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Abstract

The goal of this thesis is to present some new results and techniques related to the non-
linear steepest descent method for Riemann–Hilbert problems. The first application deals
with the long-time asymptotics of solutions to the Korteweg–de Vries equation with steplike
initial data. We discuss an ill-posedness of the associated matrix problem and construct the
necessary singular global parametrix solution in order to perform the asymptotic analysis.
This construction is then further explicated by formulating the global parametrix problem as
a scalar Riemann–Hilbert problem on the complex torus. This approach reduces the explicit
construction of the global parametrix solution to finding quasiperiodic meromorphic func-
tions with prescribed poles. We also present an alternative solution to the aforementioned
ill-posedness, which does not rely on the existence of a matrix solution and uses a vector
solution instead. This approach is based on Fredholm theory of singular integral operators
of Cauchy-type.

The second part of the thesis deals with local parametrix problems, which comprise
another class of auxiliary Riemann–Hilbert problems frequently appearing in the context of
the nonlinear steepest descent method. We discuss a novel approach, which granted certain
a priori estimates, makes these local problems superfluous. As an application we study the
Plancherel–Rotach asymptotics for a class of orthogonal polynomials on a finite interval. The
corresponding weight functions lack certain analytic continuation properties, which makes
the usual formulation of the local parametrix problems impossible. However, using our new
technique we are able to perform the nonlinear steepest descent analysis rigorously, without
relying on the formulation or solvability of any local parametrix problems.
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Zusammenfassung

Das Ziel der vorliegenden Arbeit ist die Präsentation einiger neuen Resultate und Ver-
fahren im Zusammenhang mit der Deift–Zhou Methode für Riemann–Hilbert Probleme. Die
erste Anwendung beschäftigt sich mit der langzeit Asymptotik von Lösungen der Korteweg–
de Vries Gleichung mit stufenartiger Anfangsbedingung. Wir diskutieren das dazugehörige
Matrix Problem und konstruieren die notwendigerweise singuläre globale Parametrix Lösung.
Diese Konstruktion wird näher erläutert, indem das dazugehörige globale Parametrix Prob-
lem als ein Riemann–Hilbert Problem auf dem Torus formuliert wird. Diese Vorgehensweise
erlaubt es uns die explizite Konstruktion der globalen Parametrix Lösung auf das Finden
von meromorphen quasiperiodischen Funktion mit vorgegebenen Polen zurückzuführen. Wir
präsentieren auch einen alternativen Zugang bei der auf eine Matrix Lösung zu gänze
verzichtet wird. Diese Methodik basiert auf der Fredholm Theorie für singuläre Integralop-
eratoren.

Der zweite Teil dieser Dissertation behandelt lokale Parametrix Probleme, welche eine
weitere Klasse von Riemann–Hilbert Problemen darstellen, die in Anwendungen häufiger
vorkommen. Wir diskutieren eine neue Angehensweise bei der, mit Hilfe von a priori
Schätzungen, diese Probleme überflüssig gemacht werden. Als Anwendung behandeln wir
die Plancherel–Rotach Asymptotik für eine bestimmte Klasse von orthogonalen Polynomen
auf einem endlichem Intervall. Die dazugehörige Gewichtsfunktion kann dabei bestimmte
Regularitätsbedingungen nicht erfüllen, was dazu führt, dass die gängige Formuliereng eines
lokalen Parametrix Problems unmöglich wird. Mit unserer neuen Methodik können wir je-
doch diese Schwierigkeit umgehen und die Deift–Zhou Analyse rigoros angewenden, ohne
das lokale Parametrix Problem zu formulieren.
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1. Introduction

1.1. Riemann–Hilbert problems. The term Riemann–Hilbert problem (R-H) was origi-
nally reserved for Hilbert’s twenty-first problem on his famous list of unsolved mathematical
problems, published at the turn of the centuries [47].1 In a nutshell, it asks whether any given
monodromy group of the fundamental group of a punctured Riemann sphere can be realized
as the monodromy group of a Fuchsian linear system. This problem has a fascinating his-
tory. A variation of Hilbert’s problem was solved a�rmatively by Plemelj [70] in 1908 and
believed to be equivalent to the original version. However in 1989, Bolibruch [9], [10] found a
counterexample implying a negative solution to Hilbert’s twenty-first problem. We will not
go into more details on the early history of R-H problems or the monodromy problem for
Fuchsian systems, referring instead to [6]. Let us just mention that the Sokhotski–Plemelj
formula for singular Cauchy integrals, first shown by Sokhotski [76] and rediscovered by
Plemelj during his study of Hilbert’s twenty-first problem, remains of central importance in
R-H theory to this day.

The crucial development for us will be the nonlinear steepest descent method for R-H
problems, formulated by Deift and Zhou in their seminal paper [22] on the modified Korteweg
de–Vries equation (mKdV). Since then, it has developed into an established method with
applications in various fields, among others integrable wave equations ([15], [21], [22], [23]),
random matrix theory ([8], [14], [16], [18], [58]) and Painlevé transcendents ([24], [35], [38,
Ch. 8]). The general approach can be summarized in three steps as follows:

I. The original R-H problem is deformed so that the oscillatory terms in the jump
matrices become exponentially decaying.

II. The exponentially decaying terms are ignored leading to an explicitly solvable matrix-
valued global parametrix R-H problem.

III. In the vicinity of stationary points of the phase function, local parametrix R-H
problems are solved explicitly.

The global and local parametrix solutions glued together lead to a uniform approximation of
the original R-H problem, which implies an asymptotic formula for the quantity of interest.

The present thesis contains applications of the nonlinear steepest descent method, for
which one of the above steps becomes problematic. The first three papers [30], [66], [68]
deal with a R-H problem related to the Korteweg–de Vries (KdV) for which the associated
global parametrix problem, which will be referred to as the model problem, is not always
solvable. In particular, step II can only be partially performed. Two strategies around this
issue are presented in the two papers [30] and [66], with [68] o↵ering an alternative point of
view by reformulating the model problem as a scalar-valued R-H problem on the torus.

The final paper [67] deals with instances where step III concerning local parametrix
problems cannot be performed. Instead, it presents an alternative approach based on a
priori estimates, such that the local parametrix problems can be skipped altogether. We
also apply our method to obtain improved estimates on the Plancherel–Rotach asymptotics
of orthogonal polynomials with a new class of weight functions.

In the following we give a short account of the two aforementioned topics, for which we
use the nonlinear steepest descent method in this thesis: the KdV equation and Plancherel–
Rotach asymptotics.

1.2. The Korteweg–de Vries equation. This nonlinear wave equation given by

qt(x, t) = 6q(x, t)qx(x, t)� qxxx(x, t), (x, t) 2 R⇥ R+,

was first described by Boussinesq [11] and independently by Lord Rayleigh [71] in the 1870s
to model shallow water waves and solitons. The latter were first experimentally observed by
Russell in 1834, who gave a detailed account in [72]. The equation is named after Korteweg

1Riemann’s contributions are less documented and more speculative, see [6, p. 7]
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and de–Vries [54] who rediscovered and analysed it in 1895. For a more in-depth account of
the early history of the KdV equation see [51].

Interest in the KdV equation grew after Zabusky and Kruskal [56] observed using numer-
ical simulations2 that nonlinearly interacting KdV solitons pass through each other without
changing their shape. Gardner et al. [39] explained this phenomenon by introducing a new
method to solve the KdV equation with fast decaying initial data via the scattering trans-
form. The idea is to regard the initial data as a potential of a one-dimensional Schrödinger
operator. Then, the direct scattering transform linearizes the KdV equation, meaning that
the KdV flow translates to a linear evolution of the scattering data. As this method is
analogous to solving linear di↵erential equation via the Fourier transform, the scattering
transform is also known as the nonlinear Fourier transform. For an account of the scatter-
ing transform for one-dimensional Schrödinger operators see [20].

Zakharov and Faddeev [33] noted that the KdV equation can be understood as an infi-
nite dimensional completely integrable Hamiltonian systems with the scattering transform
playing the role of a canonical transformation mapping physical coordinates to action-angle
variables. In particular, the KdV equation has an infinite number of conserved quantities
(see [40] for a simple proof using the Miura transform). Moreover, Lax [60] rewrote the KdV
equation using a Lax pair leading to the discovery of an infinite hierarchy of KdV equations.
Subsequently, Zakharov and Shabat showed in [75] that the Lax pair approach can also
be used for the nonlinear Schrödinger (NLS) equation by introducing the Zakharov–Shabat
system. More PDEs have been found to be integrable since, many of which are special cases
of the AKNS system [1]. Further reading on this topic can be found in [4], [7], [32], [42],
[59] and references therein.

While integrability is of great interest by itself, the natural question emerged whether the
scattering transform can be used to compute the long-time asymptotics of solution to the
KdV equation and other integrable equation. The first results in this direction were obtain
by Ablowitz and Newell [2], Manakov [61] and Shabat [73] in 1973. Based on the work of
Zakharov and Manakov [62], Ablowitz and Segur [3] determined the leading asymptotics for
solutions of the KdV, mKdV and sine-Gordon equations with rapidly decaying initial data
and no solitons. These asymptotics were extended for the KdV equation to all orders by
Buslaev and Sukhanov [12].

R-H theory entered the picture with the work of Its [48], who reformulated the aforemen-
tioned approach by Manakov [61] as a R-H problem. He obtained the long-time asymptotics
for solutions of the NLS equation with decaying initial data by solving explicitly a model
isomonodromy problem involving the parabolic cylindrical functions. However, this method
leads in the case of other integrable equations to monodromy problems related to the classical
Painlevé transcendents (see [50]), for which no explicit solutions of the associated isomon-
odromy problem were known. The next breakthrough came from the work of Deift and Zhou
who introduced in [22] the nonlinear steepest descent method, which analogously to the clas-
sical steepest descent method allows for the systematic extraction of leading asymtptotics
from oscillatory R-H problems. Shortly afterwards, these methods were applied to the KdV
equation in the collisionless shock region with decaying initial data [21]. The associated R-H
formulation of the KdV equation was obtained by Shabat [74]. For a more detailed survey
on the early developments of R-H techniques applied to integrable PDEs see [15].

A detailed discussion of the KdV asymptotics in the soliton and similarity regions using
the nonlinear steepest descent method is given by Grunert and Teschl in [44]. The authors
observed that the associated vector R-H problem can have nonunique solutions. To guarantee
uniqueness an additional symmetry condition on the R-H solution was introduced. Note that
the issue of uniqueness is more subtle for the KdV equation than for most other integrable
PDEs, because the associated R-H problem is vector valued instead of matrix valued. This
feature plays an important role in the first three papers of this thesis [30], [66], [68].

More recently, there has been interest in the long-time asymptotics for solutions of the
KdV equation with steplike initial data. Because of Galilean invariance, it su�ces to consider

2A related phenomenon was already observed by Fermi et al. [34] and led to the Fermi-Pasta-Ulam-
Tsingou problem which can be explained by the reversible interactions of KdV solitons observed by Zabusky
and Kruskal.
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the two cases

lim
x!�1

q0(x) = ±c2, c > 0,

where q0 denotes the initial data which decays at +1. Here, the + sign corresponds to a
rarefaction wave analyzed in [5] and the � sign to a shock wave analyzed in [27] and [28].
For the necessary scattering theory for steplike potentials see [29], [31]. The interesting case
for us will be that of the shock wave in the transition region [27, Sect. 4], also called the
elliptic wave region. That solutions indeed have asymptotically the form of a modulated
elliptic wave was first shown by Gurevich and Pitaevskii [45], [46] for the case of a shock dis-
continuity initial data and further analyzed with the help of the inverse scattering transform
by Khruslov [52], [53]. The analogous problem for the mKdV equation was studied through
the nonlinear steepest descent method in [55]. Recently, modulated elliptic waves appeared
in the asymptotic analysis of a KdV soliton gas in [43], where the authors encountered the
same ill-posedness of the global parametrix problem as the one we describe in [30].

In [30], [66] and [68] we take a closer look at the elliptic wave region in the KdV shock
case. While the expected asymptotics were announced in [27], the rigorous justification was
given in [30]. The papers [66] and [68] are follow-up work motivated by the aforementioned
ill-posedness of the global parametrix problem.

1.3. Plancherel–Rotach asymptotics. Plancherel–Rotach asymptotics refer to asymp-
totics of orthogonal polynomials as the degree n goes to infinity, scaled by the largest zero
(see [13], [19], [77]).3 They have been first studied for Hermite polynomials by Plancherel
and Rotach in [69] and since then extended to a wide class of orthogonal polynomials, see
for example [8], [17], [18], [57]. The case of the orthogonality measure having support on
the unit interval or unit circle has been studied in great generality by Bernstein and Szegő,
and can be found in Szegő’s book on orthogonal polynomials [77, Ch. 12].

The R-H formulation for orthogonal polynomials was introduced by Fokas et al. in [36],
[37] in the early 90s. Some of its first applications to the study of large degree asymptotics
of orthogonal polynomials were done by Bleher and Its [8] and Deift et al. [17], [18]. Study-
ing such asymptotics was motivated by the Wigner–Dyson–Mehta universality conjecture in
random matrix theory in genera (see [26], [64], [78]). It states that the local eigenvalue sta-
tistics are determined solely by the symmetry class of the underlying matrix ensemble. Here,
one needs to distinguish between the three classes of orthogonal, unitary and symplectic en-
sembles which display increasingly strong eigenvalue repulsion, as pointed out by Dyson in
[26].4 For a standard reference on the Wigner–Dyson–Mehta conjecture and random matrix
theory in general consult [65].

The connection to orthogonal polynomials was discovered by Gaudin and Mehta [41],
[63]. They showed that eigenvalue correlations can be characterized through the Christo↵el–
Darboux formula for orthogonal polynomials. This implies that questions regarding eigen-
value universality can be reduced to Plancherel–Rotach asymptotics of orthogonal polyno-
mials. A self-contained exposition of this method can be found in Deift’s book on orthogonal
polynomials and random matrix theory [14].

The key paper for our purposes is by Kuijlaar et al. [57]. There, the authors derive via
the nonlinear steepest descent method a series expansions in the degree n for orthogonal
polynomials and related quantities. The associated orthogonality measure is an analytic
perturbation of the classical Jacobi weight function. The R-H analysis is based on [18]
where the case of exponential weight functions was studied, while the global parametrix
solution is constructed in terms of the Szegő function [77, Ch. 10]. Interestingly, while the
Szegő functions determines the leading term in the series expansion of the polynomials, all
the other terms are explicitly computable from the local parametrix solution given in terms
of Bessel functions. In a follow up work [58], these results are used to show bulk and edge
universality for the corresponding unitary ensemble.

The final paper presented in this thesis follows the nonlinear steepest descent analysis
performed in [57]. The main di↵erence is the class of admissible weight functions, which

3In our case of the orthogonality measure having finite support, there is no need for scaling.
4This classification has been further extended to so-called ’� ensembles’, see [25] and references therein.
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has implications for the associated local parametrix problems and the aforementioned series
expansion. While bulk universality remains unchanged, the choice of weight functions has
a strong e↵ect on edge universality.

1.4. Outline of the thesis. As already mentioned, the main focus of the thesis is on R-H
problems that have to be explicitly solved in the framework of the nonlinear steepest descent
method. Indeed, the first three papers ([30], [66], [68]) concerning the KdV equation will
deal with the global parametrix problem, also referred to as the model problem. The final
paper is focused on local parametrix problems.

The four papers are summarized in more detail below and listed as chapters of the present
thesis. Note that [30] has been co-authored by Iryna Egorova and [30], [68] by Gerald Teschl.
The underlying mathematical theory is based on the work of countless researchers over the
past few decades. Thus, it is unavoidable that some important contributions will be over-
looked, for which the author sincerely apologizes.

1. Asymptotics of the Korteweg–de Vries shock waves via the Riemann–
Hilbert approach,
(joint with I. Egorova and G. Teschl), in preparation.
The first paper deals with the long-time asymptotics of solutions to the KdV equa-
tion with steplike initial data in the elliptic wave region and justifies rigorously
Theorem 5.1 in [27] (see also [28]). As explained in Section 3, the main obsta-
cle in a straightforward application of the nonlinear steepest descent method is an
ill-posedness of the matrix model problem. In fact, while the holomorphic vector
solution containing the KdV asymptotics is constructed explicitly in Section 5, a
second linearly independent holomorphic solution fails to exist for certain arbitrary
large times t. The specific conditions under which such ill-posedness occurs can be
found in Theorem 3.3.

The existence of a holomorphic matrix valued solution to the model problem is
necessary for matching with the local parametrix solutions around the stationary
points of the phase function and thus is an integral part of the nonlinear steepest
descent method. Similarly as in [43], we construct in Section 6 a second linearly
independent meromorphic solution to the vector R-H model problem with a simple
pole at the origin. It turns out that due to certain symmetry conditions imposed
on the R-H solution, the pole becomes removable in the final analysis involving a
small-norm R-H problem. This allows us to extract asymptotics for solutions of
the KdV equation with steplike initial data in the elliptic wave region, uniformly as
t ! 1. As announced in [28], the KdV solutions converge to a modulated elliptic
wave related to a genus one compact Riemann (see [45], [46], [49]).

2. Parametrix problem for the Korteweg–de Vries equation with steplike
initial data,
submitted.
The second paper deals also with the R-H analysis of solutions to the KdV equation
with steplike initial data in the elliptic wave region. The ill-posedness of the model
matrix R-H problem discussed in the first paper [30] raises the natural question
whether instead of the matrix solution a vector solution would su�ce. This is
further supported by the fact, that the symmetric vector solution already contains
the desired asymptotic information.

To address this question we use the singular integral formulation for R-H prob-
lems, summarized in Section 4. However, instead of showing invertibility of the
associated singular integral operators via a Neumann series, we use the fact that
these operators are Fredholm of index 0 (see [79]). In particular, unique solvability
of such a singular integral equation implies invertibility of the underlying operator.
This insight allows us in Section 5 to directly approximate the exact R-H solution
by the vector model and parametrix solutions glued together. Hence, we avoid
the formulation of a small-norm R-H problem, which requires the construction of
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matrix-valued model and parametrix solutions. In the appendix we also state an
abstract result, generalizing the approach presented in the main text.

3. A scalar Riemann–Hilbert problem on the torus: Applications to the
KdV equation,
(joint with G. Teschl), in preparation.
This is a brief article motivated by the first paper [30] on the KdV equation with
steplike initial data. In it we present an alternative approach to constructing mero-
morphic vector solutions to the model problem, by formulating it as a scalar R-H
problem on the complex torus. As the scalar jump function is just a phase, mero-
morphic solutions to this R-H problem correspond bijectively to quasiperiodic mero-
morphic functions. As finding these is a classical problem, we can easily write down
all possible meromorphic solutions in terms of ratios of Jacobi theta functions and
characterize them by a simple condition on their divisors.

