R2 is called a closed topological disc (half-plane) if it is the
image of the closed unit ball in R2 (the closed upper half-plane) under a homeo-
morphism φ : R2 → R2. For a tile T ∈ T , we define

ET := {e ∈ E| e ⊆ ∂T}, dT (T ) := #ET , (2.2)

where the latter is called the degree of a tile T ∈ T . Notice that according to
Definition 2.1(ii), dT (T ) ≥ 3 for all T ∈ T .

The above assumptions (i)–(v) imply that T is a locally finite tessellation of R2,
i.e. a locally finite, countable family of closed subsets T ⊂ R2 such that the interiors
are pairwise disjoint and

⋃
T∈T T = R2. In addition, Gd = (V, E) coincides with

the edge graph of the tessellation in the following sense: by calling a connected
component of the intersection of at least two tiles T ∈ T a T -vertex, if it has only
one point and a T -edge otherwise, we recover the vertex and edge sets V and E .

For a finite subgraph G̃ ⊂ Gd, let F(G̃) be the set of bounded faces of G̃, i.e. the
closures of all bounded, connected components of R2\G̃. By local finiteness, each
bounded face of G̃ is a finite union of bounded tiles T ∈ T . Moreover, define P(G̃)
as the set of tiles T ∈ T with ∂T ⊆ G̃. Note that always

P(G̃) ⊆ F(G̃).
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2.2. Metric graphs. After assigning each edge e ∈ E a finite length |e| ∈ (0,∞),
we obtain a metric graph G := (V, E , | · |) = (Gd, | · |). Let us stress that in general
|e| is not related to the length of the Jordan arc in R2 representing the edge e ∈ E .
For a subgraph G̃ = (Ṽ, Ẽ) ⊂ G, define its boundary vertices by

∂G G̃ :=
{
v ∈ Ṽ| degG̃(v) < deg(v)

}
, (2.3)

where degG̃(v) denotes the degree of a vertex v ∈ Ṽ with respect to G̃. For a given
finite subgraph G̃ ⊂ G we then set

deg(∂G G̃) :=
∑

v∈∂G G̃

degG̃(v). (2.4)

Following [26], the isoperimetric constant of a metric graph G is then defined by

α(G) := inf
G̃

deg(∂G G̃)
mes(G̃)

∈ [0,∞), (2.5)

where the infimum is taken over all finite, connected subgraphs G̃ ⊂ G and mes(G̃)
denotes the measure (the ”total length”) of G̃ with respect to the edge length
function | · |, mes(G̃) :=

∑
e∈Ẽ |e|. We will say that the metric graph G satisfies the

strong isoperimetric inequality if α(G) > 0.
Recall that for a combinatorial graph Gd = (V, E) the (combinatorial) isoperi-

metric constant αcomb(Gd) is defined by (see, e.g., [10])

αcomb(Gd) = inf
U⊂V

#{e ∈ E| e connects U and V \ U}∑
v∈U deg(v)

, (2.6)

where the infimum is taken over all finite subsets U ⊂ V. There is a close connection
between αcomb(Gd) and α(G) and we refer for further details to [26].

We also need the following quantities. The weight m(v) of a vertex v ∈ V is
given by

m(v) =
∑
e∈Ev

|e|. (2.7)

Clearly, m(v) equals the measure (the “length”) of the star Ev. The perimeter p(T )
of a tile T ∈ T is defined as

p(T ) :=

{∑
e∈ET

|e|, T ∈ T is bounded
∞, T ∈ T is unbounded

. (2.8)

For every e ∈ E , we define its characteristic value c(e) by

c(e) :=
1

|e|
−
∑
v:v∈e

1

m(v)
−

∑
T :e⊆∂T

1

p(T )
. (2.9)

Here we employ the convention that whenever ∞ appears in a denominator, the
corresponding fraction 1/p has to be interpreted as zero if p is infinite. Let us
mention that for equilateral metric graphs G (i.e. |e| ≡ 1 for all e ∈ E), the charac-
teristic value c(e) coincides with the characteristic edge value introduced in [37] in
the context of combinatorial graphs.

Finally, we need the following class of subgraphs of G. A subgraph G̃ = (Ṽ, Ẽ) ⊂ G
is called star-like, if it can be written as a finite, connected union of stars. More
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precisely,

Ẽ =
⋃
v∈Ũ

Ev

for some finite, connected vertex set Ũ ⊆ Ṽ.
Also, for a finite subgraph G̃ ⊂ G, we define its interior graph G̃int = (Ṽint, Ẽint)

as the set of interior vertices v ∈ Ṽint := Ṽ \ ∂G̃ together with all edges between
such vertices. We say that G̃ is complete, if F(G̃int) = P(G̃int), or equivalently if
every bounded face of G̃int consists of exactly one tile T ∈ T . Let us denote the
class of star-like complete subgraphs by S(G).

3. Strong isoperimetric inequality for tessellating quantum graphs

Now we are in position to formulate our main results. Our first theorem relates
the positivity of the isoperimetric constant with the positivity of the characteristic
values of a metric graph.

Theorem 3.1. Let G = (V, E , | · |) be a tessellating metric graph having infinite
volume, mes(G) =

∑
e∈E |e| = ∞. If

`∗(G) := sup
e∈E

|e| < ∞ (3.1)

and

lim inf
mes(G̃)→∞

1

mes(G̃)

∑
e∈Ẽ

c(e)|e| = lim inf
mes(G̃)→∞

∑
e∈Ẽ c(e)|e|∑

e∈Ẽ |e|
> 0, (3.2)

then α(G) > 0. Here lim inf is taken over all star-like complete subgraphs G̃ ∈ S(G).

Remark 3.2.
(i) Let us mention that (3.1) is necessary for the strong isoperimetric inequality

to hold for an arbitrary metric graph since (see, e.g., [26, Remark 3.3])

α(G) ≤ 2

`∗(G)
. (3.3)

(ii) If mes(G) =
∑

e∈E |e| < ∞, then the lower bound

α(G) ≥ 2

mes(G)
> 0 (3.4)

holds. In fact, if G is tessellating, then deg(∂G̃) ≥ 2 for every finite subgraph
G̃ ⊂ G and (3.4) follows immediately from (2.5).

(iii) Theorem 3.1 can be seen as the analogue of [37, Theorem 1].
(iv) As we will see below, the proof of Theorem 3.1 implies the explicit estimate

α(G) ≥ min
{ 2

`∗(G)
, inf

G̃∈S

1

mes(G̃)

∑
e∈Ẽ

c(e)|e|
}
, (3.5)

however, the conditions in Theorem 3.1 are weaker than positivity of the
right-hand side in (3.5).
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The next result shows that pointwise estimates for the characteristic values also
yield lower estimates for the isoperimetric constant. To this end, introduce the
following quantities

M(G) := sup
v∈V

m(v)

infe∈Ev
|e|

, P (G) := sup
T∈T

p(T )

infe∈ET
|e|

, (3.6)

and set
K(G) := 1− 1

M(G)
− 2

P (G)
− 1

(M(G)− 2)P (G)
. (3.7)

Theorem 3.3. Let G = (V, E , | · |) be a tessellating metric graph. Suppose
c∗(G) := inf

e∈E
c(e) > 0. (3.8)

Then
α(G) ≥ c∗(G)

K(G)
> 0. (3.9)

Theorem 3.3 can be considered as the metric graph analogue of the corresponding
estimate for combinatorial graphs in [24, Theorem 1].

Remark 3.4. The following obvious estimates
M(G) ≥ sup

v∈V
deg(v) ≥ 3, P (G) ≥ sup

T∈T
dT (T ) ≥ 3, (3.10)

imply that K(G) ≤ 1. Moreover, one can show that K(G) > 0 if c∗(G) > 0. Indeed,
noting that

m(v) ≤ deg(v)`∗(G), p(T ) ≤ dT (T )`
∗(G),

we easily get the rough estimate

c∗(G) ≤
1

`∗(G)

(
1− 2

deg∗(G)
− 2

d∗T (G)

)
, (3.11)

where deg∗(G) := supv∈V deg(v) and d∗T (G) := supT∈T dT (T ). On the other hand,

K(G) = 1

2

(
1− 2

M(G)
− 2

P (G)

)
+

1

2
− 1

P (G)
− 1

(M(G)− 2)P (G)

≥ 1

2

(
1− 2

deg∗(G)
− 2

d∗T (G)

)
+

1

2
− 1

d∗T (G)
− 1

(deg∗(G)− 2)d∗T (G)
.

If c∗(G) > 0, then so is the right-hand side in (3.11) which implies

K(G) >1

2
− 1

d∗T (G)
− 1

(deg∗(G)− 2)d∗T (G)

>
1

deg∗(G)
− 1

(deg∗(G)− 2)d∗T (G)
≥ 0.

To prove Theorems 3.1 and 3.3, we first show that we can restrict in (2.5) to
star-like complete subgraphs.

Lemma 3.5. Let G = (V, E , | · |) be a tessellating metric graph. Then

α(G) = min
{ 2

`∗(G)
, αS(G)

}
, (3.12)

where

αS(G) := inf
G̃∈S

deg(∂G̃)
mes(G̃)

. (3.13)
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Proof. (i) First, we show that it suffices to consider subgraphs that are either star-
like or consist of a single edge. Let G̃ = (Ṽ, Ẽ) be a finite, connected subgraph of G
and Ṽint = Ṽ \∂G̃. We split Ṽint =

⋃n
i=1 Vi into a finite, disjoint union of connected

vertex sets Vi. Let Gi = (Vi, Ei) ⊂ G be the subgraph with edge set

Ei =
⋃
v∈Vi

Ev.

By construction, each Gi is star-like and each edge e ∈ E belongs to at most one Gi.
Let Er = Ẽ \

⋃n
i=1 Ei be the remaining edges. Then

mes(G̃) =
n∑

i=1

mes(Gi) +
∑
e∈Er

|e|.

Moreover, both vertices of an edge e ∈ Er are in ∂G̃ and ∂Gi = ∂G̃ ∩ Vi. Hence

deg(∂G̃) =
∑
v∈∂G̃

n∑
i=1

degGi
(v) + 2#Er =

n∑
i=1

deg(∂Gi) + 2#Er.

This finally implies

deg(∂G̃)
mes(G̃)

=

∑n
i=1 deg(∂Gi) + 2#Er∑n

i=1 mes(Gi) +
∑

e∈Er
|e|

≥ min
i=1,...,n,

e∈Er

{
deg(∂Gi)

mes(Gi)
,
2

|e|

}
.

(ii) To complete the proof, it suffices to construct for every star-like subgraph
G̃ a star-like, complete subgraph Ĝ ∈ S(G) with Ĝ ⊇ G̃ and deg(∂G̃) ≥ deg(∂Ĝ).
Let G̃int = (Ṽint, Ẽint) be the interior graph of G̃. Denote by F0 the set of bounded,
open components of R2 \ G̃int and by F = {F = f | f ∈ F0} the bounded faces of
G̃int. The idea is to add “edges contained in bounded faces”. Define the subgraph
Ĝ = (V̂, Ê) by its edge set

Ê = Ẽ ∪
⋃

v∈f : f∈F0

Ev.

If an edge e ∈ E is incident to a vertex v ∈ f with f ∈ F0, then its other vertex lies
in F = f . Hence degĜ(v) = degG̃(v) for every vertex v with v /∈ K :=

⋃
F∈F F . On

the other hand, every vertex v ∈ K belongs to Ĝ and satisfies degĜ(v) = degG(v).
Indeed, if v ∈ F = f , then either v ∈ f or v ∈ ∂f ⊆ G̃int. This implies ∂Ĝ ⊆ ∂G̃
and deg(∂G̃) ≥ deg(∂Ĝ). Moreover, Ê = ∪v∈ÛEv, where

Û = Ṽint ∪
⋃

f∈F0

{v ∈ V| v ∈ f}.

Also, Û is finite by local finiteness and connected since G̃ is star-like and ∂f ⊆ G̃int

for f ∈ F0. It remains to show that Ĝ is complete. Let F̂ be a bounded face of
the interior graph Ĝint. Suppose T ∈ T with T ⊆ F̂ . Then T ⊆ F̂ ⊆ F for some
bounded face F of G̃int. In particular, e ⊆ K for every edge e ⊆ ∂T . But every
vertex v ∈ K belongs to Ĝint, and hence ∂T ⊆ Ĝint and F̂ = T �

Remark 3.6. Combining (3.12) with (3.3), one concludes that the inequality

2

`∗(G)
≤ αS(G) = inf

G̃∈S

deg(∂G̃)
mes(G̃)

(3.14)
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implies that
α(G) = 2

`∗(G)
. (3.15)

In Example 4.3, we provide an explicit construction of a graph satisfying (3.14).

The next lemma contains the connection between c(e) and α(G).

Lemma 3.7. The following inequality∑
e∈Ẽ

c(e)|e| ≤ deg(∂G G̃) (3.16)

holds for any star-like, complete subgraph G̃ ∈ S(G).

Proof. Let G̃int = (Ṽint, Ẽint) be the interior graph and Eb := Ẽ \ Ẽint the remaining
edges. Then∑
e∈Ẽ

c(e)|e| =
∑
e∈Ẽ

1−
∑
v∈Ṽ

mes(Ev ∩ Ẽ)
m(v)

−
∑
T∈T

mes(ET ∩ Ẽint)
p(T )

−
∑
T∈T

mes(ET ∩ Eb)

p(T )

= #Eb +#Ẽint −#Ṽint −#P(G̃int)

−
∑
v∈∂G̃

mes(Ev ∩ Ẽ)
m(v)

−
∑

T∈T ,ET 6⊆Ẽint

mes(ET ∩ Ẽint)
p(T )

−
∑
T∈T

mes(ET ∩ Eb)

p(T )
,

where P(G̃int) is the set of tiles T ∈ T with ET ⊆ Ẽint. By Euler’s formula (see,
e.g., [16])

#Ẽint −#Ṽint −#F(G̃int) = −1,

Because G̃ is complete, F(G̃int) = P(G̃int) and
∑

|e|c(e) is equal to

#Eb − 1−
∑
v∈∂G̃

mes(Ev ∩ Ẽ)
m(v)

−
∑

T∈T ,ET 6⊆Ẽint

mes(ET ∩ Ẽint)
p(T )

−
∑
T∈T

mes(ET ∩ Eb)

p(T )
.

Since G̃ is star-like, there are no edges e ∈ Ẽ with both vertices in ∂G̃. Therefore,
#Eb = deg(∂G̃) and the proof is complete. �

Remark 3.8. For future reference, observe that∑
v∈∂G̃

mes(Ev ∩ Ẽ)
m(v)

+
∑

T∈T ,ET 6⊆Ẽint

mes(ET ∩ Ẽint)
p(T )

+
∑
T∈T

mes(ET ∩ Eb)

p(T )

≥
∑
v∈∂G̃

degG̃(v)

M(G)
+

∑
T∈T ,ET 6⊆Ẽint

#(ET ∩ Ẽint)
P (G)

+
∑
T∈T

#(ET ∩ Eb)

P (G)
.

This implies the following estimate∑
e∈Ẽ

c(e)|e| ≤ deg(∂G̃)
(
1− 1

M(G)
− 2

P (G)

)
− 1

P (G)
∑

e∈Ẽint

#
{
T | e ∈ ET and ET 6⊆ Ẽint

} (3.17)

for every star-like, complete subgraph G̃ ∈ S(G).
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Corollary 3.9. Let G = (V, E , | · |) be a finite tessellating metric graph, that is a
finite graph satisfying all the assumptions of Section 2.1 except (iii) of Definition
2.1. Then ∑

e∈E
−c(e)|e| = 1. (3.18)

Proof. By Euler’s formula∑
e∈E

c(e)|e| = #E −
∑
v∈V

mes(E ∩ Ev)
m(v)

−
∑
T∈T

mes(E ∩ ET )
p(T )

= #E −#V −#F(G) = −1. �

Remark 3.10. Formula (3.18) can be seen as the analogue of the combinatorial
Gauss–Bonnet formula known for combinatorial graphs (see [22, Proposition 1]).
Let us also mention that the difference in the right-hand side arises from our
convention p(T ) = ∞ for unbounded T ∈ T .

Theorem 3.1 now follows from Lemma 3.5 and 3.7 together with the inequality
deg(∂G̃) ≥ 1 for G̃ ∈ S(G). Moreover, we can already deduce (see (3.5) and (3.11))
the basic estimate

α(G) ≥ c∗(G). (3.19)
By improving this bound further we finally obtain Theorem 3.3.

Proof of Theorem 3.3. We start by providing a basic inequality. By Remark 3.4,
we have K(G) > 0. Let deg∗(G) := supv∈V deg(v). Then using (3.10) and (3.11), a
lengthy but straightforward calculation implies

c∗(G)
K(G)

≤ deg∗(G)− 2

deg∗(G)− 1

1

`∗(G)
. (3.20)

Hence by Lemma 3.5, it suffices to show that

deg(∂G̃)
mes(G̃)

≥ c∗(G)
K(G)

(3.21)

for every G̃ = (Ṽ, Ẽ) ∈ S(G).
We will obtain (3.21) by induction over #Ṽint. If #Ṽint = 1, that is, Ṽint = {v}

for some v ∈ V, then G̃ “consists of a single star”. More precisely, Ẽ = Ev and (3.20)
implies

deg(∂G̃)
mes(G̃)

≥ deg(v)

deg(v)`∗(G)
≥ c∗(G)

K(G)
.

Now suppose #Ṽint = n ≥ 2 and (3.21) holds for all Ĝ ∈ S(G) with #V̂int < n. We
distinguish two cases:

(i) First, assume

#{u ∈ ∂G̃| u is connected to v} ≤ deg∗(G)− 2

for all v ∈ Ṽint. In view of (3.17), define

Ei := {e ∈ Ẽint| #{T | e ∈ ET and ET 6⊆ Ẽint} = i}
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for i ∈ {1, 2}. Then∑
e∈Ẽint

#{T | e ∈ ET and ET 6⊆ Ẽint} = #E1 + 2#E2 =
∑

v∈Ṽint

δ(v),

where δ(v) := #(Ev ∩ E1)/2 + #(Ev ∩ E2) for all v ∈ V.
Now assume that v ∈ Ṽint and that v is connected to at least one vertex in ∂G̃.

Since G̃ is star-like and #Ṽint ≥ 2, v is connected to another vertex in Ṽint and
hence there exists an interior edge e ∈ Ẽint incident to v. Going through the edges
incident to v in counter-clockwise direction starting from e, denote by e+ the “last”
edge incident to v with e+ ∈ Ẽint. Define e− analogously by going clockwise. Then
e± ∈ E1 ∪ E2. Moreover, if e+ = e−, then e = e+ = e− ∈ E2. Thus δ(v) ≥ 1 for
every such v ∈ Ṽint. Since G̃ is star-like,∑

v∈Ṽint

δ(v) ≥ 1

deg∗(G)− 2

∑
v∈Ṽint

#{u ∈ ∂G̃| u is connected to v}

≥ 1

M(G)− 2
deg(∂G̃),

and (3.21) follows from (3.17).
(ii) Assume that #{u ∈ ∂G̃| u is connected to v} ≥ deg∗(G)− 1 for some vertex

v ∈ Ṽint. Since #Ṽint ≥ 2, this implies deg(v) = deg∗(G) and that v is connected to
exactly one w ∈ Ṽint. We “cut out” the deg∗(G) − 1 edges between v and ∂G̃ and
define Ĝ = (V̂, Ê) by its edge set

Ê = Ẽ \ {e ∈ E| e connects v and ∂G̃}.

Then Ĝ is again star-like and complete. Its interior graph Ĝint = (V̂int, Êint) is given
by V̂int = Ṽint \ {v} and Êint = Ẽint \ {ev,w}, where ev,w is the edge between v and
w. In particular, Ĝ satisfies (3.21).

Now assume (3.21) fails for G̃. Then

deg(∂G̃)(mes(G̃)−mes(Ĝ)) ≤ (deg∗(G)− 2)mes(G̃)
by (3.20). Consequently,

deg(∂Ĝ)
mes(Ĝ)

=
#Ê −#Êint
mes(Ĝ)

=
#Ẽ −#Ẽint − deg∗(G) + 2

mes(Ĝ)

=
deg(∂G̃)− deg∗(G) + 2

mes(Ĝ)
≤ deg(∂G̃)

mes(G̃)
<

c∗(G)
K(G)

,

which is a contradiction. �

4. Examples

In this section, we illustrate the use of our results in three examples.

4.1. (p,q)-regular graphs. Let p ∈ Z≥3 and q ∈ Z≥3 ∪ {∞}. A tessellating
(combinatorial) graph Gd = (V, E) is called (p, q)-regular, if deg(v) = p for all v ∈ V
and dT (T ) = q for all T ∈ T . Let Gp,q denote both the corresponding combinatorial
graph and the associated equilateral metric graph, that is, we put |e| ≡ 1 for all
e ∈ Ep,q = E(Gp,q). Notice that Gp,∞ is an infinite p-regular tree Tp (also known as
a Cayley tree or a Bethe lattice).
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Next, by (2.9), we get

c(e) = 1− 2

p
− 2

q
=: cp,q, (4.1)

for all e ∈ Ep,q, and the vertex curvature of the combinatorial graph Gp,q (see for
example [8, 17, 37]) is given by

κ(v) = 1− deg(v)

2
+
∑

T :v∈T

1

dT (T )
= 1− p

2
+

p

q
= −p

2
cp,q, (4.2)

for all v ∈ V.
Since strictly positive vertex curvature implies that Gd has only finitely many

vertices (see [8, Theorem 1.7]), the characteristic value should satisfy cp,q ≥ 0.
Clearly, cp,q = 0 exactly when (p, q) ∈ {(4, 4), (3, 6), (6, 3)} and in these cases Gp,q

is isomorphic to the square, hexagonal or triangle lattice in R2. If cp,q > 0, then
Gp,q is isomorphic to the edge graph of a tessellation of the Poincaré disc H2 with
regular q-gons of interior angle 2π/p (see [15, Remark 4.2.] and [21]). In the latter
case, Theorem 3.3 implies α(Gp,q) > 0 and the estimate

α(Gp,q) ≥
q(p− 2)cp,q

q(p− 1)cp,q + 1
=

p− 2

p− 1
×


1

1+(q(p−1) cp,q)−1 , q < ∞

1, q = ∞
. (4.3)

Notice that in the case q = ∞, equality holds true in (4.3) (see, e.g., [26, Example
8.3]).

It is well-known that (see [15, 18]),

αcomb(Gp,q) =
p− 2

p

√
1− 4

(p− 2)(q − 2)
. (4.4)

By (a slight modification of) [26, Lemma 4.1],

α(G) = 2αcomb(Gd)

αcomb(Gd) + 1
(4.5)

for every equilateral metric graph G = (V, E , | · |) with underlying combinatorial
graph Gd = (V, E). Hence

α(Gp,q) =
p− 2

p− 1 + p
2

(√
(p−2)(q−2)
pq−2(p+q) − 1

) =
p− 2

p− 1
×


1

1+δ(q(p−1) cp,q)−1 , q < ∞

1, q = ∞
,

(4.6)
where

δ :=
pq − 2(p+ q)

2

(√
1 +

4

pq − 2(p+ q)
− 1

)
≤ 1.

Comparing (4.6) with (4.3), we conclude that the error in the estimate (4.3) is
uniformly of order 1

(pq)2 .
Finally, let us mention that using (4.5), we can turn (4.3) into a lower estimate

for αcomb(Gp,q) as well. After a short calculation, we recover Theorem 1 from [24],

αcomb(Gp,q) ≥
p− 2

p

(
1− 2

(p− 2)(q − 2)− 2

)
. (4.7)
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4.2. Another example. Denote by Z2
+ the square lattice of the upper half-plane,

i.e. the combinatorial graph with vertex set Z× Z≥0 and two vertices connected if
and only if they are connected in the square lattice Z2 = Z× Z. Fix k ∈ Z≥3 and
let Gk be the graph obtained from Z2

+ by attaching to each vertex v ∈ Z× {0} an
infinite k-regular tree (see Figure 1).

To assign edge lengths, we first define a partition of the edge set Ek. We denote
by Ek,tree the set of edges e ∈ Ek belonging to one of the attached trees. Also, let

Vn = {(z, n)| z ∈ Z} = Z× {n}, n ∈ Z≥0,

be the vertices on the “n-th horizontal line”. For n ∈ Z≥0, we define E+
k,n as the set

of “vertical” edges between the n-th horizontal line Vn and the (n+1)-th horizontal
line Vn+1, and E−

k,n as the set of “horizontal” edges connecting vertices in the n-th
horizontal line Vn (see Figure 1). Finally, we equip Gk with edge lengths in the
following way:

|e| =


1, e ∈ Ek,tree

1
(2n+2)2 , e ∈ E−

k,n

1
(2n+3)2 , e ∈ E+

k,n

. (4.8)

E−
k,0

E+
k,0

E−
k,1

E+
k,1

E−
k,2

E+
k,2

Ek,tree

Figure 1. Gk for k = 3.

Now let us compute the characteristic values. First of all, for all e ∈ Ek,tree we
have the estimate

inf
e∈Ek,tree

c(e) = 1− 2

k
=

k − 2

k
.

Next, taking into account that k ≥ 3, we get

c(e) = 4− 2

k + 2 1
4 + 1

9

− 1
1
4 + 2 1

9 + 1
16

=
164

77
− 2

k + 11
18

> 1

for all e ∈ E−
k,0, and

c(e) = 9− 1

k + 2 1
4 + 1

9

− 1
1
9 + 1

25 + 2 1
16

− 2
1
4 + 2 1

9 + 1
16

=
8955

5467
− 1

k + 11
18

> 1
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for e ∈ E+
k,0. Moreover, after lengthy but straightforward calculations one can see

that
c(e) > 1

for all e ∈ E±
k,n with n ≥ 1. Thus we obtain

c∗(Gk) = inf
e∈Ek,tree

c(e) =
k − 2

k
> 0, (4.9)

and hence, by Theorem 3.3, α(Gk) > 0.
Now let us compute K(Gk). If v ∈ Vn with n ≥ 1, then

sup
v∈∪n≥1Vn

m(v)

infe∈Ev |e|
= sup

n≥1
(2n+ 3)2

(
1

(2n+ 1)2
+

2

(2n+ 2)2
+

1

(2n+ 3)2

)
=

(
1 +

2

3

)2

+ 2

(
1 +

1

4

)2

+ 1 =
497

72
= 6.9027̇

For v ∈ V0, we obtain
m(v)

infe∈Ev |e|
= 9

(
k + 2

1

4
+

1

9

)
= 9k +

11

2

Moreover, for the remaining vertices v ∈ V belonging to one of the attached trees,
m(v)

infe∈Ev |e|
= k.

By assumption, k ≥ 3 and hence M(Gk) = 9k + 11
2 . In addition, P (Gk) = ∞ since

T contains unbounded tiles. Thus we obtain

K(Gk) = 1− 1

M(Gk)
=

18k + 9

18k + 11
, (4.10)

and Theorem 3.3 implies the lower estimate

α(Gk) ≥
18k + 11

18k + 9

k − 2

k
.

Our next goal is to derive an upper estimate. Denote by T the k-regular tree
attached to the origin o = (0, 0) ∈ R2. For l ∈ Z≥2, let G̃l be the subgraph
consisting of all vertices in T that can be reached from o with a path using at most
l edges and all edges between such vertices. Then it is straightforward to verify

mes(G̃l) =
l−1∑
j=0

k(k − 1)j =
k((k − 1)l − 1)

k − 2
, deg(∂G̃l) = k + k(k − 1)l−1,

and as a consequence,

lim
l→∞

deg(∂G̃l)

mes(G̃l)
=

k − 2

k − 1
= α(Tk),

where Tk is the equilateral, k-regular tree (see Example 4.1 or [26, Example 8.3]).
This implies the two-sided estimate

18k + 11

18k + 9

k − 2

k
≤ α(Gk) ≤

k − 2

k − 1
.

In particular, α(Gk) → 1 for k → ∞.
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Remark 4.1. The two above examples demonstrate the use of Theorem 3.3 in two
different situations. First of all, let us mention that by [26, Corollary 4.4.] the
metric graph G satisfies the strong isoperimetric inequality if `∗(G) < ∞ and the
combinatorial isoperimetric constant αcomb(Gd) is positive,

αcomb(Gd) > 0.

In Example 4.1, the positivity of αcomb(Gp,q) is known (see (4.4)) and hence it is a
priori clear that α(G) > 0. However, Example 4.1 shows that in certain situations
Theorem 3.3 gives a good quantitative estimate.

On the other hand, in Example 4.2 we have αcomb(Gk) = 0 (since obviously
αcomb(Z2

+) = 0), however, α(G) > 0. In particular, Theorem 3.3 shows that the
isoperimetric constants of the combinatorial and metric graph behave differently.

4.3. Non-equilateral p-regular trees. We conclude with an example showing
the use of Remark 3.6. For p ∈ Z≥6, let Tp be the equilateral, p-regular tree from
Example 4.1. Fix an edge ê ∈ E(Tp). In the following, we will consider Tp equipped
with another choice of edge lengths. Define the metric graph Tp := (Tp, | · |) by
assigning

|e| :=

{
p, e = ê

1, e ∈ E(Tp) \ {ê}
.

Let G̃ ∈ S(Tp) be a star-like complete subgraph. If ê /∈ Ẽ , then mes(G̃) = #Ẽ . If
ê ∈ Ẽ , then Ṽint 6= ∅ since G̃ is star-like. Hence

mes(G̃) = #Ẽ + p− 1 ≤ 2#Ẽ .
Thus we conclude from (4.6) and Lemma 3.5 that

αS(Tp) = inf
G̃∈S

deg(∂G̃)
mes(G̃)

≥ 1

2
inf
G̃∈S

deg(∂G̃)
#Ẽ

=
1

2
α(Tp) =

1

2

p− 2

p− 1
≥ 2

5

for all p ≥ 6. On the other hand, `∗(Tp) = p ≥ 6 by assumption. Hence Remark
3.6 implies

α(Tp) =
2

`∗(Tp)
=

2

p
.
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QUANTUM GRAPHS
ON RADIALLY SYMMETRIC ANTITREES

ALEKSEY KOSTENKO AND NOEMA NICOLUSSI

Abstract. We investigate spectral properties of Kirchhoff Laplacians on ra-
dially symmetric antitrees. This class of metric graphs admits a lot of symme-
tries, which enables us to obtain a decomposition of the corresponding Lapla-
cian into the orthogonal sum of Sturm–Liouville operators. In contrast to
the case of radially symmetric trees, the deficiency indices of the Laplacian
defined on the minimal domain are at most one and they are equal to one
exactly when the corresponding metric antitree has finite total volume. In this
case, we provide an explicit description of all self-adjoint extensions including
the Friedrichs extension.

Furthermore, using the spectral theory of Krein strings, we perform a thor-
ough spectral analysis of this model. In particular, we obtain discreteness and
trace class criteria, a criterion for the Kirchhoff Laplacian to be uniformly
positive and provide spectral gap estimates. We show that the absolutely con-
tinuous spectrum is in a certain sense a rare event, however, we also present
several classes of antitrees such that the absolutely continuous spectrum of the
corresponding Laplacian is [0,∞).
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1. Introduction

This paper is devoted to one particular class of infinite quantum graphs, namely
Kirchhoff Laplacians on radially symmetric antitrees. Antitrees appear in the study
of discrete Laplacians on graphs at least since the 1980’s (see [12] and also [11, Sec-
tion 2]) and they attracted a considerable attention after the work of Wojciechowski
[47]. More precisely, Wojciechowski used them in [47] (see also [30, §6] and [23]) to
construct graphs of polynomial volume growth for which the combinatorial Lapla-
cian is stochastically incomplete and the bottom of the essential spectrum is strictly
positive, which is in sharp contrast to the manifold setting (cf. [9], [21], [22]). These
apparent discrepancies were resolved later using the notion of intrinsic metrics, with
antitrees appearing as key examples for certain thresholds (see [18, 24, 25, 29]). Dur-
ing the recent years, antitrees were also actively studied from other perspectives
and we only refer to a brief selection of articles [1], [8], [11], [20], [42], where further
references can be found.

In this paper, we consider antitrees from the perspective of quantum graphs
and perform a detailed spectral analysis of the Kirchhoff Laplacian on radially
symmetric antitrees. Our discussion includes characterization of self-adjointness
and a complete description of self-adjoint extensions, spectral gap estimates and
spectral types (discrete, singular and absolutely continuous spectrum).

Before proceeding further, let us first recall necessary definitions. Let Gd = (V, E)
be a connected, simple (no loops or multiple edges) combinatorial graph. Fix a root
vertex o ∈ V and then order the graph with respect to the combinatorial spheres
Sn, n ∈ Z≥0 (notice that S0 = {o}).
Definition 1.1. A connected simple rooted (infinite) graph Gd is called an antitree
if every vertex in Sn, n ≥ 11, is connected to all vertices in Sn−1 and Sn+1 and no
vertices in Sk for all |k − n| 6= 1.

Notice that combinatorial antitrees admit radial symmetry and every antitree is
uniquely determined by its sphere numbers sn = #Sn, n ≥ 0 (see Figure 1).

If every edge of Gd is assigned a length |e| ∈ (0,∞), then G = (Gd, | · |) is
called a metric graph. Upon identifying each edge e with the interval of length
|e|, G may be considered as a “network” of intervals glued together at the vertices.
In the following we shall denote combinatorial and metric antitrees by Ad and,
respectively, A. The analog of the Laplace–Beltrami operator for metric graphs
is the Kirchhoff Laplacian H (or Kirchhoff–Neumann Laplacian, see Section 3.1),
also called a quantum graph. It acts as an edgewise (negative) second derivative
fe 7→ − d2

dx2
e
fe, e ∈ E , and is defined on edgewise H2-functions satisfying continuity

and Kirchhoff conditions at the vertices (we refer to [2, 3, 15, 17, 32, 39] for more
information and references).

Our approach employs the high degree of symmetry and this naturally demands
symmetry assumptions also on the choice of edge lengths:
Hypothesis 1.2. We shall assume that the metric antitree A is radially symmetric,
that is, for each n ≥ 0, all edges connecting combinatorial spheres Sn and Sn+1

have the same length, say `n > 0.
One of our main motivations is Lemma 8.9 in [32]. More precisely, the symmetry

of antitrees structure turned out useful in studying isoperimetric estimates and we

1By definition, the root o is connected to all vertices in S1 and no vertices in Sk, k ≥ 2.
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S0

S1

S2

S3

Figure 1. Antitree with sphere numbers sn = n+ 1.

were even able to compute explicitly the bottom of the essential spectrum of some
(non-equilateral) quantum graphs (see [32, §8.2]). Despite an enormous interest
in quantum graphs during the last two decades, to the best of our knowledge a
detailed discussion of their spectral properties without further restrictions on edges
lengths (for instance, one of the most common assumptions is infe∈E |e| > 0) has
so far been obtained only for a few models and the most studied ones are radially
symmetric trees (see e.g. [6, 10, 16, 36, 37, 44]). However, the assumption that
G is a tree prevents many interesting phenomena to happen (for instance, by [32,
Lemma 8.1], in this case the Kirchhoff Laplacian, actually, its Friedrichs extension,
is boundedly invertible if and only if supe∈E |e| < ∞; in fact, this condition is only
necessary in general [43]). Hence our goal in this work is to present a model which
can be thoroughly analyzed but still exhibits in some sense rich spectral behavior.