This approach also allows us to deduce the form and uniqueness of the vector
model solution and simplifies the construction of singular matrix solutions.

4. Riemann–Hilbert theory without local parametrix problems: Applica-
tions to orthogonal polynomials,
submitted.
The final paper illustrates a new method for avoiding local parametrix problems
in the framework of the nonlinear steepest descent method. It is motivated by the
observation that the explicit construction of local parametrix solutions is often re-
quired for rigorous analysis, but does not contribute to the leading asymptotics (see
Section 6 in the first paper [30] for an explicit example). Central to our approach
are a priori estimates for the exact solution of the R-H problem that one tries to
approximate. The abstract framework is laid out in Section 2 and the general result
is summarized in Theorem 3.1.

We also demonstrate our method on a specific problem, namely the Plancherel–
Rotach asymptotics of orthogonal polynomials on the interval [�1, 1]. This part is
based on the paper [57] where the nonlinear steepest descent analysis is performed
for the R-H problem associated to a wide class of orthogonal polynomials. There, the
authors solve the local parametrix problems explicitly in terms of Bessel functions.

In our application the weight functions are not required to have an analytic con-
tinuation around the end points ±1. In particular, the local parametrix problem
cannot be formulated as in [57]. However, the a priori estimates needed for our
approach can be obtained, and thus we can nonetheless rigorously perform the non-
linear steepest descent analysis, without solving any local parametrix problems. The
resulting error estimates in the Plancherel-Rotach asymptotics can be found in The-
orem 4.4. We also comment on possible relations to edge universality in random
matrix theory.
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ASYMPTOTICS OF THE KORTEWEG–DE VRIES SHOCK

WAVES VIA THE RIEMANN–HILBERT APPROACH

IRYNA EGOROVA, MATEUSZ PIORKOWSKI, AND GERALD TESCHL

Abstract. This paper discusses some general aspects and techniques associ-
ated with the long-time asymptotics of steplike solutions of the Korteweg–de
Vries (KdV) equation via vector Riemann–Hilbert problems. We also elabo-
rate on an ill-posedness of the matrix Riemann–Hilbert problem for the KdV
case in the class of matrices with L2 integrable singularities. Furthermore,
we refine the asymptotics for the shock wave in the Whitham zone derived
previously and rigorously justify it for a more general class of initial data. In
particular, we clarify the influence of resonances and of the discrete spectrum
on the main asymptotical term.

1. Introduction

The nonlinear steepest descent (NSD) analysis for oscillatory Riemann–Hilbert
(R-H) problems is a versatile tool in asymptotic analysis. This procedure naturally
starts from a reformulation of the original scattering problem as a R-H factorization
problem. In most cases this will be a matrix R-H problem as these are typically
more convenient to analyze. Indeed, the fact that a nonsingular solution can be
used to cancel jumps on certain parts of the contour is a crucial trick which lies
at the heart of the theory. However, for some problems, most prominently the
Korteweg–de Vries equation

(1.1) qt(x, t) = 6q(x, t)qx(x, t)� qxxx(x, t), (x, t) 2 R⇥ R+,

it turned out that a vector R-H is the right choice. This is related to the fact
that even in the simplest case of a single soliton there is a nontrivial solution of
the associated vanishing problem (see [18]). However, this is in contradiction to
the classical uniqueness result for matrix R-H problems and shows that the matrix
problem cannot have a solution in this situation. The remedy, as pointed out in
[18], is to work with the vector R-H problem and impose an additional symmetry
condition to retain uniqueness.

Next, recall that the asymptotic analysis of such a R-H problem usually con-
sists of three steps: The first step deforms the problem in such a way that the
leading asymptotic contribution is revealed. In the second step the parts of the
jump which are expected not to contribute to the leading asymptotics are dropped,
yielding a model problem which then needs to be solved explicitly. In most cases,
it is possible to find a matrix solution to this model problem and hence the final
step, namely showing that the solution of the model problem indeed asymptotically
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Key words and phrases. Riemann–Hilbert problem, KdV equation, shock wave.
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approximates the solution of the original R-H problem, can be performed using the
well-established tools for matrix problems. However, for model problems leading to
explicit solutions in terms of Jacobi theta functions, finding a nonsingular1 matrix
solution is not always possible (see [3, Thm. 5.6], [2, Sect. 3], [16, Sect. 3])

The main purpose of the present note is to study in depth such a R-H problem
coming from the KdV equation, having only singular matrix model solutions for
certain exceptional values of the parameters x and t. Indeed for these values, the
initial and the model problems do not have invertible bounded matrix solutions with
admissible L2-integrable singularities in the points of discontinuity of the contour.
We will refer to this feature as the ill-possedness of matrix R-H problems for the
KdV equation.

The specific example that we will consider is the R-H problem associated with
the long-time asymptotical behaviour of the shock waves for the KdV equation.
The shock wave is the solution to the initial value problem (1.1), with initial data
q(x, 0) = q(x) satisfying:

(1.2)

⇢
q(x) ! 0, as x ! +1,
q(x) ! �c2, as x ! �1, c > 0.

We recall that the asymptotic behavior of the shock wave was first described on
a physical level of rigor in the pioneering work of Gurevich and Pitayevskii [19],
[20]. By applying the Whitham approach to the pure step initial data (q(x) = 0
for x > 0 and q(x) = �c2 for x  0), the authors derived the leading asymptotics
in terms of a modulated elliptic wave. For arbitrary steplike initial data (1.2) the
analogous asymptotic term was calculated in [11] and [13] using the NSD method.
In particular, it was shown that in the elliptic zone �6c2t < x < 4c2t the shock
wave is expected to be close to a modulated one gap solution of the KdV equation
in the limit of t ! 1. However, this has not been rigorously justified till now.

The main result of this paper is the completion of the asymptotic analysis for the
shock wave in the Whitham zone, in the framework of the standard NSD method.
Even though the inverse scattering transform for the KdV equation is given in terms
of a vector R-H problem, the NSD approach involves building a matrix solution to
the model R-H problem in order to match it with the local parametrix solutions.
Since the nonsingular matrix model solution does not exist for certain arbitrary
large pairs x and t, we will instead use a singular matrix model solution which,
despite its singular behaviour, can be used to bound the error term in the asymp-
totics, as shown [16, Sect. 3]. Note that for decaying initial data or rarefaction
waves, meaning q(x) ! 0 as x ! +1 and q(x) ! c2 as x ! �1, the nonsingular
matrix model solutions always exist (see [1], [18]).

As for the shock wave case, to characterize the pairs (x, t) for which the non-
singular matrix model solution fails to exist, we must recall the trace formula for
a finite gap KdV solution. Denote by ⇠ = x

12t the slowly varying parameter and
consider values (x, t) satisfying

(1.3) ⇠ 2 I" := [�c2

2
+ ",

c2

3
� "],

for an arbitrary small " > 0. Then, as is shown in [19], [11], there exists a smooth

monotonously increasing positive function a = a(⇠) such that a(� c2

2 ) = 0 and

1In what follows nonsingular refers to the R-H matrix solution being invertible with at most
L2-integrable singularities on either side of the jump contour
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a( c
2

3 ) = c. This function characterizes the Whitham zone of the modulated elliptic
wave qmod(x, t, ⇠), which is the periodic one gap solution of the KdV equation on
the ray ⇠ = const. This one gap solution is associated with the spectrum

(1.4) G(⇠) := [�c2,�a2(⇠)] [ R+,

and with the initial Dirichlet divisor (�(0, 0, ⇠),±) defined via the scattering data of
the potential (1.2) by the formulas (5.16) and (4.6) later. Let �(x, t, ⇠) 2 [�a2(⇠), 0 ]
be the solution of the Dubrovin equations ([24, Ch. 12]) corresponding to the initial
value (�(0, 0, ⇠),±). Then the trace formula reads

qmod(x, t, ⇠) = �c2 � a(⇠)2 � 2�(x, t, ⇠).

We will show (see Remark 5.2) that the set of local minima of qmod(x, t, ⇠):

O(⇠) = {(x, t) : �(x, t, ⇠) = 0},
coincides with the set of points where the associated matrix model problem has no
nonsingular solution. Evidently, these pairs (x, t) appear for each ⇠ 2 I" and for
arbitrary large t.

In turn, the circumstances which lead to the ill-possedness of the initial R-H
problem associated with the shock wave for certain (arbitrary large) points (x, t)
are the following. Let �(k, x, t) be the right Jost solution to the underlying spectral
equation of the problem (1.1)–(1.2):

(1.5) L(t)y = � d2

dx2
y + q(x, t)y = k2y,

normalized as

(1.6) lim
x!+1

e�ikx�(k, x, t) = 1.

In Section 3 we show that if �(0, x, t) = 0 for a pair (x, t), then the nonsingular
matrix solution for the initial R-H problem does not exist. In connection with this
observation an additional spectral problem appears: to find conditions which would
guarantee that the right Jost solution associated with the shock wave is nonzero at
the edge of the continuous spectrum for su�ciently large x and t with (x, t) 2 D",
where

(1.7) D" := {(x, t) 2 R⇥ R+ :
x

12t
2 I"}.

It should be noted that the same condition �(0, x, t) = 0 leads to the ill-posedness
of the matrix R-H problem in the decaying case q(x, t) ! 0, x ! ±1. In this
case, assuming then the discrete spectrum is absent, the Jost solutions are positive
below the spectrum (cf. [15, Corollary 2.4]) and hence also at the boundary of
the spectrum k = 0 by continuity (note that the zeros of a nontrivial solution of
a Sturm–Liouville equation must always be simple). Thus a nonsingular matrix
solution always exists in this situation (this also follows from [27, Theorem 9.3]).
However, in the presence of the discrete spectrum this is no longer true.

Our main result is the following

Theorem 1.1. Let q(x, t) be the unique solution of the initial value problem (1.1)–
(1.2) with the initial data satisfying

(1.8)

Z +1

0
e⌘x(|q(x)|+ |q(�x) + c2|)dx < 1, x6q(i)(x) 2 L1(R), i = 1, ..., 4,
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for some positive ⌘ > 0. For any ⇠ 2 I" with " > 0 (see (1.3)), let a = a(⇠) 2 (0, c)
be defined implicitly by

(1.9)

Z ia

0

✓
k2 + ⇠ +

c2 � a2

2

◆r
k2 + a2

k2 + c2
dk = 0.

Let p0 = p0(⇠) be the point on the two-sheeted Riemann surface associated with
G(⇠) (see (1.4)), uniquely defined via the Jacobi inversion problem

(1.10)

Z p0

�a2

d�p
�(�+ c2)(�+ a2)

= i�(⇠),

with

(1.11) �(⇠) =

R ic
ia

2 log
���T (s)

QN
j=1

s�ij
s+ij

���+log| s+ic`
s |

|(s2+c2)(s2+a2)|1/2 ds
R ia
0 ((s2 + c2)(s2 + a2))�1/2 ds

� ⇡`

2
,

where:

• T (k) is the right transmission coe�cient for the initial data (1.8);
• �21 < ... < �2N is the discrete spectrum of the problem;
• ` = �1 if the initial data has a resonance at the point ic, and ` = 1 in the
general (nonresonant) case.

Let qmod(x, t, ⇠) be the periodic (one gap) solution to the KdV equation associated
with the spectrum G(⇠) and the initial Dirichlet divisor p0 = (�(0, 0, ⇠),±). Then
for all x ! 1, t ! +1 such that (x, t) 2 D", the following asymptotics is valid
uniformly with respect to ⇠ 2 I":

(1.12) q(x, t) = qmod(x, t, ⇠) +O(t�1).

Formula (1.12) is obtained in the framework of a standard NSD approach ap-
plied to a vector R-H problem. It includes some transformations (conjugations
and deformations) which lead to an equivalent R-H problem with the jump matrix
asymptotically close, as t ! 1, to an exactly solvable model R-H problem except
in small vicinities of two extreme points ±ia(⇠). The approach also involves the
construction of a proper matrix model solution and an associated matrix solution of
the local parametrix problems. However, when performing this analysis in the KdV
steplike case, it is essential to take into account some specific features of the vector
R-H problems. Note that unlike the matrix R-H problem, the proof of uniqueness
for a vector R-H problem is typically more sophisticated and depends on particular
properties of the jump matrix and of the contour, as well as on the class of admissi-
ble singularities for the solution. That is why it seems important for us to perform
NSD deformations and conjugations in a way that does not a↵ect this uniqueness.
To this end, in each transformation we impose additional symmetry assumptions
on the contour, on the jump matrix and on the solution itself, including the model
problem solution (see Remark 3.2).

The initial R-H problem solution (m1(k, x, t),m2(k, x, t)) is unique (see Theo-
rem 2.1) and satisfies the aforementioned symmetry assumption. This symmetry
requirement implies a symmetry of the ”error vector”, which in turn, allows us to
apply a new formula

(1.13) q(x, t) = lim
k!1

2k2 (m1(k, x, t)m2(k, x, t)� 1)
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for computing the leading term of the asymptotics, and this simplifies essentially
the final asymptotical analysis.

Note that the traditional formula which connects the potential q(x, t) with the
solution of the initial R-H problem (i)–(iii) is the following one:

(1.14)
@

@x
lim
k!1

2ik(m1(k, x, t)� 1) = q(x, t).

Formula (1.13) not only avoids the necessity to justify the di↵erentiation in (1.14)
in an asymptotical expansion but also allows to extract the asymptotics from the
model vector R-H solution in a shorter and more transparent way (see Section 4)
compared to [11], [13] and [16].

2. Well-posedness of the initial (meromorphic) vector R-H problem

In this section we recall the statement of the initial R-H vector problem for the
KdV shock wave (see [11]) and prove its well-posedness. Note in the present study
we weaken the decay conditions on the initial data compared to [11], where it is
assumed that

|q(x)|+ |q(�x) + c2| = O(e�(c+⌘)x), x ! +1, ⌘ > 0.

We choose the still quite restrictive condition (1.8) to avoid complications with
the analytical continuation of the scattering data in the framework of the NSD
method. However, (1.8) also guarantees the existence of the unique classical solution
q(x, t) for the Cauchy problem (1.1)–(1.2) (cf. [14, 17]) satisfying

(2.1)

Z +1

0
|x|(|q(x, t)|+ |q(�x, t) + c2|)dx < 1, t 2 R.

In turn, this means that the use of the inverse scattering transform for the formu-
lation of the respective R-H problem is well grounded.

We start with recalling some well known facts of the scattering theory for the
step-like Schrödinger operator (1.5) with emphasis on analytical properties of the
scattering data due to (1.8) and with a detailed description of the influence of
resonance on them.

The spectrum of the operator (1.5) with potential (2.1) consists of an absolutely
continuous part [�c2,1) plus a finite number of eigenvalues �2j 2 (�1,�c2),
1  j  N enumerated as in Theorem 1.1.

Let �(k, x, t) be the right Jost solution of (1.5) satisfying (1.6) and let �1(k, x, t)
be the Jost solution asymptotically close to the free exponent associated with the
left background:

(2.2) lim
x!�1

eik1x�1(k, x, t) = 1, k1 :=
p

k2 + c2.

Here k1 > 0 for k 2 [0, ic)r. The last notation denotes the right side of the cut
along the interval [0, ic]. Accordingly, k1 < 0 for k 2 [0, ic)l, the left side of the
cut. The left Jost solution admits the usual representation via the transformation
operator:

�1(k, x, t) = e�ik1x +

Z x

�1
K1(x, y, t)e

�ik1ydy,
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where K1(x, y, t) is a real-valued function with

(2.3) |K1(x, y, t)|  C

Z x+y
2

�1
|q(s, t) + c2|ds.

Note that the function �(k, x, t) is a holomorphic function of k in C+ := {k 2
C : Im k > 0} and continuous up to the real axis. It is real-valued for k 2 [0, ic],
and does not have a discontinuity on this interval. As for the function �1(k, x, t), it
is holomorphic in the domain C+ \ (0, ic] and continuous up to the boundary, where
[�1(k, x, t)]r = [�1(k, x, t)]l for k 2 [0, ic].

We observe that condition (1.8) together with (2.3) imply that for t = 0 the
second left Jost solution:

�̆1(k, x, 0) = eik1x +

Z x

�1
K1(x, y, 0)e

ik1ydy,

defined for k1 2 R, where �̆1 = �1, admits an analytical continuation into the
domain

V = {k : Re k1 2 [�c, c], 0 < Im k1(k) < ⌘}.
Note that V is a neighbourhood of the interval [ic, 0). Then the limiting values
satisfy

(2.4) [�̆1(k, x, 0)]r = [�1(k, x, 0)]l, [�̆1(k, x, 0)]l = [�1(k, x, 0)]r, for k 2 [0, ic].

For k 2 V introduce two Wronskians :

W (k) = �1(k, x, 0)�
0(k, x, 0)� �01(k, x, 0)�(k, x, 0);

W̆ (k) = �̆1(k, x, 0)�
0(k, x, 0)� �̆01(k, x, 0)�(k, x, 0),

where f 0 = @
@xf . Then by (2.4)

(2.5) [W (k)]r = [W̆ (k)]l = [W (k)]l = [W̆ (k)]r.

The Wronskian W (k) of the Jost solutions is in fact a holomorphic function in
C+ \ (0, ic] with simple zeros at points ij of the discrete spectrum. It is continuous
up to the boundary of the domain, with the only possible additional zero at the
point k = ic, the edge of the continuous spectrum. Unlike the case considered in
[11], we admit the possible resonance at the point ic, that is, we do not assume the
condition W (ic) 6= 0 corresponding to the nonresonant case. In the resonant case
the Wronskian has a square root zero at k = ic (cf. [12]).

In V introduce also the function

(2.6) �(k) :=
4kk1

W (k)W̆ (k)
.

From (2.5) it follows that its limiting values satisfy

(2.7) [�(k)]r = i|�(k)|, [�(k)]l = �i|�(k)|, k 2 [0, ic].