Let us now briefly describe the content of the paper and our main results. To
some extent we follow the approach developed by Naimark and Solomyak for radi-
ally symmetric trees (see [36, 37] and also [10, 43, 44]) and use some ideas from [8],
where discrete Laplacians on radially symmetric “weighted” graphs have been an-
alyzed. However, some modifications are necessary since comparing to [10, 37, 44]
we are dealing with a completely different class of graphs (antitrees have a lot of
cycles) and, in contrast to discrete Laplacians [8], we have to deal with unbounded
operators (even when restricting to compact subsets of a metric graph) and in this
case a search for reducing subspaces is a rather complicated task.2

First of all, the radial symmetry of A naturally hints to consider the space Fsym

of radially symmetric functions (w.r.t. the root o ∈ V). It turns out that Fsym

is indeed reducing for the pre-minimal Kirchhoff Laplacian H0 (this means that
H0 as well as its closure H = H0, the minimal Kirchhoff Laplacian, commutes
with the orthogonal projection onto Fsym) and its restriction H0 � Fsym is unitarily
equivalent to a pre-minimal Sturm–Liouville operator H0 defined in L2((0,L);µ)
by the differential expression

τ := − 1

µ(t)

d

dt
µ(t)

d

dt
, µ(t) =

∑
n≥0

snsn+11[tn,tn+1)(t), (1.1)

2After the submission of our paper we learned about the preprint [7] dealing with a similar
decomposition in the general case of family preserving metric graphs, which includes antitrees as
a particular example. However, the main focus of [7] is on the existence of a decomposition in a
rather general situation, whereas in our work we use it mainly as a starting point for the spectral
analysis.
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and subject to the Neumann boundary condition at x = 0. Here t0 = 0, tn =∑
k≤n−1 `k for all n ≥ 1 and L =

∑
n≥0 `n (see Section 3.2). Moreover, the re-

maining part of H = H0 decomposes into an infinite sum of self-adjoint (regular)
Sturm–Liouville operators (see Theorem 3.5; its proof is given in Sections 2 and 3).
This decomposition is the starting point of our analysis since it enables us to in-
vestigate H using the well-developed spectral theory of Sturm–Liouville operators.
For example, this immediately provides a self-adjointness criterion together with a
complete description of self-adjoint extensions of H (see Section 4). Namely, since
all the summands in (3.18) except H = H0 are self-adjoint operators, we reduce the
problem to the study of the operator H0. Employing Weyl’s limit point/limit circle
classification, we obtain in Theorem 4.1 that deficiency indices of H are at most 1.
Moreover, H is self-adjoint if and only if A has infinite total volume, i.e.

vol(A) :=
∑
e∈E

|e| =
∑
n≥0

snsn+1`n =

∫ L

0

µ(t)dt = ∞.

If A has finite total volume, vol(A) < ∞, all self-adjoint extensions can be described
through a single boundary condition (in particular, this also provides a description
of the domain of the Friedrichs extension). Moreover, all of their spectra are purely
discrete and eigenvalues satisfy Weyl’s law (see Corollary 5.1).

If vol(A) = ∞, i.e., H is self-adjoint, it was already observed in [32, Section 8.2]
that σ(H) is not necessarily discrete. In Section 5, we characterize the cases when
H has purely discrete spectrum and when its resolvent H−1 belongs to the trace
class (see Theorem 5.4 and Theorem 5.6). Let us stress that our main tool is the
spectral theory of Krein strings [27] (see also [13]). More precisely, by a simple
change of variables H can be transformed into the string form (see (5.12)) and then
one simply needs to use the corresponding results from [26, 27]. Section 6 is devoted
to spectral estimates, i.e., the investigation of the bottom of the spectrum λ0(H) of
H, λ0(H) := inf σ(H). This can be solved again by using the results of Kac and
Krein from [26]. More precisely, we characterize the positivity of λ0(H) (Theorem
6.1 and Theorem 6.3) and derive two-sided estimates (Remark 6.2). Let us also
mention at this point that the decomposition (3.18) indicates the way to compute
the isoperimetric constant of a radially symmetric antitree (see Theorem 7.1) and
hence it is interesting to compare Theorem 6.1 and Theorem 6.3 with the estimates
obtained recently in [32] (see Remark 7.2).

To our best knowledge, the theory of Krein strings is applied in the context of
quantum graphs for the first time. In fact, most of the analysis in Sections 5 and
6 can be performed with the help of Muckenhoupt inequalities [35] since the ques-
tions addressed in these sections allow a variational reformulation (in particular,
Solomyak used this approach in [44] to investigate quantum graphs on radially sym-
metric trees). However, spectral theory of strings enables us to treat more subtle
problems (like the study of the structure of the essential spectrum of H). In Section
9, we employ the recent results from [4] and [14] on the absolutely continuous spec-
trum of strings to construct several classes of antitrees with absolutely continuous
spectrum supported on [0,∞). For instance, if

inf
n≥0

`n > 0,

∞∑
n=1

(sn+2

sn
− 1
)2

< ∞, (1.2)
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then σac(H) = [0,∞) (see Theorem 9.6). Notice that to prove this claim we em-
ploy the analog of the Szegő theorem for strings recently established by Bessonov
and Denisov [4]. Antitrees with polynomially growing sphere numbers satisfy the
last assumption, however, it can be shown that in this case the usual trace class
arguments do not apply (see Remark 9.4). Let us also emphasize that similar to
the case of trees quantum graphs typically have purely singular spectrum in the
case of antitrees (see Section 8). However, to the best of our knowledge, the only
known examples of quantum graphs on trees having nonempty absolutely contin-
uous spectrum are eventually periodic radially symmetric trees (see [16, Theorem
5.1]).

In the final section we demonstrate our results by considering two special classes
of antitrees and complement the results of [32, Section 8.2]. In Section 10.1 we
consider antitrees with exponentially increasing sphere numbers and demonstrate
that in this case there are a lot of similarities with the spectral properties of quantum
graphs on radially symmetric trees. Antitrees with polynomially increasing sphere
numbers are treated in Section 10.2 and this class of quantum graphs exhibits a
number of interesting phenomena. For example, one can show a transition from
absolutely continuous spectrum supported on [0,∞) to purely discrete spectrum
(see Corollary 10.7).

2. Decomposition of L2(A)

2.1. Auxiliary subspaces. Let A be a metric radially symmetric antitree with
sphere numbers {sn}n≥0 and lengths {`n}n≥0. Upon identifying every edge e with
a copy of the interval Ie = [0, |e|] and considering A as the union of all edges
glued together at certain endpoints, one can introduce the Hilbert space L2(A) of
functions f : A → C as L2(A) = ⊕eL

2(e). Next, denote

tn :=
n−1∑
j=0

`j , In := [tn, tn+1),

and let Hn := Csnsn+1 , n ≥ 0. Notice that snsn+1 is the number of edges in E+
n ,

where E+
n is the set of edges connecting Sn with Sn+1. Enumerating the vertices in

each sphere, let each entry aij of some a = (aij)i,j ∈ Hn correspond to a coefficient
of the edge e ∈ E+

n connecting the i-th vertex of Sn with the j-th vertex of Sn+1.
Moreover, we can identify each function f : A → C in a natural way with the
sequence of functions f = (fn)n≥0 such that fn : In → Hn. In fact, fn is given by

fni,j(t) := f(xij(t)), t ∈ In, (2.1)

where xij(t) is the unique x ∈ A, such that |x| = t and x lies on the edge connecting
the i-th vertex in Sn with the j-th vertex of Sn+1. Notice that the map

U : L2(A) → ⊕n≥0L
2(In;Hn)

f 7→ f = (fn)n≥0

(2.2)

is an isometric isomorphism since(
f, g
)
L2(A)

=
∑
n≥0

∫
In

(fn(t),gn(t))Hn
dt (2.3)

59



for all f, g ∈ L2(A). Next we introduce the following subspaces:

Hsym
n :=

{
a ∈ Hn| aij = a11 ∀i, j

}
,

H+
n :=

{
a ∈ Hn| aij = ai1 ∀i, j, and

∑
i,j

aij =
∑
i

ai1 = 0
}
,

H−
n :=

{
a ∈ Hn| aij = a1j ∀i, j, and

∑
i,j

aij =
∑
j

a1j = 0
}
,

H0
n :=

{
a ∈ Hn|

∑
j

aij = 0 ∀i and
∑
i

aij = 0 ∀j
}
.

It is straightforward to check that the above spaces are mutually orthogonal and
their dimensions are given by

dim(Hsym
n ) = 1, dim(H0

n) = (sn − 1)(sn+1 − 1),

dim(H+
n ) = sn − 1, dim(H−

n ) = sn+1 − 1.

Hence Hn admits the decomposition

Hn =

{
Hsym

n ⊕H−
n , n = 0

Hsym
n ⊕H+

n ⊕H−
n ⊕H0

n, n ≥ 1
. (2.4)

Notice that if sn = 1 for some n ≥ 1, then H+
n = H0

n = H0
n−1 = H−

n−1 = {0}.
One can also describe the above subspaces by identifying Hn with the tensor

product Csn ⊗ Csn+1 . For example, setting

1sn :=
(
1, 1, . . . , 1︸ ︷︷ ︸

sn

)
∈ Csn , 1n := 1sn ⊗ 1sn+1

∈ Hn, (2.5)

for all n ≥ 0, we get
Hsym

n = span{1n}. (2.6)
Moreover, denote

ωn := e2πi/sn , n ≥ 0,

and set
ajsn := {ωj

n, . . . , ω
j(sn−1)
n , 1} ∈ Csn , j ∈ {1, . . . , sn}. (2.7)

Notice that {ajsn}
sn
j=1 forms an orthogonal basis in Csn for all n ≥ 0. In particular,

asnsn = 1sn and ‖ajsn‖
2 = sn. Hence setting

ai,jn := aisn ⊗ ajsn+1
∈ Hn, (2.8)

where 1 ≤ i ≤ sn and 1 ≤ j ≤ sn+1, we easily get

H+
n = span

{
aisn ⊗ 1sn+1 | 1 ≤ i < sn

}
= span

{
ai,sn+1
n | 1 ≤ i < sn

}
,

H−
n = span

{
1sn ⊗ ajsn+1

| 1 ≤ j < sn+1

}
= span

{
asn,jn | 1 ≤ j < sn+1

}
,

H0
n = span

{
ai,jn | 1 ≤ i < sn, 1 ≤ j < sn+1

}
.

(2.9)

Finally, observe that
‖ai,jn ‖2 = snsn+1 (2.10)

for all 1 ≤ i ≤ sn, 1 ≤ j ≤ sn+1 and n ≥ 0.
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2.2. Definition of the subspaces. The decomposition (2.4) naturally induces a
decomposition of the Hilbert space L2(A). First consider the subspace

Fsym := {f ∈ L2(A)| fn : In → Hsym
n , n ≥ 0}. (2.11)

Clearly, it consists of functions which depend only on the distance to the root:

Fsym = {f ∈ L2(A)| f(x) = f(y) if |x| = |y|}. (2.12)

Moreover, its orthogonal complement is given by

F⊥
sym = {f ∈ L2(A)| fn : In → (Hsym

n )⊥, n ≥ 0} (2.13)

=
{
f ∈ L2(A)|

∑
e∈E+

n

fe ≡ 0, n ≥ 0
}
.

Next we need to decompose F⊥
sym. Set

F0
n := {f ∈ L2(A)| fn : In → H0

n; fk ≡ 0, k 6= n} (2.14)

for all n ≥ 1. Taking into account the definition of H0
n, it is not difficult to see that

F0
n =

{
f ∈ L2(A)| f ≡ 0 on A \ E+

n∑
e∈E+

v
fe =

∑
e∈E−

u
fe ≡ 0 ∀v ∈ Sn, u ∈ Sn+1

}
.

Here, for every v ∈ V, E+
v and E−

v denote the edges connecting v with the next and,
respectively, previous combinatorial spheres.

We need to be more careful with the remaining part since our aim is to find
reducing subspaces for the quantum graph operator H. For every v ∈ V \ o, define
the subspace F̃v consisting of functions which vanish away of Ev, where Ev is the set
of edges emanating from v. Moreover, on the corresponding star Ev they depend
only on the distance to the root, that is,

F̃v :=

{
f ∈ L2(A)| f ≡ 0 on A \ Ev

f(x) = f(y) for a.e. x, y ∈ Ev, |x| = |y|

}
. (2.15)

Notice that F̃v and F̃u are orthogonal for u 6= v if u and v are not adjacent vertices.
Next for all n ≥ 1 consider the spaces

F̃n :=
⊕
v∈Sn

F̃v, n ≥ 1, (2.16)

and
Fn := F̃n 	Fsym =

{
f ∈ F̃n|

∑
e∈E+

m

fe ≡ 0, m ≥ 0
}
. (2.17)

Notice that with respect to the decomposition (2.4), we have

Fn =

{
f ∈ L2(A)| fn−1 : In−1 → H−

n−1, f
n : In → H+

n

fm ≡ 0, m 6= n− 1, n

}
. (2.18)

Thus, we arrive at the following result.

Lemma 2.1. The Hilbert space L2(A) admits the decomposition

L2(A) = Fsym ⊕
⊕
n≥1

Fn ⊕
⊕
n≥1

F0
n. (2.19)
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Proof. The orthogonality of the subspaces in (2.19) follows directly from (2.3) and
(2.4). Hence we only need to show that every f ∈ L2(A) is contained in the right
hand side of (2.19). Since L2(A) = ⊕e∈EL

2(e), it suffices to prove this claim in the
case when f is zero except on a single edge e ∈ E . Suppose that e ∈ E+

n for some
n ≥ 0. Then for almost every t ∈ In we have

fn(t) = Psym
n (fn(t)) + P+

n (fn(t)) + P−
n (fn(t)) + P0

n(f
n(t)) ∈ Hn,

where Pj
n : Hn → Hj

n is the orthogonal projection in Hn onto Hj
n, j ∈ {sym,+,−, 0}.

Define fj : A → C as the function identified with the sequence of functions fj =
(fkj )k≥0 given by

fkj (t) := P j
k (f

k(t)), j ∈ {sym,+,−, 0},

for a.e. t ∈ Ik. Then fj ∈ L2(A) for all j ∈ {sym,+,−, 0} and

f = fsym + f+ + f− + f0.

Since fkj (t) ∈ Hj
k for a.e. t ∈ Ik, we conclude that fsym ∈ Fsym, f0 ∈ F0

n, f+ ∈ Fn

and f− ∈ Fn+1. �

Our next aim is to write down explicit formulas for projections onto the subspaces
in the decomposition (2.19). First, for any f̃ ∈ L2(In) and a ∈ Hn, we set f̃ := f̃⊗a.
Recalling that every function f : A → C can be identified via (2.2) with the sequence
of vector-valued functions f = (fn)n≥0, we denote

Fn
a := {f ∈ L2(A)| fn = fn ⊗ a, fn ∈ L2(In); f

k ≡ 0, k 6= n}. (2.20)

Note that the orthogonal projection Pn
a of L2(A) onto Fn

a is given by

(U(Pn
a f))(t) :=

{
0, t /∈ In

1
‖a‖2 (f

n(t),a)Hn
a, t ∈ In

, (2.21)

where U is the isometric isomorphism (2.2).
Combining the form of Pn

a with the decomposition (2.4) and (2.6), (2.9), we
easily obtain the following result.

Lemma 2.2. Let 1n ∈ Hn and ai,jn ∈ Hn, n ≥ 0 be given by (2.5) and (2.8). Then
the orthogonal projections in the decomposition (2.19) are given by

Psym =
∑
n≥0

Pn
1n , (2.22)

P 0
n =

∑
1≤i<sn

1≤j<sn+1

Pn
ai,j
n
, n ≥ 1, (2.23)

Pn =

sn−1∑
j=1

Pn−1

a
sn−1,j

n−1

+

sn−1∑
i=1

Pn

a
i,sn+1
n

, n ≥ 1. (2.24)

3. Reduction of the quantum graph operator

In this section, we show that each of the spaces in the above decomposition
(2.19) is reducing for the quantum graph operator with Kirchhoff conditions and
also obtain a description of the corresponding restrictions.
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3.1. Kirchhoff’s Laplacian. Let us briefly recall the definition of the Laplacian on
a metric graph (for details we refer to [3, 17, 32]). Let L2(A) be the corresponding
Hilbert space and the subspace of compactly supported L2-functions will be denoted
by L2

c(A). Moreover, denote by H2(A \ V) the subspace of L2(A) consisting of
edgewise H2-functions, that is, f ∈ H2(A \ V) if f ∈ H2(e) for every e ∈ E , where
H2(e) is the usual Sobolev space. The Kirchhoff (or Kirchhoff–Neumann) boundary
conditions at every vertex v ∈ V are then given by{

f is continuous at v∑
e∈Ev

f ′
e(v) = 0

, (3.1)

where

fe(v) := lim
xe→v

f(xe), f ′
e(v) := lim

xe→v

f(xe)− fe(v)

|xe − v|
, (3.2)

are well defined for all f ∈ H2(A \ V) and every vertex v ∈ V. Imposing these
boundary conditions and restricting to compactly supported functions we get the
pre-minimal operator H0 acting edgewise as the (negative) second derivative fe 7→
− d2

dx2
e
fe, e ∈ E on the domain

dom(H0) = {f ∈ H2(A \ V) ∩ L2
c(G)| f satisfies (3.1), v ∈ V}. (3.3)

The operator H0 is symmetric and its closure H = H0 is called the minimal Kirch-
hoff Laplacian.

First, we need the following simple but useful fact.

Lemma 3.1. Let f ∈ L2(A) and f = Uf be given by (2.2). Then f ∈ dom(H0) if
and only if f = (fn)n≥0 satisfies the following conditions:

(i) fn ≡ 0 for all sufficiently large n,
(ii) fni,j ∈ H2(In) for all n ≥ 0,
(iii) for all j ∈ {1, . . . , s1}

f01,j(0+) = f01,1(0+),

s1∑
j=1

(f01,j)
′(0+) = 0,

(iv) for all n ≥ 1,

fni,j(tn+) = fn−1
k,i (tn−)∑sn+1

j=1 (fni,j)
′(tn+) =

∑sn−1

k=1 (fn−1
k,i )′(tn−)

, i ∈ {1, . . . , sn}.

Proof. The proof is straightforward. We only need to mention that (i) is equivalent
to the fact that f is compactly supported; (ii) means that f belongs to the Sobolev
space H2 on each edge e ∈ E ; (iii) and (iv) are continuity and Kirchhoff’s conditions
at the vertices. �

3.2. The subspace Fsym. Set IL = [0,L), and define the length L and the weight
function µ : IL → R≥0 by

µ(t) =
∑
n≥0

snsn+11In(t), t ∈ [0,L); L =
∑
n≥0

`n. (3.4)
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Consider the (pre-minimal) operator H0 defined in L2(IL;µ) by the Sturm–Liouville
differential expression

τ = − 1

µ(t)

d

dt
µ(t)

d

dt
, (3.5)

on the domain

dom(H0) =
{
f ∈ L2

c(IL;µ)| f, µf ′ ∈ AC(IL), τf ∈ L2(IL;µ); f ′(0) = 0
}
. (3.6)

More concretely, H0 acts as a negative second derivative and its domain dom(H0)
consists of functions f ∈ L2(IL;µ) having compact support in IL, belonging to H2

on every interval In and at each point tn satisfying the boundary conditions{
f is continuous at tn,

sn−1f
′(tn−) = sn+1f

′(tn+).
(3.7)

Here we set s−1 := 0 in the case n = 0 for notational simplicity and the correspond-
ing condition (3.7) reads as the Neumann boundary condition at t = 0.

Lemma 3.2. The subspace Fsym reduces the operator H0. Moreover, its restriction
H0 � Fsym onto Fsym is unitarily equivalent to the operator H0.

Proof. First let us show that fsym := Psymf ∈ dom(H0) for every f ∈ dom(H0). In
fact, we need to show that fsym = Ufsym satisfies conditions (i)–(iv) of Lemma 3.1.
Clearly, by continuity of f and (2.21), (2.22), fsym satisfies (i) and (ii). Moreover,
both (fsym)

n
i,j(tn+) and (fsym)

n
k,m(tn+1−) depend only on n ≥ 0. Since f satisfies

both (iii) and (iv), we obtain that (fsym)
0
1,j(0+) does not depend on j and

(fsym)
n
i,j(tn+) =

1

snsn+1

(
fn(tn+),1n

)
Hn

=
1

sn−1sn

(
fn−1(tn−),1n−1

)
Hn−1

= (fsym)
n−1
k,i (tn−)

for all i ∈ {1, . . . , sn} and n ≥ 1. Similarly,
sn+1∑
j=1

(f ′sym)
n
i,j(tn+) =

1

sn

(
(fn)′(tn+),1n

)
Hn

=
1

sn

∑
i,j

(fni,j)
′(tn+)

=
1

sn

sn∑
i=1

sn+1∑
j=1

(fni,j)
′(tn+) =

1

sn

sn∑
i=1

sn−1∑
k=1

(fn−1
k,i )′(tn−)

=
1

sn

(
(fn−1)′(tn−),1n−1

)
Hn−1

=

sn−1∑
k=1

(f ′sym)
n−1
k,i (tn−), (3.8)

which holds for all i ∈ {1, . . . , sn}, n ≥ 1. Moreover, for n = 0 we have

(f ′sym)
0
1,j(0+) =

1

s1

s1∑
m=1

(f01,m)′(0+) = 0

for all j ∈ {1, . . . , s1}. Hence fsym = Psymf ∈ dom(H0) for all f ∈ dom(H0).
Noting that H0 is symmetric and Fsym is clearly invariant for H0 we conclude that
Fsym is reducing for H0.
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To prove the last claim, observe that the subspace Fsym is isometrically isomor-
phic to the Hilbert space L2(IL;µ). Indeed, for every f ∈ Fsym, set

f̃(t) :=
1

snsn+1

∑
e∈E+

n

f(xe(t)) =
1

‖1n‖2
(fn(t),1n)Hn

, t ∈ In; n ≥ 0, (3.9)

where xe(t) is the unique point on e satisfying |xe(t)| = t. Consider the map

Us : Fsym → L2
(
IL;µ

)
f 7→ f̃

. (3.10)

Clearly, for every f ∈ Fsym, fn(t) = f̃(t)⊗ 1n for a.e. t ∈ In and hence

‖f̃‖2L2(IL;µ) =
∑
n≥0

snsn+1‖f̃‖2L2(In)
=
∑
n≥0

‖fn‖2L2(In;Hn)
= ‖f‖2 = ‖f‖2L2(A).

It turns out that
H0 = Us(H0 � Fsym)U

−1
s . (3.11)

Indeed, H0 acts as the negative second derivative on every edge e ∈ E and hence
for every f ∈ Fsym we get

(Us(H0f))(t) = −f̃ ′′(t), t ∈ In,

for all n ≥ 0. Therefore, it remains to show that Us(Fsym ∩ dom(H0)) = dom(H0).
In fact, we only need to show that every f̃ = Usf with f ∈ Fsym satisfies (3.7) if
and only if f ∈ dom(H0). Indeed, by (3.9) and continuity of f , f̃(tn+) = f̃(tn−)
for all n ≥ 1 if f ∈ Fsym ∩ dom(H0). Moreover, similar to (3.8) one checks that

sn+1f̃
′(tn+) = sn−1f̃

′(tn−), n ≥ 0,

exactly when f ∈ Fsym ∩ dom(H0). This finishes the proof of Lemma 3.2. �

3.3. Restriction to F0
n. Our next aim is to show that each F0

n, n ≥ 1, is a reducing
subspace for H0 and its restriction is unitarily equivalent to (sn−1)(sn+1−1) copies
of hn, the second derivative with the Dirichlet boundary conditions on L2(In),

hn := − d2

dt2
, dom(hn) = {f ∈ H2(In)| f(tn+) = f(tn+1−) = 0}. (3.12)

By Lemma 2.2, this will be a consequence of the following lemma.

Lemma 3.3. Let n ≥ 1 be such that sn > 1 and sn+1 > 1. Then each of the
subspaces Fn

a , where a = ai,jn with 1 ≤ i < sn and 1 ≤ j < sn+1, is reducing for
the operator H0. The restricted operator H0 � Fn

a is unitarily equivalent to the
operator hn defined by (3.12).

Proof. Clearly, Fn
a is invariant for H0. Since H0 is symmetric, we only have to prove

that f̃ := Pn
a f ∈ dom(H0) whenever f ∈ dom(H0). In fact, we need to show that

f̃ := U(Pn
a f) given by (2.21) satisfies conditions (i)–(iv) of Lemma 3.1. Conditions

(i) and (ii) are obviously satisfied since f ∈ dom(H0) and by the definition of
U(Pn

a f). Since f̃m = 0 for all m 6= n and n ≥ 1, (iii) clearly holds and, moreover,
we need to verify (iv) only at tn and tn+1.

Let us start with continuity. Suppose a = ai,jn for some 1 ≤ i < sn and 1 ≤ j <
sn+1. First observe that

f̃nk,m(tn+) = f̃nk,m(tn+1−) = 0
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for all k ∈ {1, . . . , sn} and m ∈ {1, . . . , sn+1}. Indeed,

lim
t→tn+

(fn(t),a)Hn
= (fn(tn+),a)Hn

=

sn∑
k=1

fnk,1(tn+)ω−ik
n

sn+1∑
m=1

ω−jm
n+1 = 0.

Here we employed the continuity of f , fnk,j(tn+) = fnk,1(tn+) for all j ∈ {1, . . . , sn+1},
together with (2.8). This shows that f̃ satisfies the first condition in (iv).

Next observe that
sn+1∑
m=1

(f̃nk,m)′(tn+) =
ωik
n

snsn+1
((fn)′(tn+),a)Hn

sn+1∑
m=1

ωjm
n+1 = 0

for all k ∈ {1, . . . , sn}. Since (f̃n−1)′ = 0, f̃ satisfies (iv) at tn. Similar arguments
shows that (iv) holds true at tn+1 as well. This finishes the proof of the inclusion
f̃ = Pn

a f ∈ dom(H0).
Finally, noting that

Un
a : L2(In) → Fn

a

f 7→ f · a
‖a‖

(3.13)

establishes an isometric isomorphism of L2(In) onto Fn
a , it is straightforward to

verify the last claim and we left it to the reader. �

3.4. Restriction to Fn. Next, we show that Fn, n ≥ 1 is reducing for H0 as
well and the corresponding restriction is unitarily equivalent to sn− 1 copies of the
operator h̃n defined by

τ̃n = − 1

µ(t)

d

dt
µ(t)

d

dt
,

on L2((tn−1, tn+1);µ) and equipped with Dirichlet conditions at the endpoints.
Here the weight function µ is defined by (3.4). The domain of h̃n admits a very
simple description since inside In−1 and In the differential expression τ̃n reduces to
the negative second derivative and hence dom(h̃n) consists of functions which are
H2 in In−1 and In, satisfy the Dirichlet conditions at tn−1 and tn+1 and also the
following coupling conditions at tn:{

f(tn+) = f(tn−)

sn−1f
′(tn−) = sn+1f

′(tn+)
. (3.14)

Recall that Fn = ran(Pn), where the projection Pn is given by (2.24). By (2.8)
and (2.5),

a
sn−1,j
n−1 = 1sn−1 ⊗ ajsn , aj,sn+1

n = ajsn ⊗ 1sn+1 ,

and hence

Pn =

sn−1∑
j=1

(
Pn−1

1sn−1
⊗aj

sn

+ Pn
aj
sn⊗1sn+1

)
. (3.15)

Denoting the summands in (3.15) by P̃ j
n, j ∈ {1, . . . , sn − 1}, we set

F̃ j
n := ran(P̃ j

n) = Fn−1

1sn−1
⊗aj

sn

⊕Fn
aj
sn⊗1sn+1

. (3.16)

Since Fn =
⊕sn−1

j=1 F̃ j
n, these claims will follow from the following lemma:

66



Lemma 3.4. Every subspace F̃ j
n with n ≥ 1 and j ∈ {1, . . . , sn − 1}, is reducing

for the operator H0. Moreover, its restriction onto F̃ j
n is unitarily equivalent to h̃n.

Proof. Since F̃ j
n is invariant for H0 and H0 is symmetric, we only need to show that

for every f ∈ dom(H0) its projection f̃ := P̃ j
nf onto F̃ j

n also belongs to dom(H0).
Following step by step the proof of Lemma 3.3, we only need to show that f̃ := Uf̃
satisfies condition (iv) of Lemma 3.1 at tn.

First observe that by (2.21)

f̃(t) =

{
f̃n−1(t)(1sn−1

⊗ ajsn), t ∈ In−1

f̃n(t)(a
j
sn ⊗ 1sn+1

), t ∈ In
(3.17)

where

f̃n−1(t) =
1

sn−1sn
(fn−1(t),a

sn−1,j
n−1 )Hn−1

, f̃n(t) =
1

snsn+1
(fn(t),aj,sn+1

n )Hn
.

Notice that

f̃n−1(tn−) =
1

sn−1sn

sn−1∑
k=1

sn∑
m=1

fn−1
k,m (tn−)ω−jm

n =
1

sn

sn∑
m=1

fn−1
1,m (tn−)ω−jm

n

and

f̃n(tn+) =
1

snsn+1

sn∑
m=1

sn+1∑
k=1

fnm,k(tn+)ω−jm
n =

1

sn

sn∑
m=1

fnm,1(tn+)ω−jm
n .

However, by Lemma 3.1,

fn−1
1,m (tn−) = fnm,1(tn+), m ∈ {1, . . . , sn},

and hence we get

f̃n−1
1,k (tn−) =

ωjk
n

sn

sn∑
m=1

fn−1
1,m (tn−)ω−jm

n

=
ωjk
n

sn

sn∑
m=1

fnm,1(tn+)ω−jm
n = f̃nk,1(tn+)

for all k ∈ {1, . . . , sn}. This shows that f̃ satisfies the first equality in condition
(iv) of Lemma 3.1. Let us check the second one. However, we have

sn−1∑
k=1

(f̃n−1
k,m )′(tn−) =

sn−1∑
k=1

f̃ ′
n−1(tn−)ωjm

n = sn−1f̃
′
n−1(tn−)ωjm

n

=
ωjm
n

sn

sn∑
l=1

ω−jl
n

sn−1∑
k=1

(fn−1
k,l )′(tn−)

=
ωjm
n

sn

sn∑
l=1

ω−jl
n

sn+1∑
k=1

(fnl,k)
′(tn+) = sn+1f̃

′
n(tn+)ωjm

n

=

sn+1∑
k=1

f̃ ′
n(tn+)ωjm

n =

sn+1∑
k=1

(f̃nm,k)
′(tn+).

This shows that f̃ satisfies all the conditions of Lemma 3.1 and hence f̃ ∈ dom(H0).
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It remains to notice that the map U j
n : L

2((tn−1, tn+1);µ) → F̃ j
n defined by (3.17)

is an isometric isomorphism and (U j
n)

−1(H0 � F̃ j
n)U

j
n = h̃n. �

3.5. The decomposition of the operator H. Combining the results of Sections
3.2–3.4, we arrive at the following decomposition of quantum graph operators on
radially symmetric anti-trees.

Theorem 3.5. Let A be an infinite radially symmetric antitree. The decomposition
(2.19) reduces the operator H. Moreover, with respect to this decomposition, H is
unitarily equivalent to the following orthogonal sum of Sturm–Liouville operators

H⊕
⊕
n≥1

(
⊕(sn−1)(sn+1−1)

j=1 hn

)
⊕
⊕
n≥1

(
⊕sn−1

j=1 h̃n

)
, (3.18)

where H = H0 and the operators H0, hn and h̃n are defined in Sections 3.2, 3.3
and 3.4, respectively.

4. Self-adjointness

Theorem 3.5 reduces the spectral analysis of quantum graph operators on radially
symmetric antitrees to the analysis of certain classes of Sturm–Liouville operators.
Moreover, the Sturm–Liouville operators hn and h̃n in the decomposition (3.18) are
self-adjoint for all n ≥ 1 and their spectra can be computed explicitly. This enables
us to perform a rather detailed study of spectral properties of the operator H = H0.
We begin with the characterization of self-adjoint extensions of the operator H.

Theorem 4.1. Let A be an infinite radially symmetric antitree. Then:
(i) The operator H is self-adjoint if and only if the total volume of A is infinite,

vol(A) :=
∑

e∈E(A)

|e| =
∑
n≥0

snsn+1`n = ∞. (4.1)

(ii) If vol(A) < ∞, then the deficiency indices of H equal 1 and self-adjoint
extensions of H form a one-parameter family Hθ := H∗ � dom(Hθ), θ ∈
[0, π), where

dom(Hθ) = {f ∈ dom(H∗)| cos(θ)f(L) + sin(θ)f ′(L) = 0},

where

f(L) := lim
t→L

(UsPsymf)(t), (4.2)

f ′(L) := lim
t→L

µ(t)(UsPsymf)
′(t), (4.3)

and the operators Psym and Us are given, respectively, by (2.22) and (3.10).

Proof. (i) By Theorem 3.5, the operator H is self-adjoint only if so are the operators
on the right-hand side in the decomposition (3.18). However, both hn and h̃n are
self-adjoint for all n ≥ 1. The self-adjointness criterion for H = H0 follows from the
standard limit point/limit circle classification (see, e.g., [46]). Namely, the equation
τy = 0 with τ given by (3.5), has two linearly independent solutions

y1(t) ≡ 1, y2(t) =

∫ t

0

ds

µ(s)
.
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Now one simply needs to verify whether or not both solutions y1 and y2 belong
to L2(IL;µ). Clearly, y1 ∈ L2(IL;µ) exactly when the series in (4.1) converges.
Moreover, it is straightforward to check that y2 ∈ L2(IL;µ) if and only if the series∑

n≥0

snsn+1`n

(∑
k≤n

`k
sksk+1

)2
(4.4)

converges. Since snsn+1 ≥ 1 for all n ≥ 0, this series converges exactly when the
series in (4.1) converges. The Weyl alternative finishes the proof of (i).

(ii) The above considerations imply that the deficiency indices of H and H co-
incide. However, the deficiency indices of H are at most 1. Thus, if the operator H
is not self-adjoint, its deficiency indices equal 1. Moreover, one can easily describe
all self-adjoint extensions of H. First of all, for every g ∈ dom(H∗

0) = dom(H∗) the
following limits

lim
t→L

Wt(g, y1), lim
t→L

Wt(g, y2)

exist and are finite (see, e.g., [46]). Here Wt(g, h) = g(t)(µh′)(t) − (µg′)(t)h(t) is
the modified Wronskian. Thus for every g ∈ dom(H∗

0) the following limits

g(L) := lim
t→L

g(t), g′µ(L) := lim
t→L

µ(t)g′(t) (4.5)

exist and are finite. Hence self-adjoint extensions of H form a one-parameter family

dom(H(θ)) =
{
g ∈ dom(H∗

0)| cos(θ)g(L) + sin(θ)g′µ(L) = 0
}
, θ ∈ [0, π).

It remains to use (3.11) and (2.22). �

Remark 4.2. Let us mention that in the case vol(A) < ∞ the Friedrichs extension
of H coincides with the operator Hθ with θ = 0. Moreover, it is possible to show
that in fact the limits in (4.2) and (4.3) coincide with

lim
|x|→L

f(x), lim
t→L

∑
|x|=t

f ′(x)

for every f in the domain of H∗. In particular, this would imply that the Friedrichs
extension of H is simply given as the restriction of H∗ to functions vanishing at L.
Let us also mention that H∗ = H∗

0 in fact coincides with the maximal operator,
that is dom(H∗) consists of functions f ∈ L2(A) ∩H2(A \ V) satisfying boundary
conditions (3.1) for all v ∈ V and such that f ′′ ∈ L2(A).

5. Discreteness

As an immediate corollary of Theorem 4.1 we obtain the following result.

Corollary 5.1. If vol(A) < ∞, then the spectrum of each self-adjoint extension
Hθ of H is purely discrete and, moreover,

N(λ;Hθ) =
vol(A)

π

√
λ(1 + o(1)), λ → ∞, (5.1)

for all θ ∈ [0, π).