We also observe that

(2.8) �(k) = C(k � ic)`/2(1 + o(1)), C 6= 0, k ! ic,

where

` :=

(
1, if W (ic) 6= 0 (nonresonant case);

�1, if W (ic) = 0 (resonant case).
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Let R(k) be the right reflection coe�cient of the initial data satisfying (1.8) and let

�j := k�(ij , ·, 0)k�2
L2(R)

be the right normalizing constants for j = 1, ..., N . The set

(2.9) {R(k), k 2 R; |�(k)|, k 2 [0, ic]; ij , �j , j = 1, ..., N},
constitute the minimal set of the scattering data to reconstruct uniquely the solution
of the initial value problem (1.1)–(1.2) (cf. [5], Corollary 4.4)

Next, the Jost solutions (2.2) and (1.6) are connected by the scattering relation

(2.10) T (k, t)�1(k, x, t) = �(k, x, t) +R(k, t)�(k, x, t), k 2 R,
where T (k, t) = 2ik

W (k,t) and R(k, t) are the right transmission and reflection coe�-

cients. We use the notation T (k) = T (k, 0) and R(k) = R(k, 0). Observe that

(2.11) |T (k)|2 = k


�(k)p
k2 + c2

�

r,l

, k 2 [0, ic].

We define a vector-valued function m(k, x, t) = (m1(k, x, t),m2(k, x, t)), mero-
morphic in the spectral parameter k 2 C \ (R [ [�ic, ic]) for fixed x, t, as follows
(2.12)

m(k, x, t) =

⇢ �
T (k, t)�1(k, x, t)eikx, �(k, x, t)e�ikx

�
, k 2 C+ \ (0, ic],

m(�k, x, t)�1, k 2 C� \ [�ic, 0),

where �1 =

✓
0 1
1 0

◆
is the first Pauli matrix. The vector function m(k, x, t) evi-

dently has at most simple poles at the points ±ij . It is known that the following
asymptotical formula, for k ! 1, holds:

m(k, x, t) = (1, 1)� 1

2ik

✓Z +1

x
q(y, t)dy

◆
(�1, 1) +O

✓
1

k2

◆
.

This expansion allows us to extract the shock wave solution using formula (1.14).
However, as was mentioned in the introduction, the formula (1.13), which can be
computed using the well-known asymptotic formulas for the Weyl functions, is more
convenient.

Indeed, it is known that for k large enough both functions �(k, x, t) and �1(k, x, t)
do not vanish for all x and t. Thus,

m1(k, x, t)m2(k, x, t) = T (k, t)�(k, x, t)�1(k, x, t)

=
2ik

�0(k,x,t)
�(k,x,t) � �0

1(k,x,t)
�1(k,x,t)

=
2ik

m(k, x, t)�m1(k, x, t)
,

where m and m1 are the right and left Weyl functions corresponding to the potential
q(x, t). For k ! 1 we have (cf. [6]):

m(k, x, t) = ik +
q(x, t)

2ik
+

f(x, t)

4k2
+O(k�3),

m1(k, x, t) = �ik � q(x, t)

2ik
+

f(x, t)

4k2
+O(k�3).

Thus,

m1(k, x, t)m2(k, x, t)� 1 =
2ik

2ik + q(x,t)
ik +O(k�3)

� 1 =
q(x, t)

2k2
+O(k�4),
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which proves (1.13). ⇤
The following existence/uniqueness result is then valid:

Theorem 2.1. Let

• the potential q(x) satisfy (1.2) and (1.8);
• the set (2.9) be its right scattering data;
• ⌃ = R [ [ic,�ic] be the jump contour oriented left-to-right[ top-down;
• the phase function �(k) = �(k, x, t) be defined by the formula:

�(k) = 4ik3 + ik
x

t
, k 2 C.

Then m(k) = m(k, x, t) defined in (2.12) for all (x, t) 2 R ⇥ R+ is the unique
solution of the following vector Riemann–Hilbert problem:
Find a vector-valued function m(k), meromorphic away from ⌃, satisfying:

(i) The jump condition m+(k) = m�(k)v(k)

(2.13) v(k) =

8
>>>>>>>><

>>>>>>>>:

✓
1� |R(k)|2 �R(k)e�2t�(k)

R(k)e2t�(k) 1

◆
, k 2 R,

✓
1 0

i|�(k)|e2t�(k) 1

◆
, k 2 [ic, 0],

�1(v(�k))�1�1, k 2 [0,�ic];

(ii) the pole conditions

(2.14)

Resij m(k) = lim
k!ij

m(k)

✓
0 0

i�2j e
t�(ij) 0

◆
,

Res�ij m(k) = lim
k!�ij

m(k)

✓
0 �i�2j e

t�(ij)

0 0

◆
,

(iii) the symmetry condition

(2.15) m(�k) = m(k)�1, k 2 C \ ⌃,
(iv) and the normalization condition

(2.16) lim
!1

m(i) = (1 1).

(v) In addition, the function m(k) has the following behavior in a vicinity of
the point ic: If �(k) satisfies (2.8) with ` = 1 then m(k) has continuous
limits as k approaches ic from the domain C \ ⌃. If ` = �1 then one has

(2.17)
m(k) =

⇣
C1(x, t)(k � ic)�1/2, C2(x, t)

⌘
(1 + o(1)) C1C2 6= 0; or

m(k) = (C(x, t), 0) (1 + o(1)) as k ! ic.

At the point �ic the analog of condition (2.17) holds by symmetry (2.15).

Proof. The facts that m satisfies the jump condition (2.13) and the pole conditions
(2.14) are established in [11]. Note that the jump matrix on R also satisfies the
symmetry v(k) = �1(v(�k))�1�1. To prove uniqueness, assume first that m̃(k) and
m̂(k) are two solutions for the R-H problem (i)–(v). Then µ(k) := m̃(k) � m̂(k)
satisfies (i)–(iii), (v) and instead of (iv) we have

µ(k) = O(k�1), k ! 1.
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In C+ \ (0, ic] introduce the meromorphic function

F (k) = µ1(k)µ1(k) + µ2(k)µ2(k),

where µ1,2 are the components of µ. Then F (k) = O(k�2) as k ! 1. Note that
since the exact values of the constants C1, C2 and C in (2.17) are not specified, they
may be di↵erent for m̃ and m̂. Furthermore, since �k = k for k 2 iR, it follows
from the symmetry condition (iii) that for such k, µi(k) = µj(k), i 6= j. We thus
get F (k) = O((k� ic)�1/2) as k ! ic when ` = �1. For the nonresonant case ` = 1
the function F (k) has continuous limits everywhere on R[ [0, ic]. Let us denote for
simplicity Fr(k) and Fl(k) the limiting values of F from the right and left sides of
[0, ic], and F+(k) for the limiting values on the real axis from above. Then by the
symmetry condition (2.15) we get

F+(k) = µ1,+(k)µ1,�(k) + µ2,+(k)µ2,�(k),

Fr(k) = µ1,r(k)µ2,l(k) + µ2,r(k)µ1,l(k),

Fl(k) = µ1,l(k)µ2,r(k) + µ2,l(k)µ1,r(k).

The jump condition (2.13) implies

F+(k) = (1� |R(k)|2)|µ1,�|2 + |µ2,�|2 + 2i Im
⇣
R(k)e2t�(k)µ1,�(k)µ2,�(k)

⌘
,

(2.18)
Fl(k) = Re

⇣
µ1,l(k)µ2,l(k)

⌘
� i|µ2,l(k)|2|�(k)|e2t�(k),

Fr(k) = Re
⇣
µ1,l(k)µ2,l(k)

⌘
+ i|µ2,l(k)|2|�(k)|e2t�(k).

Note that �(k) 2 R for k 2 iR. From this and (2.18) it follows that

(2.19)
ReFl(k) = ReFr(k) = Re

⇣
µ1,l(k)µ2,l(k)

⌘
,

ImFl(k) = � ImFr(k) 2 R�.

The pole condition (2.14) is satisfied by the vector µ(k). Alongside with the sym-
metry property this implies

Resij F (k) = 2i�2j |µ2(ij)|2 2 iR+.

Let now ! > c be arbitrary large and let C! be the boundary of the domain
(C+ \ {k : |k| < !}) \ (0, ic]. We treat C! as a closed contour oriented counter-
clockwise. By Cauchy’s theorem

I

C!

F (k)dk = 2⇡i
NX

j=1

Resij F (k),

and since F (k) = O(k�2) as k ! 1, the integral over the upper semicircle will
asymptotically vanish as ! ! 1 and we get

Z

R
F+(k)dk +

Z ic

0
Fl(k)dk +

Z 0

ic
Fr(k)dk + 4⇡

NX

j=1

�2j |µ2(ij)|2 = 0.
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Taking into account (2.19), the real part of this integral reads

0 =

Z

R

�
(1� |R(k)|2)|µ1,�|2 + |µ2,�|2

�
dk + 2

Z c

0
|µ2,l(is)|2|�(is)|e2t�(is)ds

+ 4⇡
NX

j=1

�2j |µ2(ij)|2.

But |R(k)| < 1 for k 2 R \ {0}, and therefore all summands in the last formula are
non-negative. Thus, we obtain µ2(ij) = 0 (which implies that µ1(k) does not have
a pole at ij) and

µ2,�(k) = 0, for k 2 R; µ2,l(k) = 0, for k 2 [ic, 0]; µ1,�(k) = 0, for k 2 R.

From this and (2.13) it immediately follows that µ1,+(k) = µ2,+(k) = 0 and
µ2,r(k) = µ2,l(k) = 0 for k 2 [ic, 0]. Thus, the function µ2(k) is a holomorphic
function in C with µ2(k) ! 0 as k ! 1. By Liouville’s theorem µ2(k) ⌘ 0 in C.
In turn, this identity and formula (2.13) imply: µ1,r(k) = µ1,l(k) for k 2 [ic, 0].
Therefore, µ1(k) is also a holomorphic function in C vanishing at infinity, thus
µ1(k) ⌘ 0. This proves uniqueness.

It remains to verify (v). The case ` = 1 implies that the Wronskian W (k, t) of
the Jost solutions �(k, x, t) and �1(k, x, t) does not vanish at k = ic for all t (cf.
[13], formula (6.2)). This implies that T (k, t) is bounded and continuous as k ! ic,
and the same is true for the components of the vector m.

If ` = �1 then W (ic, t) = 0. Now, if, in turn �(ic, x, t) 6= 0, then �1(ic, x, t) 6= 0
(otherwise the Wronskian would not have zero at k = ic). This proves the first line
of (2.17). If �(ic, x, t) = 0, then also �1(ic, x, t) = 0. Since W (k, t) = C̃(t)(k �
ic)1/2(1 + o(1)) and �1(k, x, t) = C̃1(x, t)(k� ic)1/2(1 + o(1)) as k ! ic, this proves
the second line of (2.17). ⇤

Theorem 2.1 guarantees the well-posedness of the initial meromorphic vector R-
H (IM R-H) problem for all (x, t) 2 R⇥R+. In the domain D" given by (1.7), (1.3)
where we intend to study and justify the asymptotics of its solution m(k, x, t) as
k ! 1, the IM R-H problem admits an equivalent holomorphic statement.

3. Holomorphic statement of the initial vector R-H problem

In this section we take a closer look at the ill-posedness of the associated matrix
R-H problem. Let a(⇠) be defined implicitly by (1.9), then as shown in [11]:

0 < a(�c2

2
+ ")  a(⇠)  a(

c2

3
� ") < c.

Recall that the discrete spectrum is denoted by �2j , j = 1, . . . , N , with c < N <
... < 1. Choose ⇢ > 0 su�ciently small, such that

(3.1)

⇢ <
1

4
min

⇢p
c2 + ⌘2 � c, N � c, a(�c2

2
+ "),

c� a(
c2

3
� "), min

j=1,..,N
|j�1 � j |, ⇢1

�
,

where ⌘ > 0 is the decay estimate from (1.8) and ⇢1 > 0 is defined implicitly by
formula (4.3) below. Note, that since k1 =

p
c2 + k2 and ⌘ >

p
c2 + ⌘2 � c, the
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reflection coe�cient R(k) and the function �(k) from (2.13) are well defined in the
domains

(3.2)
⌦R := {k : ⇢ > Im k > 0}, and

⌦� := {k : Im k 2 (0, c+ ⇢), |Re k| < ⇢} \ (0, ic]},
respectively, up to their boundaries.

Denote by
Dj := {k : |k � ij | < ⇢.}, j = 1, . . . , N

and by
Tj := @Dj = {k : |k � ij | = ⇢}, j = 1, . . . , N

the small nonintersecting contours around the points of the discrete spectrum ori-
ented counterclockwise. Let C := {k : Im k = ⇢} be the upper boundary of ⌦R

considered as a contour oriented from left to right. We observe that with our choice
of ⇢ (cf. (3.1))

dist (TN , ⌦�) > 2⇢, dist (ia
�
�c2/2 + "

�
, ⌦R) > 3⇢.

Introduce also the functions:

(3.3) P (k) :=
NY

j=1

k + ij
k � ij

, k 2 C; Q(k) :=

✓
k � ic

k + ic

◆ `
4

, k 2 C \ [�ic, ic];

where ` is as in Theorem 1.1 and Q(1) = 1.
Redefine now the solution m(k) = m(k, x, t) of the IM R-H problem as follows:

(3.4)

mini(k) =

8
>>>>>><

>>>>>>:

m(k)Aj(k) (P (k)Q(k))��3 , k 2 Dj , j = 1, .., N ;

m(k)A0(k) (P (k)Q(k))��3 , k 2 ⌦R;

m(k) (P (k)Q(k))��3 , k 2 C+ \ (⌦R [ [0, ic] [ [N
j=1Dj);

mini(�k)�1, k 2 C�,

where we denoted

Aj(k) =

 
1 � k�ij

i�2
j e

2t�(ij)

0 1

!
, A0(k) =

✓
1 0

�R(k)et�(k) 1

◆
, �3 =

✓
1 0
0 �1

◆
.

Introduce the contours in the lower half plane: C⇤ := {k : �k 2 C} oriented right-to
left, and T⇤

j := {k : �k 2 Tj}, j = 1, ..., N oriented counterclockwise. Define the
functions (cf. (3.2),(3.3)):

(3.5)
R(k) := R(k)P�2(k)Q�2(k), k 2 C;
X(k) := �(k)Q�2(k)P�2(k), k 2 ⌦�.

Note that

(3.6) X±(k) = ±i|X(k)|, k 2 [ic, 0].

Then we have the following

Lemma 3.1. For all (x, t) 2 D" the vector function mini(k) = mini(k, x, t) is the
unique solution of the following R-H problem:

Find a vector-valued function, holomorphic in the domain

C \ ⌃ini, ⌃ini := C [ C⇤ [ [j(Tj [ T⇤
j ) [ [ic,�ic]),
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satisfying

• the symmetry condition mini(�k) = mini(k)�1, k 2 C \ ⌃ini;
• the jump condition mini

+ (k) = mini
� (k)vini(k), k 2 ⌃ini, where

(3.7) vini(k) =

8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

 
1 0

R(k)e2t�(k) 1

!
, k 2 C,

 
exp( i`⇡2 ) 0

i|X(k)|e2t�(k) exp(�i`⇡
2 )

!
, k 2 [ic, i⇢],

0

@1 (k�ij)P
2(k)Q2(k)

i�2
j e

2t�(ij)

0 1

1

A , k 2 Tj ,

exp( i`⇡2 �3), k 2 [i⇢,�i⇢],

�1[vini(�k)]�1�1, k 2 [�i⇢,�ic],

�1[vini(�k)]�1, k 2 C⇤ [ [N
j=1T⇤

j .

• the normalizing condition mini(k) ! (1, 1) as k ! 1.
• at points ±ic it has at most fourth root singularities:
mini(k) = O(k ⌥ ic)�1/4 as k ! ±ic.

?

?

?

-

�

-

�

-

-

�

�

i⇢

�i⇢
r
r
ic

�icr

r
N

�N r

r

m

m
...

1

�1 r

r

m

m

...

TN

T1

T⇤
N

T⇤
1

r

r
C

C⇤

R.... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... ....

Figure 1. Jump contour ⌃ini

Proof. The proof is very similar to that one given in [11], with only one di↵erence:
we can use the identity R�(k) � R+(k) + i|�(k)| = 0 (Lemma 3.2, [11]) on the
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interval [�i⇢,�i⇢] and take into account the influence of the function Q(k). In
particular, we used that Q�(k)Q

�1
+ (k) = exp( i`⇡2 ), and Q+(k)Q�(k) = |Q2(k)| for

k 2 [ic,�ic]. ⇤
Since mini(k) is a piecewise holomorphic vector function, we call the problem

stated in Lemma 3.1 the initial holomorphic (IH) R-H problem. As already men-
tioned in the Introduction, the symmetry condition is crucial for uniqueness and
plays an essential role in the final asymptotical analysis. That is why, all transfor-
mations steps carried out to get from the initial R-H problem to an R-H problem
asymptotically close to an exactly solvable model vector R-H problem, should re-
spect the following symmetry conditions:

Hypothesis 3.2. Each vector R-H problem should satisfy:

• The jump contour ⌃ is symmetric with respect to the map k 7! �k;
• On C \ ⌃ the vector solution m(k) is holomorphic and satisfies m(�k) =
m(k)�1;

• Let L ⇢ ⌃ be a subcontour. We denote by L⇤ = {k : �k 2 L} ⇢ ⌃ its
inversion, if L⇤ has the orientation of the following type: when k moves
in the positive direction along L, then �k moves in the positive direction
along L⇤. In this case, the jump matrix v(k) of the jump problem

(3.8) m+(k) = m�(k)v(k), k 2 ⌃,

should satisfy det v(k) = 1 and the symmetry

(3.9) v(�k) = �1v(k)�1, k 2 L [ L⇤.

If the inversion of L has the opposite orientation, we denote it by (L⇤)�1.
For example, L = [ic, 0] and (L⇤)�1 = [0,�ic] are both oriented top-bottom.
In this case,

(3.10) v(�k) = �1v(k)
�1�1, k 2 L [ (L⇤)�1;

• The vector-function m(k) is continuous up to the boundary, except at the
node points of the contour (the ends and self intersections of ⌃, and a
finite number of points of discontinuity of the jump matrix), where fourth
root singularities are admissible;

• m(k) ! (1, 1) as k ! 1.

Evidently, the IH R-H problem formulated in Lemma 3.1 satisfies all these re-
quirements. Alongside with it, we can write down an analogous matrix R-H problem
with the same jump matrix vini(k) given by (3.7). This can be done in two ways.
Either by imposing a symmetry condition (see (3.14) below), or by the standard
normalization to the unit matrix I at infinity. Simultaneous use of both conditions
may seem excessive. In fact, we observe the following.

Let ⌃ ⇢ C be a union of finitely many smooth curves (finite or infinite) which
intersect in at most a finite number of points and all intersections are transversal
(this condition can of course be relaxed, but it is su�cient for the applications we
have in mind). We will also require ⌃ to be symmetric with respect to the inversion
k 7! �k.

Let now v(k) be a piecewise continuous bounded matrix function on ⌃ satisfying
(3.9) or (3.10), with det v(k) ⌘ 1. The points of discontinuity of the jump matrix,
together with the (finite) set of boundary points @⌃ and the self intersection points
of ⌃, are denoted by G. We assume that 0 /2 G.
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Finally, let H be the class of 2⇥ 2 matrix functions M(k) holomorphic in C \⌃,
which have continuous limits up to the boundary ⌃ \ G and have a limit as k ! 1
(avoiding ⌃). At points of G we allow singularities of the form:

(3.11) M(k) = O((k � )�1/4), as k !  2 G.
Now for an admissible M 2 H(⌃) we consider the following R-H factorization
problem

(3.12) M+(k) = M�(k)v(k), k 2 ⌃,
together with the normalization condition

(3.13) M(1) := lim
k!1

M(k) = I

and the symmetry condition

(3.14) M(�k) = �1M(k)�1, k 2 C \ ⌃.

Theorem 3.3. Suppose ⌃ ⇢ C is an admissible contour and v(k), k 2 ⌃ an
admissible matrix as specified above. Then the following propositions are valid:

(a) If a solution M 2 H(⌃) of (3.12) exists for which detM(1) 6= 0, then
M(1)�1M(k) solves (3.12)–(3.13), and every other solution of (3.12) is given
by M̃(k) = M̃(1)M(1)�1M(k) in this case. Moreover, detM(k) = detM(1).

(b) If (3.12) has a nonsingular, that is invertible solution from H(⌃), then every
solution M 2 H(⌃) of (3.12) satisfies the symmetry condition (3.14) provided
M(1) satisfies the symmetry condition. In this case M is of the form

M(k) =

✓
↵(k) �(k)
�(�k) ↵(�k)

◆
, M(1) =

✓
a b
b a

◆

with detM(1) = a2 � b2. If M is nonsingular then a+ b 6= 0.
(c) Suppose (3.12) has a nonsingular solution M satisfying (3.14). Then the vector

function m(k)

m(k) =
1

a+ b
(1, 1)M(k) =

1

a+ b
(↵(k) + �(�k), �(k) + ↵(�k)).

solves the same jump problem m+(k) = m�(k)v(k) and satisfies (2.15) and
(2.16). Moreover, in this case m is the unique solution of this problem with
admissible singularities of the type (3.11).

(d) Suppose the vector problem described in Remark 3.2 has a solution m which
satisfies the condition m±(0) = (0, 0). Then there is no invertible solution of
the problem (3.12), (3.14) in H(⌃).

Proof. (a). This follows similarly as in [7, Theorem 7.18].
(b). Let M(k) 2 H(⌃) be the solution of the problem (3.12)–(3.13). By (a) it
su�ces to show that M satisfies (3.14). To this end set M̃(k) = �1M(�k)�1. Then
M̃(1) = I and M̃(k) 2 H. Taking into account the symmetry of ⌃, for example,
(3.10), we see that

M̃+(k) = �1M�(�k)�1 = �1M+(�k)v�1(�k)�1

= �1M+(�k)�1�1v
�1(�k)�1 = M̃�(k)v(k).

Thus M̃(k) solves (3.12)–(3.13) and by uniqueness, M̃(k) ⌘ M(k). This proves
(3.14). The rest is straightforward.
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(c). By assumption we have a solution M as in (b) and hence one easily checks
that m satisfies (3.8), as well as (2.15) and (2.16). If m̃ is a second solution, then as
in (a) we see that (3.8) implies that c = m̃(k)M�1(k) is a constant vector. Hence
by (2.16) we see c = 1

a+b (1, 1).
(d). Suppose that there exists an invertible symmetric matrix M(k) satisfying
(3.12). Without loss of generality we can assume M(1) = I and hence by the
previous item our assumption implies m+(0) = (↵+(0) + ��(0),�+(0) + ↵�(0)) =
(0, 0). Consequently

M+(0) =

✓
↵+(0) �+(0)
�↵+(0) ��+(0)

◆

implying detM(k) = detM+(0) = 0. ⇤
In particular, item (d) implies that any technique relying on existence of a

bounded nonsingular matrix solution is bound to fail at all points in the (x, t)-
plane where m+(0) = (0, 0) holds. Recall now that the vector function (2.12) is the
unique solution of the IM R-H problem, making mini(k) the unique solution of the
IH R-H problem. After the transformation (3.4) the point k = 0 became an inner
point of the contour ⌃ini. Moreover, taking into account the scattering relation
(2.10) and the fact �(+0, x, t) = �(�0, x, t) = �(+0, x, t), it is straightforward to
check that

mini
± (0, x, t) =

⇣
�(±0, x, t)P�1(0)Q�1

± (0), �(±0, x, t)P (0)Q±(0)
⌘

= (�1)N�(0, x, t)
⇣
e±

i`⇡
4 , e⌥

i`⇡
4

⌘

Thus, if �(0, x⇤, t⇤) = 0 for arbitrary large (x⇤, t⇤) 2 D", then mini
± (0, x⇤, t⇤) = 0

and by Theorem 3.3, (d) we can talk about ill-posedness of the respective matrix
R-H problem. Moreover, even for the one-soliton (reflectionless, decaying) case this
occurs as pointed out in the discussion after Lemma 2.5 in [18].

4. From the IH R-H problem to the model R-H problem

Now we recall briefly the conjugation and deformation steps which lead to the
model problem solution in the domain D". As is shown in [11], (see also [13]) for

⇠ = x
12t 2 (� c2

2 ,
c2

3 ) the equality (1.9) generates an implicitly given positive smooth

function a(⇠), monotonously increasing such that a(� c2

2 ) = 0, a( c
2

3 ) = c. In the
domain C \ [ic,�ic] we introduce the function

(4.1) g(k) := g(k, x, t) = 12

Z k

ic

✓
k2 + ⇠ +

c2 � a2

2

◆r
k2 + a2

k2 + c2
dk.

Here we use the standard branch of the square root with the cut along R�.

Lemma 4.1. ([11]). The function g possesses the following properties

(a) g(k) = �g(�k) for k 2 C \ [ic,�ic];
(b) g�(k) + g+(k) = 0 as k 2 [ic, ia] [ [�ia,�ic];
(c) g�(k)� g+(k) = B as k 2 [ia,�ia], where B := B(⇠) = �2g+(ia) > 0;
(d) the asymptotical behavior

�(k, ⇠)� ig(k, ⇠) = O

✓
1

k

◆
.

holds as k ! 1.
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The signature table for the imaginary part of function g is shown in the following
figure:
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Figure 2. Sign of Im(g)

STEP 1. Let mini(k) be the unique vector solution of the IH R-H problem.
Redefine it by

(4.2) m(1)(k) := mini(k)e(itg(k)�t�(k))�3 .

Then m(1)(k) is a piecewise-holomorphic function in C which satisfies the symmetry

requirements of Remark 3.2 and solves the jump problem m(1)
+ (k) = m(1)

� (k)v(1)(k)
with

v(1)(k) =

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

 
1 0

R(k)e2itg(k) 1

!
, k 2 C,

 
eit(g+�g�)+ i`⇡

2 0

i|X(k)|eit(g++g�) e�it(g+�g�)� i`⇡
2

!
, k 2 [ic, i⇢],

 
1 hj(k, t)

0 1

!
, k 2 Tj , j = 1, .., N,

exp((�itB + i `⇡2 )�3), k 2 [i⇢,�i⇢],

�1[v(1)(�k)]�1�1, k 2 [�i⇢,�ic],

�1[v(1)(�k)]�1, k 2 C⇤ [ [jT⇤
j ,

where R(k) and X(k) are given by (3.5) and

hj(k, t) := hj(k, t, ⇠) = �i(k � ij)P
2(k)Q2(k)��2

j e�2t(�(ij)��(k))�2tig(k).

Since Im g(ij) < �� < 0 (cf. Figure 2), uniformly with respect to ⇠ 2 I", we
conclude that there exists ⇢1 > 0 such that

(4.3) max
j=1,..,N

sup
|k�j |⇢1

(|�(ij)� �(k)|+ Im g(k)) < �C(") < 0.

Taking into account (3.1), we prove

Lemma 4.2. The following estimate is valid uniformly with respect to ⇠ 2 I" 2

max
j

sup
k2Tj

|hj(k, t)| = O(e�C(")t).

2by C(") we will denote any positive constant with respect to k, ⇠, x and t
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Put now b := a�⇢. Recall that the smoothness of the initial data (1.8) up to the
6-th derivative implies that R(k) for k 2 R is a smooth function with R(k) = O(k�4)
as k ! ±1 (see [12, Thm. 4.1]). From item (c) of Lemma 4.1, (3.1) and the
signature table of g(k) we conclude that the following proposition is valid:

Lemma 4.3. Uniformly with respect to ⇠ 2 I"

kv(1)(k)� IkL1(C) + kv(1)(k)� IkL1(C) = O(e�C(")t),

kv(1)(k)� e(�itB+i⇡`
2 )�3kL1([0,ib]) = O(e�C(")t).

STEP 2. Our next conjugation step deals with a factorization of the jump
matrix on the set [ic, ia] [ [�ia,�ic]. To this end consider the following function
F (k) = F (k, ⇠), k 2 C \ [ic,�ic]:
(4.4)

F (k) := exp

(
w(k)

2⇡i

 Z ia

ic

f(s)

s� k
ds+

Z �ia

�ic

f(s)

s� k
ds� i�F

Z ia

�ia

ds

w(s)(s� k)

!)
,

where

w(k) =
p
(k2 + c2)(k2 + a2), k 2 C \ ([ic, ia] [ [�ia,�ic]), w(0) > 0,

(4.5) f(k) :=
log |X(k)|
w+(k)

, k 2 [ic,�ic],

and

(4.6) �F = �F (⇠) := 2i

Z ic

ia
f(s)ds

 Z ia

�ia

ds

w(s)

!�1

2 R.

Remark 4.4. Putting together (2.11), (3.5) and (3.3) we conclude that � = �(⇠)
given by (1.11) and �F given by (4.6), (4.5) are connected by

(4.7) � = �F � `⇡

2
.

Next, since X(k) = �(k)Q�2(k)P�2(k) has bounded non-vanishing values at
points ±ic, we get

Lemma 4.5 ([11],[26]). The function F (k) possesses the following properties:

(1). F (�k) = F�1(k) for k 2 C \ [ic,�ic];
(2). F+(k)F�(k) = |X(k)| for k 2 [ic, ia];
(3). F+(k) = F�(k)ei�F for k 2 [ia,�ia];
(4). F (k) ! 1 as k ! 1;
(5). F+(k)F�(k) = (F+(�k)F�(�k))�1 for k 2 [�ia,�ic];
(6). F (k) has finite limits as k ! ±ic.

Taking into account these properties and property (2.7) we observe that the
matrix v(1)(k) can be factorized on [ic, ia] as follows:

v(1)(k) = G�(k)

✓
0 i
i 0

◆
G+(k)

�1,
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where (cf. (3.2), (3.5), (3.3), (2.6)):

G(k) =

 
F�1(k) �F (k)e�2itg(k)

X(k)

0 F (k)

!
, k 2 ⌦�.

Inside the domain ⌦� introduce the subdomain ⌦1 surrounded by the contour ⌃1

oriented as depicted in Figure 3. Denote by ⌃⇤
1 its inversion in C�. Define m(2)(k)

as

m(2)(k) := m(1)(k)

8
<

:

G(k), k 2 ⌦1,
(F (k))��3 , k 2 C+ \ ⌦1,
m(2)(�k)�1, k 2 C�.

Since F (k) ! 1 as k ! 1, the normalization condition is preserved for m(2)(k).
The correctness of its definition by symmetry in the lower half plane is due to
properties of (1), (2), (5) of Lemma 4.5. Moreover, due to property (6), (4.2) and
Lemma 3.1, we have

m(2)(k) = O(k ⌥ ic)�1/4, as k ! ±ic; m(2)(k) = O(1), as k ! ±ia;

m(2)(k) = O(1), as k ! ±i⇢.

Note that the set G(2) = {±ic,±ia,±i⇢} is the set of all node points of the R-H
problem for m(2)(k). Taking into account property (c) of Lemma 4.1, property (3)
of Lemma 4.5 and (4.7), we see that

(4.8)
F�(k)

F+(k)
eit(g+(k)�g�(k)+i`⇡/2) = e�itB�i�, k 2 [ia,�ia],

and therefore the jump matrix for m(2)(k) looks as follows
(4.9)

v(2)(k) =

8
>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>:

✓
0 i
i 0

◆
, k 2 [ic, ia],

 
F�
F+

eit(g+�g�)+i`⇡/2 0
i|X|

F+F�
eit(g++g�)) F+)

F�
eit(g��g+)�i`⇡/2

!
k 2 [ia, ib]

✓
e�itB�i� 0

0 eitB+i�

◆
+A(k, t), k 2 [ib, 0],

 
1 �F 2(k)

X(k) e
�2itg(k)

0 1

!
, k 2 ⌃1,

✓
1 0

R(k)F�2(k)e2itg(k) 1

◆
, k 2 C,

✓
1 F 2(k)hj(k, t)
0 1

◆
, k 2 Tj , j = 1, .., N,

�1(v(2)(�k))�1�1, k 2 [0,�ic]
�1v(2)(�k)�1, k 2 ⌃⇤

1 [ C⇤ [ [jT⇤
j ,

where the matrix

A(k, t) = [F�(k)]
�3

⇣
v(1)(k)� e(�itB+i `⇡2 )�3

⌘
[F�(k)]

��3

is supported on [ib, i⇢] and admits, according to Lemma 4.3, the estimate

kA(k, t)kL1([0,ib]) = O(e�C(")t).
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Figure 3. Jump contour ⌃(2) in C+ (without the Tj ’s)

Lemma 4.3 and Lemma 4.2 together with properties (1) and (4) of Lemma 4.5
also imply

Lemma 4.6. Uniformly with respect to ⇠ 2 I"
kv(2)(k)� IkL1(K) + kv(2)(k)� IkL1(K) = O(e�C(")t), as t ! 1,

where K = C [ C⇤ [ [j(Tj [ T⇤
j ).

Remark 4.7. Formula (4.8) allows us to shorten the expression for v(2)(k) on
the interval [ia, ib]. However, we use the form (4.9) of the jump matrix on [ia, ib] [
[�ib,�ia], because it simplifies further considerations of the local parametrix prob-
lem.

Let B be a vicinity of point ia with the boundary @B satisfying
⇢

2
< dist (@B, ia) < 2⇢,

where ⇢ is defined by (3.1). Its precise shape will be described later in Section 7.
Without loss generality one can assume that ib 2 @B. Denote B⇤ = {k : �k 2 B}
and the jump contour for m(2)(k) by

(4.10) ⌃(2) := C [ C⇤ [ ⌃1 [ ⌃⇤
1 [ [j(Tj [ T⇤

j ) [ [ic,�ic],

and let

(4.11) ⌃⇢ = ⌃(2) \ (B [ B⇤)

be the part of our contour outside the small vicinities of the points ±ia. Put

(4.12) vmod(k) =

8
>><

>>:

i�1, k 2 [ic, ia],
e�i⇤�3 , k 2 [ia, 0],
�1(vmod(�k))�1�1, k 2 [0,�ic],
I, k 2 ⌃(2) \ [ic,�ic],

where

(4.13) ⇤ := tB +� 2 R.
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The consideration above shows that uniformly with respect to ⇠ 2 I"
(4.14) kv(2)(k)� vmod(k)kL1(⌃⇢)\L1(⌃⇢) = O(e�C(")t), t ! 1.

The matrix vmod(k) is piecewise constant with respect to k. In the next section
we study briefly the respective vector R-H problem. It was solved in [11], [13], how-
ever the uniqueness was not established there. Moreover, using the trace formula
we propose here a shorter and more transparent way to compute the expansion of
mmod

1 (k)mmod
2 (k) as k ! 1, which will approximate the analogous expansion for

the initial R-H problem, because of

(4.15) m(2)
1 (k)m(2)

2 (k) = mini
1 (k)mini

2 (k), | Im k| > 1 + ⇢.

5. Unique solution for the vector model R-H problem

Lemma 5.1. The following R-H problem has a unique solution: find a vector-valued
function mmod(k) = (mmod

1 (k) mmod
2 (k)) holomorphic in the domain C \ [ic,�ic],

continuous up to the boundary except for points of the set Gmod := {ic, ia,�ia,�ic}
and satisfying the jump condition:

(5.1) mmod
+ (k) = mmod

� (k)vmod(k),

(5.2) vmod(k) =

8
>>>>>><

>>>>>>:

✓
0 i
i 0

◆
, k 2 [ic, ia],

✓
0 �i
�i 0

◆
, k 2 [�ia,�ic],

✓
e�i⇤ 0
0 ei⇤

◆
, k 2 [ia,�ia],

the symmetry condition

(5.3) mmod(�k) = mmod(k)

✓
0 1
1 0

◆
,

and the normalization condition

(5.4) lim
k!i1

mmod(k) = (1 1).

At any point  2 Gmod the vector function mmod(k) can have at most a fourth root
singularity: mmod(k) = O((k � )�1/4), k ! .

Proof. To prove uniqueness, assume that m and m̂ are two solutions of the R-H
problem. Their di↵erence m̃ = m� m̂ is a holomorphic vector in C \ [ic,�ic] which
satisfies conditions (5.2) and (5.3) and has the following behavior

m̃(k) = (1,�1)
h̃

k
(1 +O(k�1)), as k ! i1.

Moreover, m̃(k) = O((k � )�1/4)) as k !  for  2 Gmod.
In C \ [ic,�ic], introduce a holomorphic function

(5.5) f(k) := m̃1(k)m̃1(k) + m̃2(k)m̃2(k).

Due to (5.3) this function is even: f(�k) = f(k) and satisfies

(5.6) f(k) =
2|h̃|2
k2

(1 +O(k�2)), as k ! i1;
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(5.7) f(k) = O((k � )�1/2)), as k ! , for  2 Gmod.

Since �k = k for k 2 iR and taking into account (5.3), we get

f+(k) = m̃1,+(k)m̃2,�(k) + m̃2,+(k)m̃1,�(k),

f�(k) = m̃1,�(k)m̃2,+(k) + m̃2,�(k)m̃1,+(k),
k 2 [ic,�ic].

By use of (5.2)

f+(k) = ±i
⇣
|m̃2,�(k)|2 + |m̃1,�(k)|2

⌘
= �f�(k) 2 iR, k 2 [±ic,±ia],

(5.8)
f+(k) = e�i⇤m̃1,�(k)m̃2,�(k) + ei⇤m̃2,�(k)m̃1,�(k) = f�(k) 2 R, k 2 [ia,�ia].