Here N(λ;A) is the eigenvalue counting function of a (bounded from below)
self-adjoint operator A with purely discrete spectrum. Namely,

N(λ;A) = #{k : λk(A) ≤ λ},
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where {λk(A)}k≥0 are the eigenvalues of A (counting multiplicities) ordered in the
increasing order.

Proof. By Theorem 3.5,

σ(Hθ) = σ(H(θ)) ∪ ∪n≥1σ(hn) ∪ ∪n≥1σ(h̃n). (5.2)
Since sn ≥ 1 for all n ≥ 1, vol(A) < ∞ implies that `n = o(1) as n → ∞ and
hence both sets ∪n≥1σ(hn) and ∪n≥1σ(h̃n) have no finite accumulation points. It
remains to note that the spectrum of H(θ) is discrete in this case as well.

According to the decomposition (3.18), we clearly have

N(λ;Hθ) = N(λ; H(θ)) +
∑
n≥1

(sn − 1)(sn+1 − 1)N(λ;hn) +
∑
n≥1

(sn − 1)N(λ; h̃n).

It is well known that (cf., e.g., [19, Chapter 6.7])

N(λ; H(θ)) =
L
π

√
λ(1 + o(1)), λ → ∞,

for all θ ∈ [0, π). Taking into account that

σ(hn) =

{
π2k2

`2n

}
k≥1

, (5.3)

we clearly have

N(λ;hn) =

⌊
`n
π

√
λ

⌋
(5.4)

for all λ ≥ 0, where b·c is the usual floor function. Moreover,⌊
`n−1

π

√
λ

⌋
+

⌊
`n
π

√
λ

⌋
≤ N(λ; h̃n) ≤

⌊
`n−1

π

√
λ+

1

2

⌋
+

⌊
`n
π

√
λ+

1

2

⌋
, (5.5)

for all λ > 0. The latter follows by employing the standard Dirichlet–Neumann
bracketing, that is, one can estimate the eigenvalues of h̃n via the eigenvalues of
the operators h̃D

n and h̃N
n subject to Dirichlet, respectively, Neumann boundary

conditions at tn:
λk(h̃

N
n ) ≤ λk(h̃n) ≤ λk(h̃

D
n ), k ≥ 1. (5.6)

Combining (5.4) with (5.5) and using a very simple estimate (see Lemma 5.2 below),
we immediately arrive at (5.1). �

Lemma 5.2. Let {an}n≥1 and {bn}n≥1 be nonnegative sequences such that limn bn =
0 and

∑
n anbn < ∞. Then for every α ∈ [0, 1),

lim
λ→∞

∑
n≥1

an
|bnλ− bbnλ+ αc |

λ
= 0. (5.7)

Proof. Indeed,∑
n≥1

an
|bnλ− bbnλ+ αc |

λ
=

∑
n : bn<

1−α
λ

+
∑

n : bn≥ 1−α
λ

an
|bnλ− bbnλ+ αc |

λ
.

The first summand can be estimated as follows∑
n : bn<

1−α
λ

an
|bnλ− bbnλ+ αc |

λ
=

∑
n : bn<

1−α
λ

anbn = o(1),
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as λ → ∞. Moreover, we have∑
n : bn≥ 1−α

λ

an
|bnλ− bbnλ+ αc |

λ
≤

∑
n : bn≥ 1−α

λ

an
1

λ
= o(1),

as λ → ∞, which proves the claim. �

Remark 5.3. We are not aware (except a few special cases) of a closed form of
eigenvalues of h̃n. It is not difficult to show that σ(h̃n) consists of simple positive
eigenvalues {λ̃k}k≥1 satisfying (5.5) and even to express σ(h̃n) with the help of the
arctangent function with two arguments, although this does not lead to a closed
formula.

In the case vol(A) = ∞, the spectrum of H may have a rather complicated
structure. In particular, it may not be purely discrete. The next result provides a
criterion for H to have purely discrete spectrum. Set

Lµ :=

∫ L

0

dx

µ(x)
=
∑
n≥0

`n
snsn+1

. (5.8)

Theorem 5.4. Let A be an infinite radially symmetric antitree with vol(A) = ∞.
Then the spectrum of H is discrete if and only if the following conditions are
satisfied:

(i) `n → 0 as n → ∞,
(ii) Lµ < ∞, and
(iii)

lim
n→∞

n∑
k=0

sksk+1`k
∑
k≥n

`k
sksk+1

= 0. (5.9)

Proof. Denote

H1 :=
⊕
n≥1

(
⊕(sn−1)(sn+1−1)

j=1 hn

)
, H2 :=

⊕
n≥1

(
⊕sn−1

j=1 h̃n

)
. (5.10)

By Theorem 4.1(i), H is self-adjoint and hence (3.18) implies that

σ(H) = σ(H) ∪ σ(H1) ∪ σ(H2) = σ(H) ∪
(
∪n≥1 σ(hn)

)
∪
(
∪n≥1 σ(h̃n)

)
. (5.11)

Thus the spectrum of H is discrete if and only if the spectra of all three operators
H, H1 and H2 are discrete.

In order to investigate the operator H, we need to transform it to the Krein string
form by using a suitable change of variables (x 7→

∫ x

0
ds
µ(s) ) and then to apply the

Kac–Krein criterion [26]. To be more precise, it is straightforward to verify that H

is unitarily equivalent to the operator H̃ defined in the Hilbert space L2([0,Lµ); µ̃)
by the differential expression

τ̃ = − 1

µ̃(x)

d2

dx2
(5.12)

and subject to the Neumann boundary condition at x = 0. Here

µ̃ := µ2 ◦ g−1, (5.13)
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where g−1 is the inverse of the function g : [0,L) → [0,Lµ) given by

g(x) =

∫ x

0

ds

µ(s)
, Lµ := g(L) =

∫ L

0

ds

µ(s)
. (5.14)

Notice that g is strictly increasing and locally absolutely continuous on [0,L) and
maps [0,L) onto [0,Lµ). Hence its inverse g−1 : [0,Lµ) → [0,L) is also strictly
increasing and locally absolutely continuous on [0,Lµ).

Applying the Kac–Krein criterion (see [26], [27, §11.9]), we conclude that H has
purely discrete spectrum if and only if Lµ < ∞ and

lim
x→L

Φ(x) = 0, (5.15)

where Φ: [0,L) → R≥0 is given by

Φ(x) :=

∫ x

0

µ(s)ds ·
∫ L

x

ds

µ(s)
, x ∈ [0,L). (5.16)

First of all, observe that

Φ(x) ≤
∫ tn+1

0

µ(s)ds ·
∫ L

tn

ds

µ(s)
=

n∑
k=0

sksk+1`k
∑
k≥n

`k
sksk+1

for all x ∈ [tn, tn+1) and hence sufficiency of (5.9) follows. Moreover, straightfor-
ward calculations show that

Φ
( tn + tn+1

2

)
=
( n−1∑

k=0

sksk+1`k + snsn+1
`n
2

)( ∑
k≥n+1

`k
sksk+1

+
`n

2snsn+1

)
≥ 1

4

n∑
k=0

sksk+1`k
∑
k≥n

`k
sksk+1

,

which implies the necessity of (5.9). Notice also that the right-hand side in the last
inequality is strictly greater than 1

4`
2
n, which also implies (i).

It remains to note that the spectra of the operators H1 and H2 are discrete if
condition (i) is satisfied (see (5.3) and (5.4)). �

Remark 5.5. Let us mention that in fact both conditions (i) and (ii) in Theorem
5.4 follow from (iii).

If vol(A) = ∞ and the corresponding Hamiltonian H has purely discrete spec-
trum, it follows from the proof of Weyl’s law (5.1) that N(λ;H)√

λ
→ ∞ as λ → ∞.

However, we can characterize radially symmetric antitress such that the resolvent
of the corresponding quantum graph operator H belongs to the trace class.

Theorem 5.6. Let A be an infinite radially symmetric antitree with vol(A) = ∞.
Also, let the spectrum of H be purely discrete. Then3∑

λ∈σ(H)

1

λ
< ∞ (5.17)

if and only if ∑
n≥1

snsn+1`
2
n < ∞, (5.18)

3The summation in (5.17) is according to multiplicities.

72



and ∑
n≥0

`n
snsn+1

n−1∑
k=0

sksk+1`k < ∞. (5.19)

Proof. As in the proof of Theorem 5.4, observe that the spectrum of H consists
of three sets of eigenvalues. Let us denote the second and the third summands in
(3.18) by H1 and H2, respectively. The spectrum of the self-adjoint operator hn is
given by (5.3) and hence∑
λ∈σ(H2)

1

λ
=
∑
n≥1

(sn − 1)(sn+1 − 1)
∑
k≥1

`2n
π2k2

=
1

6

∑
n≥1

(sn − 1)(sn+1 − 1)`2n. (5.20)

Similarly, using the Dirichlet–Neumann bracketing (5.6), we get∑
λ∈σ(H1)

1

λ
≤
∑
n≥1

(sn − 1)
∑

λ∈σ(h̃N
n )

1

λ

=
∑
n≥1

(sn − 1)
∑
k≥1

`2n−1

π2(k − 1/2)2
+

`2n
π2(k − 1/2)2

=
1

2

∑
n≥1

(sn − 1)(`2n−1 + `2n) ≤
1

2

∑
n≥0

(sn + sn+1 − 2)`2n.

Using the Dirichlet eigenvalues, one can prove a similar bound from below. More-
over, combining the latter with (5.18) implies that the resolvents of both H1 and
H2 belong to the trace class exactly when∑

n≥1

(snsn+1 − 1)`2n < ∞. (5.21)

Next observe that 0 ∈ σ(H) exactly when 1 ∈ L2(IL;µ), which is equivalent to
vol(A) < ∞. Thus 0 is not an eigenvalue of H whenever vol(A) = ∞. Finally, ap-
plying M. G. Krein’s theorem to the operator H (see [26], [27, §11.10]), we conclude
that H−1 is trace class if and only if Lµ < ∞ and∫ L

0

1

µ(x)

∫ x

0

µ(s)ds dx < ∞. (5.22)

However, using (3.4), we get∫ L

0

1

µ(x)

∫ x

0

µ(s)ds dx =
∑
n≥0

∫ tn+1

tn

1

µ(x)

∫ x

0

µ(s)ds dx

=
∑
n≥0

1

snsn+1

∫ tn+1

tn

( n−1∑
k=0

sksk+1`k + snsn+1(x− tn)
)
dx

=
∑
n≥0

`n
snsn+1

n−1∑
k=0

sksk+1`k +
1

2

∑
n≥0

`2n.

Notice that the latter in particular shows that {`n}n≥0 ∈ `2 and combining this
fact with (5.21) we arrive at (5.18). This completes the proof. �
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Remark 5.7. Using the same arguments and the results from [28, 41] one would
be able to characterize radially symmetric antitrees such that the resolvent of the
corresponding Kirchhoff Laplacian belongs to the Schatten–von Neumann ideal Sp,
p ∈ (1,∞) (and even to other trace ideals), however, these results look cumbersome
and we decided not to include them.

6. Spectral gap estimates

We restrict our discussion to the case vol(A) = ∞ for several reasons. Of course,
the main one is the fact that in this case H0 is essentially self-adjoint and this
simplifies some considerations. However, for finite volume metric graphs the corre-
sponding estimates remain to be true for the Friedrichs extension of H0.

Theorem 6.1. Let A be an infinite radially symmetric antitree with vol(A) = ∞.
Then the bottom of the spectrum λ0(H) = inf σ(H) of H is strictly positive if and
only if the following conditions are satisfied:

(i) `∗(A) = supn≥0 `n < ∞,
(ii) Lµ =

∑
n≥0

`n
snsn+1

< ∞, and
(iii)

C(L) := sup
x∈(0,L)

∫ x

0

µ(s)ds ·
∫ L

x

ds

µ(s)
< ∞. (6.1)

Moreover, we have the following estimate
1

4C(L)
≤ λ0(H) ≤ 1

C(L)
. (6.2)

Proof. Since vol(A) = ∞, the operator H is self-adjoint by Theorem 4.1. Moreover,
by Theorem 3.5, we have

λ0(H) = min{λ0(H), λ0(H
1), λ0(H

2)}, (6.3)
where H1 and H2 are given by (5.10). Observe that

λ0(H) = λ0(H). (6.4)

Indeed, it suffices to compare the domains of H0 and hn, h̃n and then exploit the
Rayleigh quotient. For instance,

λ0(H) = inf
f∈dom(H0)

f 6=0

(Hf, f)L2(IL;µ)

‖f‖2L2(IL;µ)

≤ inf
f∈dom(H0)

supp(f)⊂[tn−1,tn+1]

(Hf, f)L2(IL;µ)

‖f‖2L2(IL;µ)

≤ inf
f∈dom(h̃n)

f 6=0

(h̃nf, f)L2(In−1∪In;µ)

‖f‖2L2(In−1∪In;µ)

= λ0(h̃n).

The operator H can be studied in the framework of Krein strings, however, we
need to apply the Kac–Krein criteria [26] to the dual string since both Corollary
1.1 and Remark 2.2 in [26] are stated subject to the Dirichlet boundary condition
at x = 0. For a detailed discussion of dual strings we refer to [27, §12] and the
desired connection is [27, equality (12.6)]4. More precisely, assuming Lµ < ∞ and

4This statement can be seen as the analog of the abstract commutation: for a closed operator
A acting in a Hilbert space H, the operators (A∗A) �ker(A)⊥ and (AA∗) �ker(A∗)⊥ are unitarily
equivalent.
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then applying Theorem 1 from [26], we get the estimate

x
(
M−1(∞)−M−1(x)

)
≤ 1

λ0(H)
, (6.5)

which holds for all x > 0. Here M−1 denotes the inverse to the function M : [0,Lµ) →
[0,∞) defined by (see also (5.13) and (5.14))

M(x) :=

∫ x

0

µ̃(s)ds =

∫ x

0

(µ2 ◦ g−1)(s)ds =

∫ g−1(x)

0

µ(s)ds. (6.6)

Notice that M is a strictly increasing and absolutely continuous function mapping
[0,Lµ) onto [0,∞) (the latter follows from the assumption vol(A) = ∞). Thus (6.5)
is equivalent to

M(x) (Lµ − x) ≤ 1

λ0(H)
, x ∈ (0,Lµ). (6.7)

By changing variables, we end up with the following estimate

sup
x∈(0,L)

∫ x

0

µ(s)ds ·
∫ L

x

ds

µ(s)
≤ 1

λ0(H)
. (6.8)

Applying Theorem 3 from [26] and using the same arguments, we end up with the
lower bound

1

4λ0(H)
≤ sup

x∈(0,L)

∫ x

0

µ(s)ds ·
∫ L

x

ds

µ(s)
. (6.9)

Taking into account [26, Remark 2.2], we conclude that the condition Lµ < ∞ is
also necessary for the positivity of λ0(H). It remains to note that the necessity of
(i) follows from (iii). Indeed, assuming the converse, that is, there is a sequence of
lengths `nk

tending to infinity, and then choosing xnk
as the middle points of the

corresponding intervals, one immediately concludes that C(L) = ∞ by evaluating
(6.1) at xnk

. �

Remark 6.2. Arguing as in the proof of Theorem 5.4 one can show that conditions
(i)–(iii) in Theorem 6.1 can be replaced by the single condition

sup
n≥0

n∑
k=0

sksk+1`k
∑
k≥n

`k
sksk+1

< ∞. (6.10)

However, this expression provides only an upper bound on C(L):

sup
n≥0

n∑
k=0

sksk+1`k
∑

k≥n+1

`k
sksk+1

≤ C(L) ≤ sup
n≥0

n∑
k=0

sksk+1`k
∑
k≥n

`k
sksk+1

. (6.11)

Since 0 is not an eigenvalue of H if vol(A) = ∞, λ0(H) > 0 is equivalent to
λess
0 (H) > 0, where λess

0 (H) denotes the bottom of the essential spectrum of H,
λess
0 (H) := inf σess(H). Thus Theorem 6.1 also provides a criterion for λess

0 (H) to
be strictly positive. Moreover, by employing Glazman’s decomposition principle
one can prove a similar to (6.1) bound on λess

0 (H).

Theorem 6.3. Let A be an infinite radially symmetric antitree with vol(A) = ∞.
Then λess

0 (H) > 0 if and only if (6.10) holds true. Moreover,
1

4Cess(L)
≤ λess

0 (H) ≤ 1

Cess(L)
, (6.12)
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where the constant Cess(L) is given by

Cess(L) = lim
x→L

sup
y∈(x,L)

∫ y

x

µ(s)ds ·
∫ L

y

ds

µ(s)
. (6.13)

A few remarks are in order.

Remark 6.4. (i) The equality Cess(L) = 0 implies Theorem 5.4.
(ii) One can prove Theorem 6.1 avoiding the use of the Kac–Krein results [26].

Namely, with the help of the Rayleigh quotient, one can rewrite the in-
equality λ0(H) > 0 as a variational problem and then apply Muckenhoupt’s
inequalities (see, e.g., [33, §1.3.1], [35]). In particular, M. Solomyak em-
ployed this approach in the study of quantum graph operators on radially
symmetric trees (see [44, §5]).

(iii) It is interesting to compare Theorems 6.1 and 6.3 with volume growth
estimates (cf. [45]). For instance, by [32, Theorem 7.1],

λ0(H) ≤ λess
0 (H) ≤ 1

4
v(A)2, (6.14)

where

v(A) := lim inf
n→∞

1∑n
k=0 `k

log
( n∑

k=0

sksk+1`k

)
. (6.15)

However, this result applies only if L =
∑

n≥0 `n = ∞.

7. Isoperimetric constant

Recall that [32, §3] the isoperimetric constant α(G) of a metric graph G is

α(G) := inf
G̃

degG(∂G̃)
vol(G̃)

, (7.1)

where the infimum is taken over all finite connected subgraphs G̃ = (Ṽ, Ẽ). Here

∂G̃ = {v ∈ Ṽ| degG̃(v) < degG(v)},

is the boundary of G̃ and

degG(∂G̃) :=
∑
v∈∂G̃

degG̃(v), vol(G̃) :=
∑
e∈Ẽ

|e|. (7.2)

Computation of the isoperimetric constant is known to be an NP-hard problem,
however, due to the presence of symmetries, we are able to find α(A) for radially
symmetric antitrees.

Theorem 7.1. The isoperimetric constant of a radially symmetric antitree A is

α(A) = inf
n≥0

snsn+1∑n
k=0 sksk+1`k

. (7.3)

Proof. The decomposition obtained in Theorem 3.5 suggests to take the infimum in
(7.1) only over radially symmetric subgraphs. Namely, choosing An for every n ≥ 0
as the subgraph consisting of all edges between the root o and the combinatorial
sphere Sn+1, we have ∂An = Sn+1 and degAn

(v) = sn for all vertices v ∈ Sn+1.
Hence by (7.1) we get

α(A) ≤ deg(∂An)

vol(An)
=

snsn+1∑
k≤n sksk+1`k

. (7.4)
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Thus it remains to show that indeed it suffices to restrict the infimum in (7.1) to the
family {An}n≥0. Observe that {An}n≥0 is a net, that is, for every finite connected
subgraph Ã of A there is n ≥ 0 such that Ã is a subgraph of An. Hence we will
proceed by induction in n.

Let us start with subgraphs Ã ( A0. Then Ã consists of m < s0s1 edges of E+
0

and vol(Ã) = m`0. Moreover, for all vertices of Ã, degÃ(v) < degA(v) and hence
deg(∂Ã) = 2m, which implies

deg(∂Ã)

vol(Ã)
=

2m

m`0
=

2

`0
>

deg(∂A0)

vol(A0)
=

1

`0
.

Take n ≥ 1 and assume that

deg(∂Ã)

vol(Ã)
≥ inf

k≤n−1

deg(∂Ak)

vol(Ak)
= inf

k≤n−1

sksk+1∑
j≤k sjsj+1`j

(7.5)

holds for all connected subgraphs Ã ⊆ An−1. Take now a connected subgraph
Ã ⊆ An such that Ã 6⊆ An−1. The latter in particular implies that V(Ã) ∩ Sn 6= ∅
and V(Ã) ∩ Sn+1 6= ∅. We can also assume that V(Ã) ∩ Sn−1 6= ∅ since otherwise
E(Ã) ⊆ E+

n and hence in this case

deg(∂Ã)

vol(Ã)
=

2

`n
>

snsn+1∑
k≤n sksk+1`k

=
deg(∂An)

vol(An)
. (7.6)

Let us first show that without loss of generality we can take Ã such that each edge
e ∈ E(Ã) contains at least one vertex in Vint(Ã) := V(Ã) \ ∂Ã. Indeed, if not,
consider the induced subgraph Ãint, which we can split into a finite disjoint union
of connected subgraphs {Ãj}. In particular, Ṽint = ∪jV(Ãj). Let Gj be the star-
like subgraphs of A with edge sets E(Gj) = ∪v∈V(Ãj)

Ev. By construction, Gj ⊆ An

and each edge of Gj contains a vertex from V(Gj) \ ∂Gj = V(Ãj). Moreover, let
Er = E(Ã) \ ∪jE(Gj) be the remaining edges of Ã. Then it is straightforward to
verify (see also [38, proof of Lemma 3.5]) that

deg(∂Ã)

vol(Ã)
=

∑
j deg(∂Gj) + 2#Er∑

j vol(Gj) +
∑

e∈Er
|e|

≥ min
j,e∈Er

{
deg(∂Gj)

vol(Gj)
,
2

|e|

}
.

Taking into account (7.6), this proves the claim.
Consider a new graph Ã′ obtained from Ã by adding all possible edges connecting

Sn with Sn−1 and Sn+1 such that the new graph Ã′ is connected. By construction,
Ã′ ⊆ An. Moreover, Sn+1 ⊆ ∂Ã′ and degÃ′(v) = sn for all v ∈ Sn+1. Hence

deg(∂Ã′)

vol(Ã′)
≥ snsn+1

vol(An)
=

deg(∂An)

vol(An)
.

We also need another subgraph Ã′′ of Ã obtained by removing the edges of Ã
connecting Sn+1 with Sn \ ∂Ã and also Sn \ ∂Ã with the vertices in Sn−1 ∩ ∂Ã.
The obtained graph Ã′′ is a connected subgraph of An−1 and hence satisfies the
induction hypothesis (7.5). Our aim is to show that

deg(∂Ã)

vol(Ã)
≥ min

{deg(∂Ã′)

vol(Ã′)
,
deg(∂Ã′′)

vol(Ã′′)

}
, (7.7)
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Denoting M := #(Sn ∩ Ṽint) and N := #(Sn−1 ∩ ∂Ã), we get

vol(Ã′) = vol(Ã) + (sn −M)sn+1`n + (sn −M)N`n−1, (7.8)

and
vol(Ã′′) = vol(Ã)−Msn+1`n −MN`n−1. (7.9)

Moreover, a careful inspection shows that

deg(∂Ã′) ≤ deg(∂Ã) + (sn −M)(sn+1 − sn−1 + 2N), (7.10)

and
deg(∂Ã) = deg(∂Ã′′) +M(sn+1 − sn−1 + 2N). (7.11)

Now observe that if (7.7) fails to hold, then (7.9) and (7.11) would imply

sn+1 + 2N − sn−1

sn+1`n +N`n−1
<

deg(∂Ã)

vol(Ã)
, (7.12)

and, moroever, (7.8) and (7.10) lead to

sn+1 + 2N − sn−1

sn+1`n +N`n−1
>

deg(∂Ã)

vol(Ã)
. (7.13)

This contradiction proves (7.7) and hence finishes the proof of (7.3). �

Remark 7.2. A few remarks are in order.
(i) By the Cheeger-type estimate [32, Theorem 3.4], we have

λ0(H) ≥ 1

4
α(A)2. (7.14)

Comparing (7.14) and (7.3) with (6.2) and (6.11), we conclude that positiv-
ity of the isoperimetric constant is indeed only sufficient for λ0(H) > 0. For
example, α(A) = 0 whenever vol(A) = ∞ and {snsn+1}n≥0 has a bounded
subsequence.

(ii) The isoperimetric constant α(A) measures the ratio of the number of bound-
ary points of An to the volume of An and thus provides a lower bound for
λ0(H). The volume growth estimate (6.14) provides an upper bound by
relating the exponential growth of the volume of An with respect to its
diameter. Notice that the volume of the subgraph An also appears in
(6.10)–(6.11). The meaning of the other quantity in (6.11), namely, of∑

k≥n
`k

sksk+1
, which however provides two-sided estimates, remains unclear

to us.

8. Singular spectrum

Using the isometric isomorphism Uµ : f 7→ √
µf between Hilbert spaces L2(IL;µ)

and L2(IL), it is straightforward to check that the pre-minimal operator H0 defined
in Section 3.2 is unitarily equivalent to the operator H̃0 defined in L2(IL) by

H̃0f = −f ′′, f ∈ dom(H̃0) = Uµ(dom(H0))

dom(H̃0) =
{
f ∈ L2

c(IL)|
1
√
µ
f,
√
µf ′ ∈ AC(IL), f ′(0) = 0, f ′′ ∈ L2(IL)

}
.
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Since µ is piece-wise constant on (0,L), the domain of H̃0 consists of compactly
supported functions f ∈ L2

c(IL) such that f ∈ H2(In) for all n ≥ 0 and also
satisfying the following boundary conditions

f ′(0) = 0; f(tn+) =

√
sn+1

sn−1
f(tn−), f ′(tn+) =

√
sn−1

sn+1
f ′(tn−),

for all n ≥ 1. Denote the closure of H̃0 by H̃. The operator H̃ has actively been
studied since its spectral properties play a crucial role in understanding spectral
properties of Kirchhoff Laplacians on radial metric trees (let us only mention [6, 16]).
It turns out that one can immediately apply most of the results from [6] and [16]
in order to prove the corresponding spectral properties of Kirchhoff Laplacians on
radially symmetric antitrees. However, we need the following assumptions on the
geometry of metric antitrees:

Hypothesis 8.1. There is a positive lower bound on the edge lengths, `∗(A) :=
infn≥0 `n > 0, and sphere numbers are such that

lim inf
n≥0

sn+2

sn
> 1. (8.1)

In this case clearly L =
∑

n≥0 `n = ∞ and hence both operators H and H̃ are
self-adjoint. The next result is the analog of [6, Theorem 2].

Theorem 8.2. Assume Hypothesis 8.1. If in addition
sup
n≥0

`n = ∞, (8.2)

then σ(H) = R≥0 and σac(H) = ∅.

Proof. By Theorem 3.5, it suffices to show that σ(H̃) = R≥0 and σac(H̃) = ∅ since
H̃ = UµHU−1

µ . However, the latter follows from [6, Theorem 6]. �

Moreover, using the results from [31, §4] and arguing as in the proof of [34,
Theorem 1] (see also [17, Theorem 5.20]), one can prove the following statement.

Theorem 8.3. Assume Hypothesis 8.1. If in addition

sup
n≥0

sn+2

sn
= ∞, (8.3)

then σac(H) = ∅.

In contrast to radially symmetric trees, antitrees always have a rather rich point
spectrum (see Theorem 3.5). Moreover, under the assumptions of Hypothesis 8.1
this point spectrum is not a discrete subset, that is, it has finite accumulation points
(see Remark 5.3). On the other hand, similar to [6, Theorem 7], we can construct
a class of antitrees such that σ(H) is purely singular continuous. Moreover, it
is possible to show that under the assumption `∗(A) > 0 this situation is in a
certain sense typical (cf. [6, Theorems 4 and 8]). Let us only mention the following
Remling-type result (cf. [40, Theorem 1.1]).

Theorem 8.4. Assume Hypothesis 8.1. Also, assume that the sets {`n}n≥0 and
{ sn+2

sn
}n≥0 are finite. Then σac(H) 6= ∅ if and only if the sequence {(`n, sn+2

sn
)}n≥0

is eventually periodic.

The proof is again omitted since it is analogous to that of [16, Theorem 5.1].
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9. Absolutely continuous spectrum

The decomposition (3.18) shows that

σac(H) = σac(H) (9.1)

and both have multiplicity at most 1. The results of the previous section show that
antitrees with nonempty absolutely continuous spectrum is a rare event. Our main
aim in this section is to apply two recent result from [4] and [14] on the absolutely
continuous spectrum of Krein and generalized indefinite strings, respectively, in or-
der to construct several classes of antitrees with rich absolutely continuous spectra,
however, which are not eventually periodic in the sense of Theorem 8.4. We begin
with the following result.

Theorem 9.1. Let A be an infinite radially symmetric antitree such that

L =
∑
n≥0

`n = ∞.

Also, let µ be the function given by (3.4). If∑
n≥0

(∫ n+2

n

µ(x)dx

∫ n+2

n

dx

µ(x)
− 4

)
< ∞, (9.2)

then σac(H) = R≥0.

Proof. We only need to use Theorem 2 from [4]. Indeed, as we know (see the proof
of Theorem 6.1), the operator H is unitarily equivalent to the Krein string operator
H̃ given by (5.12)–(5.14). Applying now Theorem 2 from [4] to the operator H̃,
after straightforward calculations the corresponding condition (1.9) from [4] turns
into (9.2). �

Remark 9.2. Let us mention that in Theorem 9.1, upon suitable modifications of
[4, Theorem 2], one can replace the intervals (n, n+2) by intervals In, n ≥ 0 which
“asymptotically” behave like (n, n+2) (actually, by intervals with lengths uniformly
bounded from above as well as by a positive constant from below and satisfying a
suitable overlapping property [5]), however, one has to replace 4 by a square of the
length of the corresponding interval:∑

n≥0

(∫
In

µ(x)dx

∫
In

dx

µ(x)
− |In|2

)
< ∞. (9.3)

Let us first demonstrate the above result by considering an example of equilateral
antitrees and then we shall extend it to a much wider setting (see Theorem 9.6
below).

Corollary 9.3 (Equilateral antitrees). Let A be an infinite radially symmetric
antitree with `n = ` > 0 for all n ≥ 0. If∑

n≥0

(sn+2

sn
− 1
)2

< ∞, (9.4)

then σac(H) = R≥0.

80



Proof. Setting In = (`n, `(n+ 2)), n ≥ 0, straightforward calculations show that∫
In

µ(x)dx

∫
In

dx

µ(x)
− |In|2

= (snsn+1 + sn+1sn+2)
( 1

snsn+1
+

1

sn+1sn+2

)
`2 − 4`2

=
(sn+2 + sn)

2

snsn+2
`2 − 4`2 = `2

(sn+2 − sn)
2

snsn+2
= `2

sn
sn+2

(sn+2

sn
− 1
)2

.

Theorem 9.1 and Remark 9.2 complete the proof. �

Remark 9.4. First of all, Corollary 9.3 demonstrates that (8.1) is essential for the
results of Section 8. Let us also mention that it is possible to show by using the
results of [31, §4.2] that the stronger condition∑

n≥0

∣∣∣sn+2

sn
− 1
∣∣∣ < ∞ (9.5)

holds exactly when the operator H̃ considered in Section 8 is a trace class per-
turbation (in the resolvent sense) of the free Hamiltonian − d2

dx2 acting in L2(R+)
and hence in this case the Birman–Krein theorem implies σac(H) = R≥0. How-
ever, (9.5) does not hold already for polynomially growing equilateral antitrees,
e.g., take sn = n + 1 (see also Section 10.2). Moreover, (9.4) is equivalent to the
fact that H̃ is a Hilbert–Schmidt class perturbation (in the resolvent sense) of the
free Hamiltonian.

The rather strong assumption that A is equilateral can indeed be replaced by
`∗(A) > 0. In order to do this, it will turn out useful to rewrite (9.2). Let

M := ran(µ) = {snsn+1 : n ∈ Z≥0} (9.6)

be the image of the function µ defined in (3.4). For every s ∈ M, we set

Is := µ−1({s}) = {x ∈ [0,∞) : µ(x) = s}, (9.7)

that is, Is is the preimage of {s} ∈ M with respect to µ.

Lemma 9.5. Let A be an infinite radially symmetric antitree with L = ∞. Then∑
n≥0

(∫ n+2

n

µ(x)dx

∫ n+2

n

dx

µ(x)
− 4

)
=

1

2

∑
n≥0

∑
s∈M

∑
ξ 6=s

|In
s ||In

ξ |
(s− ξ)2

sξ
, (9.8)

where |In
s | is the Lebesgue measure of In

s := Is ∩ (n, n+ 2).

Proof. For every fixed n ∈ Z≥0, we clearly have∫ n+2

n

µ(x)dx

∫ n+2

n

dx

µ(x)
=
( ∑

s∈M
s|In

s |
)( ∑

ξ∈M

1

ξ
|In

ξ |
)

=
∑
s∈M

∑
ξ 6=s

|In
s ||In

ξ |
s

ξ
+
∑
s∈M

|In
s |2

=
1

2

∑
s∈M

∑
ξ 6=s

|In
s ||In

ξ |
(
ξ

s
+

s

ξ

)
+
∑
s∈M

|In
s |2.
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Moreover, by construction ∑
s∈M

|In
s | = 2, (9.9)

and hence ∑
s∈M

|In
s |2 − 4 =

∑
s∈M

|In
s |(|In

s | − 2) = −
∑
s∈M

∑
ξ 6=s

|In
s ||In

ξ |.

Combining the last two equalities, we get∫ n+2

n

µ(x)dx

∫ n+2

n

dx

µ(x)
− 4 =

1

2

∑
s∈M

∑
ξ 6=s

|In
s ||In

ξ |
(
ξ

s
+

s

ξ
− 2

)

=
1

2

∑
s∈M

∑
ξ 6=s

|In
s ||In

ξ |
(s− ξ)2

sξ
,

which completes the proof. �

Theorem 9.6. Let A be an infinite radially symmetric antitree with sphere numbers
satisfying (9.4). If

`∗(A) = inf
n≥0

`n > 0,

then σac(H) = R≥0.

Proof. Suppose `∗(A) ≥ 2. Then, by Lemma 9.5, for every n ∈ Z≥0, we get∫ n+2

n

µ(x)dx

∫ n+2

n

dx

µ(x)
− 4 =

1

2

∑
s∈M

∑
ξ 6=s

|In
s ||In

ξ |
(s− ξ)2

sξ

≤
∑

s∈Mn

∑
ξ 6=s

|In
ξ |

(s− ξ)2

sξ
,

where Mn := µ
(
(n, n + 2)

)
= {sksk+1 : (n, n + 2) ∩ Ik 6= ∅}. Since `k ≥ 2 for all

k ≥ 0 by assumption, µ is either constant on (n, n + 2) or attains precisely two
different values. In the first case, the righthand side is equal to zero. In the second,
we obviously get the estimate∫ n+2

n

µ(x)dx

∫ n+2

n

dx

µ(x)
− 4 ≤ 2

∑
tk∈(n,n+2)

(sk+1 − sk−1)
2

sk−1sk+1
.

Thus we end up with the following bound∑
n≥0

(∫ n+2

n

µ(x)dx

∫ n+2

n

dx

µ(x)
− 4

)
≤ 2

∑
n≥0

∑
tk∈(n,n+2)

(sk+1 − sk−1)
2

sk−1sk+1

≤ 4
∑
n≥0

(sn+2 − sn)
2

snsn+2
< ∞,

which proves the claim by applying Theorem 9.1.
It remains to note that the general case `∗(A) > 0 can be reduced to the one

with `∗(A) ≥ 2 by using the standard scaling argument (see also Remark 9.2). �

In fact, one can extend the above result to the case when lengths do not admit
a strictly positive lower bound. However, in this case one has to modify (9.4) in an
appropriate way.
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Lemma 9.7. Let A be an infinite radially symmetric antitree with L = ∞. Also,
let `n ≤ 1 for all n ≥ 0 and `n = o(1) as n → ∞. If {sn}n≥0 is a nondecreasing
sequence such that ∑

n≥0

(
sm(n+2)

sm(n)
− 1

)2

< ∞, (9.10)

then σac(H) = R≥0.
Here for each n ∈ Z≥0 the natural number m(n) is defined by

tm(n) ≤ n < tm(n)+1, tn =
n−1∑
k=0

`k. (9.11)

Proof. Set In := (tm(n), tm(n+2)+1), n ≥ 0. By construction (n, n+ 2) ⊆ In for all
n ≥ 0 and |In \ (n, n + 2)| = o(1) as n → ∞. Thus, by Theorem 9.1 and Remark
9.2, it suffices to show that∑

n≥0

(∫ tm(n+2)+1

tm(n)

µ(x)dx

∫ tm(n+2)+1

tm(n)

dx

µ(x)
− (tm(n+2)+1 − tm(n))

2

)
︸ ︷︷ ︸

=:Rn

< ∞. (9.12)

Since µ is given by (3.4), we get

Rn =

m(n+2)∑
k=m(n)

sksk+1`k

m(n+2)∑
k=m(n)

`k
sksk+1

−
(m(n+2)∑

k=m(n)

`k

)2

=

m(n+2)∑
k,j=m(n)

`k`j

( sjsj+1

sksk+1
− 1
)

= 2
∑

m(n)≤k<j≤m(n+2)

`k`j
(sjsj+1 − sksk+1)

2

sksk+1sjsj+1

≤ 2
∑

m(n)≤k<j≤m(n+2)

`k`j
(s2m(n+2)+1 − s2m(n))

2

s4m(n)

. 2 sup
k≥0

|Ik|2
(
s2m(n+2)

s2m(n)

− 1

)2

.

(
sm(n+2)

sm(n)
− 1

)2

for all n ≥ 0 if sm(n+2)

sm(n)
= 1 + o(1). �

Remark 9.8. In fact, the assumptions on lengths that `n ≤ 1 for all n ≥ 0 and
`n = o(1) as n → ∞ as well as monotonicity of sphere numbers are superfluous and
we need them for simplicity only. Of course, one can considerably weaken them,
however, the analysis becomes more involved and cumbersome.

We finish this section with another result based on [14], which also allows to
construct antitrees with absolutely continuous spectrum supported on R≥0.

Theorem 9.9. Let A be an infinite radially symmetric antitree such that vol(A) =
∞ and Lµ = ∞. If there are constants a ∈ R and b ∈ R>0 such that∫ L

0

1

µ(x)

∣∣∣ ∫ x

0

(
µ(s)− b

µ(s)

)
ds− a

∣∣∣2dx < ∞, (9.13)
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where µ is given by (3.4), then σac(H) = R≥0.

Proof. As in the proof of Theorem 9.1, we know that the operator H is unitarily
equivalent to the operator H̃. By Theorem 3.1 from [14], σac(H̃) = [0,∞) if there
are constants a ∈ R and b ∈ R>0 such that∫ ∞

0

|M(x)− a− bx|2 dx < ∞,

where M is defined by (6.6). Straightforward calculations finish the proof. �

Remark 9.10. For a string operator defined by (5.12), Theorem 9.1 and Theorem
9.9 also imply that the entropy, respectively, some sort of relative entropy of the
corresponding spectral measure is finite (see [4] for details). However, the meaning
of this fact for the corresponding quantum graph operator H is unclear to us.

10. Examples

10.1. Exponentially growing antitrees. Fix β ∈ Z≥2 and let Aβ be the antitree
with sphere numbers sn = βn, n ≥ 0 (cf. [32, Example 8.6]). Suppose that {`n}n≥0

are the lengths. Notice that

vol(Aβ) =
∑
n≥0

β2n+1`n. (10.1)

Then the basic spectral properties of the corresponding quantum graph operator
are contained in the following proposition.

Proposition 10.1. Let Hβ be the quantum graph operator associated with the
antitree Aβ. Then:

(i) The operator Hβ is self-adjoint if and only if the series in (10.1) diverges.
(ii) If vol(Aβ) < ∞, then deficiency indices of Hβ are equal to 1. Moreover, the

spectra of self-adjoint extensions of Hβ are purely discrete and eigenvalues
admit the standard Weyl asymptotic (5.1).

Assume in addition that vol(Aβ) = ∞.
(iii) The spectrum of Hβ is purely discrete if and only if `n = o(1) as n → ∞.
(iv) The resolvent of Hβ belongs to the trace class if and only if∑

n≥0

β2n`2n < ∞. (10.2)

(v) Hβ is positive definite if and only if `∗(Aβ) < ∞. Moreover, in this case
1

4C
≤λ0(H

β) ≤ 1

C
,

1

4Cess
≤λess

0 (Hβ) ≤ 1

Cess
, (10.3)

where

sup
n≥0

n∑
k=0

β2k`k
∑

k≥n+1

`k
β2k

≤ C ≤ sup
n≥0

n∑
k=0

β2k`k
∑
k≥n

`k
β2k

, (10.4)

and

lim
m→∞

sup
n≥m

n∑
k=m

β2k`k
∑

k≥n+1

`k
β2k

≤ Cess ≤ lim
m→∞

sup
n≥m

n∑
k=m

β2k`k
∑
k≥n

`k
β2k

. (10.5)
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Proof. Items (i) and (ii) follow from Theorem 4.1 and Corollary 5.1.
(iii) Applying Theorem 5.4 (see also Remark 5.5), we only need to show that

`n = o(1) as n → ∞ is sufficient for the discreteness. Indeed, we can estimate
n∑

k=0

β2k`k
∑
k≥n

`k
β2k

≤ `∗(Aβ) sup
k≥n

`k

n∑
k=0

β2k
∑
k≥n

1

β2k

= `∗(Aβ) sup
k≥n

`k
β2n+2 − 1

β2n+2

( β2

β2 − 1

)2
<

`∗(Aβ)

(1− β−2)2
sup
k≥n

`k,

(10.6)

where `∗(Aβ) = supn≥0 `n. Hence (5.9) is satisfied if `n = o(1).
(iv) Clearly, (10.2) coincides with condition (i) of Theorem 5.6 and hence it is

necessary. Applying the Cauchy–Schwarz inequality, we get the following estimate:

∑
n≥0

`n
snsn+1

n−1∑
k=0

sksk+1`k =
∑
n≥0

`n
β2n

n−1∑
k=0

β2k`k

≤
∑
n≥0

`n
β2n

( n−1∑
k=0

β2k`2k

n−1∑
k=0

β2k
)1/2

=
∑
n≥0

`n
β2n

(β2n − 1

β2 − 1

n−1∑
k=0

β2k`2k

)1/2
<
∑
n≥0

`n
βn

( n−1∑
k=0

β2k`2k

)1/2
<

`∗(Aβ)

β − 1

(∑
k≥0

β2k`2k

)1/2
.

Therefore, (10.2) implies condition (ii) of Theorem 5.6, which proves the claim.
(v) immediately follows from (10.6), Theorem 6.1, Theorem 6.3 and Remark

6.2. �

Remark 10.2. (i) Both the discreteness and uniform positivity criteria for Hβ

were obtained in [32, Example 8.6]. Notice that these results are a conse-
quence of the positivity of the combinatorial isoperimetric constant in this
case (see [32]). Moreover, using the rough estimate (10.6), one would be
able to recover the lower bounds (8.9) and (8.10) from [32].

(ii) It is impossible to apply Theorem 9.1 and Theorem 9.9 to Aβ (this either
can be seen from Proposition 10.1(v) or one can prove that both conditions
(9.2) and (9.13) are always violated if sphere numbers grow exponentially).

(iii) Since the sphere numbers of Aβ satisfy
sn+2

sn
= β2

for all n ≥ 0, we can apply the results of Section 8. Namely, under the
additional assumption `∗(Aβ) > 0, we conclude that the absolutely contin-
uous spectrum of H is in general empty. In particular, it is always the case
if `∗(Aβ) = ∞ (Theorem 8.2). Moreover, assuming that {`n}n≥0 is a finite
set, by Theorem 8.4, σac(H) 6= ∅ would imply that the sequence {`n}n≥0 is
eventually periodic.

(iv) Notice that the isoperimetric constant is given by (see (7.3))

1

α(Aβ)
= sup

n≥0

1

β2n

n∑
k=0

β2k`k.
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10.2. Polynomially growing antitrees. Fix q ∈ Z≥1 and let Aq be the antitree
with sphere numbers sn = (n+ 1)q, n ≥ 0 (the case q = 1 is depicted in Figure 1).
Suppose that {`n}n≥0 are the lengths. Notice that

vol(Aq) =
∑
n≥0

(n+ 1)q(n+ 2)q`n. (10.7)

Then the basic spectral properties of the corresponding quantum graph operator
are contained in the following proposition.

Proposition 10.3. Let Hq be the quantum graph operator associated with the
antitree Aq. Then:

(i) The operator Hq is self-adjoint if and only if∑
n≥0

n2q`n = ∞. (10.8)

(ii) If the series in (10.8) converges, then deficiency indices of Hq are equal to
1. Moreover, the spectra of self-adjoint extensions of Hq are purely discrete
and eigenvalues admit the standard Weyl asymptotic (5.1).

Assume in addition that (10.8) is satisfied, that is, Hq is self-adjoint.
(iii) The spectrum of Hq is purely discrete if and only if

lim
n→∞

n∑
k=0

k2q`k
∑
k≥n

`k
k2q

= 0. (10.9)

In particular, the spectrum is purely discrete if `n = o(n−1) as n → ∞.
(iv) The resolvent of Hq belongs to the trace class if and only if∑

n≥0

n2q`2n < ∞. (10.10)

(v) Hq is positive definite if and only if

sup
n≥1

n∑
k=0

k2q`k
∑
k≥n

`k
k2q

< ∞. (10.11)

In particular, λ0(H
q) > 0 if `n = O(n−1) as n → ∞.

(vi) If `∗(Aq) > 0, then σac(H
q) = R≥0.

Proof. (i) and (ii) follow immediately from Theorem 4.1 and Corollary 5.1 since
vol(Aq) = ∞ exactly when (10.8) is satisfied.

(iii) Applying Theorem 5.4 (see also Remark 5.5), we conclude that in the case
(10.8), the operator H has purely discrete spectrum if and only if

lim
n→∞

n∑
k=0

(k2 + 3k + 2)q`k
∑
k≥n

`k
(k2 + 3k + 2)q

= 0.

It is not difficult to show that the latter is equivalent to (10.9). Moreover, (10.9)
holds true whenever `n = o(n−1) as n → ∞ since

n∑
k=0

k2q−1 =
n2q

2q
(1 + o(1)),

∑
k≥n

1

k2q+1
=

n−2q

2q
(1 + o(1)).
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(iv) First observe that (5.18) is equivalent to (10.10). Moreover, (10.10) implies
also (5.19). Indeed, we get

∑
n≥0

`n
(n2 + 3n+ 2)q

n−1∑
k=0

(k2 + 3k + 2)q`k <
∑
n≥0

`n
(n+ 1)2q

n−1∑
k=0

(k + 2)2q`k

≤
∑
n≥0

`n
(n+ 1)2q

( n−1∑
k=0

(k + 2)2q`2k

n−1∑
k=0

(k + 2)2q
)1/2

.
∑
n≥0

`n
(n+ 1)2q

(
(n+ 1)2q+1

n−1∑
k=0

(k + 2)2q`2k

)1/2
<
(∑

k≥0

(k + 2)2q`2k

)1/2∑
n≥0

`n
(n+ 1)q−1/2

<
∑
k≥0

(k + 2)2q`2k

(∑
n≥1

1

n4q−1

)1/2
,

where the second and the last inequalities we obtained by applying the Cauchy–
Schwarz inequality. It remains to use Theorem 5.6.

(v) follows by applying Theorem 6.1 (see also Remark 6.2).
(vi) Since ∑

n≥0

(sn+2

sn
− 1
)2

=
∑
n≥1

( (n+ 2)q

nq
− 1
)2

.
∑
n≥1

1

n2
=

π2

6
,

the claim is immediate from Theorem 9.6. �

Remark 10.4. A few remarks are in order.
(i) The antitree Aq and the corresponding Kirchhoff Laplacian H have been

considered in [32, Example 8.7]. The analysis of spectral properties (in
particular, spectral estimates) is a rather delicate task in this case since
the combinatorial isoperimetric constant of Aq is equal to 0. We were
able to describe basic spectral properties of Hq only due to the presence
of radial symmetry. Spectral properties of Kirchhoff Laplacians without
radial symmetry seems to be a rather complicated problem – even the
self-adjointness problem (modulo some recent criteria obtained in [17]) is
unclear to us at the moment.

(ii) It can be demonstrated by examples that the conditions `n = o(n−1) (resp.,
`n = O(n−1)) as n → ∞ are not necessary for the discreteness (resp.,
positivity). However, they are in a certain sense sharp (see [32, Lemma 8.9]
and also Example 10.6 below).

(iii) Since sn+2 = sn(1 + o(1)), we can’t apply the results of Section 8 (see
Hypothesis 8.1). Moreover, Proposition 10.3(vi) shows that in general Hq

has absolutely continuous spectrum supported on R≥0. However, Theorem
9.1 is a consequence of [4, Theorem 2], which allows a presence of a rather
rich singular (continuous) spectrum.

We can also improve Proposition 10.3(vi) by allowing arbitrarily small lengths.
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Corollary 10.5. Suppose `n ≤ 1 for all n ≥ 0 and `n = o(1) as n → ∞. If∑
n≥0

(
m(n+ 2)

m(n)
− 1

)2

< ∞, (10.12)

then σac(H
q) = R≥0. Here m(n) is defined as in Lemma 9.7.

Proof. We need to apply Lemma 9.7 and notice that in this case
sm(n+2)

sm(n)
− 1 =

(
m(n+ 2) + 1

m(n) + 1

)q

− 1 ≈ m(n+ 2)

m(n)
− 1,

as n → ∞. �

Example 10.6. Fix s ≥ 0. Let the lengths of the metric antitree Aq be given by

`n =
1

(n+ 1)s
, n ≥ 0. (10.13)

Denote the corresponding Kirchhoff Laplacian by Hq,s. Applying Proposition 10.3
and Corollary 10.5, we end up with the following description of the spectral prop-
erties of Hq,s.

Corollary 10.7. (i) Hq,s is self-adjoint if and only if s ∈ [0, 2q+1]. If s > 2q+1,
then then deficiency indices of Hq,s are equal to 1. Moreover, in this case
the spectra of self-adjoint extensions Hq,s

θ of Hq,s are purely discrete and
eigenvalues admit the standard Weyl asymptotic

lim
λ→∞

N(λ;Hq,s
θ )√

λ
=

1

π

q∑
k=0

(
q

k

)
ζ(s− 2q + k), (10.14)

where ζ is the Riemann zeta function.
Assume in addition that s ∈ [0, 2q + 1], that is, Hq is self-adjoint.
(ii) The spectrum of Hq,s is purely discrete if and only if s ∈ (1, 2q + 1].

Moreover, the resolvent of Hq,s belongs to the trace class if and only if
s ∈ (q + 1/2, 2q + 1].

(iii) Hq,s is positive definite if and only if s ∈ [1, 2q + 1].
(iv) If s ∈ [0, 1), then σac(H

q,s) = R≥0.

We leave its proof to the reader and finish this section with a few remarks.

Remark 10.8. Corollary 10.7 complements the results obtained in [32, Example
8.7]. Moreover, items (ii) and (iii) demonstrate sharpness of sufficient conditions
obtained in Proposition 10.3(iii) and (v). Let us only mention that the question on
the structure of the essential spectrum of Hq,1 as well as on the structure of the
singular spectrum of Hq,s with s ∈ [0, 1] remains open.

Remark 10.9. In conclusion let us mention that choosing slightly different lengths

`n =
(n+ 1)q−s

(n+ 2)q
, n ≥ 0,

and denoting the corresponding operator by H̃q,s, we obtain

lim
λ→∞

N(λ; H̃q,s
θ )√

λ
=

1

π
ζ(s− 2q), s > 2q + 1. (10.15)
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SELF-ADJOINT AND MARKOVIAN EXTENSIONS
OF INFINITE QUANTUM GRAPHS

ALEKSEY KOSTENKO, DELIO MUGNOLO, AND NOEMA NICOLUSSI

Abstract. We investigate the relationship between one of the classical no-
tions of boundaries for infinite graphs, graph ends, and self-adjoint extensions
of the minimal Kirchhoff Laplacian on a metric graph. We introduce the no-
tion of finite volume for ends of a metric graph and show that finite volume
graph ends is the proper notion of a boundary for Markovian extensions of
the Kirchhoff Laplacian. In contrast to manifolds and weighted graphs, this
provides a transparent geometric characterization of the uniqueness of Mar-
kovian extensions, as well as of the self-adjointness of the Gaffney Laplacian
— the underlying metric graph does not have finite volume ends. If however
finitely many finite volume ends occur (as is the case of tessellating graphs or
Cayley graphs of amenable finitely generated countable groups), we provide
a complete description of Markovian extensions upon introducing a suitable
notion of traces of functions and normal derivatives on the set of graph ends.
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1. Introduction

This paper is concerned with developing extension theory for infinite quantum
graphs. Quantum graphs are Schrödinger operators on metric graphs, that is combi-
natorial graphs where edges are considered as intervals with certain lengths. Moti-
vated by a vast amount of applications in chemistry and physics, they have become
a popular subject in the last decades (we refer to [8, 9, 24, 63] for an overview and
further references). From the perspective of Dirichlet forms, quantum graphs play
an important role as an intermediate setting between Laplacians on Riemannian
manifolds and difference Laplacians on weighted graphs. On the one hand, being
locally one-dimensional, quantum graphs allow to simplify considerations of compli-
cated geometries. On the other hand, there is a close relationship between random
walks on graphs and Brownian motion on metric graphs, however, in contrast to
the discrete case, the corresponding quadratic form in the metric case is a strongly
local Dirichlet form and in this situation more tools are available (see [7, 26, 60, 61]
for various manifestations of this point of view). Let us also mention that metric
graphs can be seen as non-Archimedian analogues of Riemann surfaces, which finds
numerous applications in algebraic geometry (see [2, 5, 6, 67] for further references).

The most studied quantum graph operator is the Kirchhoff Laplacian, which pro-
vides the analog of the Laplace–Beltrami operator in the setting of metric graphs.
Its spectral properties are crucial in connection with the heat equation and the
Schrödinger equation and any further analysis usually relies on the self-adjointness
of the Laplacian. Whereas on finite metric graphs the Kirchhoff Laplacian is always
self-adjoint, the question is more subtle for graphs with infinitely many edges. For
instance, a uniform lower bound for the edge lengths guarantees self-adjointness
(see [9, 63]), but this commonly used condition is independent of the combinatorial
graph structure and clearly excludes a number of interesting cases (the so-called
fractal metric graphs). Moreover, most of the results on strongly local Dirichlet
forms require completeness of a given metric space w.r.t. the “intrinsic” metric (cf.,
e.g., [71]), which coincides with the natural path (geodesic) metric in the case of
metric graphs. Geodesic completeness (w.r.t. the natural path metric) guarantees
self-adjointness of the (minimal) Kirchhoff Laplacian, however, this result is far
from being optimal (see [25, §4] and also Section 2.4 below). The search for self-
adjointness criteria for infinite quantum graphs is an open and – in our opinion –
rather difficult problem.

If the (minimal) Kirchhoff Laplacian is not self-adjoint, the natural next step is
to ask for a description of its self-adjoint extensions, which corresponds to possible
descriptions of the system in quantum mechanics or, if we speak about Markovian
extensions, possible descriptions of Brownian motions. Naturally, this question is
tightly related to finding appropriate boundary notions for infinite graphs. Our
goal in this paper is to investigate the connection between extension theory and
one particular notion, namely graph ends, a concept which goes back to the work of
Freudenthal [28] and Halin [36] and provides a rather refined way of compactifying
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graphs. However, the definition of graph ends is purely combinatorial and naturally
must be modified to capture the additional metric structure of our setting. Based
on the correspondence between graph ends and topological ends of metric graphs,
we introduce the concept of ends of finite volume. First of all, it turns out that finite
volume ends play a crucial role in describing Sobolev spaces H1 and H1

0 on metric
graphs. More specifically, we show that the presence of finite volume ends is the
only reason for the strict inclusion H1

0 ( H1 to hold. This in particular provides a
surprisingly transparent geometric characterization of the uniqueness of Markovian
extensions of the minimal Kirchhoff Laplacian as well as the self-adjointness of the
so-called Gaffney Laplacian (we are not aware of its analogs either in the manifold
setting or in the context of weighted graph Laplacians, cf. [33, 35, 43, 50, 56, 57]).
As yet another manifestation of the fact that finite volume graph ends represent the
proper boundary for Markovian extensions of the Kirchhoff Laplacian, we provide
a complete description of all finite energy extensions (i.e., self-adjoint extensions
with domains contained in H1, and all Markovian extensions clearly satisfy this
condition), however, under the additional assumption that there are only finitely
many finite volume ends. Let us stress that this class of graphs includes a wide
range of interesting models (Cayley graphs of a large class of finitely generated
countable groups, tessellating graphs, rooted antitrees etc. have exactly one end
and in this case there are no finite volume ends exactly when the total volume
of the corresponding metric graph is infinite). Moreover, we emphasize that in all
those cases the dimension of the space of finite energy extensions is equal to the
number of finite volume ends, however, for deficiency indices, i.e., the dimension of
the space of self-adjoint extensions, this only gives a lower bound (for example, for
Cayley graphs the dimension of the space of finite energy extensions is independent
of the choice of a generating set, although deficiency indices do depend on this
choice in a rather nontrivial way). On the other hand, it may happen that these
dimensions coincide. The latter holds only if the maximal domain is contained
in H1, that is, if every self-adjoint extension is a finite energy extension. This is
further equivalent to the validity of a certain non-trivial Sobolev-type inequality (see
(1.1) below). The appearance of this condition demonstrates the mixed dimensional
behavior of infinite quantum graphs since the analogous estimate holds true in the
one-dimensional situation, but usually fails in the PDE setting.

Let us now sketch the structure of the article and describe its content and our
results in greater details.

Section 2 is of preliminary character where we collect basic notions and facts
about graphs and metric graphs (Section 2.1); graph ends (Section 2.2); the min-
imal and maximal Kirchhoff Laplacians (Section 2.3); deficiency indices and their
connection with the spaces of L2 harmonic and λ-harmonic functions (Section 2.4).

The core of the paper is Section 3, where we discuss Sobolev spaces H1(G)
and H1

0 (G) and introduce the set of finite volume ends C0(G) (Definition 3.7). We
show that C0(G) is the proper boundary for H1 functions, which can also be seen
as an ideal boundary by applying C∗-algebras techniques (see Remark 3.13). The
central result of this section is Theorem 3.11, which shows that H1(G) = H1

0 (G) if
and only if there are no finite volume ends. The latter also leads to a surprisingly
transparent geometric characterization of the uniqueness of Markovian extensions
of the Kirchhoff Laplacian (Corollary 5.5) as well as the self-adjointness of the
Gaffney Laplacian (Remark 5.6(ii)).
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The next Section 4 contains further applications of the above considerations.
Namely, Theorem 4.1 demonstrates that deficiency indices of the minimal Kirchhoff
Laplacian can be estimated from below by the number of finite volume ends. This
estimate is sharp (e.g., if there are infinitely many finite volume ends) and we also
find necessary and sufficient conditions for the equality to hold. In particular, if
#C0(G) < ∞, the latter is equivalent to the validity of the following Sobolev-type
inequality (see Remark 4.2)

‖f ′‖L2(G) ≤ C(‖f‖L2(G) + ‖f ′′‖L2(G)) (1.1)
for all f in the maximal domain of the Kirchhoff Laplacian. Metric graphs are locally
one-dimensional and the corresponding inequality is trivially satisfied in the one-
dimensional case, however, globally infinite metric graphs are more complex and
hence (1.1) rather resembles the multi-dimensional setting of PDEs (in particular,
(1.1) does not hold true if G has a non-free finite volume end, see Proposition 4.9).

In the next sections, we focus on a particular class of self-adjoint extensions
whose domains are contained in H1 (we call them finite energy extensions). These
extensions have good properties and their importance stems from the fact that they
contain the class of Markovian extensions (they also arise as self-adjoint restrictions
of the Gaffney Laplacian). In Section 5 we show that (under some additional mild
assumptions) their resolvents and heat semigroups are integral operators with con-
tinuous, bounded kernels and they belong to the trace class if G has finite total
volume (Theorems 5.1 and 5.2).

In Section 6 we proceed further and show that finite volume ends is the proper
boundary for this class of extensions. Namely, under the additional and rather re-
strictive assumption of finitely many ends with finite volume, in Sections 6.1–6.2, we
introduce a suitable notion of a normal derivative at graph ends (as a by-product,
this also gives an explicit description of the domain of the Neumann extension, see
Corollary 6.7). Section 6.3 contains a complete description of finite energy exten-
sions and also of Markovian extensions (Theorem 6.11). Let us stress that the case
of infinitely many ends is incomparably more complicated and will be the subject
of future work.

In general, inequality in (1.1) is difficult to verify/contradict and even simple
examples can exhibit rather complicated behavior (see Appendix B). The main
and in fact the only reason for (1.1) fail to hold is the presence of L2 harmonic
functions having infinite energy, that is, not belonging to H1. Moreover, in order
to compute deficiency indices of the Kirchhoff Laplacian one, roughly speaking,
needs to find the dimension of the space of L2 harmonic functions and descrip-
tion of self-adjoint extensions requires a thorough understanding of the behavior of
L2 harmonic functions at “infinity”. Dictated by a distinguished role of harmonic
functions in analysis, there is an enormous amount of literature dedicated to vari-
ous classes of harmonic functions (positive, bounded etc.), which is further related
to different notions of boundaries (metric completion, Poisson and Martin bound-
aries, Royden and Kuramochi boundaries etc.) and search for a suitable notion in
this context (namely, L2 harmonic functions) is a highly nontrivial problem, which
seems not to be very well studied either in the context of incomplete manifolds (cf.
[56, 57]) or in the case of weighted graphs (see [37, 43]). We further illustrate this
by considering the case of rooted antitrees, a special class of infinite graphs with a
particularly high degree of symmetry (see Section 7). Infinite rooted antitrees have
exactly one graph end, which makes them a good toy model for our purposes. The
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above considerations show that the space of finite energy L2 harmonic functions is
nontrivial only if a given metric antitree has finite total volume and in this case the
only such functions are constants. However, adjusting lengths in a suitable way for
a concrete polynomially growing antitree (Figure 1) we can make the space of L2

harmonic functions as large as we please (even infinite dimensional!).

Notation. Z, R, C have their usual meaning; Z≥a := Z ∩ [a,∞).
z∗ denotes the complex conjugate of z ∈ C.
For a given set S, #S denotes its cardinality if S is finite; otherwise we set #S = ∞.
If it is not explicitly stated otherwise, we shall denote by (xn) a sequence (xn)

∞
n=0.

Cb(X) is the space of bounded, continuous functions on a locally compact space X.
C0(X) is the space of continuous functions vanishing at infinity.
For a finite or countable set X, C(X) is the set of complex-valued functions on X.
Gd = (V, E) is a discrete graph (satisfying Hypothesis 2.1).
G = (Gd, | · |) is a metric graph.
% is the natural (geodesic) path metric on G.
%m is the star metric on V corresponding to the star weight m.
Ω(Gd) denotes the graph ends of Gd.
C(G) denotes the topological ends of the corresponding metric graph G.
C0(G) stays for the finite volume topological ends of G.
Ĝ is the end (Freudenthal) compactification of G.
H0

0 is the pre-minimal Kirchhoff Laplacian on G.
H0 is the minimal Kirchhoff Laplacian, the closure of H0

0 in L2(G).
n±(H0) are the deficiency indices of H0.
HF and HN are Friedrichs and Neumann extensions of H0, respectively.
H is the maximal Kirchhoff Laplacian on G.

2. Quantum graphs

2.1. Combinatorial and metric graphs. In what follows, Gd = (V, E) will be
an unoriented graph with countably infinite sets of vertices V and edges E . For two
vertices u, v ∈ V we shall write u ∼ v if there is an edge eu,v ∈ E connecting u with
v. For every v ∈ V, we denote the set of edges incident to the vertex v by Ev and

degG(v) := #{e| e ∈ Ev} (2.1)

is called the degree (valency or combinatorial degree) of a vertex v ∈ V. When there
is no risk of confusion which graph is involved, we shall write deg instead of degG .
A path P of length n ∈ Z≥0 ∪ {∞} is a sequence of vertices (v0, v1, . . . , vn) such
that vk−1 ∼ vk for all k ∈ {1, . . . , n}.

The following assumption is imposed throughout the paper.

Hypothesis 2.1. Gd is locally finite (deg(v) <∞ for every v ∈ V), connected (for
any two vertices u, v ∈ V there is a path connecting u and v), and simple (there are
no loops or multiple edges).

Assigning to each edge e ∈ E a finite length |e| ∈ (0,∞) turns Gd into a metric
graph G := (V, E , | · |) = (Gd, | · |). The latter equips G with a (natural) topology
and metric. More specifically (see, e.g., [38, Chapter 1.1]), a metric graph G can be
considered as a topological space. Namely, a metric graph G is a Hausdorff topo-
logical space with countable base such that each point x ∈ G has a neighbourhood

95



Ex(r) homeomorphic to a star-shaped set E(deg(x), rx) of degree deg(x) ≥ 1,

E(deg(x), rx) := {z = re2πik/ deg(x)| r ∈ [0, rx), k = 1, . . . , deg(x)} ⊂ C.

By assigning each edge a direction, every edge e ∈ E can be identified with a copy
of the interval Ie = [0, |e|]; moreover, the ends of the edges that correspond to the
same vertex v are identified as well. Thus, G can be equipped with the natural path
metric % (the distance between two points x, y ∈ G is defined as the length of the
“shortest” path connecting x and y).

Sometimes, we will consider Gd as a rooted graph with a fixed root o ∈ V. In this
case we denote by Sn, n ∈ Z≥0 the n-th combinatorial sphere with respect to the
order induced by o (notice that S0 = {o}).

2.2. Graph ends. One possible definition of a boundary for an infinite graph is
the notion of the so-called graph ends (see [28, 36] and [73, §21]).

Definition 2.1. A sequence of distinct vertices (vn)n∈Z≥0
(resp., (vn)n∈Z) such

that vn ∼ vn+1 for all n ∈ Z≥0 (resp., for all n ∈ Z) is called a ray (resp., double
ray). Subrays of a ray/double ray are called tails.

Two rays R1,R2 are called equivalent – and we write R1 ∼ R2 – if there is a
third ray containing infinitely many vertices of both R1 and R2.1 An equivalence
class of rays is called a graph end of Gd and the set of graph ends will be denoted
by Ω(Gd). Moreover, we will write R ∈ ω whenever R is a ray belonging to the end
ω ∈ Ω(Gd).

An important feature of graph ends is their relation to topological ends of a
metric graph G.

Definition 2.2. Consider sequences U = (Un)
∞
n=0 of non-empty open connected

subsets of G with compact boundaries and such that Un+1 ⊆ Un for all n ≥ 0 and⋂
n≥0 Un = ∅. Two such sequences U and U ′ are called equivalent if for all n ≥ 0

there exist j and k such that Un ⊇ U ′
j and U ′

n ⊇ Uk. An equivalence class γ of
sequences is called a topological end of G and C(G) denotes the set of topological
ends of G.

For locally finite graphs, there is a bijection between topological ends of a metric
graph C(G) and graph ends Ω(Gd) of the underlying combinatorial graph Gd (see
[73, §21], [21, §8.6 and also p.277–278]; for the case of graphs which are not locally
finite see [16, 22]).

Theorem 2.3. For every topological end γ ∈ C(G) of a locally finite metric graph
G = (Gd, |·|) there exists a unique graph end ωγ ∈ Ω(Gd) such that for every sequence
U representing γ, each Un contains a ray from ωγ . Moreover, the map γ 7→ ωγ is a
bijection between C(G) and Ω(Gd).

Therefore, we may identify topological ends of a metric graph G and graph ends
of the underlying graph Gd. We will simply speak of the ends of G. One obvious
advantage of this identification is the fact that the definition of Ω(Gd) is purely
combinatorial and does not depend on edge lengths.

1Equivalently, R1 ∼ R2 if and only if R1 and R2 cannot be separated by a finite vertex set,
i.e., for every finite subset X ⊂ V the remaining tails of R1 and R2 in V \X belong to the same
connected component of V \X.
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Definition 2.4. An end ω of a graph Gd is called free if there is a finite set X of
vertices such that X separates ω from all other ends of the graph.
Remark 2.5. Let us mention several examples.

(i) Z has two ends both of which are free.
(ii) ZN has one end for all N ≥ 2.
(iii) A k-regular tree, k ≥ 3, has uncountably many ends, none of which is free.
(iv) If Gd is a Cayley graph of a finitely generated (countable) group G, then the

number of ends of Gd is independent of the generating set and it has either
one, two, or infinitely many ends. Moreover, Gd has exactly two ends only
if G is virtually infinite cyclic (it has a finite normal subgroup N such that
the quotient group G/N is isomorphic either to Z or Z2 ∗Z2). These results
are due to Freudenthal [28] and Hopf [40] (see also [72]). The classification
of finitely generated groups with infinitely many ends is due to Stallings
[70]. Let us mention that if G has infinitely many ends, then the result of
Stallings implies that it contains a non-abelian free subgroup and hence is
non-amenable. For further details we refer to, e.g., [30, Chapter 13].

(v) Let us also mention that by Halin’s theorem [36] every locally finite graph
Gd with infinitely many ends contains at least one end which is not free.

One of the main features of graph ends is that they provide a rather refined
way of compactifying graphs (see [27] and [21, §8.6], [73]). Namely, we introduce
a topology on Ĝ := G ∪ C(G) as follows. For an open subset U ⊆ G, denote its
extension Û to Ĝ by

Û = U ∪ {γ ∈ C(G)| ∃ U = (Un) ∈ γ such that U0 ⊂ U}. (2.2)
Now we can introduce a neighborhood basis of γ ∈ C(G) as follows

{Û |U ⊆ G is open, γ ∈ Û}. (2.3)

This turns Ĝ into a compact topological space, called the end (or Freudenthal)
compactification of G.
Remark 2.6. Notice that an end γ ∈ C(G) is free exactly when {γ} is open as a
subset of C(G). This is further equivalent to the existence of a connected subgraph
G̃ with compact boundary ∂G̃2 such that Un ⊆ G̃ eventually for any sequence
U = (Un) representing γ and U ′

n ∩ G̃ = ∅ eventually for all sequences U ′ = (U ′
n)

representing an end γ′ 6= γ.
Let us mention that ends γ ∈ C(G) can be obtained in a constructive way by

means of compact exhaustions. Namely, a sequence of connected subgraphs (Gn)
of G such that each Gn has finitely many vertices and edges, Gn ⊆ Gn+1 for all
n ≥ 0 and

⋃
n Gn = G is called a compact exhaustion of G. Clearly, each Gn may be

identified with a compact subset of G. Now iteratively construct a sequence (Un) by
choosing in each step a non-compact, connected component Un of G \ Gn satisfying
Un ⊆ Un−1. It is easy to check that each such sequence (Un) defines a topological
end γ ∈ C(G) and in fact all ends γ ∈ C(G) are obtained by this construction.
Notice also that the open subsets Un of such representations γ ∼ (Un) (actually,
their topological closures, since we need to add endpoints of edges which also belong

2Notice that for a subgraph G̃ of G its boundary is ∂G̃ = {v ∈ V(G̃)| degG̃(v) < deg(v)} and
hence ∂G̃ is compact only if #∂G̃ <∞.
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to V(Gn)) can again be identified with connected subgraphs Gn(γ) := Un and we
will frequently use this fact.