Thus the function f(k) has no jump on [ia,�ia] and is the solution of the following
scalar jump problem

f+(k) = �f�(k), k 2 [ic, ia] [ [�ia,�ic],

which satisfies (5.6) and (5.7). The unique solution of this problem is given by the
formula

f(k) = � 2|h̃|2p
(k2 + c2)(k2 + a2)

.

Therefore, if h̃ 6= 0 then f(0) < 0. But according to (5.5) and (5.8) we have
f+(0) = f�(0) � 0. Thus, h̃ = 0 and hence

m̃1,�(k) = m̃1,+(k) = m̃2,+(k) = m̃2,�(k) = 0, k 2 [ic, ia] [ [�ia,�ic].

In particular, we see that the jump along [ic, ia] [ [�ia,�ic] is removable and the
only solution of this problem is trivial: m̃(k) ⌘ 0. ⇤

Now we recall briefly how to solve problem (5.1)–(5.4) (cf. [11]). Consider the
two-sheeted Riemann surface X = X(⇠) associated with the function

w(k) =
p

(k2 + c2)(k2 + a2),

defined on C \ ([�ic,�ia] [ [ia, ic]) with w(0) > 0. The sheets of X are glued along
the cuts [ic, ia] and [�ia,�ic]. Points on this surface are denoted by p = (k,±).
To simplify notations we keep the notation k = (k,+) for the upper sheet of X.
The canonical homology basis of cycles {a,b} is chosen as follows: The a-cycle
surrounds the points �ia, ia starting on the upper sheet from the left side of the
cut [ic, ia] and continues on the upper sheet to the left part of [�ia,�ic] and returns
after changing sheets. The cycle b surrounds the points ia, ic counterclockwise on
the upper sheet. Consider the normalized holomorphic di↵erential

(5.9) d! = �
d⇣

w(⇣)
, where � :=

✓Z

a

d⇣

w(⇣)

◆�1

2 iR�,

then
R
a d! = 1 and

(5.10) ⌧ = ⌧(⇠) =

Z

b
d! 2 iR+.

Let
✓3(z

�� ⌧) =
X

n2Z
exp

�
(n2⌧ + 2nz)⇡i

 
, z 2 C,
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be the Jacobi theta function. Recall that ✓3 is an even function, ✓3(�z
�� ⌧) =

✓3(z
�� ⌧), and satisfies

✓3(z + n+ ⌧(⇠)`
�� ⌧) = ✓3(z

�� ⌧) exp
�
�⇡i⌧`2 � 2⇡i`z

 
for l, n 2 Z..

Furthermore, let A(p) =
R p
ic d! be the Abel map on X. We identify the upper

sheet of X with the complex plane C \ ([ic, ia] [ [�ia,�ic]) with cuts, and put
(k,+) = k. Allowing only paths of integration in C \ [ic,�ic] we observe that A(k)
is a holomorphic function in that given domain with the following properties:

• A+(k) = �A�(k) (mod 1) for k 2 [ic, ia] [ [�ia,�ic];
• A+(k)�A�(k) = �⌧ as k 2 [ia,�ia];
• A(�k) = �A(k) + 1

2 ( mod 1) as k 2 C \ [ic,�ic],
• A+(ia) = � ⌧

2 = �A�(ia), A+(�ia) = � ⌧
2 + 1

2 , A�(�ia) = ⌧
2 + 1

2 .
• A((1,+)) = 1

4 ; A(k)�A((1,+)) = ��k�1 +O(k�3) as k ! 1.

On C \ [ic,�ic] introduce two functions

↵⇤(k) = ✓3

 
A(k)� 1

2
� ⇤̃

2

�� ⌧
!
✓3

 
A(k)� ⇤̃

2

�� ⌧
!
,

�⇤(k) = ✓3

 
�A(k)� 1

2
� ⇤̃

2

�� ⌧
!
✓3

 
�A(k)� ⇤̃

2

�� ⌧
!
,

where ⇤̃ = ⇤
2⇡ 2 R and A(k) = A((k,+)) for k 2 C. The properties of the Abel

integrals listed above imply that the functions ↵0(k) and �0(k) have square root
singularities at the points ±ia. Using the formula (cf. [10])

✓3
�
u
�� ⌧
�
✓3

✓
u� 1

2

�� ⌧
◆

= ✓3

✓
2u� 1

2

�� 2⌧
◆
✓3

✓
1

2

�� 2⌧
◆
,

we can represent the functions ↵⇤(k) and �⇤(k) as

↵⇤(k) = ✓3

✓
2A(k)� 1

2
� ⇤̃

�� 2⌧
◆
✓3

✓
1

2

�� 2⌧
◆
,

�⇤(k) = ✓3

✓
�2A(k) +

1

2
� ⇤̃

�� 2⌧
◆
✓3

✓
1

2

�� 2⌧
◆
.

Introduce the functions

(5.11) ↵̂(k) :=
↵⇤(k)

↵0(k)
=
✓3
⇣
2A(k)� 1

2 � ⇤̃
�� 2⌧

⌘

✓3
�
2A(k)� 1

2

�� 2⌧
�

(5.12) �̂(k) :=
�⇤(k)

�0(k)
=
✓3
⇣
�2A(k) + 1

2 � ⇤̃
�� 2⌧

⌘

✓3
�
�2A(k) + 1

2

�� 2⌧
� .

Evidently, both functions ↵̂(k) and �̂(k) have square root singularities at the points
±ia if ⇤̃ /2 Z. Moreover,

lim
k!1

↵̂(k) = lim
k!1

�̂(k) =
✓3
⇣
⇤̃
�� 2⌧

⌘

✓3
�
0
�� 2⌧

� .

Due to the first three properties of the Abel map we get

↵̂+(k) = �̂�(k) and �̂+(k) = ↵̂�(k) for k 2 [ic, ia] [ [�ia,�ic],
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↵̂+(k) = e�i⇤↵̂�(k) and �̂+(k) = ei⇤�̂�(k) for k 2 [ia,�ia],

↵̂(�k) = �̂(k) for k 2 C \ [ic,�ic].

Now introduce the function

(5.13) �̃(k) = 4

r
k2 + a2

k2 + c2
,

defined uniquely on the set C \ ([ic, ia] [ [�ia,�ic]) by the condition arg �̃(0) = 0.
This function satisfies the jump conditions

�̃+(k) = i�̃�(k), k 2 [ic, ia],
�̃+(k) = �i�̃�(k), k 2 [ia,�ic].

Then the vector function

(5.14) mmod(k) =

 
�̃(k)

↵̂(k)

↵̂(1)
, �̃(k)

�̂(k)

�̂(1)

!

solves problem (5.1)–(5.4).
Note that both components of the vector-valued function mmod(k) are bounded

everywhere except for small vicinities of the points of the set Gmod, where they have
singularities of the type (k � )�1/4,  2 Gmod.

Remark 5.2. We observe that

↵̂±(0) =
✓3
⇣
⌥⌧ � 1� ⇤̃

�� 2⌧
⌘

✓3
�
±⌧ + 1

�� 2⌧
� , �̂±(0) :=

✓3
⇣
±⌧ + 1� ⇤̃

�� 2⌧
⌘

✓3
�
±⌧ + 1

�� 2⌧
� .

This means that for ⇤̃ = 1
2 (mod n) we have mmod

± (0) = (0, 0). From Theorem 3.3

it follows then that for ⇤ = 2⇡⇤̃ = ⇡(2n+1), n 2 Z the matrix model R-H problem
associated with the jump (5.2) does not have an invertible solution.

Remark 5.3. For ⇤̃ 2 Z we have ↵̂(±ia) = �̂(±ia) = 1. By (5.13), (5.14),
therefore:

mmod(±ia) = (0 0), as ⇤ = 2⇡n.

Thus the points (x, t) for which ⇤̃ 2 Z are those points where the vector model
solution does not have singularities at the points ±ia. However, the matrix model
solution will have fourth order singularities at ±ia for these pairs (x, t).

Recall now that we constructed the solution for the jump problem (5.2) with
⇤̃ = ⇤

2⇡ and ⇤ given by formula (4.13). Due to (5.3), the asymptotic expansion of
the vector components product should be the following:

(5.15) mmod
1 (k)mmod

2 (k) = 1 +
qmod(x, t, ⇠)

2k2
+O(k�4).

Let us show that in fact for any fixed ⇠ coe�cient, qmod(x, t, ⇠) represents the
classical one-gap solution for the KdV equation associated with the spectrum G(⇠)
(cf. (1.4)) and with the initial Dirichlet divisor p0 defined uniquely by the Jacobi
inversion (compare (1.10), (1.11)):

(5.16)

Z p0

�a2

d!̂ = i�, p0 = (�(0, 0, ⇠),±).
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Here d!̂ is the normalized holomorphic Abel di↵erential of the first kind on the
elliptic Riemann surface M = M(⇠) associated with the function

R(�, ⇠) =
p
�(�+ c2)(�+ a(⇠)2),

with cuts along the spectrum. Let b̂, â be the canonical basis on M, where the
cycle b̂ surrounds the interval [�c2,�a2] counterclockwise on the upper sheet and
the cycle â supplements b̂ by passing along the gap [�a2, 0] in the positive direction
on the lower sheet and then changing the sheet. The normalization for d!̂ is given
by formula

R
â d!̂ = 2⇡i. Denote

R
b̂ d!̂ = ⌧̂ . Then it is straightforward to check

that ⌧̂ = 4⇡i⌧ (cf. (5.10)).
Furthermore, let Â(p) :=

R p
1 d!̂ be the associated Abel map and

K := �Â(�a2) = � ⌧̂
2
+ ⇡i

be the Riemann constant. Introduce the wave and frequency numbers V = V (⇠) and
W = W (⇠) ([22], [25]), which are b̂ - periods of the normalized Abelian di↵erentials
of the second kind d⌦1 and d⌦3 on M, uniquely defined by the order of the pole at
infinity

d⌦1 =
i

2
p
�
(1 +O(��1))d�, d⌦3 = �3i

2

p
�(1 +O(��1))d�, �! 1,

and by the normalization conditions
R
â d⌦1,3 = 0. Thus,

iV :=

Z

b̂
d⌦1, iW :=

Z

b̂
d⌦3.

The following result is obtained in [13].

Lemma 5.4. Let B = B(⇠) be as in Lemma 4.1, (c) and � = �(⇠) be given by
(5.9). Then the following identities hold

tB = V x� 4Wt, 4⇡i� = �V.

Recall now that the one-gap solution corresponding to the spectrum G(⇠) and
to the initial divisor (5.16), can be expressed by the trace formula:

(5.17) qper(x, t, ⇠) = �c2 � a2 � 2�(x, t, ⇠),

where �(x, t) = �(x, t, ⇠) 2 [�a2, 0] is the projection of p(x, t) = (�(x, t),±) 2 M,
which is the unique solution of the Jacobi inversion problem

(5.18)

Z p(x,t)

p0

d!̂ = i(V x� 4Wt) (mod 2⇡i).

We can also represent it as
Z p(x,t)

�a2

d!̂ = i(V x� 4Wt+�).

Evidently �(x, t) = 0 corresponds to the local minimum of qper(x, t). Indeed,

�(x, t) = 0 i↵ V x�4Wt+�
2⇡ = 1

2 (mod Z).
To compare qper(x, t, ⇠) with the second term of the expansion for the product
mmod

1 (k)mmod
2 (k) =: p(k), which is given by formula (see (5.11), (5.12))

p(k) = �̃2(k)
✓3(2A(k)� 1

2 � ⇤̃) ✓3(�2A(k) + 1
2 � ⇤̃) ✓3(0)2

(✓3(2A(k)� 1
2 ))

2(✓3(⇤̃))2
,
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we first prove

Lemma 5.5. The function p(k), k 2 C, admits the following representation:

(5.19) p(k) =
k2 � �(x, t)p

(k2 + a2)(k2 + c2)
.

Proof. Given (5.11) and (5.12), consider the function

p̃(k) = p(k)�̃�2(k) =
↵̂(k)�̂(k)

↵̂(1)�̂(1)
.

By the symmetry property we have p̃(�k) = p̃(k). Moreover, this function does
not have jumps for k 2 [�ic, ic], and p̃(k) ! 1 as k ! 1. Thus, it must be a
meromorphic (in fact, rational) function of � = k2 in the whole complex plane.
Due to (5.16) and (5.18) the function ↵̂(k)�̂(k) has the only zero, simple with
respect to �, at the point � = �(x, t), and the only simple pole (again with respect
to �) at � = �a2. We conclude that

p̃(k) =
↵̂(k)�̂(k)

↵̂(1)�̂(1)
=

k2 � �(x, t)

k2 + a2
,

which together with (5.13) implies (5.19). ⇤
In turn, decomposing (5.19) with respect to 1

2k2 we get the same trace formula
(5.17) for qmod(x, t, ⇠) in (5.15). It proves that

(5.20) qmod(x, t, ⇠) = qper(x, t, ⇠).

Moreover, the property of the combination of theta functions in mmod
1 (k)mmod

2 (k)
to be a rational function of the spectral parameter � = k2 is tightly connected
with the analogous property of the product of two branches of the Baker–Akhiezer
function. It allows us to expect that this approach may considerably simplify the
evaluation of asymptotics in the case of finite gap backgrounds.

6. The matrix model R-H problem solution and its properties

In this section we propose a proper matrix model solution with a nonintegrable
singularity at the point k = 0.

Theorem 6.1. There exists a matrix model solution Mmod(k) of the model R-H
jump problem which satisfies the following conditions:

(1) It is holomorphic in C \ [ic,�ic], continuous up to the sides of the contour
[ic,�ic] except at the points Gmod [ {0};

(2) At points of Gmod it has weak singularities, Mmod(k) = O((k � )�1/4) as
k !  2 Gmod, and Mmod(k) = O(k�1) as k ! 0;3

(3) It possesses the symmetry condition:

(6.1) Mmod(�k) = �1M
mod(k)�1;

(4) It satisfies the normalization condition

(6.2) M(k) ! I, k ! 1.

(5) detMmod(k) = 1 for all k 2 C;

3we can not call it a pole, because the matrix has a jump in this point
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(6) The vector m(2)(k)[Mmod(k)]�1 is a holomorphic function in a vicinity O of
the point k = 0;

For the proof of this theorem we will need the following

Lemma 6.2. There exists a vector solution ⌫(k) = (⌫1(k), ⌫2(k)) to the model R-H
problem (5.2) which satisfies the following properties:

• The symmetry condition ⌫1(k) = ⌫2(�k), k 2 C \ [ic,�ic];
• The asymptotical behavior:

(6.3) ⌫(k) = ik(�1, 1)(1 +O(k�1)), k ! 1.

• The vector function ⌫(k) is holomorphic in C \ [ic,�ic], continuous up
to the boundary except of points Gmod, where fourth root singularities are
admissible.

Proof. From Lemma 5.4 it follows that the vector ⌫ solves the jump problem
⌫+(k) = ⌫�(k)vmod(k) where

(6.4) vmod(k) = vmod(k, x, t, ⇠) =

8
>>><

>>>:

i�1, k 2 [ic, ia],

�i�1, k 2 [�ia,�ic],

e(4iW (⇠)t�iV (⇠)x�i�(⇠))�3 , k 2 [ia,�ia].

From formulas (2.3) and (2.6) of [13] it follows that:

iV (⇠) = Z+(k)� Z�(k), for k 2 [ia,�ia],

Z(k) := Z(k, ⇠) = i

Z k

ic

(s2 � h)dsp
(s2 + c2)(s2 + a2)

,

h :=

Z 0

ia

s2dsp
(s2 + c2)(s2 + a2)

 Z 0

ia

dsp
(s2 + c2)(s2 + a2)

!�1

.

Recall also that

Z+(k) + Z�(k) = 0 (mod 2⇡i), k 2 [ic, ia] [ [�ia,�ic].

In fact

Z(k) = i

Z k2

�c2

�� h

2R(�)
d�

is the classical quasimomentum associated with the Riemann surface M(⇠). Thus,

vmod(k, x, t, ⇠) = e(4iW (⇠)t+(Z+(k)�Z�(k))x�i�(⇠))�3 , k 2 [ia,�ia].

We see that the vector

(6.5) S(k) := S(k, x, t, ⇠) = mmod(k, x, t, ⇠)e�Z(k,⇠)x�3

solves the jump problem S+(k) = S�(k)vS(k),

vS(k) = vS(k, t, ⇠) =

8
>><

>>:

i�1, k 2 [ic, ia],

�i�1, k 2 [�ia,�ic],

e(4iW (⇠)t�i�(⇠))�3 , k 2 [ia,�ia].
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Let us treat the variables x, t, ⇠ as independent variables. Then @
@xv

S(k) = 0
and the vector

Ŝ(k) =
@

@x
S(k, x, t, ⇠)

=

✓⇣ @

@x
mmod

1 (k)� Z(k)mmod
1 (k)

⌘
e�Z(k)x,

⇣ @

@x
mmod

2 (k) + Z(k)mmod
2 (k)

⌘
eZ(k)x

◆

solves the same jump problem as S(k):

Ŝ+(k) = Ŝ�(k)v
S(k).

Reversing the conjugation step (6.5) applied to the vector Ŝ, we conclude that
the vector

⌫(k) := Ŝ(k)eZ(k)x�3

=

✓
@

@x
mmod

1 (k)� Z(k)mmod
1 (k),

@

@x
mmod

2 (k) + Z(k)mmod
2 (k)

◆
,

solves the model R-H problem (6.4), which is the same as (5.2).
Next, since Z(k) = ik(1+O(k�1) as k ! 1, it is easy to see that (6.3) is fulfilled.

The singularities of ⌫(k) at the points of Gmod are the same as for mmod(k). This
follows from formulas (5.11)–(5.14) and the fact, that the di↵erentiation @

@xm
mod(k)

does not a↵ect the part of the denominators in (5.14), which are responsible for
singularities, for example

@

@x
mmod

1 (k) = �̃(k)
V (⇠)

2⇡

✓3(0
�� 2⌧)

✓3(2A(k)� 1
2

�� 2⌧)
d

d⇤̃

0

@
✓3
⇣
2A(k)� 1

2 � ⇤̃
�� 2⌧

⌘

✓3
⇣
⇤̃
�� 2⌧

⌘

1

A ,

because @⇤̃
@x = V (⇠)

2⇡ . ⇤

Corollary 6.3. The vector function ⌫̃(k) := ⌫(k)
ik solves the jump condition (5.2)

and satisfies the antisymmetry condition

(6.6) ⌫̃1(�k) = �⌫̃2(k),
with normalization

(6.7) ⌫̃(k) ! (�1 1), k ! 1.