Let us finish this section with a few more notations. Suppose R is a finite path
without self-intersections or ray in Gd. We may identify R with a subgraph of Gd

and hence with the subset of G, i.e., we can consider it as the union of all edges of
R. The latter can further be identified with the interval IR = [0, |R|) of length |R|,
where

|R| :=
∑
e∈R

|e|.

Also, we need to consider paths – and in particular rays – in G starting and ending
at a non-vertex point. In particular, given a path (v0, v1, . . . , vN ) and a point x on
an edge e ∈ Ev0 , e 6= ev0,v1 , we add the interval [x, v0] ⊆ e to (v0, v1, . . . , vN ). For
the resulting set, we shall write (x, v0, v1, . . . , vN ) and call it a non-vertex path; and
likewise for rays. The set of all non-vertex rays will be denoted by R(G).

2.3. Kirchhoff Laplacian. Let G be a metric graph satisfying Hypothesis 2.1.
Upon identifying every e ∈ E with a copy of the interval Ie = [0, |e|], let us introduce
the Hilbert space L2(G) of functions f : G → C such that

L2(G) =
⊕
e∈E

L2(e) =
{
f = {fe}e∈E

∣∣ fe ∈ L2(e),
∑
e∈E

‖fe‖2L2(e) <∞
}
.

The subspace of compactly supported L2(G) functions will be denoted by

L2
c(G) =

{
f ∈ L2(G)| f 6= 0 only on finitely many edges e ∈ E

}
.

For every e ∈ E consider the maximal operator He,max acting on functions f ∈ H2(e)
as a negative second derivative. Here and below Hs(e) for s ≥ 0 denotes the usual
Sobolev space on e. In particular, H0(e) = L2(e) and

H1(e) = {f ∈ AC(e)| f ′ ∈ L2(e)}, H2(e) = {f ∈ H1(e)| f ′ ∈ H1(e)}.

This defines the maximal operator on L2(G) by

Hmax =
⊕
e∈E

He,max, He,max = − d2

dx2e
, dom(He,max) = H2(e). (2.4)

If v is a vertex of the edge e ∈ E , then for every f ∈ H2(e) the following quantities

fe(v) := lim
xe→v

f(xe), f ′e(v) := lim
xe→v

f(xe)− f(v)

|xe − v|
, (2.5)

are well defined. Considering G as the union of all edges glued together at certain
endpoints, let us equip a metric graph with the Laplace operator. The Kirchhoff
(also called standard or Kirchhoff–Neumann) boundary conditions at every vertex
v ∈ V are then given by f is continuous at v,∑

e∈Ev

f ′e(v) = 0.
(2.6)

Imposing these boundary conditions on the maximal domain dom(Hmax) yields the
maximal Kirchhoff Laplacian

H = Hmax � dom(H),

dom(H) = {f ∈ dom(Hmax) ∩ L2(G)| f satisfies (2.6), v ∈ V}.
(2.7)
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Restricting further to compactly supported functions we end up with the pre-
minimal operator

H0
0 = Hmax � dom(H0

0),

dom(H0
0) = {f ∈ dom(Hmax) ∩ L2

c(G)| f satisfies (2.6), v ∈ V}.
(2.8)

Integrating by parts one obtains

〈H0
0f, f〉L2(G) =

∫
G
|f ′(x)|2 dx, f ∈ dom(H0

0), (2.9)

and hence H0
0 is a non-negative symmetric operator. We call its closure H0 := H0

0

in L2(G) the minimal Kirchhoff Laplacian. The following result is well-known (see,
e.g., [14, Lemma 3.9]).

Lemma 2.7. Let G be a metric graph. Then
H∗

0 = H. (2.10)

2.4. Deficiency indices. In the following we are interested in the question whether
H0 is self-adjoint, or equivalently whether the equality H0 = H holds true. Let us
recall one sufficient condition. Define the star weight m(v) of a vertex v ∈ V by

m(v) :=
∑
e∈Ev

|e| = vol(Ev), (2.11)

and also introduce the star path metric on V by

%m(u, v) := inf
P=(v0,...,vn)
u=v0, v=vn

∑
vk∈P

m(vk). (2.12)

Theorem 2.8 ([25]). If (V, %m) is complete as a metric space, then H0
0 is essentially

self-adjoint and H0
0 = H0 = H.

If a symmetric operator is not (essentially) self-adjoint, then the degree of its non-
self-adjointness is determined by its deficiency indices. Recall that the deficiency
subspace Nz(H0) of H0 is defined by

Nz(H0) := ker(H∗
0 − z) = ker(H− z), z ∈ C. (2.13)

The numbers
n±(H0) := dimN±i(H0) = dimker(H∓ i) (2.14)

are called the deficiency indices of H0. Notice that n+(H0) = n−(H0) since H0 is
non-negative.

Lemma 2.9. If 0 is a point of regular type for H0, then3

n±(H0) = dimker(H). (2.15)

Proof. It suffices to take into account (2.10) and use, e.g., [1, §78]. �

Using the Rayleigh quotient, define

λ0(G) := inf
f∈dom(H0)

‖f‖=1

〈
H0f, f

〉
L2(G) = inf

f∈dom(H0)

‖f‖=1

∫
G
|f ′|2dx. (2.16)

3For an operator T with dense domain in a Hilbert space H, λ ∈ C is called a point of regular
type of T if there exists c = cλ > 0 such that ‖(T − λ)f‖ ≥ c‖f‖ for all f ∈ dom(T ).
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Noting that the operator H0 is non-negative, 0 is a point of regular type for H0

exactly when λ0(G) > 0. Thus, we arrive at the following result.

Corollary 2.10. If λ0(G) > 0, then (2.15) holds true.

The positivity of λ0(G) is known in the following simple situation.

Corollary 2.11. If G has finite total volume,

vol(G) :=
∑
e∈E

|e| <∞, (2.17)

then H0 is not self-adjoint and (2.15) holds true.

Proof. Indeed, by the Cheeger-type estimate [53, Corollary 3.5(iv)], we have

λ0(G) ≥
1

4 vol(G)2
, (2.18)

and hence (2.15) holds true by Corollary 2.10. Moreover, 1G ∈ ker(H), where 1G
denotes the constant function on G, and hence

n±(H0) = dim(kerH) ≥ 1. �

Remark 2.12. By [53, Corollary 4.5], λ0(G) > 0 holds true if the combinatorial
isoperimetric constant of Gd is positive and `∗(G) = supe∈E |e| < ∞. For example,
this holds true if Gd is an infinite tree without leaves [53, Lemma 8.1] or Gd is a
Cayley graph of a non-amenable finitely generated group [53, Lemma 8.12(i)]. For
antitrees, the positivity of a combinatorial isoperimetric constant is tightly related
to the structure of its combinatorial spheres (see [54, Theorem 7.1]).

Finally, let us remark that ker(H) = H(G) ∩ L2(G), where H(G) denotes the
space of harmonic functions on G, that is, the set of all “edgewise” affine functions
satisfying Kirchhoff conditions (2.6) at each vertex v ∈ V. Notice that every function
f ∈ H(G) is uniquely determined by its vertex values f := f |V = (f(v))v∈V . Recall
also the following result (see, e.g., [53, eq. (2.32)]).

Lemma 2.13. Let G be a metric graph satisfying the assumptions in Hypothesis
2.1. If f ∈ H(G), then f ∈ L2(G) if and only if f ∈ `2(V;m), that is,∑

v∈V
|f(v)|2m(v) <∞. (2.19)

Remark 2.14. The above considerations indicate that in order to understand the
deficiency indices of the Kirchhoff Laplacian one needs to find the dimension of
the space of L2 harmonic (or, more carefully, λ-harmonic) functions. Moreover,
in order to describe self-adjoint extensions one has to understand the behavior of
L2 harmonic functions at “infinity”, that is, near a “boundary” of a given metric
graph. However, graphs admit a lot of different notions of boundary (ends, Poisson
and Martin boundaries, Royden and Kuramochi boundary etc.) and search for a
suitable notion in this context (namely, L2 harmonic functions) is a highly non-
trivial problem, which seems to be not very well studied neither in the context of
incomplete manifolds nor in the case of weighted graphs.

Let us also mention that recently there has been a tremendous amount of work
devoted to the study of harmonic functions and self-adjoint extensions of Laplacians
on weighted graph (we only refer to a brief selection of articles [17, 33, 37, 41, 42,
43, 44, 49]).
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3. Graph ends and H1(G)

This section deals with the Sobolev space H1 on metric graphs. Its importance
stems, in particular, from the fact that it serves as a form domain for a large class
of self-adjoint extensions of H0.

3.1. H1(G) and boundary values. First recall that
H1(G) =

{
f ∈ L2(G) ∩ C(G)| fe ∈ H1(e) for all e ∈ E , ‖f ′‖2L2(G) <∞

}
, (3.1)

where C(G) is the space of continuous complex-valued functions on G and

‖f ′‖2L2(G) :=
∑
e∈E

‖f ′e‖2L2(e).

Notice that (H1(G), ‖ · ‖H1) is a Hilbert space when equipped with the standard
norm

‖f‖2H1(G) := ‖f‖2L2(G) + ‖f ′‖2L2(G) =
∑
e∈E

‖fe‖2H1(e), f ∈ H1(G).

Moreover, dom(H0
0) ⊂ H1(G) and we define H1

0 (G) as the closure of dom(H0
0) with

respect to ‖ · ‖H1(G).

Remark 3.1. If H0
0 is essentially self-adjoint, then H1(G) = H1

0 (G). However, the
converse is not true in general. In fact this equality is tightly connected to the
uniqueness of Markovian extensions of H0 and, as we shall see, it is possible to
characterize it in terms of topological ends of G (see Corollary 5.5 below).

Notice also that H1
0 (G) is the form domain of the Friedrichs extension HF of H0

0

and λ0(G) defined by (2.16) is the bottom of the spectrum of HF .

By definition, H1(G) is densely and continuously embedded in L2(G).

Lemma 3.2. H1(G) is continuously embedded in Cb(G) = C(G) ∩ L∞(G) and
‖f‖∞ := sup

x∈G
|f(x)| ≤ CG‖f‖H1(G) (3.2)

holds for all f ∈ H1(G) with CG =
√

coth
(
1
2 diam(G)

)
. Here diam(G) denotes the

diameter of G, that is,
diam(G) = sup

R
|R|, (3.3)

where the supremum is taken over all paths without self-intersections R.

Proof. For every interval I ⊆ R the embedding of H1(I) into L∞(I) is bounded
and

sup
x∈I

|f(x)| ≤ C|I|‖f‖H1(I) (3.4)

holds for all f ∈ H1(I) with C|I| =
√

coth(|I|) (for optimal Sobolev constants see,
e.g., [65]). Notice that we may identify the restriction f |R of f ∈ H1(G) to a path
without self-intersections R with a function on IR = [0, |R|). It is easy to check
that upon this identification f |R ∈ H1(IR) and (f |R)′ = f ′|R.

Let R = (v0, . . . , vN ) be a fixed finite path without self-intersections and let
x ∈ G. If x ∈ R, then considering R as an interval IR = [0, |R|) of length |R|, we
immediately get

|f(x)| ≤ C|R|/2‖f‖H1(R) ≤ C|R|/2‖f‖H1(G) (3.5)
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for all f ∈ H1(G). If x 6∈ R, then connecting x and v0 by some finite non-vertex
path R0, we conclude that there is a path without self-intersections Rx such that
x ∈ Rx and |Rx| ≥ |R|/2. Applying the same argument, we conclude that (3.5)
holds for all x ∈ G. �

The above considerations, in particular, imply the following crucial property of
H1-functions: if R = (vn) is a ray, then

f(γR) := lim
n→∞

f(vn)

exists. Moreover, this limit is independent of the choice of R ∈ ωγ (indeed, for
any two equivalent rays R and R′ there exists a third ray R′′ containing infinitely
many vertices of both R and R′, which immediately implies that f(γR) = f(γR′′) =
f(γR′)). This enables us to introduce the following notion.

Definition 3.3. For every f ∈ H1(G) and a (topological) end γ ∈ C(G), we define
f(γ) := f(γR), (3.6)

where R ∈ ωγ is any ray belonging to the corresponding graph end ωγ (see Theorem
2.3). Sometimes we shall also write f(ωγ) := f(γ).

It turns out that (3.6) enables us to obtain an extension by continuity of every
function f ∈ H1(G) to the end compactification Ĝ of G (see Section 2.2).

Lemma 3.4. Let G be a metric graph and γ ∈ C(G). If f ∈ H1(G), then
lim
n→∞

sup
x∈Un

|f(x)− f(γ)| = 0 (3.7)

for every sequence U = (Un) representing γ.

Proof. Let γ ∈ C(G) and let U = (Un) be a sequence representing γ. Let also
Rn(γ) := {R ∈ R(G)| R ⊆ Un}

be the set of all non-vertex rays contained in Un, n ≥ 0.
We proceed by case distinction. First, assume that for n sufficiently large, all

rays in Rn(γ) have length at most one. If x ∈ Un, then there exists a (non-vertex)
ray Rx ∈ Rn(γ) such that Rx = (x, v0, . . . ) and its tail R := (v0, v1, . . . ) belongs
to ωγ .

By our assumption, |Rx| ≤ 1 and hence

|f(γ)− f(x)| = |f(γRx)− f(x)| =
∣∣∣ ∫

Rx

f ′(y) dy
∣∣∣ ≤ ‖f ′‖L2(Rx) ≤ ‖f ′‖L2(Un).

Since x ∈ Un is arbitrary, this implies
sup
x∈Un

|f(γ)− f(x)| ≤ ‖f ′‖L2(Un).

Since U = (Un) represents γ,
⋂

n Un = ∅ and hence limn→∞ ‖f ′‖L2(Un) = 0. This
implies (3.7).

Assume now that for every n ∈ Z≥0 there is a ray R ∈ Rn(γ) with |R| > 1.
Take n ≥ 0 and choose an x ∈ Un. We can find a finite (non-vertex) path without
self-intersections Rx ⊆ Un such that x ∈ Rx and |Rx| = 1/2 (take into account
that Un contains at least one ray of length greater than 1). Hence we get

|f(x)| ≤ sup
y∈Rx

|f(y)| ≤ C1/2‖f‖H1(Rx) ≤ C1/2‖f‖H1(Un),
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where C1/2 =
√

coth(1/2) is the constant from (3.4). Since x ∈ Un is arbitrary,
sup
x∈Un

|f(x)| ≤ C1/2‖f‖H1(Un).

However,
⋂

n Un = ∅ and hence supx∈Un
|f(x)| = o(1) as n → ∞. It remains to

notice that f(γ) = 0. Indeed, by Theorem 2.3, for every n ≥ 0 there is a ray
R̃n ∈ ωγ such that R̃n ⊆ Un and hence

|f(γ)| = |f(γR̃n
)| ≤ sup

x∈Un

|f(x)| = o(1)

as n→ ∞. This finishes the proof. �

Taking into account the topology on Ĝ = G ∪ C(G), the next result is a direct
consequence of Lemma 3.2 and Lemma 3.4.

Proposition 3.5. Each f ∈ H1(G) has a unique continuous extension to the end
compactification Ĝ of G and this extension is given by (3.6). Moreover,

‖f‖∞ = sup
x∈Ĝ

|f(x)| ≤ CG‖f‖H1(G).

3.2. Nontrivial and finite volume ends. Observe that some ends lead to trivial
boundary values for H1 functions. For example, f(γ) = 0 for all f ∈ H1(G) if
ωγ ∈ Ω(Gd) contains a ray R with infinite length |R| = ∞. On the other hand, it
might happen that all rays have finite length, however, f(γ) = 0 for all f ∈ H1(G)
(see, e.g., the second step in the proof of Lemma 3.4).

Definition 3.6. A topological end γ ∈ C(G) is called nontrivial if f(γ) 6= 0 for
some f ∈ H1(G).

We also need the following notion.

Definition 3.7. A topological end γ ∈ C(G) has finite volume (or, more precisely,
finite volume neighborhood) if there is a sequence U = (Un) representing γ such
that vol(Un) <∞4 for some n. Otherwise γ has infinite volume. The set of all finite
volume ends is denoted by C0(G).

Remark 3.8. If C(G) contains only one end, then this end has finite volume exactly
when vol(G) <∞. Analogously, if γ ∈ C(G) is a free end, then there is a finite set of
vertices X separating ωγ from all other ends and hence this end has finite volume
exactly when the corresponding connected component Gγ has finite total volume.

If γ is not free, then the situation is more complicated. For example, for a rooted
tree G = To the ends are in one-to-one correspondence with the rays from the root o
and hence one may possibly confuse the notion of a finite/infinite volume of an end
with the finite/infinite length of the corresponding ray. More specifically, let γ be
an end of To and let Rγ = (o, v1, v2, . . . ) be the corresponding ray. For each n ≥ 1,
let Tn be the subtree of To having its root at vn and containing all the “descendant”
vertices of vn. Then by definition γ has finite volume (neighborhood) if and only
if there is n ≥ 1 such that the corresponding subtree Tn has finite total volume.
In particular, this implies that G would have uncountably many finite volume ends
in this case (here we assume for simplicity that all vertices are essential, that is,
deg(vn) > 2 for all n). In particular, |Rγ | < ∞ is a necessary but not sufficient
condition for γ to have finite volume.

4As usual, vol(A) denotes the Lebesgue measure of a measurable set A ⊆ G.
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It turns out that nontrivial and finite volume ends are closely connected.

Theorem 3.9. Let G be a metric graph. Then γ ∈ C(G) is nontrivial if and only if
γ has finite volume. Moreover, for any finite collection of distinct nontrivial ends
{γj}Nj=1 there exists f ∈ H1(G) ∩ dom(H) such that f(γ1) = 1 and f(γ2) = · · · =
f(γN ) = 0.

Proof. It is not difficult to see that f(γ) = 0 for all f ∈ H1(G) if γ has infinite
volume. Indeed, assuming that there is f ∈ H1(G) such that f(γ) 6= 0, Lemma 3.4
would imply that there exists U = (Un) representing γ such that

|f(x)| ≥ |f(γ)|/2 > 0

for all x ∈ Un. However, then vol(Un) = ∞ contradicts the fact that f ∈ L2(G).
Suppose now that γ ∈ C(G) has finite volume. Take a sequence U = (Un) repre-

senting γ with vol(U0) <∞. Pick a function φ ∈ H2(0, 1) such that φ(0) = φ′(0) =
φ′(1) = 0 and φ(1) = 1 and then define f : G → C by

f(xe) =


1, xe ∈ e and both vertices of e are in U0,

0, xe ∈ e and both vertices of e are not in U0,

φ
(

|xe−u|
|e|

)
, xe ∈ e = eu,v and u ∈ V \ U0, v ∈ U0.

Clearly, f ∈ H2(e) for every e ∈ E . Moreover, it is straightforward to check that f
satisfies Kirchhoff conditions (2.6) at every v ∈ V. By assumption, ∂U0 is compact
and hence it is contained in finitely many edges. Thus there are only finitely many
edges e ∈ E such that one of its vertices belongs to U0 and another one does not
belong to U0. This implies that f ∈ L2(G) and, moreover, f ′ 6≡ 0 only on finitely
many edges, which proves the inclusion f ∈ dom(H) ∩H1(G). Taking into account
that f ≡ 1 on Un for large enough n, we conclude that f(γ) = 1 and hence γ is
nontrivial.

It remains to prove the second claim. Suppose that γ1, . . . , γN ∈ C(G) are dis-
tinct nontrivial ends. Then we can find U j = (U j

n), sequences representing γj ,
j ∈ {1, . . . , N} such that vol(U1

0 ) < ∞ and U1
0 ∩ U j

0 = ∅ for all j = 2, . . . , N (see
[27, Satz 3] or [22, Lemma 3.1]). Using the above procedure, we can construct a
function f ∈ dom(H) ∩ H1(G) such that supp(f) ⊆ U0 and f(γ) = 1. The latter
also implies that f(γ2) = · · · = f(γN ) = 0. �

Remark 3.10. If vol(G) =
∑

e∈E |e| <∞, then all ends have finite volume and the
end compactification Ĝ of G coincides with several other spaces, among them the
metric completion of G and the Royden compactification of a related discrete graph
(see [33, Corollary 4.22] and also [32, p. 1526]). Notice that the natural path metric
% can be extended to Ĝ = G ∪C(G) (see [32]). That is, the distance %(x, γ) between
a point x ∈ G and an end γ ∈ C(G) is the infimum over all lengths of rays starting
at x and belonging to γ. Similarly, the distance %(γ, γ′) between two ends is the
infimum over the lengths of all double rays with one tail part in γ and the other one
in γ′. Then (Ĝ, %) is a metric completion of G and Ĝ is compact and homeomorphic
to the end compactification of G (see [32] for further details).

The metric completion was considered in connection with quantum graphs in
[14, 15]; however, it can have a rather complicated structure if vol(G) = ∞ and a
further analysis usually requires additional assumptions. Moreover, there are clear
indications that metric completion is not a good candidate for these purposes.
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3.3. Description of H1
0 (G). Recall that the space H1

0 (G) is defined as the closure
of dom(H0

0) ⊂ H1(G) with respect to ‖ · ‖H1(G). One can naturally conjecture that
H1

0 (G) consists of those H1-functions which vanish on C(G). In fact, the results of
the previous two sections enable us to show that this is indeed the case.

Theorem 3.11. Let G be a metric graph and C(G) be its ends. Then
H1

0 (G) = {f ∈ H1(G)| f(γ) = 0 for all γ ∈ C(G)}. (3.8)

Proof. First of all, it immediately follows from Proposition 3.5 that f ∈ H1
0 (G)

vanishes at every end γ ∈ C(G) (since this holds for each f ∈ dom(H0
0)).

To prove the converse inclusion, we will follow the arguments of the proof of [33,
Theorem 4.14]. Namely, suppose that f ∈ H1(G) and f(γ) = 0 for all γ ∈ C(G).
Without loss of generality, we may assume that f is real-valued and f ≥ 0. To
prove that f ∈ H1

0 (G), it suffices to construct a sequence of compactly supported
functions fn ∈ H1(G) which converges to f in H1(G). Define φn : R≥0 → R≥0 by

φn(s) =

{
s− 1

n , if s ≥ 1
n

0, if s < 1
n ,

(3.9)

and then let fn : G → R≥0 be the composition fn := φn ◦ f , n ≥ 0. Since φn(s) ≤ s
for all s ≥ 0 and |φn(s) − φn(t)| ≤ |s − t| for all s, t ≥ 0, |fn(x)| ≤ |f(x)| and
|f ′n(x)| ≤ |f ′(x)| for almost every x ∈ G. Hence fn ∈ H1(G) and

‖fn‖H1(G) ≤ ‖f‖H1(G) (3.10)
for all n. Let us now show that fn has compact support. Indeed, assuming the
converse, there exist infinitely many distinct edges ek in E such that fn is non-zero
on each ek. Taking into account (3.9), for each k we can find a non-vertex point
xk on ek such that fn(xk) > 1

n . Since Ĝ is compact, the sequence (xk) has an
accumulation point x ∈ Ĝ. By construction each edge e ∈ E contains at most one
of the xk’s. It follows that x /∈ G and hence x ∈ Ĝ is an end. On the other hand,
f is continuous on Ĝ by Proposition 3.5 and thus f(x) ≥ 1

n , which contradicts our
assumptions on f .

It remains to show that fn converges to f in H1(G) as n → ∞. Taking into
account the above properties of fn, we get

‖f − fn‖2L2 + ‖f ′ − f ′n‖2L2 ≤ 2(‖f‖2L2 + ‖fn‖2L2 + ‖f ′‖2L2 + ‖f ′n‖2L2) ≤ 4‖f‖2H1 ,

and hence by dominated convergence it is enough to show that fn → f and f ′n → f ′

pointwise a.e. on G. The first claim is clearly true since limn→∞ φn(s) = s for all
s ∈ R≥0. To prove the second claim, suppose that f is differentiable at a non-vertex
point x ∈ G. If f(x) > 0, then by continuity of f , there is a neighborhood U of
x such that fn = f − 1

n holds on U for all sufficiently large n > 0. Hence fn is
differentiable at x with f ′n(x) = f ′(x) for all large enough n. Finally, if f(x) = 0,
then for each n there is a neighborhood Un of x such that f ≤ 1

n on Un. Hence
fn ≡ 0 on Un and, in particular, fn is differentiable at x with f ′n(x) = 0. However,
since f ≥ 0 on G and f is differentiable at x, it follows that f ′(x) = 0 as well. This
finishes the proof. �

Combining Theorem 3.11 with Theorem 3.9, we arrive at the following fact.

Corollary 3.12. The equality H1(G) = H1
0 (G) holds true if and only if all topo-

logical ends of G have infinite volume.
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Remark 3.13. In the related setting of (weighted) discrete graphs, an important
concept is the construction of boundaries by employing C∗-algebra techniques (this
includes both Royden and Kuramochi boundaries, see [33, 46, 51, 59, 68] for further
details and references). Finite volume graph ends can also be constructed by us-
ing this method. Indeed, A := H1(G) ⊂ Cb(G) is a subalgebra by Lemma 3.2 and
hence its ‖ ·‖∞-closure Ã := A‖·‖∞ is isomorphic to C0(X̃), where X̃ is the space of
characters equipped with the weak∗-topology with respect to Ã. In general, finding
X̃ for some concrete C∗-algebra is a rather complicated task. However, it turns
out that in our situation X̃ coincides with G̃ := G ∪ C0(G). Indeed, G̃ = G ∪ C0(G)
equipped with the induced topology of the end compactification Ĝ is a locally com-
pact Hausdorff space. Proposition 3.5 together with Theorem 3.9 shows that each
function f ∈ H1(G) has a unique continuous extension to G̃ and this extension be-
longs to C0(G̃). Moreover, by Theorem 3.9, H1(G) is point-separating and nowhere
vanishing on G̃ and hence Ã = C0(G̃) by the Stone–Weierstrass theorem. Thus the
resulting boundary notion is precisely the space of finite volume graph ends.

Let us also mention that G̃ is compact only if vol(G) < ∞ and in this case
one can show that the Royden compactification of G as well as its Kuramochi
compactification coincide with the end compactification Ĝ (see [33], [46, Theorem
7.11], [47, p.215] and also [39, p.2] for the discrete case).

4. Deficiency indices

Intuitively, deficiency indices should be linked to boundary notions for underlying
combinatorial graphs. However, spectral properties of the operator H0 also depend
on the edge lengths and this suggests that it is difficult to expect a purely combi-
natorial formula for the deficiency indices n±(H0) of H0. Recall that throughout
the paper we always assume that G satisfies Hypothesis 2.1.

4.1. Deficiency indices and graph ends. The main result of this section pro-
vides criteria which allow to connect n±(H0) with the number of graph ends.

Theorem 4.1. Let G be a metric graph and let H0 be the corresponding minimal
Kirchhoff Laplacian. Then

n±(H0) ≥ #C0(G). (4.1)
Moreover, the equality

n±(H0) = #C0(G) (4.2)
holds true if and only if either #C0(G) = ∞ or dom(H) ⊂ H1(G).

Remark 4.2. Since the map
D : H1(G) → L2(G)

f 7→ f ′

is bounded, the inclusion dom(H) ⊂ H1(G) holds true if and only if there is a
positive constant C > 0 such that

‖f ′‖2L2(G) ≤ C(‖f‖2L2(G) + ‖f ′′‖2L2(G)) (4.3)

holds for all f ∈ dom(H). It can be shown by examples that (4.3) may fail.

Before proving Theorem 4.1, let us first comment on some of its immediate
consequences.
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Corollary 4.3. If G is a metric graph with finite total volume vol(G) <∞, then

n±(H0) ≥ #Ω(Gd). (4.4)

Moreover,
n±(H0) = #Ω(Gd) (4.5)

if and only if either G contains a non-free end (and hence #Ω(Gd) = ∞ in this
case) or ker(H) ⊂ H1(G).

In fact, we only need to mention that by Halin’s theorem [36] (see Remark 2.5(v))
and the finite total volume of G, #C0(G) = ∞ only if G contains a non-free end.

Recall that for a finitely generated group G, the number of graph ends of a Cayley
graph is independent of the generating set (see, e.g., [30]). Combining this fact with
the above statement, we obtain the following result.

Corollary 4.4. Let Gd be a Cayley graph of a finitely generated countable group G
with infinitely many ends.5 If vol(G) <∞, then n±(H0) = ∞.

4.2. Proof of Theorem 4.1. The proof of Theorem 4.1 is based on the following
observation. Let HF be the Friedrichs extension of H0. Then dom(H) admits the
following decomposition

dom(H) = dom(HF )u ker(H− z) = dom(HF )uNz(H0), (4.6)

for every z in the resolvent set ρ(HF ) of HF (see, e.g., [66, Proposition 14.11]).
In particular, (4.6) holds for all z ∈ (−∞, λ0(G)), where λ0(G) ≥ 0 is defined by
(2.16). Moreover, dom(HF ) ⊂ H1

0 (G) and hence the inclusion dom(H) ⊂ H1(G)
depends only on the inclusion ker(H − z) ⊂ H1(G) for some (and hence for all)
z ∈ ρ(HF ). Let us stress that N0(H0) = ker(H) = H(G) ∩ L2(G) and hence in the
case λ0(G) > 0, one is interested in whether all L2 harmonic functions belong to
H1(G) or not, which is known to depend on the geometry of the underlying metric
graph.

We also need the following fact stating that functions in Nλ(H0) with λ ∈
(−∞, 0) can be considered as subharmonic functions and hence they should satisfy
a maximum principle.

Lemma 4.5. Suppose G is a metric graph and let λ ∈ (−∞, 0).
(i) If f ∈ Nλ(H0) = ker(H− λ) is real-valued and f(x0) > 0 for some x0 ∈ G,

then
sup
x∈G

f(x) = sup
v∈V

f(v). (4.7)

(ii) If additionally f ∈ H1(G), then

sup
x∈G

f(x) = sup
γ∈C(G)

f(γ). (4.8)

(iii) If (not necessarily real-valued) f ∈ Nλ(H0) ∩H1(G) satisfies

f(γ) = 0 (4.9)

for all γ ∈ C(G), then f ≡ 0.

5A classification of groups having infinitely many ends is given in Stallings’s ends theorem [70]
(see also [30, Theorem 13.5.10] and Remark 2.5(iv)).
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Proof. (i) Let f ∈ Nλ(H0) be real-valued. If x ∈ G is such that f(x) > 0 and e ∈ E
is an edge with x ∈ e, then upon identifying e with the interval Ie = [0, |e|] and
taking into account that −f ′′ = λf on e, we get

f(y) = f(x) cosh
(√

−λ(y − x)
)
+
f ′(x)√
−λ

sinh
(√

−λ(y − x)
)

(4.10)

for all y ∈ e. If f ′(x) ≥ 0, then obviously f(ei) ≥ f(x), where ei is the vertex of e
identified with the right endpoint of Ie. Similarly, f(eo) ≥ f(x) for the other vertex
eo of e if f ′(x) < 0. Hence f attains its maximum on e at the vertices of e, which
clearly implies (4.7).

(ii) Now let v ∈ V be a vertex with f(v) > 0. By (2.6), there is an edge e ∈ Ev
such that f ′e(v) ≥ 0. If u ∈ V is the other vertex of e, then by (4.10) we get

f(u) = f(v) cosh
(√

−λ|e|
)
+
f ′e(v)√
−λ

sinh
(√

−λ|e|
)
> f(v).

Observe that f ′e(u) < 0. Hence, setting v0 = v and v1 = u and using induction,
we can construct a ray R = (vn) such that f(vn+1) > f(vn) for all n ≥ 0. Since
f ∈ H1(G), we get

0 < f(v) < lim
n→∞

f(vn) = f(γR) ≤ sup
γ∈C(G)

f(γ),

which proves (4.8).
(iii) By considering ±f (and splitting into real and imaginary part, if necessary),

(4.9) clearly follows from (4.8). �

Remark 4.6. Notice that the arguments used in the proof of Lemma 4.5(ii) in
fact show that functions in Nλ(H0) with λ ∈ (−∞, 0) admitting positive values on
G cannot attain global maxima in G, that is, if f attains a positive value at some
x ∈ G, then for every compact subgraph G̃ ⊂ G the following holds

sup
x∈G

f(x) = sup
x∈G\G̃

f(x).

Clearly, analogous statements hold true for functions admitting negative values,
however, then sup must be replaced with inf.
Lemma 4.7. Suppose G is a metric graph and let λ ∈ (−∞, 0). Then

dim(Nλ ∩H1(G)) = #C0(G). (4.11)
Proof. Using (4.6) with z = λ ∈ (−∞, 0) and noting that dom(HF ) ⊂ H1

0 (G),
Theorem 3.9 and Theorem 3.11 imply that dim(Nλ ∩ H1(G)) ≥ #C0(G). The
converse inequality follows from Lemma 4.5(iii), which shows that the mapping
f 7→ (f(γ))γ∈C0(G) is injective on Nλ ∩H1(G). �

After all these preparations, we are now in position to complete the proof of
Theorem 4.1.

Proof of Theorem 4.1. Observe that the inequality (4.1) immediately follows from
(4.6) and (4.11) since n±(H) = dim(Nλ).

Clearly, the second claim is trivial if #C0(G) = ∞. Hence it remains to show
that in the case #C0(G) <∞ equality (4.2) holds exactly when dom(H) ⊂ H1(G).
Applying (4.6) once again, the inclusion dom(H) ⊂ H1(G) holds true exactly when
Nλ ⊂ H1(G). Taking into account once again that n±(H) = dim(Nλ) and using
(4.11), we arrive at the conclusion. �
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Remark 4.8. Let us mention that one can prove the second claim of Theorem 4.1
in a different way. Namely, if #C0(G) <∞, then it is possible to reduce the problem
to the study of a finite volume graph with a single end.

Let us stress that in the proof of Theorem 4.1 the inclusion dom(H) ⊂ H1(G)
was proved in the case when all finite volume ends are free. The next result shows
that it never holds if there is a finite volume end which is not free.

Proposition 4.9. Let G be a metric graph having a finite volume end which is not
free. Then there exists a function f ∈ dom(H) which does not belong to H1(G).

Proof. To simplify considerations we restrict to the case of a metric graph G having
finite total volume (the general case can easily be shown by similar methods upon
restricting to a finite volume subgraph with compact boundary).

Let G̃ ⊂ G be a connected, compact subgraph and consider the finitely many
connected components of G\G̃. Since G has infinitely many ends, there is a connected
component U which contains at least two distinct graph ends γ, γ′ ∈ C(G). Following
the proof of Theorem 3.9, we readily construct a real-valued function f = fU ∈
dom(H) ∩ H1(G) with f(γ) = 0, f(γ′) = 1 and 0 ≤ f ≤ 1 on C(G) (in fact,
it suffices to choose the corresponding function φ with 0 ≤ φ ≤ 1). Taking into
account Theorem 3.11 and decomposition (4.6), we can assume that f belongs to
H1(G) ∩Nλ for some (fixed) λ ∈ (−∞, 0). However, Lemma 4.5 (iii) implies that

‖f‖∞ = sup
x∈G

|f(x)| = sup
x∈G

f(x) = 1.

On the other hand, there exist two rays R, R′ ∈ R(Gd) representing the ends γ
and, respectively, γ′ such that both R, R′ are contained in U and have the same
initial vertex v0. This leads to another estimate

1 =
∣∣f(γ)− f(γ′)

∣∣ = ∣∣f(γ)− f(v0) + f(v0)− f(γ′)
∣∣

=
∣∣∣ ∫

R
f ′(x)dx−

∫
R′
f ′(x)dx

∣∣∣ ≤ 2
√
vol(U) ‖f ′‖L2(U) ≤ 2

√
vol(G) ‖f ′‖L2(G).