It is holomorphic outside the contour [ic,�ic], has fourth root singularities at points
of Gmod and a singularity ⌫̃(k) = O(k�1) as k ! 0.

Proof of theorem 6.1. Set

Mmod(k) :=
1

2

 
mmod

1 (k)� ⌫̃1(k) mmod
2 (k)� ⌫̃2(k)

mmod
1 (k) + ⌫̃1(k) mmod

2 (k) + ⌫̃2(k)

!
,

which evidently solves the model jump problem (5.1). Equalities (5.3) and (6.6)
guarantees the structure

Mmod(k) =
1

2

✓
 1(k)  2(k)
 2(�k)  1(�k)

◆
,

and, therefore (6.1). Equality (6.2) follows from (6.7). Singularities described by
item (2) are evident.
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Let us discuss the invertibility of Mmod(k). Put s(k) := detMmod(k). Comput-
ing it, we get

s(k) =
m1(k)⌫2(k)� ⌫1(k)m2(k)

2ik
,

where ⌫(k) is defined in Lemma 6.2. Evidently, s(k) does not have jumps. It
is meromorphic with the only possible pole at k = 0, and bounded at infinity:
limk!1 s(k) = 1. Thus, we get s(k) = 1 + C

k , where C is a constant. But due to
(5.3) we know that it is even: s(�k) = s(k), implying C = 0 and detMmod(k) ⌘ 1.
This proves item (5).

It remains to prove item (6). We have

⇥
Mmod(k)

⇤�1
=

1

2

✓
 1(�k) � 2(k)
� 2(�k)  1(k)

◆

=
1

2

 
mmod

1 (�k)� ⌫̃1(�k) �mmod
2 (k) + ⌫̃2(k)

�mmod
1 (k)� ⌫̃1(k) mmod

2 (�k) + ⌫̃2(�k)

!
.

Define f(k) := m(2)(k)[Mmod(k)]�1, k 2 O, where O is a small vicinity of the point
k = 0 with diamO < ⇢ (that is, O is situated inside the strip between C and C⇤).
Since f(k) does not have jumps in O, and we have the symmetry f(�k) = f(k)�1,
it is su�cient to prove that

Lemma 6.4. f1(k) has a removable singularity at the point k = 0.

Proof. The singularity at the point k = 0 is at most a simple pole for f1. To show
that it is removable, it is su�cient to prove that f1(k) = o(k�1) from any fixed
direction. As an appropriate direction we take the real positive ray k > 0. We use
the trivial fact that if k ! 0 then �k ! 0.

To simplify notation, put m̃(k) = m(2)(k), m(k) = mmod(k). Then

m̃1(k) ! m̃1,+(0), m̃1(�k) ! m̃1,�(0), ⌫1(k) ! ⌫1,+(0), ⌫1(�k) ! ⌫1,�(0),

and

m̃1,+(0)⌫1,�(0) = m̃1,�(0)⌫1,+(0),

because the jump in O for the model R-H problem is diagonal, and satisfied by
m(2) and ⌫. Due to symmetries,

 2(�k) = m1(k) +
⌫1(k)

ik
,

thus

f1(k) =
1

2
(m̃1(k) 1(�k)� m̃2(k) 2(�k))

=
1

2ik
(⌫1(�k)m̃1(k)� ⌫2(�k)m̃2(k)) +O(1), k ! 0.

But
⌫1(�k)m̃1(k)� ⌫2(�k)m̃2(k) = ⌫1(�k)m̃1(k)� ⌫1(k)m̃1(�k) !
m̃1,+(0)⌫1,�(0)� m̃1,�(0)⌫1,+(0) = 0, k ! 0, k 2 R+.

⇤

Corollary 6.5. The vector m(2)(k)[Mmod(k)]�1 is a holomorphic function in O.

This proves Theorem 6.1.
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7. The matrix solution of the parametrix problem

In this section we study the matrix solutions of the local R-H problems in vicini-
ties of the points ±ia. Consider first the point ia. Let B be a vicinity of this point
as described at the end of Section 4. Introduce in it a local change of variables

(7.1) w3/2(k) = �3it

2
(g(k)� g±(ia)), k 2 B,

with the cut along the interval J := [ic, ia] \ B. We observe that

(7.2) w3/2(k) = P (a)e
3⇡i
4 t(k � ia)3/2(1 +O(k � ia)), P (a) > 0.

Indeed, from (4.1) and Lemma 4.1 it follows that for is ! ia± 0

Re(�ig(is)) = 12

Z s

a±0

✓
c2 � a2

2
+ ⇠ � s2

◆r
a+ s

c2 � s2
p
a� s ds

= �8

✓
c2 � 3a2

2
+ ⇠

◆r
2a

c2 � a2
(a� s)3/2(1 +O(a� s)).

Since a(⇠) is a monotonous function with a( c
2

3 ) = c and a(� c2

2 ) = 0, this implies
(7.2) with P (a) > 0. Thus, w(k) is a holomorphic function in B with w(ia) = 0,
w0(k) 6= 0.

Till now we did not specify a particular shape of the boundary @B and the
shape of the contour ⌃1 inside B (cf. Figure 3). Treating w(k) as a conformal map,
let us think of B as a preimage of a disc O of radius P 2/3(a)⇢t2/3 centred at the
origin. Since w(k) = P1(a)t2/3(ik+a)(1+o(1)), the function w(k) maps the interval
[ia, ic] \ B into the negative half axis. We can always choose the contours ⌃1 \ B
to be contained in the preimage of the rays argw = ± 2⇡i

3 .
Next, in B introduce the function

r(k) :=

p
X(k)

F (k)
e⌥

i⇡
4 e

⌥itB
2 , k 2 B \ {k : ±Re k > 0},

where X and F are defined by (3.5) and (4.4) respectively, and B = �2g+(ia). By
(3.6) and Lemma 4.5 we conclude that

r+(k) =

p
|�(k)|

F+(k)
e�

itB
2 , r�(k) =

p
|�(k)|

F�(k)
e

itB
2 , k 2 [ic, 0] \ B.

Therefore,

(7.3) r+(k)r�(k) = 1, k 2 J ; r+(k) = r�(k)e
�i��itB , k 2 J 0,

where we defined

J := [ic, ia] \ B, J 0 := [ia, ib] = [ia, 0] \ B.

Denote also

L1 := ⌃1 \ B \ {Re k � 0}; L2 := ⌃1 \ B \ {Re k  0}.
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@B

w
J

J 0

L1L2

@O

ia
0

Figure 4. The local change of variables w(k).

Recall that the vector function m(2)(k) satisfies the jump condition m(2)
+ (k) =

m(2)
� (k)v(2)(k), with the jump matrix (4.9). Redefine now m(2)(k) inside the do-

mains B and B⇤ by the formula

(7.4) m(3)(k) =

8
<

:

m(2)(k)[r(k)]��3 , k 2 B,
m(3)(�k)�1, k 2 B⇤,
m(2)(k), k 2 C \ (B [ B⇤).

Using (7.3) we get m(3)
+ (k) = m(3)

� (k)v(3)(k) with

(7.5) v(3)(k) =

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

✓
1 0

ie�4/3w(k)3/2 1

◆
, k 2 J 0,

i�1, k 2 J,✓
1 ie4/3w(k)3/2

0 1

◆
, k 2 L1,

✓
1 �ie4/3w(k)3/2

0 1

◆
, k 2 L2,

r(k)��3 , k 2 @B,
�1[v(3)(�k)]�1, k 2 @B⇤ [ ⌃⇤

B,
v(2)(k), k 2 ⌃(2) \ (⌃⇤

B [ ⌃B),

where ⌃(2) is defined by (4.10) and

(7.6) ⌃B := J [ J 0 [ L1 [ L2, ⌃⇤
B := {k : �k 2 ⌃B},

are orientated as in Figure 7. In particular, @B⇤ should be oriented counterclock-
wise.

We observe that transformation (7.4) applied in B to the matrix model solution,

(7.7) M(k) := Mmod(k)[r(k)]��3 , k 2 B \ ⌃B,

wipes out the jump along J 0, i.e. in B the matrix M satisfies the jump condition
M+(k) = iM�(k)�1, k 2 J . Next by (7.1), the function w1/4(k) has the following
jump along the interval J :

w1/4
+ (k) = w1/4

� (k)i, k 2 J.

Recall that O = w(B). It is now straightforward to check that the matrix

N(w) =
1p
2

✓
w1/4 w1/4

�w�1/4 w�1/4

◆
, w 2 O,
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solves the jump problem

N+(w(k)) = iN�(w(k))�1, k 2 J.

Therefore, in B we haveM(k) = H(k)N(w(k)), whereH(k) is a holomorphic matrix
function in B. Moreover, since detN(w) = det[r(k)�3 ] = 1, we have

(7.8) detH(k) = detMmod(k) = detM(k).

According to (7.7) we get then

(7.9) Mmod(k) = H(k)N(w(k))r(k)�3 , k 2 @B.
Next, by property (b) of Lemma 4.1 w+(k)3/2 = �w�(k)3/2, k 2 J , that is

v(3)(k) = d�(k)
�3S d+(k)

��3 , k 2 B,
where

d(k) := d̃(w(k)), d̃(w) = e2/3w
3/2

,

and

S =

8
>>>>>>>><

>>>>>>>>:

i�1, k 2 J,✓
1 0
i 1

◆
, k 2 J 0,

✓
1 i
0 1

◆
, k 2 L1,

✓
1 �i
0 1

◆
, k 2 L2.

Let us consider the constant matrix S as the jump matrix on the contour � :=
w(⌃B) (see (7.6)). Let A(w) be the matrix solution of the jump problem

A+(w) = A�(w)S, w 2 �,
satisfying the boundary condition

A(w) = N(w) (w)d̃(w)�3 , w 2 @O, t ! 1,

where

 (w) = I+ C

w3/2
(1 +O(w�3/2)), w ! 1,

is an invertible matrix and C is a constant matrix with respect to w, t and ⇠. The
solution A(w) can be expressed via the Airy functions and their derivatives in a
standard way (see, for example, [8], [4] Chapter 3, [16] or [1]). In particular,

(7.10) C =
1

48

✓
�1 6
�6 1

◆
,

and in the domain between the contours w(J 0) and w(L1) we have

A(w) =
p
2⇡

✓
�y01(w) iy02(w)
�y1(w) iy2(w)

◆
,

where y1(w) = Ai(w) and y2(w) = e�
2⇡i
3 Ai(e�

2⇡i
3 w). The precise formula for A(w)

in the other domains can be obtained by simple multiplication of the jump matrix
S, but it is not important for us.

Define the matrix

Mpar(k) := H(k)A(w(k))d(k)��3 , k 2 B \ ⌃B.

This matrix then solves in B the jump problem

(7.11) Mpar
+ (k) = Mpar

� (k)v(3)(k), k 2 ⌃B = J [ J 0 [ L1 [ L2,
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and satisfies for su�ciently large t the boundary condition

(7.12) Mpar
+ (k) = H(k)N(w(k)) (w(k)) = M(k) (w(k)), k 2 @B.

In B⇤ we define Mpar(k) by symmetry

Mpar(k) = �1M
par(�k)�1.

8. Completion of asymptotical analysis

The aim of this section is to establish that the solution m(3)(k) is well approx-
imated by

�
1 1

�
Mpar(k) inside the domain B [ B⇤, and by

�
1 1

�
Mmod(k) in

C \ (B [ B⇤). We follow the well-known approach via singular integral equations
(see e.g., [9], [18], [21] Chapter 4, [23]). To simplify notation we introduce

⌃̃ = ⌃(2) [ @B [ @B⇤.

Set

(8.1) m̂(k) = m(3)(k)(Mas(k))�1, Mas(k) :=

(
Mpar(k), k 2 (B [ B⇤),

Mmod(k), k 2 C \ (B [ B⇤).

Formula (7.11) implies that m̂ does not have jumps inside B [ B⇤. Moreover, from
(7.4) and item (6) of Theorem 6.1 this vector is a holomorphic bounded function
inside the strip between C and C⇤. Let us compute the jump of this vector on @B
by use of (7.5), (7.9), (7.7) and (7.12):

m̂+ = m(3)
+

�
Mpar

+

��1
= m(3)

� r��3 �1M�1
+ = m(3)

�
�
Mmod

�
��1

Mmod
� r��3 �1M�1

+

= m̂�M
mod
� r��3 �1r�3

�
Mmod

+

��1
= m̂�M+ 

�1M�1
+ .

Here we took into account (7.7) and the fact that Mmod does not have a jump on
@B. Note also that both matrices M+(k) and Mmod(k) are bounded with respect
to t uniformly on @B.

Next, the structure of the matrix  (w(k)) implies that

(8.2)  �1(w(k)) = I+ F(k, t)

t(g(k)� g±(ia))
, kF(k, t)k  O(1), t ! 1,

where the matrix norm estimate O(1) is uniform with respect to k on the compact
@B[@B⇤, and uniform with respect to ⇠ 2 I". Hence m̂(k) solves the jump problem

m̂+(k) = m̂�(k)v̂(k),

where (cf. (4.10), (4.11)):

v̂(k) =

8
><

>:

I+M(k) F(k,t)
t(g(k)�g±(ia))M(k)�1, k 2 @B,

�1v̂(�k)�1, k 2 @B⇤,

Mmod
� (k)v(3)(k)(Mmod

+ (k))�1, k 2 ⌃⇢,

and satisfies the symmetry and normalization conditions:

m̂(k) = m̂(�k)�1, m̂ ! (1, 1), k ! 1.
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Abbreviate W (k) = v̂(k)� I. Recall the estimate (4.14). Hence

(8.3) W (k) =

8
>>><

>>>:

1
t(g(k)�g±(ia))M+(k)F(k, t)M�1

+ (k), k 2 @B,
�1W (�k)�1, k 2 @B⇤,

Mmod
� (k)(v(3)(k)� vmod(k))(Mmod

+ (k))�1, k 2 ⌃⇢ \ [i⇢,�i⇢],

0 k 2 [i⇢,�i⇢],

where we treat vmod(k) as in (4.12). Thus the error vector m̂(k) has jumps on the
contour

⌃̂ = ⌃⇢ [ @B [ @B⇤ \ [i⇢,�i⇢]

only. This contour does not pass in the vicinities of the singular points ia,�ia and
0. We observe that for all (x, t) 2 D" the matrix W (k) is continuous on any smooth
part of the contour ⌃̂ and bounded with respect to k. Moreover, due to (4.14) and
(7.5) we have

kkj(v(3)(k)� vmod(k))kLp(⌃⇢\[i⇢,�i⇢]) = O(e�C(")t), p 2 [1,1], j = 0, 1, 2

(the estimates on the higher moments will be used later). Here we took into account
that the reflection coe�cient R(k) decays as O(k�4) under condition (1.8). Thus,
we get using (8.3) and (7.8) the estimate

Lemma 8.1. The following estimates hold uniformly with respect to ⇠ 2 I" and
(x, t) 2 D":

(8.4) kkjW (k)kLp(⌃̂)  C(")t�1, p 2 [1,1], j = 0, 1, 2.

Now we are ready to apply the technique of singular integral equations. Since
this is well known (see, for example, [9], [18], [23]) we will be brief and only list the
necessary notions and estimates.

Let C denote the Cauchy operator associated with ⌃̂:

(Ch)(k) =
1

2⇡i

Z

⌃̂
h(s)

ds

s� k
, k 2 C \ ⌃̂,

where h = (h1, h2) 2 L2(⌃̂). Let C+f and C�f be its non-tangential limiting values
from the left and right sides of ⌃̂ respectively.

As usual, we introduce the operator CW : L2(⌃̂) [ L1(⌃̂) ! L2(⌃̂) by the
formula CW f = C�(fW ), where W is our error matrix (8.3). Then,

kCW kL2(⌃̂)!L2(⌃̂)  CkWkL1(⌃̂)  O(t�1),

as well as

(8.5) k(I� CW )�1kL2(⌃̂)!L2(⌃̂) 
1

1�O(t�1)

for su�ciently large t. Consequently, for t � 1, we may define a vector function

µ(k) = (1, 1) + (I� CW )�1CW

�
(1, 1)

�
(k).

Then by (8.4) and (8.5)

kµ(k)� (1, 1)kL2(⌃̃)  k(I� CW )�1kL2(⌃̃)!L2(⌃̃)kC�kL2(⌃̃)!L2(⌃̃)kWkL1(⌃̃)

= O(t�1).(8.6)
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With the help of µ, (8.1) can be represented as

m̂(k) = (1, 1) +
1

2⇡i

Z

⌃̂

µ(s)W (s)ds

s� k
,

and in virtue of (8.6) and Lemma 8.1 we obtain as k ! +i1 :

m̂(k) = (1, 1) +
1

2⇡i

Z

⌃̂

(1, 1)W (s)

s� k
ds+ E(k),

where

|E(k)|  1

Im(k ⌥ ic)
kWkL2(⌃̂)kµ(k)� (1, 1)kL2(⌃̂) 

O(t�2)

Im(k ⌥ ic)
,

where O(t�2) is uniformly bounded with respect to ⇠ 2 I", (x, t) 2 D" and k ! 1.
In the regime Re k = 0, Im k ! +1 we have

1

2⇡i

Z

⌃̂

(1, 1)W (s)

k � s
ds =

f0(⇠, t)

2ikt
(1, �1) +

f1(⇠, t)

2k2t
(1, 1)

+O(t�1)O(k�3) +O(t�2)O(k�1),

where f0,1(⇠, t) are uniformly bounded for t ! 1 and ⇠ 2 I". Furthermore O(k�s)
are vector functions depending on k only and O(t�s) are as above. Hence,

m(3)(k) = m̂(k)Mmod(k) = mmod(k) +
f0(⇠, t)

2ikt
(1, �1)Mmod(k)

+
f1(⇠, t)

2k2t
mmod(k) +O(t�1)O(k�3) +O(t�2)O(k�1).

Now we are in a position to apply (1.13), making use of (4.15), (5.15),(5.20),
(5.17). Note that since all conjugation steps in the vicinity of 1 involved diagonal
matrices with determinant 1, we have for the solution to IVM R-H problem from
Theorem 2.1:

m1(k)m2(k) = m(3)
1 (k)m(3)

2 (k) = mmod
1 (k)mmod

2 (k) +O(t�1)O(k�2).