Assume now that (4.3) holds for all functions g ∈ Nλ. Then ‖ · ‖∞ and ‖ · ‖H1

are in fact equivalent norms on Nλ. Indeed, combining (4.3) and the finite volume
property,

‖g‖2H1 ≤ C(‖g‖2L2 + ‖Hg‖2L2) = C(1 + λ2)‖g‖2L2 ≤ C(1 + λ2)vol(G)‖g‖2∞
for all g ∈ Nλ, whereas ‖g‖∞ ≤ CG‖g‖H1 by Lemma 3.2. Choosing compact sub-
graphs G̃ε with vol(G \ G̃ε) ≤ ε2 (which is possible since G has finite volume), we
clearly get vol(Uε) ≤ ε2 and hence the above constructed function fε = fUε

∈
H1(G) ∩Nλ satisfies

‖f ′ε‖L2(G) ≥ ‖f ′ε‖L2(Uε) ≥
1

2
√
vol(Uε)

≥ 1

2ε
.

However, by construction, ‖fε‖∞ = 1, which obviously contradicts to the equiva-
lence of norms ‖ · ‖∞ and ‖ · ‖H1 on Nλ since ε > 0 is arbitrary. �

We conclude this section by mentioning some explicit examples.

Example 4.10 (Radially symmetric trees). Let G = T be a radially symmetric
(metric) tree: that is, a rooted tree T such that for each n ≥ 0, all vertices in
the combinatorial sphere Sn have the same number of descendants and all edges
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between the combinatorial spheres Sn and Sn+1 have the same length. It is well-
known that in this case H is self-adjoint if and only if vol(T ) = ∞ and deficiency
indices are infinite, n±(H0) = ∞, otherwise (see, e.g., [13, 69]). Moreover, due
to the symmetry assumptions, all graph ends are of finite volume simultaneously.
Hence we arrive at the equality

n±(H0) = #C0(G) =

{
∞, if vol(T ) <∞,

0, if vol(T ) = ∞
.

Moreover, by Theorem 4.1 and Proposition 4.9, the inclusion dom(H) ⊂ H1(G)
holds true if and only if vol(T ) = ∞.

Example 4.11 (Radially symmetric antitrees). Consider a metric antitree G = A
(see Section 7.1 for definitions) and additionally suppose that A is radially sym-
metric, that is, for each n ≥ 0, all edges between the combinatorial spheres Sn and
Sn+1 have the same length. Combining [54, Theorem 4.1] (see also Corollary 7.3
below) with the fact that antitrees have exactly one graph end, #C(A) = 1, we
conclude that

n±(H0) = #C0(G) =

{
1, if vol(A) <∞,

0, if vol(A) = ∞
.

In particular, H is self-adjoint if and only if vol(A) = ∞. Moreover, the inclusion
dom(H) ⊂ H1(G) holds true for all radially symmetric antitrees by Theorem 4.1.

Remark 4.12. Both radially symmetric trees and antitrees are particular examples
of the so-called family preserving metric graphs (see [11] and also [10]) . Employing
the results from [11], it is in fact possible to extend the conclusions in Example 4.10
and Example 4.11 to this general setting. More precisely, for each family preserving
metric graph G without horizontal edges, the Kirchhoff Laplacian H is self-adjoint
if and only if vol(G) = ∞ and moreover

n±(H0) = #C0(G) =

{
#C(G), if vol(G) <∞
0, if vol(G) = ∞

.

If in addition G has finitely many ends, then the inclusion dom(H) ⊂ H1(G) holds
true. On the other hand, if G has infinitely many ends, then dom(H) ⊂ H1(G)
holds true if and only if vol(G) = ∞. The last two statements are again immediate
consequences of Theorem 4.1 and Proposition 4.9.

In conclusion, let us also emphasize that the example of the rope ladder graph
in Appendix B shows that the assumption on horizontal edges cannot be omitted.
More precisely, the rope ladder graph is a family preserving graph in the sense of [10]
with exactly one graph end. However, it possesses infinitely many horizontal edges
(i.e., edges connecting vertices in the same combinatorial sphere) and Example
B.5 shows that in general n±(H0) > #C0(G), even if the edge lengths are chosen
symmetrically to the root, |e+n | = |e−n | for all n ∈ Z≥0.

5. Properties of self-adjoint extensions

The Sobolev space H1(G) plays a distinctive role in the study of self-adjoint
extensions of the minimal operator H0. A self-adjoint extension H̃ of H0 is called a
finite energy extension if its domain is contained in H1(G), that is, every function
f ∈ dom(H̃) has finite energy, ‖f ′‖L2(G) < ∞. The main result of this section
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already indicates that finite energy self-adjoint extensions of the minimal operator
(notice that among those are the Friedrichs extension and, as we will see later in
this section, all Markovian extensions) possess a number of important properties.

Theorem 5.1. Let H̃ be a self-adjoint lower semibounded extension of H0. Assume
that z belongs to its resolvent set ρ(H̃). Then the following assertions hold.

(i) If the form domain of H̃ is contained in H1(G), then the resolvent R(z, H̃)

of H̃ is an integral operator whose kernel Kz is both of class L∞(G × G) and
jointly Hölder continuous of exponent β = 1/2.

(ii) If additionally G has finite total volume, then R(z, H̃) is of trace class.

Proof. (i) Let H̃ be a self-adjoint lower semibounded extension of H0, H̃ ≥ c for
some c ∈ R. Without loss of generality we may assume c = 0. Then we can consider
its positive semi-definite square root H̃1/2, which is again self-adjoint and whose
domain agrees with the form domain of H̃. Accordingly, for all z ∈ C \ [0,∞) and
λ =

√
z we get (

H̃1/2 − λ
)(
H̃1/2 + λ

)
= H̃− z,

and hence

R(z, H̃) = R(λ, H̃1/2)R(−λ, H̃1/2). (5.1)

If the form domain of H̃ is contained in H1(G), and hence by Lemma 3.2 in Cb(G),
then R(±λ, H̃1/2) maps L2(G) into L∞(G), and hence by duality also maps L1(G)
into L2(G). Thus (5.1) implies that R(z, H̃) maps L1(G) into L∞(G) and hence, by
the Kantorovich–Vulikh theorem (see, e.g., [4, Theorem 1.3] or [58, Theorem 1.1]),
R(z, H̃) is an integral operator with the L∞-kernel K(z; ·, ·).

In order to prove the assertion about joint Hölder continuity, we need to take a
closer look at the kernel K by adapting the proof of [3, Prop. 2.1]: as noticed before,
the resolvent R(λ, H̃1/2) is bounded from L2(G) to L∞(G) by Lemma 3.2 for any λ
in the resolvent set of H̃1/2. Applying the Kantorovich–Vulikh theorem (see, e.g.,
[4, page 113]) once again, we see that

R(λ, H̃1/2)u(x) =

∫
G
u(y)κ(λ, x; y)dy = 〈u, κ(λ, x; ·)∗〉L2(G)

for all x ∈ G and some κ(λ, x; ·) ∈ L2(G) such that supx∈G ‖κ(λ, x; ·)‖L2(G) < ∞.
Moreover, observe that there exists C = C(λ) > 0 such that

‖κ(λ, x; ·)− κ(λ, x′; ·)‖L2(G) ≤ C
√
%(x, x′) (5.2)

for all x, x′ ∈ G, where %(x, x′) denotes the distance in the natural path metric on
G. Indeed, for any function u ∈ L2(G),∣∣∣ ∫

G
u(y)(κ(λ, x; y)− κ(λ, x′; y))dy

∣∣∣ = ∣∣R(λ, H̃1/2)u(x)−R(λ, H̃1/2)u(x′)
∣∣

≤
√
%(x, x′)‖R(λ, H̃1/2)u‖H1

≤ C
√
%(x, x′)‖u‖L2 ,

(5.3)

where we have used the Cauchy–Schwarz inequality and the fact that the resolvent
R(λ, H̃1/2) is a bounded operator from L2 to the domain of H̃1/2 equipped with the
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graph norm, and (5.2) immediately follows. Now, taking into account the equalities
(5.1) and R(λ, H̃1/2)∗ = R(λ∗, H̃1/2), we conclude that

R(z, H̃)u(x) = R(λ, H̃1/2)
(
R(−λ, H̃1/2)u

)
(x)

=
〈
R(−λ, H̃1/2)u, κ(λ, x; ·)∗

〉
L2(G)

=
〈
u,R(−λ∗, H̃1/2)κ(λ, x; ·)∗

〉
L2(G)

=

∫
G
u(y)

∫
G
κ(λ, x; s)κ(−λ∗, y; s)∗ds dy

=:

∫
G
u(y)K(z;x, y) dy,

for all u ∈ L2(G). It remains to prove that the mapping

K : G × G 3 (x, y) 7→
∫
G
κ(λ, x; s)κ(−λ∗, y; s)∗ds ∈ C

is jointly Hölder continuous. However, recalling that supx∈G ‖κ(λ, x; ·)‖L2(G) < ∞,
this immediately follows from (5.2), since

|K(x, y)−K(x′, y′)| ≤ ‖κ(λ, x; ·)(κ(−λ∗, y; ·)∗ − κ(−λ∗, y′; ·)∗)‖L1

+ ‖κ(−λ∗, y′; ·)∗(κ(λ, x; ·)− κ(λ, x′; ·))‖L1 .

for all pairs (x, y), (x′, y′) ∈ G × G.
(ii) If G has finite total volume, then L∞(G × G) ↪→ L2(G × G) and hence the

resolvents R(±λ, H̃1/2) are Hilbert–Schmidt operators. Thus, by (5.1) we conclude
that R(z, H̃) is of trace class. �

Observe that the first step in the proof of Theorem 5.1 is the factorization (5.1),
which has the natural counterpart for semigroups

e−zH̃ e−zH̃ = e−2zH̃, Re z > 0.

Because the semigroup generated by a self-adjoint semibounded extension H̃ is
analytic, it is a bounded operator from the Hilbert space into its generator’s form
domain whenever Re z > 0. A careful look at the proof of Theorem 5.1 shows that
this is sufficient to establish that e−zH̃ is an integral operator; all further steps in
the proof of Theorem 5.1 carry over almost verbatim to the study of semigroups.
We can hence easily deduce the following result.

Theorem 5.2. Let H̃ be a self-adjoint lower semibounded extension of H0 and let
z ∈ C with Re z > 0. Then the following assertions hold.

(i) If the domain of H̃ is contained in H1(G), then the semigroup e−zH̃ generated
by H̃ is an integral operator whose kernel is both of class L∞(G × G) and
jointly Hölder continuous of exponent β = 1/2.

(ii) If additionally G has finite total volume, then e−zH̃ is of trace class.

Estimating as in (5.3) and using analyticity of e−zH̃ yields the inequality

|pt(x, y)− pt(x
′, y)| ≤ C√

t

√
%(x, x′), t > 0, x, y, x′ ∈ G, (5.4)

for the heat kernel pt(x, y) of a nonnegative extension H̃, where in contrast to (5.3)
the constant C > 0 is independent of t > 0. Such Hölder estimates are known
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to be related to Sobolev-type inequalities and also important for upper and lower
Gaussian bounds (cf., e.g., [18], [62, Chapter 6]). However, we do not pursue this
line of study here and this will be done elsewhere.

Remark 5.3. A few remarks are in order.
(i) If G has finite diameter (see (3.3)), then the path metric % has a natural ex-

tension to the end compactification and moreover (Ĝ, %) is a metric comple-
tion of G (see Remark 3.10 and [32, p. 1526]). In this case, Theorem 5.1 and
Theorem 5.2 imply that the corresponding resolvent and semigroup kernels
have a bounded and uniformly continuous extension to (Ĝ, %), however, we
emphasize that if vol(G) = ∞, then in general (Ĝ, d) is not homeomorphic
to the end compactification (cf., e.g., [32, p. 1526]).

(ii) Discreteness of the spectrum of the Friedrichs extension HF is a standard
fact in the case of finite total volume (see, e.g., [14, Prop. 3.11] or [54,
Corollary 3.5(iv)]). However, Theorem 5.1(ii) implies the stronger assertion
that the resolvent of HF belongs to the trace class if vol(G) <∞. Let us also
stress that it is not true in general that every self-adjoint extension of H will
have a discrete spectrum if vol(G) < ∞, since in case of infinite deficiency
indices such a self-adjoint extension could have a domain large enough to
make compactness of the embedding of H1(G) into L2(G) irrelevant.

Recall that a self-adjoint extension H̃ of H0 is called Markovian if H̃ is a non-
negative self-adjoint extension and the corresponding quadratic form is a Dirichlet
form (for definitions and further details we refer to [29, Chapter 1]). Hence the asso-
ciated semigroup e−tH̃, t > 0 as well as resolvents R(−λ, H̃), λ > 0 are Markovian:
i.e., are both positivity preserving (map non-negative functions to non-negative
functions) and L∞-contractive (map the unit ball of L∞(G), and then by duality
of Lp(G) for all p ∈ [1,∞], into itself). Let us stress that the Friedrichs extension
HF of H0 is a Markovian extension. Consider also the following quadratic form in
L2(G)

tN [f ] =

∫
G
|f ′(x)|2dx, dom(tN ) = H1(G). (5.5)

This form is non-negative and closed, hence we can associate in L2(G) a self-adjoint
operator with it, let us denote it by HN . We will refer to it as the Neumann
extension. It is straightforward to check that tN is a Dirichlet form and HN is also
a Markovian extension of H0.

It turns out that Theorems 5.1 and 5.2 apply to all Markovian extensions of H0.
More specifically, the analog of the results for discrete Laplacians [37, Theorem 5.2]
and Laplacians in Euclidean domains [29, Chapter 3] and Riemannian manifolds
[35, Theorem 1.7] holds true for quantum graphs as well.

Theorem 5.4. If H̃ is a Markovian extension of H0, then dom(H̃) ⊂ H1(G) and,
moreover,

HN ≤ H̃ ≤ HF , (5.6)
where the inequalities are understood in the sense of forms.6

6We shall write A ≤ B for two non-negative self-adjoint operators A and B if their quadratic
forms tA and tB satisfy dom(tB) ⊆ dom(tA) and tA[f ] ≤ tB [f ] for every f ∈ dom(tB).
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We omit the proof of Theorem 5.4 since the proofs of either [37, Theorem 5.2]
or [35, Lemma 3.6] carry over verbatim to our setting (see also the proof of [29,
Theorem 3.3.1]).

Let us finish this section with the following observation.
Corollary 5.5. The following are equivalent:

(i) H0 has a unique Markovian extension,
(ii) H1

0 (G) = H1(G),
(iii) all topological ends of G have infinite volume, C0(G) = ∅.

Proof. The claimed equivalences follow from Theorem 5.4 and Corollary 3.12. �

Remark 5.6. Let us finish this section with a few comments.
(i) The equivalence (i) ⇔ (ii) in Corollary 5.5 is known for Riemannian man-

ifolds [35, Theorem 1.7] (see also [29, Chapter 3], [57, Theorem 1]) as well
as for weighted Laplacians on graphs [37, Corollary 5.6]. However, to the
best of our knowledge these settings do not admit any further geometric
characterization.

(ii) The list of equivalences in Corollary 5.5 can be extended by adding a claim
on the self-adjointness of the so-called Gaffney Laplacian. Namely, since
H1

0 (G) and H1(G) are Hilbert spaces, the operators denoted by ∇D and
∇N and defined in L2(G) on the domains, respectively, H1

0 (G) and H1(G)
by f 7→ f ′ are closed. Notice that with this notation at hand we have
HF = ∇∗

D∇D and HN = ∇∗
N∇N . Now we can introduce the Gaffney

Laplacian HG = ∇∗
D∇N as the restriction of the maximal operator H onto

the domain
dom(HG) := {f ∈ H1(G)|∇Nf ∈ dom(∇∗

D)}. (5.7)
Clearly, HF ⊆ HG, HN ⊆ HG, and HG is not necessarily symmetric.
It turns out that HG is symmetric (and hence self-adjoint) if and only if
the Kirchhoff Laplacian H0 has a unique Markovian extension. Moreover,
in this case HF = HN = HG (cf. [35, Theorem 1.7(ii)] in the manifold
setting). Let us also mention that all Markovian/finite energy extensions
of H0 are exactly the Markovian/self-adjoint restrictions of HG and in
particular the deficiency indices of H∗

G = ∇∗
N∇D are equal to #C0(G).

6. Finite energy self-adjoint extensions

It turns out that finite volume (topological) ends provide the right notion of the
boundary for metric graphs to deal with finite energy and also with Markovian ex-
tensions of the minimal Kirchhoff Laplacian H0. In particular, we are going to show
that this end space is well-behaved as concerns the introduction of both traces and
normal derivatives. More specifically, the goal of this section is to give a description
of finite energy self-adjoint extensions of H0 in the case when the number of finite
volume ends of G is finite, that is, #C0(G) < ∞. Notice that in this case all finite
volume ends are free.

6.1. Normal derivatives at graph ends. Let G̃ = (Ṽ, Ẽ) be a (possibly infinite)
connected subgraph of G. Recall that its boundary ∂G̃ (w.r.t. the natural topology
on G, see Section 2.1) is given by

∂G̃ =
{
v ∈ Ṽ| degG̃(v) < degG(v)

}
. (6.1)
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For a function f ∈ dom(H), we define its (inward) normal derivative at v ∈ ∂G̃ by
∂f

∂nG̃
(v) :=

∑
e∈Ev∩Ẽ

f ′e(v). (6.2)

With this definition at hand, we end up with the following useful integration by
parts formula.

Lemma 6.1. Let G̃ be a compact (not necessarily connected) subgraph of the metric
graph G. Then

−
∫
G̃
f ′′(x)g(x)dx =

∫
G̃
f ′(x)g′(x)dx+

∑
v∈∂G̃

g(v)
∂f

∂nG̃
(v) (6.3)

for all f ∈ dom(H) and g ∈ H1(G̃). In particular,

−
∫
G̃
f ′′(x)dx =

∑
v∈∂G̃

∂f

∂nG̃
(v). (6.4)

Proof. The claim follows immediately from integrating by parts, taking into account
that f satisfies (2.6). Setting g ≡ 1 in (6.3), we arrive at (6.4). �

In order to simplify our considerations, we need to introduce the following notion.
Let γ ∈ C(G) be a (topological) end of G. Consider a sequence (Gn) of connected
subgraphs of G such that Gn ⊇ Gn+1 and #∂Gn < ∞ for all n. We say that the
sequence (Gn) is a graph representation of the end γ ∈ C(G) if there is a sequence
of open sets U = (Un) representing γ such that for each n ≥ 0 there exist j and
k such that Gn ⊇ Uj and Un ⊇ Gk. It is easily seen that all graphs Gn are infinite
(they have infinitely many edges). Moreover, representing sequences (Gn) can be
constructed with the help of compact exhaustions; in particular each graph end
γ ∈ C(G) has a representation by subgraphs (see Section 2.2).
Proposition 6.2. Let G be a metric graph and let γ ∈ C(G) be a free end of finite
volume. Then for every function f ∈ dom(H) and any sequence (Gk) of subgraphs
representing γ, the limit

lim
k→∞

∑
v∈∂Gk

∂f

∂nGk

(v) (6.5)

exists and is independent of the choice of (Gk).
Proof. First of all, notice that uniqueness of the limit follows from the inclusion
property in the definition of the graph representations of γ. Hence we only need to
show that the limit in (6.5) indeed exists.

Let (Gk) be a graph representation of a free finite volume end γ ∈ C0(G). Since γ
is free, we can assume that vol(G0) <∞ and that G0 ∩Uk = ∅ eventually for every
sequence U = (Uk) representing an end γ′ 6= γ. First observe that G̃ = Gk \ Gj can
again be identified with a compact subgraph of G whenever k ≤ j. Indeed, if G̃ has
infinitely many edges {en} ⊂ E , choose for each n a point xn in the interior of the
edge en. Since Ĝ = G ∪ C(G) is compact, the set {xn} has an accumulation point
x ∈ Ĝ. By construction, x /∈ G and hence x ∈ Ĝ \ G = C(G) is an end. However,
we have that xn /∈ Gj and recalling (2.2) and (2.3), this implies that x = γ′ for
a topological end γ′ 6= γ. On the other hand, xn ∈ G0 for all n and using the
properties of G0 and (2.2)–(2.3) once again, we arrive at a contradiction.

115



Now, using (6.1) it is straightforward to verify that∑
v∈∂Gk

∂f

∂nGk

(v)−
∑

v∈∂Gj

∂f

∂nGj

(v) =
∑
v∈∂G̃

∂f

∂nG̃
(v).

Hence by (6.4) and the Cauchy–Schwarz inequality, we get∣∣∣ ∑
v∈∂Gk

∂f

∂nGk

(v)−
∑

v∈∂Gj

∂f

∂nGj

(v)
∣∣∣ = ∣∣∣ ∫

Gk\Gj

f ′′(x)dx
∣∣∣ ≤√vol(Gk) ‖Hf‖L2(G),

(6.6)

whenever k ≤ j. This implies the existence of the limit in (6.5) since vol(Gk) = o(1)
as k → ∞. �

Proposition 6.2 now enables us to introduce a normal derivative at graph ends.

Definition 6.3. Let γ ∈ C(G) be a free end of finite volume and let (Gk) be a graph
representation of γ. Then for every f ∈ dom(H)

∂nf(γ) :=
∂f

∂n
(γ) := lim

k→∞

∑
v∈∂Gk

∂f

∂nGk

(v) (6.7)

is called the normal derivative of f at γ.

Remark 6.4. In fact, it is not difficult to extend the definitions (6.2) and (6.7)
to general sequences U = (Un) of open sets representing the free end γ ∈ C0(G).
However, while the idea of the proof of Proposition 6.2 naturally carries over, the
analysis becomes more technical and we restrict to the case of subgraphs for the
sake of a clear exposition.

Let us mention that the normal derivative can also be expressed in terms of
compact exhaustions.

Lemma 6.5. Let G be a metric graph having finite total volume and only one end
γ, C(G) = {γ}. If (Gk) is a compact exhaustion of G and f ∈ dom(H), then

∂nf(γ) = − lim
k→∞

∑
v∈∂Gk

∂f

∂nGk

(v). (6.8)

The fact that we are not approximating γ by its neighborhoods, but rather by
compact subgraphs, is responsible for the different sign in (6.7) and (6.8).

Proof. First of all, notice that G \ Gk can be identified with a subgraph of G and

−
∑

v∈∂Gk

∂f

∂nGk

(v) =
∑

v∈∂(G\Gk)

∂f

∂nG\Gk

(v)

for all f ∈ dom(H). If, moreover, G \Gk is a connected subgraph for all k ≥ 0, then
it is clear that (G′

k) with G′
k := G \ Gk for all k ≥ 0, is a graph representation of γ

and this proves (6.8) in this case.
If G \ Gk is not connected, then it has only one infinite connected component Gγ

k

and finitely many compact components (since C(G) = {γ}). Adding these compact
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components to Gk, we obtain a compact exhaustion (G̃k) with G \ G̃k = Gγ
k . Arguing

as in the proof of Proposition 6.2 (see (6.6)), we get∣∣∣ ∑
v∈∂G̃k

∂f

∂nG̃k

(v)−
∑

v∈∂Gk

∂f

∂nGk

(v)
∣∣∣ = ∣∣∣ ∫

G̃k\Gk

f ′′(x)dx
∣∣∣ = o(1)

as k → ∞. Hence (6.8) holds true also in the general case. �

6.2. Properties of the trace and normal derivatives. In this section, we col-
lect some basic properties of the trace maps. We shall adopt the following notation.
Since we shall always assume throughout this section that #C0(G) < ∞, we set
H := `2(C0(G)), which can be further identified with C#C0(G). Next, we introduce
the maps Γ0 : H

1(G) → H and Γ1 : dom(H) ∩H1(G) → H by
Γ0 : f 7→

(
f(γ)

)
γ∈C0(G)

, Γ1 : f 7→
(
∂nf(γ)

)
γ∈C0(G)

, (6.9)

where the boundary values and normal derivative of f are defined by (3.3) and
(6.7), respectively.

Proposition 6.6. Let G be a metric graph with #C0(G) <∞. Then:
(i) For every f̂ ∈ H, there exists f ∈ dom(H) ∩H1(G) such that

Γ0f = f̂ , Γ1f = 0.

(ii) Moreover, the Gauss–Green formula
〈Hf, g〉L2(G) = 〈f ′, g′〉L2(G) − 〈Γ1f,Γ0g〉H, (6.10)

holds true for every f ∈ dom(H) ∩H1(G) and g ∈ H1(G).

Proof. (i) Since #C0(G) < ∞, each finite volume end γ ∈ C0(G) is free. For every
γ ∈ C0(G), let Gγ be a subgraph with the properties as in Remark 2.6. We can also
assume that vol(Gγ) <∞. Following the proof of Theorem 3.9, we can construct for
each end γ ∈ C0(G) a function fγ ∈ dom(H) ∩H1(G) such that fγ is non-constant
only on finitely many edges (since #∂Gγ < ∞), fγ(γ) = 1 and fγ(γ

′) = 0 for all
other ends γ′ ∈ C0(G) \ {γ}. Clearly, Γ1fγ = 0 for every γ ∈ C0(G). Thus, setting

f =
∑

γ∈C0(G)

f̂(γ)fγ

for a given f̂ ∈ H, we clearly have Γ0f = f̂ and Γ1f = 0.
(ii) Let us first show that (6.10) holds true for all f ∈ dom(H) ∩ H1(G) if

g = fγ ∈ H1(G). Take a compact exhaustion (Gk) of G. Then by Lemma 6.1,
〈Hf, fγ〉L2(G) − 〈f ′, f ′γ〉L2(G) = lim

k→∞
〈Hf, fγ〉L2(Gk) − 〈f ′, f ′γ〉L2(Gk)

= lim
k→∞

∑
v∈∂Gk

∂f

∂nGk

(v)fγ(v)
∗ = lim

k→∞

∑
v∈∂Gk∩Vγ

∂f

∂nGk

(v),

where Vγ is the set of vertices of Gγ . Notice that the subgraph Gγ itself is a connected
infinite graph having finite total volume and exactly one end, which can be identified
with γ in an obvious way. Moreover, setting Gγ

k := Gk ∩Gγ for all k ≥ 0 and noting
that Gγ

k is connected for all sufficiently large k, the sequence (Gγ
k ) provides a compact

exhaustion of Gγ . Since ∂GγGγ
k = ∂Gk ∩ Vγ and

∂f

∂nGγ
k

(v) =
∂f

∂nGk

(v), v ∈ ∂GγGγ
k ,
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for all large enough k ≥ 0, we get by applying Lemma 6.5

〈Hf, fγ〉L2(G) − 〈f ′, f ′γ〉L2(G) = lim
k→∞

∑
v∈Gk∩Vγ

∂f

∂nGγ
k

(v) = −∂f
∂n

(γ).

Hence (6.10) holds true if g = fγ ∈ H1(G).
Now observe that a simple integration by parts implies that (6.10) is valid for

all compactly supported g ∈ H1(G). By continuity and Theorem 3.11 this extends
further to all g ∈ H1

0 (G). Finally, setting g̃ := g −
∑

γ∈C0(G) g(γ)fγ for g ∈ H1(G),
it is immediate to check that, by Theorem 3.11, g̃ ∈ H1

0 (G). It remains to use the
linearity of Γ0. �

It turns out that the domain of the Neumann extension admits a simple descrip-
tion.

Corollary 6.7. Let G be a metric graph with #C0(G) < ∞. Then the Neumann
extension HN is given as the restriction HN = H|dom(HN ) to the domain

dom(HN ) =
{
f ∈ dom(H) ∩H1(G)| Γ1f = 0

}
. (6.11)

Proof. By the first representation theorem [48, Chapter VI.2.1], dom(HN ) consists
of all functions f ∈ H1(G) such that there exists h ∈ L2(G) with

〈f ′, g′〉L2(G) = 〈h, g〉L2(G), for all g ∈ H1(G).

Moreover, in this case HNf := h. Taking into account Proposition 6.6 and the fact
that HN is a restriction of H, we immediately arrive at (6.11). �

Our next goal is to prove surjectivity of the normal derivative map.

Proposition 6.8. If G is a metric graph with #C0(G) < ∞, then the mapping Γ1

is surjective.

In fact, Proposition 6.8 will follow from the following lemma.

Lemma 6.9. Suppose G is a metric graph with vol(G) < ∞ and only one end,
C(G) = {γ}. Then there exists f ∈ dom(H) ∩H1(G) such that

∂nf(γ) 6= 0.

Proof. We will proceed by contradiction. Suppose that ∂ng(γ) = 0 for all g ∈
dom(H) ∩ H1(G). Then, by Corollary 6.7, dom(HF ) ⊆ dom(HN ) = dom(H) ∩
H1(G). However, both HF and HN are self-adjoint restrictions of H and hence
dom(HF ) = dom(HN ). Therefore, HF = HN and their quadratic forms also coin-
cide, which implies that H1

0 (G) = H1(G). This contradicts Corollary 3.12 and hence
completes the proof. �

Proof of Proposition 6.8. Let Gγ , γ ∈ C0(G) be the subgraphs of G constructed in
the proof of Proposition 6.6(i). Every Gγ is a connected graph with vol(Gγ) < ∞
and only one end, which can be identified with γ. Hence we can apply Lemma 6.9
to obtain a function g̃γ ∈ dom(Hγ) ∩ H1(Gγ) such that ∂ng̃γ(γ) = 1. Here Hγ

denotes the Kirchhoff Laplacian on Gγ .
Since #∂Gγ < ∞, we can obviously extend g̃γ to a function gγ on G such that

gγ ∈ dom(H)∩H1(G) and gγ is identically zero on a neighborhood of each end γ′ 6=
γ (see also the proof of Theorem 3.9). In particular, this implies that ∂ngγ(γ′) = 0
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for all γ′ ∈ C0(G) \ {γ}. Upon identification of γ with the single end of Gγ we also
have that

∂ngγ(γ) = ∂ng̃γ(γ) = 1.

This immediately implies surjectivity. �

6.3. Description of self-adjoint extensions. Our next goal is a description of
all finite energy self-adjoint extensions of H0, that is, self-adjoint extensions H̃

satisfying the inclusion dom(H̃) ⊂ H1(G). We would be able to do this under the
additional assumption that G has finitely many finite volume ends. Recall that in
this case H = `2(C0(G)) is a finite dimensional Hilbert space.

Let C, D be two linear operators on H satisfying Rofe-Beketov conditions [64]:

CD∗ = DC∗, rank(C|D) = dimH = #C0(G). (6.12)

Consider the quadratic form tC,D defined by

tC,D[f ] :=

∫
G
|f ′(x)|2dx+ 〈D−1CΓ0f,Γ0f〉H (6.13)

on the domain

dom(tC,D) := {f ∈ H1(G)|Γ0f ∈ ran(D∗)}. (6.14)

Here and in the following the mappings Γ0 and Γ1 are given by (6.9) andD−1 : ran(D) →
ran(D∗) denotes the inverse of the restriction D|ker(D)⊥ : ran(D∗) → ran(D). In
particular, (6.12) implies that tC,D[f ] is well-defined for all f ∈ dom(tC,D) (see also
(A.4)).

Remark 6.10. It is straightforward to check that tI,0 = tF and t0,I = tN are the
quadratic forms corresponding to the Friedrichs extension HF and, respectively,
Neumann extension HN (see Remark 3.1 and (5.5)).

Now we are in position to state the main result of this section.

Theorem 6.11. Let G be a metric graph with finitely many finite volume ends,
#C0(G) < ∞. Let also C, D be linear operators on H satisfying Rofe-Beketov
conditions (6.12). Then:

(i) The form tC,D given by (6.13), (6.14) is closed and lower semibounded in
L2(G).

(ii) The self-adjoint operator HC,D associated with the form tC,D is a self-adjoint
extension of H0 and its domain is explicitly given by

dom(HC,D) = {f ∈ dom(H) ∩H1(G)| CΓ0f +DΓ1f = 0}. (6.15)

(iii) Conversely, if H̃ is a self-adjoint extension of H0 such that dom(H̃) ⊂ H1(G),
then there are C,D satisfying (6.12) such that H̃ = HC,D.

(iv) Moreover, H̃ = HC,D is a Markovian extension if and only if the corresponding
quadratic form t̂C,D[y] = 〈D−1Cy, y〉H, dom(̂t) = ran(D∗) is a Dirichlet form
on H in the wide sense.7

7Here we do not assume that t̂ is densely defined, see [29, p.29]. We stress that in order for t̂

to be a Dirichlet form even merely in the wide sense, it is necessary that dom(̂t) is a sublattice of
H, hence that the orthogonal projector onto ran(D∗) is a positivity preserving operator.
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Proof. (i) Since H is finite dimensional, it is straightforward to see that the form
tC,D is closed and lower semibounded in L2(G) whenever C and D satisfy (6.12).

(ii) By the first representation theorem [48, Chapter VI.2.1], dom(HC,D) consists
of all functions f ∈ dom(tC,D) ⊆ H1(G) for which there exists h ∈ L2(G) such that

〈f ′, g′〉L2(G) + 〈D−1CΓ0f,Γ0g〉H = 〈h, g〉L2(G) (6.16)
for all g ∈ dom(tC,D). Moreover, in this case HC,Df := h.

The Gauss–Green identity (6.10) implies that for any f ∈ dom(HC,D) and g ∈
dom(tC,D),

〈D−1CΓ0f,Γ0g〉H = −〈Γ1f,Γ0g〉H.
Taking into account the surjectivity property in Proposition 6.6(i), the inclusion
”⊆” in (6.15) follows. The converse inclusion is then an immediate consequence of
the Gauss–Green identity (6.10).

(iii) To prove the claim, it suffices to show that

Θ = {(Γ0f,Γ1f)| f ∈ dom(H̃)} ⊆ H ×H
is a self-adjoint linear relation (for further details we refer to Appendix A). By
definition (see (A.2)), Θ∗ is given by

Θ∗ = {(g, h) ∈ H ×H| 〈Γ1f, g〉H = 〈Γ0f, h〉H for all f ∈ dom(H̃)}.
The inclusion Θ ⊆ Θ∗ follows immediately from the Gauss–Green identity (6.10)
and the self-adjointness of H̃. Indeed, we clearly have

0 = 〈H̃f, f̃〉L2(G) − 〈f, H̃f̃〉L2(G) = −〈Γ1f,Γ0f̃〉H + 〈Γ0f,Γ1f̃〉H

for all functions f, f̃ ∈ dom(H̃). On the other hand, by Proposition 6.8 and Propo-
sition 6.6, for any (g, h) ∈ Θ∗ there is a function f̃ ∈ dom(H) ∩ H1(G) such that
g = Γ0f̃ and h = Γ1f̃ . Employing the identity (6.10) once again, we see that

〈H̃f, f̃〉L2(G) = 〈f ′, f̃ ′〉L2(G) − 〈Γ1f, g〉H
= 〈f ′, f̃ ′〉L2(G) − 〈Γ0f, h〉H = 〈f,Hf̃〉L2(G)

for all f ∈ dom(H̃). Hence, f̃ ∈ dom(H̃) and in particular (g, h) ∈ Θ. Since Θ is
self-adjoint, there are C and D in H satisfying Rofe-Beketov conditions (6.12) and
such that Θ = {(f, g) ∈ H ×H|Cf +Dg = 0}.

(iv) The first direction of the equivalence is clear: since the quadratic form tN
associated with the Neumann extension HN is Markovian and

Γ0(ϕ ◦ f) =
(
(ϕ ◦ f)(γ)

)
γ∈C0(G)

=: ϕ ◦ (Γ0f)

for all functions f ∈ H1(G) and every normal contraction ϕ,8 the extension HC,D

is Markovian if t̂C,D is a Dirichlet form on H in the wide sense.
To prove the converse direction, let, for simplicity, f ∈ dom(̂tC,D) be real-valued

and fix some real-valued f̃ ∈ H1(G) with Γ0f̃ = f (the existence of such an f̃
follows from Proposition 6.6). For any (real-valued) normal contraction ϕ : R → R,
we can construct a continuous and piecewise affine function ψ : R → R (i.e., ψ is
affine on every component of R \ {x1, . . . , xM} for finitely many points x1, . . . , xM )
such that ψ(0) = 0, ψ(f(γ)) = ϕ(f(γ)) for all γ ∈ C0(G) and |ψ′(x)| = 1 for almost

8A normal contraction is a function ϕ : C → C such that ϕ(0) = 0 and |ϕ(x)− ϕ(y)| ≤ |x− y|
for all x, y ∈ C.
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every x ∈ R.9 Notice that every function ψ with the above properties is a normal
contraction. Hence, if tC,D is Markovian, it follows that ψ◦f̃ ∈ dom(tC,D). However,
its boundary values are precisely given by

Γ0(ψ ◦ f̃) = ψ ◦ f = ϕ ◦ f

and we conclude that ϕ ◦ f belongs to dom(̂tC,D). Finally, the Markovian property
of tC,D implies that

tC,D[ψ ◦ f̃ ] =
∫
G
|(ψ ◦ f̃)′|2dx+ t̂C,D[ϕ ◦ f ] ≤ tC,D[f̃ ] =

∫
G
|f̃ ′|2dx+ t̂C,D[f ],

and noticing that |(ψ◦f̃)′| = |f̃ ′| almost everywhere on G, the proof is complete. �

Let us demonstrate Theorem 6.11 by applying it to Cayley graphs of finitely
generated groups.

Corollary 6.12. Let Gd be a Cayley graph of a finitely generated countable group
G with one end. Then the Kirchhoff Laplacian H0 admits a unique Markovian
extension if and only if the underlying metric graph G = (Gd, | · |) has infinite total
volume, vol(G) = ∞. Moreover, if G has finite total volume, then the set of all
Markovian extensions of H0 forms a one-parameter family given explicitly by

dom(Hθ) = {f ∈ dom(H) ∩H1(G)| cos(θ)Γ0f + sin(θ)Γ1f = 0}, (6.17)

where θ ∈ [0, π/2].

Taking into account that amenable groups have finitely many ends, the above
result applies to amenable finitely generated countable groups, which are not virtu-
ally infinite cyclic (see Remark 2.5(iv)). In a similar way one can obtain a complete
description of Markovian extensions in the case of virtually infinite cyclic groups,
however, they have two ends and the corresponding description looks a little bit
more cumbersome and we leave it to the reader (cf. [29, p.147]). The case of groups
with infinitely many ends remains an open highly nontrivial problem.

Remark 6.13. A few remarks are in order.
(i) Let us mention that in the case when the domain of the maximal operator

H is contained in H1(G) and G has finitely many finite volume ends (notice
that by Theorem 4.1 in this case n±(H0) = #C0(G) <∞), Proposition 6.11
provides a complete description of all self-adjoint extensions of H0. Let us
also mention that Proposition 6.11 provides a complete description of all
self-adjoint restrictions of the Gaffney Laplacian HG, see Remark 5.6(ii).

(ii) Some of the results of this section extend (to a certain extent) to the case
of infinitely many ends. Let us stress that by Proposition 4.9 in the case
when G has a finite volume end which is not free the above results would
lead only to some (not all!) self-adjoint extensions of H0. In our opinion,
even in the case of radially symmetric trees having finite total volume the
description of all self-adjoint extensions of H0 is a difficult problem.

9For instance, for any s, L > 0 such that s ≤ L, the function ψ0(x) :=
L+s
2

−
∣∣∣x− L+s

2

∣∣∣ satisfies
ψ0(0) = 0, ψ0(L) = s and |ψ′

0| ≡ 1. The construction in the general case follows easily from this
example.
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(iii) Similar relations between Markovian realizations of elliptic operators on
domains or finite metric graphs (with general couplings at the vertices)
on one hand, and Dirichlet property of the corresponding quadratic form’s
boundary term on the other hand, are of course well known in the literature
(see, e.g., [12, Proposition 5.1], [55, Theorem 6.1], [45, Theorem 3.5]). How-
ever, the setting of infinite metric graphs additionally requires much more
advanced considerations of combinatorial and topological nature. In par-
ticular, it seems noteworthy to us that the results of the previous sections
provide the right notion of the boundary for metric graphs, namely, the
set of finite volume ends, to deal with finite energy and also with Markov-
ian extensions of the minimal Kirchhoff Laplacian. In particular, this end
space is well-behaved as concerns the introduction of traces and normal
derivatives.

(iv) Taking into account certain close relationships between quantum graphs
and discrete Laplacians (see [25, §4]), one can easily obtain the results
analogous to Theorem 4.1 and Theorem 6.11 for a particular class of discrete
Laplacians on Gd defined by the following expression

(τf)(v) =
1

m(v)

∑
u∼v

f(v)− f(u)

|eu,v|
, v ∈ V, (6.18)

where m is the star weight (2.11). Markovian extensions of weighted dis-
crete Laplacians were considered also in [50]. On the other hand, [50] does
not contain a finiteness assumption, however, the conclusion in our setting
appears to be slightly stronger than in [50, Theorem 3.5], where the cor-
respondence between Markovian extensions and Markovian forms on the
boundary is in general not bijective.

7. Deficiency indices of antitrees

The main aim of this section is to construct for any N ∈ Z≥1 ∪ {∞} a metric
antitree such that the corresponding minimal Kirchhoff Laplacian H0 has deficiency
indices n±(H0) = N . Our motivation stems from the fact that every antitree has
exactly one end and hence, according to considerations in the previous sections, H0

admits at most one-parameter family of Markovian extensions.

7.1. Antitrees. Let Gd = (V, E) be a connected, simple combinatorial graph. Fix
a root vertex o ∈ V and then order the graph with respect to the combinatorial
spheres Sn, n ≥ 0 (notice that S0 = {o}). Gd is called an antitree if every vertex in
Sn, n ≥ 1, is connected to all vertices in Sn−1 and Sn+1 and no vertices in Sk for
all |k − n| 6= 1 (see Figure 1). Notice that each antitree is uniquely determined by
its sequence of sphere numbers (sn), sn := #Sn for n ≥ 0.

While antitrees first appeared in connection with random walks [23, 52, 74],
they were actively studied from various different perspectives in the last years (see
[11, 20, 54] for quantum graphs and [19, Section 2] for further references).

Let us enumerate the vertices in every combinatorial sphere Sn by (vni )
sn
i=1 and

denote the edge connecting vni with vn+1
j by enij , 1 ≤ i ≤ sn, 1 ≤ j ≤ sn+1. We

shall always use A to denote (metric) antitrees.
It is clear that every (infinite) antitree has exactly one end. By Theorem 4.1, the

deficiency indices of the corresponding minimal Kirchhoff Laplacian are at least 1
if vol(A) <∞. On the other hand, under the additional symmetry assumption that
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S0

S1

S2

S3

Figure 1. Antitree with sphere numbers sn = n+ 1.

A is radially symmetric (that is, for each n ≥ 0, all edges connecting combinatorial
spheres Sn and Sn+1 have the same length), it is known that the deficiency indices
are at most 1 (see [54, Theorem 4.1] and Example 4.11). It turns out that upon
removing the symmetry assumption it is possible to construct antitrees such that the
corresponding minimal Kirchhoff Laplacian has arbitrary finite or infinite deficiency
indices. More precisely, the main aim of this section is to prove the following result.

Theorem 7.1. Let A be the antitree with sphere numbers sn = n+1, n ≥ 0 (Figure
1). Then for each N ∈ Z≥1 ∪ {∞} there are lengths such that the corresponding
minimal Kirchhoff Laplacian H0 has the deficiency indices n±(H0) = N .

7.2. Harmonic functions. As it was mentioned already, every harmonic function
is uniquely determined by its values at the vertices. On the other hand, f ∈ C(V)
defines a function f ∈ H(A) with f |V = f if and only if the following conditions are
satisfied:

sn+1∑
j=1

f(vn+1
j )− f(vnk )

|enkj |
+

sn−1∑
i=1

f(vn−1
i )− f(vnk )

|en−1
ik |

= 0, (7.1)

at each vnk , 1 ≤ k ≤ sn with n≥ 0. We set s−1 := 0 for notational simplicity and
hence the second summand in (7.1) is absent when n = 0. We can put the above
difference equations into the more convenient matrix form. Denote fn = f |Sn =
(f(vni ))

sn
i=1 for all n ∈ Z≥0 and introduce matrices

Mn+1 =


1

|en11|
1

|en12|
. . . 1

|en1sn+1
|

1
|en21|

1
|en22|

. . . 1
|en2sn+1

|

. . . . . . . . . . . .
1

|ensn1|
1

|ensn2|
. . . 1

|ensnsn+1
|

 ∈ Rsn×sn+1 , (7.2)

and

Dn = diag(dnk ) ∈ Rsn×sn , dnk =

sn+1∑
j=1

1

|enkj |
+

sn−1∑
i=1

1

|en−1
ik |

, (7.3)

for all n ∈ Z≥0. Notice the following useful identity

d01 =M11s1 ,

 dn1
...
dnsn

 = Dn1sn = (Mn+1 M
∗
n)

(
1sn+1

1sn−1

)
, n≥ 1, (7.4)
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where 1sn := (1, . . . , 1)> ∈ Csn . Hence (7.1) can be written as follows

M1f1 =

s1∑
j=1

1

|e01j |
f0 = d01f0, (7.5)

Mn+1fn+1 = Dnfn −M∗
nfn−1, n ≥ 1. (7.6)

Since Dn is invertible, we get

fn = D−1
n (Mn+1 M

∗
n)

(
fn+1

fn−1

)
(7.7)

for all n ≥ 1. In particular, fn ∈ ran
(
D−1

n (Mn+1 M
∗
n)
)

for all n ≥ 1, which implies
that the number of linearly independent solutions to the above difference equations
(and hence the number of linearly independent harmonic functions) depends on the
ranks of the matrices (Mn+1 M

∗
n), n ≥ 1. Let us demonstrate this by considering

the following example.

Lemma 7.2. Let A be a radially symmetric antitree. Then

H(A) = span{1G}. (7.8)

Proof. Let for each n ≥ 0, all edges connecting combinatorial spheres Sn and Sn+1

have the same length, say `n > 0. Clearly, in this case

ran(Mn+1) = ran(M∗
n) = span{1sn},

for all n ≥ 1. Moreover, each Dn is a scalar multiple of the identity matrix Isn and
hence (7.7) implies that fn = cn1sn with some cn ∈ C for all n ≥ 0. Plugging this
into (7.5)–(7.6), we get

c1 = c0, cn+1 = cn +
sn−1`n
sn+1`n−1

(cn − cn−1), n ≥ 1.

Hence cn = c0 = f(o) for all n ≥ 0, which proves the claim. �

The latter in particular implies the following statement (cf. [54, Theorem 4.1]).

Corollary 7.3. If A is a radial antitree with finite total volume, then n±(H0) = 1.

Proof. By Corollary 2.11, we only need to show that n±(H0) ≤ 1. However, n±(H0) =
dim(ker(H)) ≤ dim(H(A)) = 1. �

7.3. Finite deficiency indices. We restrict our further considerations to a special
case of polynomially growing antitrees. Namely, for every N ∈ Z≥1, the antitree
AN has sphere numbers s0 = 1 and sn = n + N for all n ∈ Z≥1. To define its
lengths, pick a sequence of positive numbers (`n) and set

|enij | =

{
2`n, if 1 ≤ i = j ≤ N,

`n, otherwise,
(7.9)

for all n ∈ Z≥0.

Lemma 7.4. If a metric antitree AN has lengths given by (7.9), then

dimH(AN ) = N + 1. (7.10)
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Proof. Denoting

Bn,m =


1 1 . . . 1
1 1 . . . 1
. . . . . . . . . . . .
1 1 . . . 1

 ∈ Rn×m, Bn := Bn,n ∈ Cn×n, (7.11)

we get the following block-matrix form of the matrices Mn+1:

Mn+1 =
1

`n

(
BN − 1

2IN BN,n+1

Bn,N Bn,n+1

)
(7.12)

for all n ≥ 1. Taking into account (7.3) and denoting

d1n =
n+N − 3/2

`n−1
+
n+N + 1/2

`n
, d2n =

n+N − 1

`n−1
+
n+N + 1

`n
,

we get

Dn =

(
d1nIN

d2nIn

)
, (7.13)

for all n ≥ 2. Since M1 ∈ C1×(N+1) and

ran(Mn+1) = ran(M∗
n) = span

{(
fN
1n

)
| fN ∈ CN

}
, (7.14)

for all n ≥ 2, (7.7) implies that every f solving (7.5)–(7.6) must be of the form

fn =

(
fNn
cn1n

)
∈ CN+n, fNn ∈ CN , cn ∈ C, (7.15)

for all n ≥ 1. Plugging (7.15) into (7.6) and taking into account that

BN fNn = f
N

n 1N , f
N

n := 〈fNn ,1N 〉 = B1,N fNn ,

we get after straightforward calculations

f
N

n+1 + cn+1(n+ 1)

`n
1N − 1

2`n
fNn+1 = d1nf

N
n −

f
N

n−1 + cn−1(n− 1)

`n−1
1N +

1

2`n−1
fNn−1,

(7.16)

f
N

n+1 + cn+1(n+ 1)

`n
= cnd

2
n −

f
N

n−1 + cn−1(n− 1)

`n−1
, (7.17)

for all n ≥ 2. Multiplying (7.17) with 1N and then subtracting (7.16), we end up
with

fNn+1 = 2`n(cnd
2
n1N − d1nf

N
n )− `n

`n−1
fNn−1, n ≥ 2. (7.18)

Next taking the inner product in (7.16) with 1N and then subtracting (7.17) mul-
tiplied by N − 1/2, we finally get

cn+1 =
`n

n+ 1
(2d1nf

N

n − (2N − 1)d2ncn)− cn−1
(n− 1)`n

(n+ 1)`n−1
, n ≥ 2. (7.19)

Taking into account that the value of f at the root o is determined by f1 via

f(o) = f0 =
2`0

2N + 1
M1f1, (7.20)

and noting that fN2 and c2 are also determined by f1, we conclude that (7.18)–(7.19)
define f uniquely once f1 ∈ CN+1 is given. �
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Lemma 7.4 immediately implies that n±(H0) ≤ N + 1 if vol(AN ) < ∞, where
H0 is the associated minimal operator. The next result shows that it can happen
that n±(H0) = N + 1 upon choosing lengths `n with a sufficiently fast decay.

Proposition 7.5. Let AN be the antitree as in Lemma 7.4. If (`n) is decreasing
and √

`n = O
(

1

(6
√
N)n(n+N + 3)!

)
(7.21)

as n→ ∞, then n±(H0) = N + 1.

Proof. It is immediate to see that vol(AN ) < ∞ if (7.21) is satisfied. Next, taking
into account (7.9), observe that

m(v) =
∑
v∈Ev

|e| ≤ (n+N)`n−1 + (n+N + 2)`n . n`n−1, v ∈ Sn,

as n → ∞. Suppose f ∈ H(A) and set f = f |V . Then f has the form (7.15) and
hence

‖fn‖2 =
∑
v∈Sn

|f(v)|2 = ‖fNn ‖2 + n|cn|2,

for all n ≥ 1. This implies the following estimate∑
v∈V

|f(v)|2m(v) =
∑
n≥0

∑
v∈Sn

|f(v)|2m(v) .
∑
n≥1

n2`n−1(‖fNn ‖2 + |cn|2). (7.22)

Next, (7.18)–(7.19) can be written as follows(
fNn+1

cn+1

)
= A1,n

(
fNn
cn

)
+A2,n

(
fNn−1

cn−1

)
, (7.23)

where the matrices A1,n, A2,n ∈ R(N+1)×(N+1) are given explicitly by

A1,n =

(
−2`nd

1
nIN 2`nd

2
nBN,1

2`nd
1
n

n+1 B1,N − (2N−1)`nd
2
n

n+1 I1

)
, A2,n = − `n

`n−1

(
IN

n−1
n+1I1

)
, (7.24)

for all n ≥ 2. Since `n−1 ≤ `n and

d1n < d2n =
n+N − 1

`n−1
+
n+N + 1

`n
≤ 2(n+N)

`n
(7.25)

for all n ≥ 2, it is not difficult to get the following rough bounds 10

‖A1,n‖ ≤ 6
√
N(n+N), ‖A2,n‖ =

`n
`n−1

≤ 1, (7.26)

for all n ≥ 2N . Denoting

Fn =

(
fNn
cn

)
, n ≥ 1,

the recurrence relations (7.18)–(7.19) can be written in the following matrix form(
Fn+1

Fn

)
=

(
A1,n A2,n

IN+1 0N+1

)(
Fn

Fn−1

)
= An

(
Fn

Fn−1

)
. (7.27)

10Here and below to estimate norms, we use the equality ‖A‖ =
√

‖A∗A‖ and the following

simple estimate for non-negative 2× 2 block-matrices A =

(
A11 A12

A∗
12 A22

)
: ‖A‖ ≤ ‖A11‖+ ‖A22‖.

There are other estimates (e.g., [34, ineq. (2.3.8)]), however, they do not seem to work as good as
the above approach.
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Taking into account (7.26), we get ‖An‖ ≤ 6
√
N(n+N + 1) for all n ≥ 2N , which

implies the estimate√
‖fNn ‖2 + |cn|2 = ‖Fn‖ ≤ C

n−1∏
k=1

‖Ak‖ . (6
√
N)n(n+N)! (7.28)

for all n ≥ 2. Combining this bound with (7.21), it is easy to see that the series on
the righthand side in (7.22) converges and hence by Lemma 2.13 we conclude that
H(AN ) ⊂ L2(A). Thus ker(H) = H(AN ) and the use of Corollary 2.11 finishes the
proof. �

7.4. Infinite deficiency indices. Consider the antitree A with sphere numbers
sn = n+1, n ≥ 0. Next pick a sequence of positive numbers (`n) and define lengths
as follows

|enij | =

{
2`n, 1 ≤ i = j ≤ n+ 1,

`n, otherwise,
(7.29)

for all n ∈ Z≥0. Thus, the corresponding matrix Mn+1 given by (7.2) has the form

Mn+1 =
1

`n

(
Bn+1 − 1

2In+1 Bn+1,1

)
∈ R(n+1)×(n+2) (7.30)

for all n ≥ 0. Let us denote this antitree by A∞.

Lemma 7.6. dim(H(A∞)) = ∞.

Proof. Consider the difference equations (7.5)–(7.6). Clearly, the matrix Mn+1 has
the maximal rank n+ 1 for every n ≥ 0. Taking into account that(

Bn+1 −
1

2
In+1

)−1

=
4

2n+ 1
Bn+1 − 2In+1 =: Cn, n ≥ 0,

(7.6) then reads(
In+1

2
2n+1Bn+1,1

)
fn+1 = `nCn(Dnfn −M∗

nfn−1) (7.31)

for all n ≥ 1. Observe that

(
In+1

2
2n+1Bn+1,1

)


f1
...

fn+1

0

 =

 f1
...

fn+1


and hence for any fn ∈ Cn+1 and fn−1 ∈ Cn there always exists a unique fn+1 =
(f1, . . . , fn+1, 0)

> satisfying (7.31). Now pick a natural number N and define fN ∈
C(A∞) by setting fNn = (0, . . . , 0)> ∈ Cn+1 for all n ∈ {0, . . . , N},

fNN+1 = (1, . . . , 1,−N − 1/2)>,

and

fNn+1 =

(
`nCn(Dnf

N
n −M∗

nf
N
n−1)

0

)
∈ Cn+2 (7.32)

for all n ≥ N + 1. Clearly, fN satisfies (7.5)–(7.6) and hence defines a harmonic
function fN ∈ H(A∞). Moreover, it is easy to see that span{fN}N≥1 is infinite
dimensional, which proves the claim. �
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Proposition 7.7. Let H0 be the minimal Kirchhoff Laplacian associated with the
antitree A∞. If `n is decreasing and√

`n = O
(

1

6n(n+ 3)!

)
(7.33)

as n→ ∞, then n±(H0) = ∞.

Proof. Clearly, it suffices to show that every fN constructed in the proof of Lemma
7.6 belongs to L2(G) if `n decays as in (7.33). To prove this we shall proceed as in
the proof of Proposition 7.5. First, taking into account (7.29), observe that

m(v) . n`n−1, v ∈ Sn,

as n→ ∞. Since ‖fNn ‖2 =
∑

v∈Sn
|fN (v)|2 for all n ≥ 0, we get the estimate∑

v∈V
|fN (v)|2m(v) .

∑
n≥N+1

∑
v∈Sn

|fN (v)|2m(v) .
∑

n≥N+1

n`n−1‖fNn ‖2. (7.34)

Denoting Fn = fNn for all n ≥ 1, we can put (7.31) into the matrix form(
Fn+1

Fn

)
=

(
A1,n A2,n

In+1 0n+1,n

)(
Fn

Fn−1

)
= An

(
Fn

Fn−1

)
(7.35)

for all n ≥ N + 1, where

A1,n =

(
`nCnDn

01,n+1

)
∈ R(n+2)×(n+1), A2,n =

(
−`nCnM

∗
n

01,n

)
∈ R(n+2)×n. (7.36)

Now observe that ‖Cn‖ = 2 and ‖`nDn‖ ≤ 2(n + 1) for all n ≥ 1. Moreover,
‖`nM∗

n‖ ≤ n+ 1 for all n ≥ 1, which immediately implies the following estimate

‖An‖ ≤
√

‖`nCnDn‖2 + 1 + ‖`nCnM∗
n‖2 ≤ 6(n+ 1), n ≥ N + 1. (7.37)

Hence we get

‖fNn+1‖ ≤ C
n∏

k=N+1

‖Ak‖ ≤ C6n−N (n+ 1)!

(N + 1)!
. 6n(n+ 1)!

for all n ≥ N+1. Combining this estimate with (7.34) and (7.33) and using Lemma
2.13, we conclude that fN ∈ L2(A∞) for each N ≥ 1. �

Remark 7.8. It is not difficult to show that fN does not belong to H1(A∞) for
the above choices of edge lengths. In fact, it follows from the maximum principle for
H(A) that if vol(A) <∞, then H(A) ∩H1(A) consists only of constant functions.

7.5. Proof of Theorem 7.1. Clearly, the case of infinite deficiency indices follows
from Proposition 7.7. On the other hand, since adding and/or removing finitely
many edges and vertices to a graph does not change the deficiency indices of the
minimal Kirchhoff Laplacian, Proposition 7.5 completes the proof of Theorem 7.1.
Indeed, every antitree AN can be obtained from A by first removing all the edges
between combinatorial spheres S0 and SN and then adding N +1 edges connecting
the root o with the vertices in SN . �

Remark 7.9. Since every infinite antitree has exactly one end, Theorem 6.11(iv)
implies that the Kirchhoff Laplacian H0 in Theorem 7.1 has a unique Markovian
extension exactly when vol(A) = ∞. If vol(A) < ∞, then Markovian extensions
of H0 form a one-parameter family explicitly given by (6.17). Notice that (6.17)
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looks similar to the description of self-adjoint extensions of the minimal Kirchhoff
Laplacian on radially symmetric antitrees obtained recently in [54].

Let us also emphasize that the antitree constructed in Proposition 7.7 has finite
total volume and H0 has infinite deficiency indices, however, the set of Markovian
extensions of H0 forms a one-parameter family.

Let us finish this section with one more comment. As it was proved, the dimension
of the space of Markovian extensions depends only on the space of graph ends and,
moreover, it is equal to the number of finite volume ends. However, deficiency indices
(dimension of the space of self-adjoint extensions) are in general independent of
graph ends and we can only provide a lower bound. Moreover, the above example
of a polynomially growing antitree shows that the space of harmonic functions
heavily depends on the choice of edge lengths (in particular, its dimension may vary
between zero and infinity). In this respect let us also emphasize that in the case of
Cayley graphs of finitely generated countable groups the end space is independent
of the choice of a generating set, however, simple examples show that the space of
harmonic functions does depend on this choice.

Appendix A. Linear relations in Hilbert spaces

In this section we collect basic notions and facts on linear relations in Hilbert
spaces, a very convenient concept of multivalued linear operators. For simplicity,
we shall assume that H is a finite dimensional Hilbert space, dim(H) = N <∞.

A linear relation Θ in H is a linear subspace in H×H. Linear operators become
special linear relations (single valued) after identifying them with their graphs in
H×H. Every linear relation in H has the form

ΘC,D = {(f, g) ∈ H ×H|Cf +Dg = 0}, (A.1)

where C,D are linear operators on H, however, different C and D may define the
same linear relation. The domain and the multi-valued part of ΘC,D are given by

dom(ΘC,D) = {f ∈ H| ∃g ∈ H, Cf +Dg = 0} = {f ∈ H|Cf ∈ ran(D)},
mul(ΘC,D) = {g ∈ H|Dg = 0} = ker(D).

In particular, ΘC,D is a graph of a linear operator only if ker(D) = {0}. A linear
relation is called self-adjoint if Θ = Θ∗, where

Θ∗ = {(f, g) ∈ H ×H| 〈g̃, f〉H = 〈f̃ , g〉H ∀(f̃ , g̃) ∈ Θ}. (A.2)

A linear relation ΘC,D is self-adjoint if and only if C and D satisfy the Rofe-Beketov
conditions [64] (see also [66, Exercises 14.9.3-4]):

CD∗ = DC∗, 0 ∈ ρ(C∗C +D∗D). (A.3)

Notice that the second condition in (A.3) is equivalent to the fact that the matrix
(C|D) ∈ CN×2N has the maximal rank N .

Recall also that every self-adjoint linear relation admits the representation Θ =
Θop ⊕ Θmul, where Θmul = {0} ×mul(Θ) and Θop, called the operator part of Θ,
is a graph of a linear operator. In particular, for a self-adjoint linear relation ΘC,D

one has
dom(ΘC,D) = mul(ΘC,D)⊥ = ker(D)⊥ = ran(D∗). (A.4)

For further details on linear relations we refer the reader to, e.g., [66, Chapter 14.1].
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Appendix B. A rope ladder graph

Let us introduce a rope ladder graph depicted on Figure 2. Let Gd = (V, E) be
a simple graph with the vertex set V := {o} ∪ V+ ∪ V−, where o = v0 is a root,
V+ = (v+n )n≥1 and V− = (v−n )n≥1 are two disjoint countably infinite sets of vertices.
The edge set E is defined as follows:

• o is connected to v+1 and v−1 by the “diagonal” edges e+0 and e−0 , respectively;
• for each n ≥ 1, v±n is connected to v±n+1 by the vertical edge e±n ;
• for each n ≥ 1, v+n and v−n are connected by the horizontal edge en.

o

v+1 v−1

v+2 v−2

v+3 v−3

V+ V−

Figure 2. The rope ladder graph.

By construction, deg(o) = 2 and deg(v+n ) = deg(v−n ) = 3 for all n ≥ 1. Moreover, an
infinite rope ladder graph has exactly one end. Notice also that a similar example
was studied in [44, Section 7] (see also [31, §5]) in context with the construction of
non-constant harmonic functions of finite energy.

Equip now Gd with edge lengths | · | : E → R>0 and consider the corresponding
minimal Kirchhoff Laplacian H0 on the metric graph G = (Gd, | · |). The next result
immediately follows from Theorem 2.8 and Corollary 2.11.

Corollary B.1. If∑
n≥1

|e+n |+ |en| = ∞, and
∑
n≥1

|e−n |+ |en| = ∞, (B.1)

then the Kirchhoff Laplacian H0 is self-adjoint. If

vol(G) =
∑
n≥1

|e+n |+ |e−n |+ |en| <∞, (B.2)

then n±(H0) ≥ 1.

We omit the proof since it is easy to check that the first condition is equivalent
to the geodesic completeness of (V, %m) (cf. Theorem 2.8). Due to the symmetry of
the underlying combinatorial graph, the gap between the above two conditions is
equivalent to the fact that the corresponding lengths satisfy∑

n≥1

|e+n | = ∞,
∑
n≥1

|e−n |+ |en| <∞. (B.3)

Next, let us describe the space of harmonic functions H(G).
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Lemma B.2. Let a, b ∈ C. Then there is exactly one f ∈ H(G) such that

f(v+1 ) = a, f(v−1 ) = b. (B.4)

Moreover, this function f is recursively given by

f(o) =
b|e+0 |+ a|e−0 |
|e+0 |+ |e−0 |

(B.5)

and

f(v±n+1) =

(
1 +

|e±n |
|e±n−1|

+
|e±n |
|en|

)
f(v±n )−

|e±n |
|e±n−1|

f(v±n−1)−
|e±n |
|en|

f(v∓n ), (B.6)

for all n ∈ Z≥1, where we use the notation v+0 := v−0 := o.

Proof. Suppose a, b ∈ C are given and f ∈ H(G) satisfies (B.4). Since f is linear on
every edge and satisfies (2.6) at v = o, we get

0 = f ′
e+0
(o) + f ′

e−0
(o) =

f(v+1 )− f(o)

|e+0 |
+
f(v−1 )− f(o)

|e−0 |
=
a− f(o)

|e+0 |
+
b− f(o)

|e−0 |
,

which implies (B.5). Moreover, Kirchhoff conditions (2.6) at v = v±n , n ≥ 1 read

f(v±n+1)− f(v±n )

|e±n |
+
f(v±n−1)− f(v±n )

|e±n−1|
+
f(v∓n )− f(v±n )

|en|
= 0.

This implies that f is given by (B.6). Hence there is at most one f ∈ H(G) satisfying
(B.4) for given a, b ∈ C. However, the same calculation shows that f defined by
(B.5) and (B.6) has this property. Thus, existence follows as well. �

From Lemma B.2, it is clear that dim(H(G)) = 2, and, moreover,

H(G) = span{1G , g0},

where 1G denotes the constant function on G and g0 ∈ H(G) is the function defined,
for example, by the following normalization

g0(0) = 0, g0(v
+
1 ) = |e+0 |, g0(v

−
1 ) = −|e−0 |. (B.7)

Notice that g0(v±n ), n ≥ 1 are then given recursively by (B.6).

Lemma B.3. If vol(G) <∞, then

H(G) ∩H1(G) = span{1G}. (B.8)

The claim immediately follows from the fact that a rope ladder graph has exactly
one end. However, let us present a direct proof based on the analysis of harmonic
functions.

Proof. Taking into account (B.8), we only need to show that g0 /∈ H1(G). First, ob-
serve that (g0(v+n ))n≥1 and (g0(v

−
n ))n≥1 are strictly increasing positive, respectively,

strictly decreasing negative sequences. Indeed,

−|e−0 | = g0(v
−
1 ) < 0 = g0(o) < g0(v

+
1 ) = |e+0 |
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by the very definition of g0. Let n ≥ 1 and assume now that we have already shown
that (g0(v

+
k ))

n
k=1 is strictly increasing and (g0(v

−
k ))

n
k=1 is strictly decreasing. Since

g0(o) = 0, (B.6) implies

g0(v
+
n+1) =

(
1 +

|e+n |
|e+n−1|

+
|e+n |
|en|

)
g0(v

+
n )−

|e+n |
|e+n−1|

g0(v
+
n−1)−

|e+n |
|en|

g0(v
−
n )

>

(
1 +

|e+n |
|en|

)
g0(v

+
n ) +

|e+n |
|e+n−1|

(g0(v
+
n )− g0(v

+
n−1)) > g0(v

+
n ).

A similar argument shows that g0(v−n+1) < g0(v
−
n ) and hence the claim follows by

induction. Now monotonicity immediately implies

‖g′0‖2L2(G) =
∑
e∈E

∫
e

|g′0(xe)|2 dxe ≥
∑
n≥0

∫
en

|g′0(xe)|2 dxe

=

∞∑
n=0

|g0(v+n )− g0(v
−
n )|2

|en|
≥ |g0(v+1 )− g0(v

−
1 )|2

∞∑
n=0

1

|en|
= ∞,

since vol(G) <∞. Thus g0 /∈ H1(G). �

In particular, this also leads to the following result:

Corollary B.4. If vol(G) < ∞, then n±(H0) ∈ {1, 2}. Moreover, n±(H0) = 1 if
and only if g0 /∈ L2(G).

Proof. The claim about the deficiency indices follows from Corollary 2.11 and the
fact that 1G ∈ L2(G). The equivalences then follow from Lemma B.3. �

As the next example shows, the inclusion g0 ∈ L2(G) heavily depends on the
choice of edge lengths.

Example B.5. Fix s > 3 and equip the rope ladder graph with edge lengths

|e+n | = |e−n | :=
1

(n+ 1)s
, |en| :=

2n

(n+ 1)s − ns
, n ∈ Z≥0,

where is fixed. Then |en| ∼ n2−s for large n and hence vol(G) < ∞. Moreover, for
this particular choice of edge lengths we have g0(v±n ) = ±n for all n ≥ 1. Indeed,
g0(v

±
1 ) = ±1 by (B.7). Assuming we have already proven that g0(v±k ) = ±k for

k ≤ n with some n ≥ 1, we have by (B.6):

g0(v
+
n+1) =

(
1 +

ns

(n+ 1)s
+

1

(n+ 1)s|en|

)
n− ns(n− 1)

(n+ 1)s
+

n

(n+ 1)s|en|

= n+
ns

(n+ 1)s
+

2n

(n+ 1)s|en|
= n+

ns

(n+ 1)s
+

(n+ 1)s − ns

(n+ 1)s
= n+ 1.

Analogously, g0(v−n+1) = −(n+ 1) and hence the claim follows by induction.
Applying Lemma B.3 and using again that |en| ∼ n2−s as n → ∞, we conclude

that g0 ∈ L2(G) exactly (see Lemma 2.13) when∑
n≥1

|g0(v±n )|2(|e±n−1|+ |e±n |) =
∑
n≥1

n2((n+ 1)−s + n−s) <∞

and ∑
n≥1

|g0(v±n )|2|en−1| =
∑
n≥1

2n3

(n+ 1)s − ns
<∞.
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Clearly, the latter holds only if s > 5. Hence, by Lemma B.4, n±(H0) = 2 for all
s > 5. In particular, ker(H) ⊂ H1(G) ⇔ s ≤ 5.
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A NOTE ON THE GAFFNEY LAPLACIAN
ON INFINITE METRIC GRAPHS

ALEKSEY KOSTENKO AND NOEMA NICOLUSSI

Abstract. We show that the deficiency indices of the minimal Gaffney Lapla-
cian on an infinite locally finite metric graph are equal to the number of finite
volume graph ends. Moreover, we provide criteria, formulated in terms of finite
volume graph ends, for the Gaffney Laplacian to be closed.

1. Introduction

The standard way to associate an operator with the Laplacian in a domain in Rn

or on a Riemannian manifold is to consider it either on smooth compactly supported
functions (the so-called pre-minimal operator) or on the largest possible domain,
that is, on all L2 functions such that the distributional Laplacian applied to these
functions can be identified with an L2 function (the maximal operator). Then the
pre-minimal Laplacian is essentially self-adjoint if and only if its L2 closure, the
minimal operator, coincides with the maximal operator. For geodesically complete
manifolds the essential self-adjointness was proved by W. Roelcke [23] (see also
[5, 27]). It is impossible to give even a brief account on the subject and we only refer
to [1, 7, 25], some recent work in the case of non-complete manifolds [20, 21] and also
for weighted graph Laplacians [14, 16]. Let us also mention the work of M. P. Gaffney
[10], where the maximal operator was further restricted to functions having finite
energy. It turns out that the self-adjointness of this operator (sometimes called the
Gaffney Laplacian [12]) is equivalent to the uniqueness of a Markovian extension.
Clearly, essential self-adjointness implies the uniqueness of Markovian extensions,
but the converse is not necessarily true. We refer to [7, Chapter I] for an excellent
account on importance and applications of self-adjoint and Markovian uniqueness.