Here we used that the entries of Mmod(k) are uniformly bounded for ⇠ 2 I" and
that the k�1 term disappears by symmetry (2.15). Theorem 1.1 is proved.
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PARAMETRIX PROBLEM FOR THE KORTEWEG–DE VRIES

EQUATION WITH STEPLIKE INITIAL DATA

MATEUSZ PIORKOWSKI

Abstract. In this paper we study the asymptotics of the Korteweg–de Vries
equation with steplike initial data, which leads to shock waves in the tran-
sition region between the dispersive tail and the soliton region, as t ! 1.
In our previous work we have obtained uniform estimates in x and t by con-
structing a singular global parametrix solution. However in this work, we
present an alternative approach to the usual argument involving a small norm
Riemann–Hilbert problem, which is based instead on Fredholm index theory
for singular integral operators. In particular, we avoid the construction of a
matrix-valued global parametrix solution and utilize only the symmetric vector
solution, which always exists and is unique.

1. Introduction

The Korteweg de–Vries (KdV) equation is one of the most investigated nonlin-
ear wave equations that admits a Lax pair representation and thus can be solved
via scattering theory. The explicit asymptotic analysis can be performed by the
Deift–Zhou nonlinear steepest descent method for Riemann–Hilbert (R-H) prob-
lems, ([3], [5], [6], [7]). It involves contour deformations and the introduction of
auxiliary functions to obtain a R-H problem with jumps matrices that are either in-
dependent of the complex parameter k, or exponentially converging to the identity
matrix for t ! 1. Ignoring the exponentially converging part, one obtains a model
problem, also referred to as the global parametrix problem. In most applications it
can be solved explicitly with the help of special functions (in our case Jacobi theta
functions), from which the relevant asymptotics can be obtained. The rigorous
justification of this method is however nontrivial and leads to a local R-H problem
which has to be solved around the oscillatory points (where the exponential conver-
gence fails). The solution of this so-called local parametrix problem again involves
the use of special functions (in our case Airy functions) and needs to converge to
the model solution locally uniformly away from the oscillatory points.

The above steps for the KdV equation with steplike initial data (shock wave) in
the region between the dispersive tail and the soliton region, also called elliptic wave

region after the form of the solutions, have been already performed in [8] and are
summarized in the next section. The main goal of this paper is the final part of the
analysis which di↵ers from the usual argumentation involving the construction of a
model matrix solution (or equivalently two linearly independent vector solutions).
A peculiar feature of this step is, that while the relevant asymptotics can be read

2000 Mathematics Subject Classification. Primary 37K40, 35Q53; Secondary 37K45, 35Q15.
Key words and phrases. Riemann–Hilbert problem, KdV equation, shock wave.
Research supported by the Austrian Science Fund (FWF) under Grants No. P31651 and

W1245.
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o↵ from the symmetric model vector solution, the justification of the asymptotics
requires the construction of a second linearly independent model vector solution
([1], [2], [15], [21]). The reason for this is that inverting the model matrix solution
results eventually in a singular integral equation of the form

(1.1) (I� C⌃
u )� = C⌃

u ((1 1))

where C⌃
u is a singular Cauchy-type operator depending on u, which is a matrix-

valued L1(⌃;C2⇥2)-function with kukL1(⌃;C2⇥2) ! 0, as t ! 1 (see [2, Ch. 7]).
As kC⌃

ukL2(⌃;C2) = O(kukL1(⌃;C2⇥2)), we can invert I � C⌃
u for t large enough by

writing down the Neumann series. In particular, we know that equation (1.1) has
a unique solution, which can be then used to write down the corresponding unique
solution of the R-H problem. As the invertibility of the singular integral operator
I�C⌃

u is obtained by the smallness of kukL1(⌃;C2⇥2), we will refer to this approach
as the small norm R-H approach.

The existence of a second vector-valued solution fails in the case of interest for
discrete but arbitrary large times, as we have recently shown in [12]. The remedy
has been the construction of a vector-valued meromorphic solution with a simple
pole at the origin. Due to the inherit symmetries of the KdV R-H problem, the
pole cancels in the final step of the nonlinear steepest descent analysis (see [12,
Sect. 6]). However the natural question remains, whether the construction of the
meromorphic model solutions is necessary. In this work we show that it is not, by
proving a uniform error estimate for t ! 1. Our approach avoids the construction
of a model matrix solution entirely and relies instead on Fredholm index theory
to argue for invertibility of the relevant singular integral operators. We shall refer
to this method as the Fredholm R-H approach. This idea can be found in [25,
Prop. 4.4] (see also [15], [18, Sect. 6] and [19]). While we concentrate on the KdV
case with steplike initial data, this paper can be regarded as an introduction to this
alternative method which generalizes to other problems solvable via the nonlinear
steepest descent method.

The structure of the paper is as follows. Section 2 summarizes the necessary
scattering theory to obtain the R-H formulation of the KdV equation. Section 3
contains a local change of variables which results in an explicitly solvable parametrix
problem. The necessary theory of Fredholm integral operators with emphasis on
the symmetries of our problem can be found in Section 4. The subsequent Section
5 contains the main idea of our new method: the construction of two auxiliary R-H
problems and an application of Fredholm theory from the previous section to prove
uniform error estimates for the approximation of the KdV solution. The discussion
section contains some further comments and a short scheme for obtaining the full
asymptotic expansion of the KdV solution. The two appendices contain some proof
technicalities left out in the main text and a general theorem which describes the
method used in this paper.

2. preliminaries

2.1. Initial data. We consider the KdV equation (cf. [8]), given by

qt(x, t) = 6q(x, t)qx(x, t)� qxxx(x, t), (x, t) 2 R⇥ R+
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with steplike initial data q(x) = q(x, 0) 2 C11(R), i.e.
lim
x!1

q(x) = 0,

lim
x!�1

q(x) = �c2, c > 0

such that

(2.1)

Z +1

0
eC0x(|q(x)|+ |q(�x) + c2|)dx < 1, C0 > c

and Z 1

�1
(x6 + 1)|q(i)(x)|dx < 1, i = 1, ..., 11.

It has been shown that the above Cauchy problem has a unique solution q(·, t) 2
C3(R) (cf. [11], [13]). Existence of classical solutions has been proven under more
general assumptions in [23], but we require the more restrictive condition (2.1) for
analytic continuation in the frame work of the nonlinear steepest descent method.
We focus on the asymptotic behaviour of solutions in the elliptic wave region given
by �6c2t < x < 4c2t.

2.2. Scattering transform. To solve the KdV equation via the scattering trans-
form, we need to regard the solution q(x, t) as a potential of a self-adjoint Schrödinger
operator:

L(t) = �
d2

dx2
+ q( · , t), D(L) = H2(R) ⇢ L2(R).

Because of the behaviour of q(x, t) for x ! ±1, one can find unique Jost solutions
�(k, x, t), �1(k, x, t) of the stationary Schrödinger equation

L(t) (k, x, t) = k2 (k, x, t), Im(k) > 0

determined by

lim
x!1

e�ikx�(k, x, t) = 1, lim
x!�1

eik1x�1(k, x, t) = 1

where k1 :=
p
k2 + c2 is holomporhic in C\[�ic, ic] with k1 > 0 for k > 0. We endow

[�ic, ic] with an orientation from top to bottom, hence + (�) denotes the limit from
the right (left), e.g. k1,+ = �k1.�. The Jost solutions � and �1 are holomorphic
in the domain CU = {k : Im(k) > 0}, and CU

c := CU
\ (0, ic] respectively and

continuous up to the boundary. Hence, we can evaluate � and �1 on the real axis,
which results in the scattering relations

T (k, t)�1(k, x, t) = �(k, x, t) +R(k, t)�(k, x, t), k 2 R,

T1(k, t)�(k, x, t) = �1(k, x, t) +R1(k, t)�1(k, x, t), k1 2 R,
where T (k, t) (T1(k, t)) and R(k, t) (R1(k, t)) are the transmission and reflection
coe�cients determined uniquely by the above equations. In the case of no solitons,
T (k, t) and T1(k, t) are holomorphic in CU

c and continuous up to the boundary, while
R(k, t) and R1(k, t) have an analytic extension to the domain {k : 0 < Im(k) <
C0} \ (0, ic], because of assumption (2.1). We also introduce an auxiliary function

�(k, t) := � lim
"!0+

T (k + ", t)T1(k + ", t), k 2 (0, ic]



40 M. PIORKOWSKI

and extend it to [�ic, 0) via

�(�k, t) = ��(k, t).

More properties of the above functions can be found in [8, Sect. 2], and shall be
mentioned when needed. The next step involves determining a minimal scattering
data, from which the potential can be reconstructed. From Theorem 2.1 below, it
follows that one possible choice is given by

S(t) = {R(k, t), k 2 R; �(k, t), k 2 [0, ic]}.

Here, S(t) denotes the scattering data of the solution q(x, t) of the KdV equation,
which evolves linearly from the scattering data S(0) of the initial data q(x) via

R(k, t) = R(k, 0)e8ik
3t = R(k)e8ik

3t,

�(k, t) = �(k, 0)e8ik
3t = �(k)e8ik

3t.

This method e↵ectively linearizes the KdV equation. The R-H approach is then
used to perform the inverse scattering transform S(t) ! q(x, t) and is outlined in
the following theorem taken from [8]:

Theorem 2.1. Let m(k) = m(k, x, t) be given by

m(k, x, t) =

8
<

:

⇣
T (k, t)�1(k, x, t)eikx,�(k, x, t)e�ikx

⌘
, k 2 CU

c⇣
�(�k, x, t)eikx, T (�k, t)�1(�k, x, t)e�ikx

⌘
, k 2 CL

c ,

where CU
c := {k : Im k > 0} \ (0, ic], CL

c := {k : Im k < 0} \ (0,�ic]. Then m(k)
is the unique solution to the following R-H problem:

Find a vector-valued function m(k) which is holomorphic away from R [ [�ic, ic],
satisfying:

(i) The jump condition m+(k) = m�(k)v(k)

v(k) =

8
>>>>>>>>>><

>>>>>>>>>>:

✓
1� |R(k)|2 �R(k)e�t�(k)

R(k)et�(k) 1

◆
, k 2 R,

✓
1 0

�(k)et�(k) 1

◆
, k 2 (0, ic],

✓
1 �(k)e�t�(k)

0 1

◆
, k 2 [�ic, 0),

(ii) the symmetry condition

(2.2) m(�k) = m(k)

✓
0 1
1 0

◆
,

(iii) and the normalization condition

(2.3) lim
k!1

m(k) = (1 1).

Here the phase �(k) = �(k, x, t) is given by

�(k) = 8ik3 + 2ik
x

t
,
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Remark 2.2. We have excluded solitons in our analysis, as they do not contribute

to the asymptotics in the region of interest. They can be included in the R-H formu-

lation by requiring certain pole conditions on m(k), which can then be transformed

to jump conditions (see [8], [15]).

Note that the jump matrix v(k) also satisfies a symmetry condition

(2.4) v(�k) = �1v(k)
�1�1, �1 :=

✓
0 1
1 0

◆
.

There are two methods to obtain q(x, t) from m(k, x, t) = (m1(k, x, t) m2(k, x, t))
([12]):

q(x, t) = @x lim
k!1

2ik(m1(k, x, t)� 1) = �@x lim
k!1

2ik(m2(k, x, t)� 1)

(2.5) q(x, t) = lim
k!1

2k2(m1(k, x, t)m2(k, x, t)� 1).

The first formulas are more analytically demanding because of the di↵erentiation,
so we will use the second formula (2.5).

2.3. Conjugation steps. For further analysis we introduce the following function

g(k) = g(k, x, t) := 12

Z k

ic
(k2 + µ2)

r
k2 + a2

k2 + c2
dk

which is holomorphic in C\ [�ic, ic] and approximates �(k) at infinity, while simpli-
fying our R-H problem on [�ic, ic]. As has been shown in [16, Sect. 4], a = a(⇠) and
µ = µ(⇠) can be chosen to depend continuously on the slowly varying parameter

⇠ = x
12t 2 (� c2

2 ,
c2

3 ) such that the following properties hold (see [8, Sect. 4]):

(i). The function g is odd, i.e. g(�k) = �g(k), k 2 C \ [�ic, ic];
(ii). g�(k) + g+(k) = 0 for k 2 [�ic, ic] \ (�ia, ia);
(iii). g�(k)� g+(k) = B for k 2 [�ia, ia], with B := �2g+(ia) > 0;
(iv). for k ! 1 we have

1

2
�(k, ⇠)� ig(k, ⇠) = O(k�1).

We modify the R-H problem from Theorem 2.1 by conjugating with the matrix
e�(t�(k)/2�itg(k))�3 , i.e.

m(k) �! m̂(k) := m(k)e�(t�(k)/2�itg(k))�3 ,

v(k) �! v̂(k) := e(t�(k)/2�itg�(k))�3v(k)e�(t�(k)/2�itg+(k))�3 ,

�3 :=

✓
1 0
0 �1

◆
.

The next step involves performing a standard factorization of the jump matrix on
the real axis (see [8, Sect. 4]), and shall not be repeated here. To further simplify
the jump matrices on [�ic,�ia][ [ia, ic], we introduce another function F (k) given
by

F (k) := exp

(
!(k)

2⇡i

 Z ia

ic

f(s)

s� k
ds+

Z �ia

�ic

f(s)

s� k
ds� i�

Z ia

�ia

ds

!(s)(s� k)

!)
,

with
!(k) :=

p
(k2 + c2)(k2 + a2), !(0) > 0,
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f(k) :=
log |�(k)|

!+(k)
,

� = �(⇠) = 2i

Z ic

ia

log |�(s)|

!+(s)
ds
⇣Z ia

�ia

ds

!(s)

⌘�1
,

satisfying the following properties:

(i). F+(k)F�(k) = |�(k)| for k 2 [ic, ia],
(ii). F+(k)F�(k) = |�(k)|�1 for k 2 [�ia,�ic],
(iii). F+(k) = F�(k)ei� for k 2 [�ia, ia],
(iv). F (k) ! 1 as k ! 1 and F (�k) = F�1(k) for k 2 C \ [�ic, ic].

That F (k) has these properties on the open intervals follows from Plemelj formulas.
The interval boundary points need a more careful analysis (see [20, Ch. 4]). Further
comments regarding the possible singularities of F (k) near ia and ic can be found
in [12]. Again we conjugate our current R-H problem by the matrix F (k)��3 .

Next, let us introduce the matrices

GU (k) :=

 
1 �

F 2

� e�2itg

0 1

!
, GL(k) :=

✓
1 0

�
1

�F 2 e2itg 1

◆

where

�(k) :=
4k1k

W (e�1,�)W (�1,�)
, �(�k) = ��(k), k 2 {k : 0 < Im k < C0} \ [�ic, ic]

is the analytic continuation of �(k) in the vicinity of [�ic, ic], such that

�+(k) = � lim
"!0+

T (k + ", 0)T1(k + ", 0), �+(k) = ���(k), k 2 [�ic, ic].

The function e�1(k) is the analytic continuation of the function �1(k) restricted to
the imaginary segment [0, ic], and can be expressed via the transformation operator
K1(x, y, t) (cf. [8, Sect. 2], [9]):

e�1(k, x, t) = eik1x +

Z x

�1
K1(x, y, t)e

ik1ydy, k 2 {k : 0 < Im k < C0} \ [�ic, ic]

which converges because of the decay properties of q(x, t). We conjugate withGU (k)
and GL(k) in the domains ⌦U

1 and ⌦L
1 depicted in Figure 1, where all contours need

to be confined to the strip {k : �C0 < Im k < C0}. The resulting R-H problem
takes the following form, where b 2 (0, a) can be chosen arbitrary (we shall only
write down the resulting jump matrix and the contour, where the notation v(2)(k)



PARAMETRIX PROBLEM FOR THE KORTEWEG–DE VRIES EQUATION 43

is adopted from [12]):

v(2)(k) =

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

✓
0 i
i 0

◆
, k 2 [ic, ia],

 
e�itB̂ 0

i|�|eit(2g��itB̂) eitB̂

!
, k 2 [ia, ib]

✓
1 0

R(k)F�2(k)e2itg(k) 1

◆
, k 2 ⌃U

 
e�itB̂ 0

0 eitB̂

!
, k 2 [�ia, ia],

�1

⇥
v(2)(�k)]�1�1, k 2 [�ia,�ic] [ [�ib,�ia] [ ⌃L,

GU (k)�1, k 2 ⌃U
1 ,

GL(k)�1, k 2 ⌃L
1 ,

where B̂ := B + �
t . We write ⌃ for the union of all contours listed above.

?

?

?

ia

�ia

ic

�ic

ib

�ibr

r

r

r
r

r
⌃U

⌃L

⌃U

⌃L

⌃U
1

⌃L
1

⌦U

⌦L

⌦U
1

⌦L
1

........ ........... .............. .................. ..................... ........................ ............................ ............................... ................................... ...................................... ......................................... .............................................

........
...........
..............

.................. ..................... ........................ ............................ ............................... ................................... ...................................... ......................................... .............................................

..........................................................................................................................................................................................................................................................................................................................

........
...........

..............
.........................................................................................................................................................................................................................................................................................

-

-

-

-

.
..........................

......................
...................

...............
............
..........
.........
.............

............
...........
............
..............
................ .................. .................... .................... .................. ................ .............. ............

..........
.
..........
..

.........

....

.........
..........

............
..............
.

..................
.

....................
..

.......................
...

.
.......................

...
....................

..
..................
.

..............
.

............
..........
.........
.........
....

..........
..
..........
.

............ .............. ................ .................. .................... .................... .................. ................
..............
............
...........
............

.............
.........
..........

............
...............

...................
......................

..........................

✓R

I 

.... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .....

Figure 1. The contour of the model R-H problem with exponen-
tial correction

As all conjugation and deformation steps are invertible, we know from Theorem
2.1, that there exists a unique solution to the above R-H problem with the usual
asymptotics at infinity (2.3) and symmetry condition (2.2), which shall be denoted
bym(2)(k, x, t). Moreover, we assume that ⌃U and ⌃L remain a finite distance away
from the real line, implying that for t ! 1 the jump matrices on ⌃U , ⌃L, ⌃U

1 and
⌃L

1 converge exponentially fast to the identity matrix, and on [ia, ib][ [�ia,�ib] to

the diagonal matrix e�itB̂�3 . We shall refer to the above R-H problem as the model

R-H problem with exponential correction, and the one where we ignore the jump
matrices converging to the identity matrix as the asymptotic model R-H problem

or just model R-H problem. The latter one is solved explicitly in [8] (see also [12],
[16]) and its solution is unique:
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Theorem 2.3. The model R-H problem, given by the jump matrix

v(3) =

8
>>>>>>>>>>><

>>>>>>>>>>>:

✓
0 i
i 0

◆
, k 2 [ia, ic],

✓
0 �i
�i 0

◆
, k 2 [�ia,�ic],

 
e�itB̂ 0

0 eitB̂

!
, k 2 [�ia, ia],

has a unique solution mmod(k) satisfying the symmetry and normalization condi-

tions (2.2), (2.3).