The main object of our paper is a quantum graph, i.e., a Laplacian on a metric
graph. From the perspective of Dirichlet forms, quantum graphs play an important
role as an intermediate setting between Laplacians on Riemannian manifolds and
discrete Laplacians on weighted graphs. The most studied quantum graph operator
is the Kirchhoff Laplacian, which provides the analog of the Laplace–Beltrami oper-
ator in the setting of metric graphs. Whereas on finite metric graphs the Kirchhoff
Laplacian is always self-adjoint, the question is more subtle for graphs with infinitely
many edges. Geodesic completeness (w.r.t. the natural path metric) guarantees self-
adjointness of the (minimal) Kirchhoff Laplacian, however, this result is far from
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being optimal [8, §4]. The present paper is a complement to the recent work [18],
where a relationship between one of the classical notions of boundaries for infinite
graphs, graph ends, and self-adjoint extensions of the minimal Kirchhoff Laplacian
on a metric graph was established. More precisely, the notion of finite volume for
ends of a metric graph introduced in [18] turns out to be a proper notion of a
boundary for Markovian extensions of the Kirchhoff Laplacian. Our main goal is
to elaborate on the relationship between finite volume graph ends and the Gaffney
Laplacian, which is defined as the restriction of the maximal Kirchhoff Laplacian to
functions having finite energy (i.e., H1 functions). First of all, one of the main re-
sults of [18] provides a transparent geometric characterization of the self-adjointness
of the Gaffney Laplacian: the underlying metric graph has no finite volume ends
(see Lemma 3.4 below). Our first main result shows that the deficiency indices of
the (minimal) Gaffney Laplacian (i.e., the dimension of the space of its self-adjoint
extensions) are in fact equal to the number of finite volume graph ends (Theo-
rem 3.8). The Gaffney Laplacian has several advantages comparing to the maximal
Kirchhoff Laplacian, although one of the main disadvantages is the fact that it is
not necessarily closed. Our second main result, Theorem 3.9 provides necessary and
sufficient conditions for the Gaffney Laplacian to be closed. These conditions are
stated in terms of finite volume graphs ends and in certain cases of interest (graphs
of finite total volume or Cayley graphs of countable finitely generated groups) they
give rise to a transparent geometrical criterion: the Gaffney Laplacian is closed if
and only if the underlying metric graph has finitely many finite volume ends, which
is further equivalent to the fact that the deficiency indices of the minimal Gaffney
Laplacian are finite. If the Gaffney Laplacian is not closed, then the most important
question is how to describe its L2 closure. It does not seem realistic to us to obtain
a complete answer to this question and we demonstrate by examples that under
certain symmetry assumptions the closure of the Gaffney Laplacian may coincide
with the maximal Kirchhoff Laplacian.

Let us now briefly describe the structure of the article. Section 2 is of preliminary
character where we collect basic notions and facts about graphs and metric graphs
(Section 2.1); graph ends (Section 2.2); Sobolev spaces on metric graphs (Section
2.3); Kirchhoff, Dirichlet and Neumann Laplacians on metric graphs (Section 2.4).
The main results of the present paper are collected in Section 3. First we introduce
the minimal Gaffney Laplacian and the Gaffney Laplacian, study their properties
and also investigate their relationship with the Kirchhoff, Dirichlet and Neumann
Laplacians. In the final section we discuss several explicit examples.

Notation. Z, R, C have their usual meaning; Z≥a := Z ∩ [a,∞).
z∗ denotes the complex conjugate of z ∈ C.
For a given set S, #S denotes its cardinality if S is finite; otherwise we set #S = ∞.
If it is not explicitly stated otherwise, we shall denote by (xn) a sequence (xn)

∞
n=0.

2. Quantum graphs and graph ends

2.1. Combinatorial and metric graphs. In what follows, Gd = (V, E) will be
an unoriented graph with countably infinite sets of vertices V and edges E . For two
vertices u, v ∈ V we shall write u ∼ v if there is an edge eu,v ∈ E connecting u with
v. For every v ∈ V, we denote the set of edges incident to the vertex v by Ev and

deg(v) := #{e| e ∈ Ev} (2.1)
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is called the degree of a vertex v ∈ V. A path P of length n ∈ Z≥0 ∪ {∞} is a
sequence of vertices (v0, v1, . . . , vn) such that vk−1 ∼ vk for all k ∈ {1, . . . , n}.

The following assumption is imposed throughout the paper.

Hypothesis 2.1. Gd is locally finite (deg(v) < ∞ for every v ∈ V) and connected
(for any two vertices u, v ∈ V there is a path connecting u and v).

Assigning to each edge e ∈ E a finite length |e| ∈ (0,∞) turns Gd into a metric
graph G := (V, E , | · |) = (Gd, | · |). The latter equips G with a (natural) topology
and metric. More specifically (see, e.g., [15, Chapter 1.1]), a metric graph G is a
Hausdorff topological space with countable base such that each point x ∈ G has
a neighbourhood Ex(r) homeomorphic to a star-shaped set E(deg(x), rx) of degree
deg(x) ≥ 1,

E(deg(x), rx) := {z = re2πik/ deg(x)| r ∈ [0, rx), k = 1, . . . , deg(x)} ⊂ C.

Identifying every edge e ∈ E with a copy of an interval of length |e| and also
identifying the ends of the edges that correspond to the same vertex v, G can be
equipped with the natural path metric % — the distance between two points x, y ∈ G
is defined as the length of the “shortest” path connecting x and y.

2.2. Graph ends. A sequence of distinct vertices (vn) such that vn ∼ vn+1 for
all n ∈ Z≥0 is called a ray. Two rays R1,R2 are called equivalent – and we write
R1 ∼ R2 – if there is a third ray containing infinitely many vertices of both R1

and R2. An equivalence class of rays is called a graph end of Gd.
Considering a metric graph G as a topological space, one can introduce topolog-

ical ends. Consider sequences U = (Un) of non-empty open connected subsets of G
with compact boundaries and such that Un+1 ⊆ Un for all n ≥ 0 and

⋂
n≥0 Un = ∅.

Two such sequences U and U ′ are called equivalent if for all n ≥ 0 there exist j and
k such that Un ⊇ U ′

j and U ′
n ⊇ Uk. An equivalence class γ of sequences is called

a topological end of G and C(G) denotes the set of topological ends of G. There
is a natural bijection between topological ends of a locally finite metric graph G
and graph ends of the underlying combinatorial graph Gd: for every topological end
γ ∈ C(G) of G there exists a unique graph end ωγ of Gd such that for every sequence
U representing γ, each Un contains a ray from ωγ (see [28, §21], [6, §8.6 and also
p.277–278] for further details).

One of the main features of graph ends is that they provide a rather refined way
of compactifying graphs, called the end (or Freudenthal) compactification of G (see
[6, §8.6], [28] and also [18, §2.2]).

Definition 2.1. An end ω of a graph Gd is called free if there is a finite set X of
vertices such that X separates ω from all other ends of the graph.

Remark 2.2. Notice that an end γ ∈ C(G) is free exactly when there exists a
connected subgraph G̃ with compact boundary ∂G̃1 such that Un ⊆ G̃ eventually
for any sequence U = (Un) representing γ and U ′

n ∩ G̃ = ∅ eventually for all
sequences U ′ = (U ′

n) representing an end γ′ 6= γ.

We also need the following notion introduced in [18].

1Notice that for a subgraph G̃ of G its boundary is ∂G̃ = {v ∈ V(G̃)| degG̃(v) < deg(v)} and
hence ∂G̃ is compact exactly when #∂G̃ < ∞.
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Definition 2.3. A topological end γ ∈ C(G) has finite volume if there is a sequence
U = (Un) representing γ such that vol(Un) < ∞2 for some n. Otherwise γ has
infinite volume. The set of all finite volume ends is denoted by C0(G).

2.3. Function spaces on metric graphs. Identifying every edge e ∈ E with the
copy of Ie = [0, |e|] (and hence assigning an orientation on G), we can introduce
Sobolev spaces on edges and on G. First of all, the Hilbert space L2(G) of functions
f : G → C is defined by

L2(G) =
⊕
e∈E

L2(e) =
{
f = {fe}e∈E

∣∣ fe ∈ L2(e),
∑
e∈E

‖fe‖2L2(e) < ∞
}
.

The subspace of compactly supported L2(G) functions will be denoted by

L2
c(G) =

{
f ∈ L2(G)| f 6= 0 only on finitely many edges e ∈ E

}
.

For edgewise locally absolutely continuous functions on G let us denote by ∇ the
edgewise first derivative,

∇f := f ′. (2.2)
Then for every edge e ∈ E ,

H1(e) = {f ∈ AC(e)|∇f ∈ L2(e)}, H2(e) = {f ∈ H1(e)|∇f ∈ H1(e)},

Next Hn(G \ V), n ∈ {1, 2} is defined as a space of functions f : G → C such that

Hn(G \ V) =
⊕
e∈E

Hn(e) =
{
f = {fe}e∈E

∣∣ fe ∈ Hn(e),
∑
e∈E

‖fe‖2Hn(e) < ∞
}
.

It becomes a Hilbert space when equipped with the norm ‖f‖2Hn :=
∑

e∈E ‖fe‖2Hn(e).
The first Sobolev space on G is defined by

H1(G) = H1(G \ V) ∩ C(G),

which is also a Hilbert space when equipped with the above norm. We also define
H1

0 (G) as the closure in H1(G) of H1
c (G) = H1(G) ∩ L2

c(G).
The Sobolev space H1(G) is continuously embedded in Cb(G) = C(G) ∩ L∞(G)

(see, e.g., [18, Lemma 3.2]) and, moreover, every function f ∈ H1(G) admits a
unique continuous extension to the end compactification Ĝ of G ([18, Proposi-
tion 3.5]): for every f ∈ H1(G) and a (topological) end γ ∈ C(G), we define

f(γ) := lim
n→∞

f(vn), (2.3)

where R = (vn) ∈ ωγ is any ray belonging to the corresponding graph end ωγ .
It turns out that finite volume graph ends serve as a proper boundary for the

Sobolev space H1(G). Namely, considering H1(G) as a subalgebra of Cb(G), it was
proved in [18, §3] that its closure is isomorphic to C0(G∪C0(G)). In particular, ends
having infinite volume lead to trivial values, that is,

f(γ) = 0

for every f ∈ H1(G) if and only if γ /∈ C0(G). Moreover, by Theorem 3.10 from [18],

H1
0 (G) = {f ∈ H1(G)| f(γ) = 0 for all γ ∈ C(G)}, (2.4)

and hence H1(G) = H1
0 (G) exactly when G has no finite volume ends, C0(G) = ∅.

2As usual, vol(A) denotes the Lebesgue measure of a measurable set A ⊆ G.
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2.4. Kirchhoff, Dirichlet and Neumann Laplacians. Let G be a metric graph
satisfying Hypothesis 2.1. If v is a vertex of the edge e ∈ E , then for every f ∈ H2(e)
the following quantities

fe(v) := lim
xe→v

f(xe), ∂ef(v) := lim
xe→v

f(xe)− f(v)

|xe − v|
, (2.5)

are well defined. The Kirchhoff (also called standard or Kirchhoff–Neumann) bound-
ary conditions at every vertex v ∈ V are then given byf is continuous at v,∑

e∈Ev

∂ef(v) = 0.
(2.6)

Imposing these boundary conditions on the maximal domain yields the maximal
Kirchhoff Laplacian

H = −∆ � dom(H), dom(H) = {f ∈ H2(G \ V)| f satisfies (2.6), v ∈ V}. (2.7)

Restricting further to compactly supported functions we end up with the pre-
minimal operator

H0
0 = −∆ � dom(H0

0), dom(H0
0) = dom(H) ∩ L2

c(G). (2.8)

We call its closure H0 := H0
0 in L2(G) the minimal Kirchhoff Laplacian. Integrating

by parts one obtains

〈H0
0f, f〉L2(G) =

∫
G
|∇f(x)|2 dx =: t[f ], f ∈ dom(H0

0), (2.9)

and hence both H0
0 and H0 are non-negative symmetric operators. It is known that

H∗
0 = H. (2.10)

The equality H0 = H holds if and only if H0 is self-adjoint (or, equivalently, H0
0

is essentially self-adjoint). To the best of our knowledge, the strongest sufficient
condition which guaranties self-adjointness is provided by the next result.

Theorem 2.4 ([8]). Let %m be the star path metric on V,

%m(u, v) := inf
P=(v0,...,vn)
u=v0, v=vn

∑
vk∈P

m(vk), (2.11)

where m : V → (0,∞) is the star weight

m(v) :=
∑
e∈Ev

|e| = vol(Ev). (2.12)

If (V, %m) is complete as a metric space, then H0
0 is essentially self-adjoint.

The degree of non-self-adjointness of H0 is determined by its deficiency indices
n±(H0) = dimN±i(H0), where

Nz(H0) := ker(H∗
0 − z) = ker(H− z), z ∈ C, (2.13)

are called the deficiency subspaces of H0. Notice that n+(H0) = n−(H0) since H0 is
non-negative and hence n±(H0) is equal to the dimension of the space of self-adjoint
extensions of H0.

There is a standard procedure to construct at least one self-adjoint extension
of H0, the so-called Friedrichs extension, let us denote it by HD. Namely, HD is
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defined as the operator associated with the closure in L2(G) of the quadratic form
(2.9). Clearly, the domain of the closure coincides with H1

0 (G) and hence HD is
given as a restriction of H to the domain dom(HD) := dom(H) ∩H1

0 (G) (see, e.g.,
[24, Theorem 10.17]). Taking into account (2.4), HD is often called the Dirichlet
Laplacian (which also explains the subscript). On the other hand, the form t is well
defined on H1(G) and, moreover,

tN [f ] := t[f ], f ∈ dom(tN ) = H1(G)
is closed (since H1(G) is a Hilbert space). The self-adjoint operator HN associ-
ated with this form is usually called the Neumann extension of H0 or Neumann
Laplacian.
Remark 2.5. Following the analogy with the Dirichlet Laplacian, it might be
tempting to take dom(H)∩H1(G) as the domain of the Neumann Laplacian. How-
ever, the operator defined on this domain has a different name — the Gaffney
Laplacian – and it is not even symmetric in general. The main focus of the follow-
ing two sections will be on the study of this operator.

3. The Gaffney Laplacian

Let us fix an orientation on G. In the Hilbert space L2(G), we can associate (at
least) two operators with ∇ defined by (2.2). Namely, set

∇D := ∇ � dom(∇D), ∇N := ∇ � dom(∇N ), (3.1)
where

dom(∇D) = H1
0 (G), dom(∇N ) = H1(G). (3.2)

The importance of ∇D and ∇N stems from the following fact.
Lemma 3.1. Let HD and HN be the Friedrichs and the Neumann extensions of
H0, respectively. Then

HD = ∇∗
D∇D, HN = ∇∗

N∇N , (3.3)
where ∗ denotes the adjoint operator.
Proof. Since H1

0 (G) and H1(G) are Hilbert spaces, both ∇D and ∇N are closed
operators in L2(G) and hence ∇∗

D∇D and ∇∗
N∇N are self-adjoint non-negative op-

erators in L2(G). The quadratic forms associated with ∇∗
D∇D and ∇∗

N∇N coincide
with, respectively, the quadratic forms of HD and HN and the claim now follows
from the representation theorem (see, e.g., [17, Chapter VI.2.1]). �

Remark 3.2. Clearly, ∇ and hence both ∇D and ∇N do depend on the choice
of an orientation on G. However, it is straightforward to see that the second order
operators HD and HN do not depend on it.

Now we are in position to introduce the main object. In the Hilbert space L2(G),
define the following operators

HG,min = ∇∗
N∇D, HG = ∇∗

D∇N . (3.4)
Both operators are understood as a product of (unbounded) operators in a Hilbert
space: they act edgewise as the negative second derivative and their domains are

dom(HG,min) = {f ∈ H1
0 (G)|∇f ∈ dom(∇∗

N )},
dom(HG) = {f ∈ H1(G)|∇f ∈ dom(∇∗

D)}.
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The operator HG is called the Gaffney Laplacian. We shall call HG,min the minimal
Gaffney Laplacian.

Lemma 3.3. Both operators HG and HG,min are restrictions of the maximal Kirch-
hoff Laplacian H/extensions of the minimal Kirchhoff Laplacian H0,

H0 ⊆ HG,min ⊆ HG ⊆ H. (3.5)

Proof. It is straightforward to verify both claims, however, we would like to show
that

dom(∇∗
D) =

{
f ∈ H1(G \ V)

∣∣∣ ∑
e∈Ev

~fe(v) = 0 for all v ∈ V
}
, (3.6)

which then makes the inclusions in (3.5) obvious. Here we employ the following
notation

~fe(v) =

{
fe(v), v is terminal,

−fe(v), v is initial.

If f belongs to the RHS in (3.6), then an integration by parts gives

`f (g) := 〈∇Dg, f〉L2 = −〈g,∇f〉L2 (3.7)

for all g ∈ H1(G) ∩ L2
c(G). Clearly, `f extends to a bounded linear functional on

L2, which implies that f ∈ dom(∇∗
D) and hence this proves the inclusion “⊇”.

Suppose now that f ∈ dom(∇∗
D). Fixing an edge e ∈ E and taking a test function

g ∈ H1
0 (G) such that g equals zero everywhere except e, we immediately conclude

that f belongs to H1 on e. Next pick a vertex v ∈ V. Choose g ∈ H1
0 (G) such that

g ≡ 0 on E \ Ev. Moreover, for every e ∈ Ev we assume that g(xe) = 1 if xe ∈ e and
|xe − v| < |e|/4 and g(xe) = 0 if |xe − v| > |e|/2. Thus we get

0 = 〈f,∇Dg〉 − 〈∇∗
Df, g〉 =

∑
e∈Ev

∫
e

f(∇g)∗ +∇f g∗dxe

=
∑
e∈Ev

~fe(v)ge(v)
∗ =

∑
e∈Ev

~fe(v).

This also implies that we can perform the integration by parts in (3.7) for every
g ∈ H1(G) ∩ L2

c(G). Since `f extends to a bounded linear functional on L2(G), we
conclude that ∇f ∈ L2(G), which completes the proof. �

Clearly, all four operators in (3.5) coincide exactly when H0 is self-adjoint (and
hence all four operators are self-adjoint). Moreover, by the very definition we have

HG,min ⊆ HD ⊆ HG, HG,min ⊆ HN ⊆ HG. (3.8)

In particular, HG,min is symmetric, however, HG may not be symmetric (and hence
self-adjoint). The next result provides several self-adjointness criteria for HG includ-
ing a transparent geometric characterization.

Lemma 3.4. The following statements are equivalent:
(i) The Gaffney Laplacian HG is self-adjoint,
(ii) HG,min = HG,
(iii) H1

0 (G) = H1(G),
(iv) H0 has a unique Markovian extension,
(v) G has no finite volume ends, C0(G) = ∅.
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Proof. The equivalence (iii) ⇔ (iv) is well known; (iii) ⇔ (v) was established in
[18, Corollary 3.12]. The remaining equivalences follow upon noting that ∇D = ∇N

if and only if H1
0 (G) = H1(G). �

Recall that an extension H̃ of the minimal Kirchhoff Laplacian H0 is called
Markovian if H̃ is a non-negative self-adjoint extension and the corresponding qua-
dratic form is a Dirichlet form (for further details we refer to [9, Chapter 1]). Hence
the associated semigroup e−tH̃, t > 0 as well as resolvents (H̃ + λ)−1, λ > 0 are
Markovian: i.e., are both positivity preserving (map non-negative functions to non-
negative functions) and L∞-contractive (map the unit ball of L∞(G) into itself).
Notice that both the Dirichlet and Neumann Laplacians are Markovian extensions.
A self-adjoint extension H̃ of H0 is called a finite energy extension if its domain
is contained in H1(G). In particular, every Markovian extension is a finite energy
extension (for further details we refer to [18, §5]).

The importance of the Gaffney Laplacian in the study of Markovian and, more
generally, finite energy extensions of H0 stems from the following fact.

Lemma 3.5. The domain of the Gaffney Laplacian is given by
dom(HG) = dom(H) ∩H1(G). (3.9)

In particular, H̃ is a Markovian/finite energy self-adjoint extension of H0 if and
only if H̃ is a Markovian/self-adjoint restriction of HG.

Proof. The inclusion dom(HG) ⊆ dom(H) ∩ H1(G) follows from the definition of
HG. The converse inclusion is immediate from (3.6). �

As in the case of the maximal and minimal Kirchhoff Laplacians, there is a close
connection between the Gaffney Laplacians.

Lemma 3.6. The minimal Gaffney Laplacian is closed in L2(G) and
HG,min = H∗

G. (3.10)

Proof. By the very definition of HG, we get
∇∗

N∇D ⊆ H∗
G

and hence HG,min ⊆ H∗
G. To prove the converse inclusion, observe that H∗

G ⊆ HD

and H∗
G ⊆ HN . Taking into account Lemma 3.1, we thus get

dom(H∗
G) ⊆ dom(HD) ∩ dom(HN )

= {f ∈ H1
0 (G)|∇Df ∈ dom(∇∗

D)} ∩ {f ∈ H1(G)|∇Nf ∈ dom(∇∗
N )}

= {f ∈ H1
0 (G)|∇Df ∈ dom(∇∗

N )}
= dom(HG,min),

which implies (3.10). Since the adjoint is always closed, the first claim follows. �

Remark 3.7. The fact that HG,min is a closed operator can be seen by noting that
its domain is the intersection of domains of the Friedrichs and Neumann extensions,

dom(HG,min) = dom(HD) ∩ dom(HN ). (3.11)
Indeed, one simply needs to compare the definition of HG,min with (3.3) and take
into account that ∇∗

N ⊆ ∇∗
D. Since both HD and HN are closed, one concludes

that so is HG,min.
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Our first main result is the following connection between deficiency indices of
HG,min and graph ends.

Theorem 3.8. The deficiency indices of the minimal Gaffney Laplacian HG,min

coincide with the number of finite volume ends of G,
n±(HG,min) = #C0(G). (3.12)

Proof. If #C0(G) < ∞, then using the results of [18, §6] one can easily see that
dim(dom(HN )/ dom(HG,min)) = #C0(G) (indeed, combine Prop. 6.6(i) and Corol-
lary 6.7 with Theorem 3.11 from [18]). This immediately implies (3.12) since HN

is a self-adjoint extension of HG,min (cf. [24, Theorem 13.10]).
It remains to consider the case #C0(G) = ∞. By (3.9) and [18, Lemma 4.7],

dim(ker(HG − λ)) = dim(ker(H− λ) ∩H1(G)) = #C0(G) (3.13)
for all negative real λ. It remains to notice that HG ⊆ H∗

G,min and hence the claim
follows from the positivity of HG,min. �

In contrast to the minimal Gaffney Laplacian, HG is not automatically closed,
that is, H∗

G,min = HG, although it is not necessarily true that

H∗
G,min = HG. (3.14)

Our second main result provides necessary and sufficient conditions for the Gaffney
Laplacian to be closed.

Theorem 3.9. Let G be a metric graph satisfying Hypothesis 2.1 and let HG be
the corresponding Gaffney Laplacian.

(i) If #C0(G) < ∞, then HG is closed and (3.14) holds true.
(ii) If G contains a non-free finite volume end, then n±(HG,min) = ∞ and HG

is not closed.

Proof. (i) It suffices to employ the following decomposition
dom(H∗

G,min) = dom(HD)u ker(H∗
G,min − z) = dom(HD)uNz(HG,min), (3.15)

which holds for every z in the resolvent set of HD (see, e.g., [24, Prop. 14.11]).
By Theorem 3.8, dim(ker(H∗

G,min − z)) = #C0(G) < ∞. Combining (3.13) with
dom(HG) ⊆ dom(H∗

G,min), we conclude that dom(HG) = dom(H∗
G,min).

(ii) Since the mapping ∇ : H1(G) → L2(G) is bounded, (3.14) holds if and only
if there exists a positive constant C > 0 such that

‖∇f‖2L2(G) ≤ C(‖f‖2L2(G) + ‖Hf‖2L2(G)), (3.16)

for all f ∈ dom(HG) = dom(H) ∩H1(G).
Let γ ∈ C0(G) be a non-free finite volume end of G. For a sequence of open sets

U = (Un) representing γ, we can choose a sequence (Gn) of connected subgraphs of G
such that #∂Gn < ∞, Gn ⊇ Gn+1 and Gn ⊂ Un for all n. Notice that #C0(Gn) = ∞
for every n ≥ 0 and

⋂
n≥0 Gn = ∅ and hence vol(Gn) → 0 as n → ∞.

Fix λ < 0 and denote by Hn the Gaffney Laplacian on the subgraph Gn, n ≥ 0.
Taking into account (3.13), there exists a real-valued function fn ∈ ker(Hn − λ)
with fn(v) = 0 for all v ∈ ∂Gn and such that ‖fn‖∞ = 1 Moreover, extending fn
by zero on G \ Gn gives a function (also denoted by fn) belonging to the domain of
the Gaffney Laplacian HG on G.
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Assuming that HG is closed, (3.16) would imply that

‖∇fn‖L2(G) . ‖fn‖2L2(G) + ‖Hfn‖2L2(G) = (1 + λ2)‖fn‖2L2(Gn)
≤ (1 + λ2)vol(Gn)

for all n ≥ 0. Next, for each n there is xn ∈ Gn with |fn(xn)| ≥ 1/2. Choosing
yn ∈ ∂Gn and a path Pn in Gn connecting xn and yn, we get

1

2
= |fn(xn)− fn(yn)| ≤

∫
Pn

|∇fn(x)|dx ≤ vol(Pn)‖∇fn‖L2(G) . vol(Gn)
2

for all n ≥ 0. However, the right-hand side tends to zero when n → ∞. This
contradiction completes the proof. �

Let us now present two particular cases of interest when Theorem 3.9 provides
necessary and sufficient condition for HG to be closed.

Corollary 3.10. Suppose G has finite total volume. The following are equivalent:
(i) The Gaffney Laplacian HG is closed,
(ii) (3.14) holds true,
(iii) G has finitely many ends, #C(G) < ∞.

Proof. We only need to notice that C(G) = C0(G) in the case when vol(G) < ∞. By
Halin’s theorem [13], a locally finite graph G has at least one end which is not free
if C(G) = ∞. Thus, it remains to apply Theorem 3.9. �

Theorem 3.9 also gives rise to a criterion in the case of Cayley graphs.

Corollary 3.11. Suppose Gd is a Cayley graph of a countable finitely generated
group G. Then HG is not closed if and only if #C(G) = ∞ and G has at least one
finite volume end.

Proof. If there are infinitely many ends, then the end space is known to be home-
omorphic to the Cantor set and hence there are no free graph ends. Theorem 3.9
completes the proof. �

Remark 3.12. By the Freudenthal–Hopf theorem, a Cayley graph of a countable
finitely generated group has 1, 2 or infinitely many ends. Moreover, the number of
ends is independent of the choice of the finite generating set. By Hopf’s theorem,
Gd has exactly two ends if and only if G is virtually infinite cyclic. The classification
of finitely generated groups with infinitely many ends is due to J. R. Stallings (see,
e.g., [11, Chapter 13]). In particular, if G is amenable, then it has finitely many
ends (actually, either 1 or 2) and hence the Gaffney Laplacian is always closed for
Cayley graphs of amenable groups.

Remark 3.13. The above considerations shed more light on the results obtained
in [18].

(i) First of all, combining (3.5) with (3.9) and Theorem 3.9(i) we obtain one
of the main results in [18], Theorem 4.1, on the deficiency indices of the
Kirchhoff Laplacian:

n±(H0) ≥ #C0(G), (3.17)

with equality if and only if either #C0(G) = ∞ or dom(H) ⊂ H1(G).
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(ii) It is straightforward to see that in the case when G has finitely many finite
volume ends, #C0(G) < ∞, the triplet Π = {C#C0(G),Γ0,Γ1}, where the
mappings Γ0,Γ1 : dom(H) ∩H1(G) → C#C0(G) are defined by
Γ0 : f 7→

(
f(γ)

)
γ∈C0(G)

, Γ1 : f 7→
(
∂nf(γ)

)
γ∈C0(G)

, (3.18)

(see Prop. 6.6 and Lemma 6.9 in [18, §6]) is a boundary triplet3 for the
Gaffney Laplacian HG. This also implies the description of Markovian and
finite energy extensions of H0 obtained in [18, Theorem 6.11].

4. Examples

The case not covered by Theorem 3.9 is when G has infinitely many finite volume
free ends, however, all non-free ends have infinite volume. Moreover, there is one
more problem: it is not clear what is the closure of HG if it is not closed. We begin
with the following result.

Proposition 4.1. Let G contain a sequence of connected subgraphs (Gn) such that
(a) limn→∞ vol(Gn) = 0, and
(b) #∂Gn < #C(Gn) for all n ≥ 0.

Then HG is not closed.

Proof. It is easy to see that properties (a) and (b) are exactly the ones used in the
proof of Theorem 3.9(ii) (in the case of a free finite volume end #∂Gn < ∞ and
#C(Gn) = #C0(Gn) = ∞ for all n ≥ 0) and hence the proof of Proposition 4.1 is
literally the same and we leave it to the reader. �

Remark 4.2. In fact, one can replace (a) in Proposition 4.1 by the weaker as-
sumption:

(a’) supn vol(Gn) < ∞ and limn diam(Gn) = 0,
where diam(Gn) is the diameter of Gn, i.e., the length of the “longest” path in Gn.

Proposition 4.1 enables us to construct graphs without finite volume non-free
ends, however with the corresponding Gaffney Laplacian HG being not closed.

Example 4.3. Take a path graph P0 = (Z≥0, | · |) equipped with some positive
lengths and attach to each vertex vn ∈ Z≥0 an infinite rooted graph Gn. If each Gn

has at least two ends (e.g., each Gn consists of two rooted antitrees joined at the
root vertices) and lim infn vol(Gn) = 0, then HG is not closed (see Figure 1).

G0 G1 G2

Figure 1. Z≥0 with attached graphs Gn.

3For definitions and basic properties we refer to, e.g., [24, Chapter 14] or [8, Appeendix A].
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Remark 4.4. If one of the conditions (a), (a’), or (b) fails to hold, then the
corresponding Gaffney Laplacian may or may not be closed. Indeed, consider the
graph depicted on Figure 1. Assuming that each Gn has finitely many graph ends
and finite total volume, the Gaffney Laplacian Hn on Gn is closed, which is further
equivalent to the validity of Sobolev-type inequality (3.16) with some constant
Cn > 0, n ≥ 0. Also one has similar inequalities on every edge of a path graph,
however, the corresponding constants do depend on the edges lengths (see, e.g.,
[17, Chapter IV.2]). When we “glue” the graphs (Gn) and edges of a path graph,
the space H1(G) is a subspace of the direct sum of H1 spaces and hence if all the
constants admit a uniform upper bound, then (3.16) would trivially hold true on G
(e.g., take all Gn being identical and assume that the path graph is equilateral).

Obtaining a complete answer in the case of a metric graph depicted on Figure 1
seems to be an interesting and nontrivial problem.

In conclusion we would like to show that for a large class of metric graphs the
closure of the Gaffney Laplacian may coincide with the maximal Kirchhoff Laplacian
(which is also equivalent to the fact that H0 = HG,min).

Example 4.5 (Radially symmetric trees). Let G = T be a radially symmetric
metric tree: that is, a tree T with a root o such that for each n ≥ 0, all vertices
in the combinatorial sphere Sn have the same number of descendants bn ∈ Z≥2

and all edges between Sn and Sn+1 have the same length `n ∈ (0,∞). Clearly, a
radially symmetric tree T is uniquely determined by the sequences (bn) and (`n).
The assumptions imply that T has uncountably many ends. Define

µn =
n∏

k=0

bk, tn =
n−1∑
k=0

`k,

for all n ≥ 0. Notice that (T , %) is complete exactly when L := limn→∞ tn = ∞.

Lemma 4.6. Let G = T be a radially symmetric tree. The corresponding Gaffney
Laplacian HG is closed if and only if

vol(T ) =
∑
n≥0

µn`n = ∞. (4.1)

If vol(T ) < ∞, then the closure of HG coincides with the maximal Kirchhoff Lapla-
cian H, HG 6= HG = H.

Proof. It is well-known (see, e.g., [4, 26]) that in the radially symmetric case H is
self-adjoint if and only if vol(T ) = +∞. In particular, in this case all four operators
in (3.5) coincide and hence HG = H∗

G is closed. If T has finite volume, then by
Corollary 3.10 the Gaffney Laplacian HG is not closed. Thus we only need to prove
the second claim.

Since vol(T ) < ∞, the Friedrichs extensions HD has strictly positive spectrum
(e.g. [19, Corollary 3.5]) and hence

dom(H) = dom(HD)u ker(H).

However, dom(HD) ⊆ dom(HG) and it suffices to show that ker(H) ⊆ dom(HG).
According to [4, 22] (see also [26, Section 7] and [3]), the Kirchhoff Laplacian on a
radially symmetric trees H is unitarily equivalent to

H̃ = Hsym

⊕
n≥0

Hn ⊗ Iµn−µn−1
, (4.2)
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where the operators Hsym and Hn in (4.2) are Sturm–Liouville operators defined
by the differential expression

τ = − 1

µ(t)

d

dt
µ(t)

d

dt
, (4.3)

however, in different L2 spaces: Hsym acts in L2([0,L);µ) on the domain

dom(Hsym) =
{
f ∈ L2([0,L);µ)| f, µf ′ ∈ AC([0,L]), τf ∈ L2([0,L);µ); f ′(0) = 0

}
,

and Hn, n ≥ 0 are defined in L2([tn,L);µ) on the domain

dom(Hn) =
{
f ∈ L2([tn,L);µ)| f, µf ′ ∈ AC([tn,L]), τf ∈ L2([tn,L);µ); f(tn) = 0

}
.

The weight function µ : [0,L) → [0,∞) is explicitly given by

µ(s) =
∑
n≥0

µn1[tn,tn+1)(s), s ∈ [0,L). (4.4)

By (4.2), ker(H) can be decomposed via the kernels of Hsym and Hn. Notice that
ker(Hsym) = span{1[0,L)} and ker(Hn) = span{gn}, where gn is given by

gn(x) =

∫ x

tn

1

µ(s)
ds, x ∈ [tn,L).

With respect to the decomposition (4.2), every gn as well as 1(0,L) define a function
in ker(H). In particular, 1(0,L) gives rise to 1T , which is clearly in H1(T ). Since∫ ∞

tn

|g′n(x)|2µ(x)dx =

∫ ∞

tn

dx

µ(x)
=

∞∑
k=n

`k
µn

< ∞,

according to [22, Theorem 3.1] (see also [26, equation (3.12)]), the other functions
are also in H1(T ). Thus ker(HG) is dense in ker(H), which completes the proof. �

Remark 4.7. Radially symmetric trees are a particular example of the so-called
family preserving metric graphs (see [3] and also [2]). Employing the results from
[3] (and also assuming no horizontal edges), it is in fact possible to show that for
family preserving metric graphs H0 = HG,min and hence either HG is closed (which
holds exactly when the corresponding metric graph either has infinite volume, and
hence H0 is self-adjoint [18, Remark 4.12], or it has finite volume and finitely many
ends) or its closure coincides with the maximal Kirchhoff Laplacian.
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