3. Parametrix problem

3.1. Local change of variables. We now turn to the jump condition near the
points ±ia (we will just consider +ia, analogous results hold for �ia). For k near
ia we can write

g(k) = 12

Z k

ic
(s2 + µ2)

s
s2 + a2

s2 + c2
ds

= g±(ia) + 12

Z k

ia
(s2 + µ2)

s
s2 + a2

s2 + c2
ds

= ⌥
B(⇠)

2
� 8ei⇡/4(a2 � µ2)

r
2a

c2 � a2
(k � ia)3/2 +O((k � ia)5/2),

where the roots in the last two lines have a branch cut on the positive imaginary
axis (i.e. Im k > a, Re k = 0) and are chosen positive for k � ia > 0. The upper
(lower) sign is for the limit from the right (left), respectively.

Next, we have to define a local time-dependent holomorphic change of variables
k � ia ! w, such that

g(k) = ⌥
B(⇠)

2
+

&w(k)3/2

t
, k 2 D

where D is a disc around ia with a fixed radius smaller than min(c� a, a� b) such
that k � ia ! w is bijective and & = e�3⇡i/4. The branch cut is defined again on
the positive imaginary axis. Furthermore, if convenient we will abuse notation by
writing f(w) for f(k(w)), if a f is a function of the variable k and vice versa.

We continue with the model R-H problem with exponential correction around
the critical point ia. To make it independent of our new variable w, we perform a
conjugation by the matrix e�itg(w)�3 . This results in a local R-H problem with the
following jump matrices around k = ia (w = 0), where ĥ := ei�:
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?

?

@
@
@
@

@
@
@@

R

�
�

�
�
�

�
��

✓⇣1 �F 2/�
0 1

⌘⇣
1 �F 2/�
0 1

⌘

⇣
0 i
i 0

⌘

⇣
ĥ�1 0

ĥ�/F 2
+ ĥ

⌘

Figure 2. The local R-H problem

In the next step we conjugate around the origin in the w-domain by the matrix
✓
p(w) 0
0 p(w)�1

◆

where p(w) should be a holomorphic function with a possible jump on the imaginary
axis. The jump matrices transform as follows

✓
1 �F 2/�
0 1

◆
�!

✓
1 �F 2/�p�2

0 1

◆

✓
0 i
i 0

◆
�!

✓
0 ip�1

+ p�1
�

ip+p� 0

◆

✓
ĥ�1 0

ĥ�/F 2
+ ĥ

◆
�!

✓
ĥ�1p+p

�1
� 0

ĥ�/F 2
+p+p� ĥp�1

+ p�

◆
.

To simplify the problem, we require that

F 2

�
p�2 = 1

which implies

p :=
F
p
�
.

As the limit of F 2/� from the right (left) to ia is equal to �iĥ (iĥ�1) which are of
modulus 1, we see that we can find locally a square root. We choose the normal-
ization

p+(0) = e�⇡i/4ĥ1/2

and
p�(0) = e⇡i/4ĥ�1/2.

The following boundary values can be computed explicitly:

p+p� =
F+F�

p
�+

p
��

=
|�|

p
�+

p
��+

=
i|�+|

�+
= 1, k(w) 2 [ia, ic] \ D,
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p+p
�1
� =

F+F
�1
�

p
�+

p
��

�1 =
ĥ

p
�+

p
��+

�1 = �iĥ, k(w) 2 [0, ia] \ D.

The conjugated R-H problem, referred to as the Airy R-H problem, takes on the
form:

?

?

@
@
@

@
@
@@

R

�
�
�

�
�
��

✓

⌦4 ⌦1

⌦2⌦3
⇣
1 �1
0 1

⌘⇣
1 �1
0 1

⌘

⇣
0 i
i 0

⌘

⇣
�i 0
i i

⌘

⌃1⌃3

⌃2

⌃4

Figure 3. The Airy R-H problem

where we have used that
ĥ�p+p�

F 2
+

= i

on the imaginary segment k(w) 2 [0, ia] \ D.
Note that matrix solutions without any normalization constraint at infinity cor-

respond bijectively to matrices with entire entries. This follows from the cyclic
condition satisfied by the jump matrices (cf. [24]):

(3.1)

✓
1 �1
0 1

◆✓
0 i
i 0

◆�1 ✓
1 �1
0 1

◆�1 ✓
�i 0
i i

◆
= I,

i.e. the product of the jump matrices when going around the point w = 0 and taking
into account the orientation of ⌃i, i = 1, . . . , 4 evaluates to the identity matrix. In
particular, to construct the local parametrix solution we will need to use entire
functions, such that later on the matching condition (3.7) can be satisfied.

To obtain the correct asymptotic for w ! 1, we shall make an ansatz involving
the Airy function (see [22, Ch. 9])

Ai(z) :=

Z 1ei⇡/3

1e�i⇡/3

exp(s3/3� zs) ds,

(3.2) Ai(z) =
1

2
p
⇡

⇣
z�1/4 +O(z�7/4)

⌘
e�2/3z3/2

, z ! 1, | arg(z)| < ⇡

which is a solution of the Airy di↵erential equation. The notation 1e±i⇡/3 means
that we integrate over a contour which asymptotically is a straight ray with angle
±i⇡/3. Here, the error term is uniform in closed sectors excluding the negative real
axis. Two other solutions are given by Ai(⇢z) and Ai(⇢2z) with ⇢ := e2i⇡/3. As the
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Airy equation is linear and of second order, there must be a linear relation between
these three solutions, which is given by

Ai(z) + ⇢Ai(⇢z) + ⇢2 Ai(⇢2z) = 0.

As it will be needed later, let us also write down the asymptotics of the first
derivative of the Airy function

(3.3) Ai0(z) = �
1

2
p
⇡

⇣
z1/4 +O(z�5/4)

⌘
e�2/3z3/2

, z ! 1, | arg(z)| < ⇡

where the error is again uniform in closed sectors excluding the negative real axis.
Let us define

y1(w) := 2
p
⇡ei⇡/8(3/2)1/6 Ai(iw(3/2)2/3)

y2(w) := ⇢y1(⇢w)

y3(w) := ⇢2y1(⇢
2w)

With our prior definition of w3/2 (branch cut on the positive imaginary axis) we
can deduce from (3.2) the following asymptotics

y1(w) =
⇣
w�1/4 +O(w�7/4)

⌘
ei&w

3/2

, arg(w) 6= ⇡/2

y2(w) =

8
<

:
�

⇣
w�1/4 +O(w�7/4)

⌘
ei&w

3/2

, arg(w) 2 (�⇡/6,⇡/2)

i
⇣
w�1/4 +O(w�7/4)

⌘
e�i&w�3/2

, arg(w) 2 (⇡/2, 11⇡/6)

y3(w) =

8
<

:
�

⇣
w�1/4 +O(w�7/4)

⌘
ei&w

3/2

, arg(w) 2 (⇡/2, 7⇡/6)

�i
⇣
w�1/4 +O(w�7/4)

⌘
e�i&w3/2

, arg(w) 2 (�5⇡/6,⇡/2)

with & = e�3⇡i/4 and for the derivatives

y01(w) = �
3i&

2

⇣
� w1/4 +O(w�5/4)

⌘
ei&w

3/2

, arg(w) 6= ⇡/2

y02(w) =

8
<

:
�

3i&
2

⇣
w1/4 +O(w�5/4)

⌘
ei&w

3/2

, arg(w) 2 (�⇡/6,⇡/2)

�
3i&
2

⇣
iw1/4 +O(w�5/4)

⌘
e�i&w�3/2

, arg(w) 2 (⇡/2, 11⇡/6)

y03(w) =

8
<

:
�

3i&
2

⇣
w1/4 +O(w�5/4)

⌘
ei&w

3/2

, arg(w) 2 (⇡/2, 7⇡/6)

�
3i&
2

⇣
� iw1/4 +O(w�5/4)

⌘
e�i&w3/2

, arg(w) 2 (�5⇡/6,⇡/2)

Next, we need to check whether we can indeed get the right boundary behaviour
from an ansatz involving yi(w). Because of the cyclic relation (3.1) and the fact
that the Airy function is entire, it is su�cient to specify the two vector components
in one region, to automatically obtain a global vector solution to the Airy R-H
problem. Assuming the form

ai(w) = (y3(w), �y1(w))

in ⌦1 we get the following solution
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ai(w) =

8
>>><

>>>:

�
y3(w), �y1(w)

�
, w 2 ⌦1,�

y3(w), y2(w)
�
, w 2 ⌦2,�

� iy2(w), �iy3(w)
�
, w 2 ⌦3,�

� iy2(w) iy1(w)
�
, w 2 ⌦4.

As all jump matrices for the parametrix problem are constant, we know that
ai0(w) is another solution to the Airy R-H problem. Conjugating back with the
matrices p(w)��3 and eitg(w)�3 we can use these vector solutions to write down a
local matrix solution A(k) of the model R-H problem with exponential correction
in the k-domain defined as follows:
(3.4)

A(k) =

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

ei⇡/4t��3/6

 
2i
3& 0

0 1

! 
y03(w) �y01(w)

�y3(w) y1(w)

!
p(k)��3eitg(k)�3 , w 2 ⌦1,

ei⇡/4t��3/6

 
2i
3& 0

0 1

! 
y03(w) y02(w)

�y3(w) �y2(w)

!
p(k)��3eitg(k)�3 , w 2 ⌦2,

ei⇡/4t��3/6

 
2i
3& 0

0 1

! 
�iy02(w) �iy03(w)

iy2(w) iy3(w)

!
p(k)��3eitg(k)�3 , w 2 ⌦3,

ei⇡/4t��3/6

 
2i
3& 0

0 1

! 
�iy02(w) iy01(w)

iy2(w) �iy1(w)

!
p(k)��3eitg(k)�3 , w 2 ⌦4,

in some fixed disc D around ia with radius smaller than min(a � b, c � a) in the
k-domain, such that k ! w is a change of variables for k 2 D.

Note that m(2)(k)A�1(k) will have no jumps inside D. For our subsequent anal-
ysis we need an analogous local solution for the model problem, i.e. we look for a
matrix N(k) defined on D, such that mmod(k)N(k) has no jumps inside D. This
translate to the following jump condition for N(k)

(3.5)

N+(k) =

✓
0 �i
�i 0

◆
N�(k), k 2 [ia, ic] \ D

N+(k) =

 
eitB̂ 0

0 e�itB̂

!
N�(k), k 2 [0, ia] \ D.

where B̂ = B + �
t . Furthermore, on the boundary @D we would like N(k) to

asymptotically cancel with A�1(k). The correct solution of (3.5) is given by

(3.6) N(k) =
1

2
e±i(tB/2+⇡/4)�3p(k)�3

✓
w�1/4

�w1/4

w�1/4 w1/4

◆
t�3/6,

which is obtained from A�1(k) by taking the first term in the expansion of the Airy
function and their derivative (3.2), (3.3). Note that in A(k) the exp(i&w(k)3/2)
factor cancels partially with exp(±itg(k)) = exp(⌥iB/2 + i&w(k)3/2) leaving only
exp(±itB/2), which is contained in formula (3.6). In fact, choosing N(k) as above
and using the normalization in (3.4) we obtain the estimate

(3.7) A�1(k) = N(k) +O(t�1), k 2 @D,
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which follows from (3.2), (3.3) and the fact that O(t1/6w�7/4) = O(t�1/6w�5/4) =
O(t�1) on @D. As both the determinants of A(k) and N(k) are constant equal to
1, we also have the estimate

N�1(k) = A(k) +O(t�1), k 2 @D.

4. Singular integral equations

Our goal is to show that the contributions coming from the vicinities of ±ia are
small, such that they do not a↵ect the leading asymptotics of the KdV equation.
This can be achieved by reformulating our R-H problems as a singular integral
equations and is a rigorous justification of Theorem 5.1 in [8], giving uniform error
estimates of order O(t�1). Again, the arguments follow a similar line to the ones
given in [1], [12] and [21], except for the final analysis, which omits the construc-
tion of a model-matrix solution and the corresponding small norm R-H problem.
Instead, we rely on Fredholm index theory for singular integral operators. Relevant
literature on Cauchy operators and their connection with R-H problems can be
found in [2], [17]. We shall review the essential results here.

We write C� for the Cauchy operator defined on L2(�),

C� : L2(�) ! O(C \ �), f(k) 7! C�(f)(k) :=
1

2⇡i

Z

�
f(s)

ds

s� k
,

where O(C \ �) denotes the space of holomorphic functions on C \ �. Here, we are
assuming that � has an orientation and that the family of functions (s� k)�1 are
in L2(�) for k 2 C \ �. We define the operators C�

�, C
�
+ by

C�
±(f)(k) = lim

z!k±
C�(f)(z),

where the limit is assumed to be nontangential. Standard theory tells us that if �
is a Carleson jump contour on the Riemann sphere Ĉ = C[{1}, the nontangential
limit exists a.e. and C�

± will be a bounded operator from L2(�) to itself (see [17,
Prop. 3.11]). Note that the contour ⌃ of the model problem can be extended
to a Carleson jump contour ⌃ [ iR (the same is true for ⌃̃ defined in the next
section). Hence, boundedness of C⌃[iR implies boundedness of C⌃, which is all that
is required in [25] for the underlying operators to be Fredholm.

For a general 2 ⇥ 2 matrix-valued function u(k) 2 L1(�;C2⇥2) we can define
with slight abuse of notation the following operator:

C�
u : L2(�;C2) ! L2(�;C2), f 7! C�

�(f · u),

where � is a Carleson jump contour. Here, C�
� acts componentwise on vector-

valued entries. We assume that � is invariant with respect to the transformation
k ! �k and that sequences converging to the positive side still converge after this
transformation to the positive side. This is a di↵erent convention then the one we
used in [12] or the one from Theorem 2.1, in order to simplify computations. The
jump matrix v (and also u := v � I) must now satisfy

v(�k) = �1v(k)�1

which is the same as (2.4) when taking into account the di↵erent orientation. By
the previous arguments, we have that kC�

ukL2(�;C2)  CkukL1(�;C2⇥2), where C is
the operator bound of C�

� in L2(�;C2).
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Remark 4.1. We emphasise that the orientation is essentially a free choice. While

some theorems in the literature (c.f. [17]) require particular orientation conventions,

one can always fulfill them by changing orientations of certain arcs and inverting

the corresponding jump matrix.

Next, let us consider the following integral equation

(I� C�
u)�(k) = C�

�((1 1)u),

where we also require that the matrix entries of u are in L2(�) in order for the right-
hand side to be well-defined. It turns out that there is a bijective correspondence
between solutions of the above equation, and vector solutions of the R-H problem
on the contour � with jump matrices v(k) = I+ u(k) (in the L2-setting) given by

�(k) �! m(k) := (1 1) +
1

2⇡i

Z

�
(�(s) + (1 1))u(s)

ds

s� k

m(k) �! �(k) := m�(k)� (1 1),

see [25]. The following result is of central importance for this paper and holds also
without our symmetry assumption on �:

Theorem 4.2. For u(k) 2 L1(�;C2⇥2), the operator I� C�
u is Fredholm of index

0.

Proof. The fact that this operator is Fredholm is proven in [25, Prop. 4.1]. Note
that ⌧ ! I � C�

⌧u for ⌧ 2 [0, 1] is a continuous deformation of I � C�
u to I in the

space of Fredholm operators. As the Fredholm index stays invariant with respect
to such deformations, it follows that

ind (I� C�
u) = ind I = 0.

As the uniqueness statements in Theorems 2.1 and 2.3 only hold for vector
solutions satisfying the symmetry condition (2.2), we would need to restrict the
operator C�

u to L2
s(�;C2), which is the Hilbert space of functions �(k) 2 L2(�;C2),

satisfying
�(�k) = �(k)�1.

We write S�
u for the restriction to the symmetric functions, and A�

u for the restric-
tion to the antisymmetric function satisfying

�(�k) = ��(k)�1.

The space of antisymmetric functions is denoted by L2
a(�;C2). Let us define the

operator

H : L2(�;C2) ! L2(�;C2), H�(k) := �(�k)�1.

Note that L2
s(�;C2) is the eigenspace of H with eigenvalue 1, while L2

a(�;C2) is
the one with eigenvalue �1. Next, let us assume that u(k) (or analogously v(k))
satisfies the symmetry condition

u(�k) = �1u(k)�1.
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We can then compute that H is a symmetry of C�
u, i.e. commutes with it

C�
uH�(k) = lim

k0!k�

1

2⇡i

Z

�
H�(s)u(s)

ds

s� k0

= lim
k0!k�

1

2⇡i

Z

�
�(�s)�1u(s)

ds

s� k0

= lim
�k0!�k�

1

2⇡i

Z

�
�(s)u(s)

ds

s� (�k0)
�1

= C�
u�(�k)�1

= HC�
u�(k).

Hence, we conclude
[C�

u, H] = 0

which implies that the range of S�
u lies in the space of symmetric functions, while

the range of A�
u lies in the space of antisymmetric functions. This implies that

I �S�
u and I � A�

u can both be restricted to be Fredholm operators on L2
s(�;C2)

and L2
a(�;C2) respectively. Using an argument as in the proof of Theorem 4.2, we

conclude that both operators are of index 0. Hence, we see that injectivity of the
operator I � S�

u which is equivalent to the uniqueness of the corresponding R-H
problem already implies invertibility. The same reasoning holds for I� A�

u.

5. Main result

Next, we define two new R-H problems for which we know their unique solutions.
Similarly as in Section 3, denote by DU a disc around ia with radius smaller than
min(c � a, a � b) such that k ! w is bijective for k 2 DU . In particular, ⌃U is
assumed to be disjoint from DU . Note that the radius can be chosen to be constant
with respect to small variations of ⇠ (see Remark 5.1). Let DL be the image of DU

under the transformation k ! �k. Furthermore, @DU is oriented counterclockwise,
@DL clockwise and let U := DU

[DL. The two R-H problems satisfy by assumption
the symmetry condition for the contour and for the jump matrices specified in
the previous section. The same goes for the solutions, which are assumed to be
symmetric.

Riemann-Hilbert problem I. Find a vector-valued function emmod(k), holomor-
phic in C \ ([�ic, ic] [ @U), satisfying:

(i) The jump condition emmod
+ (k) = emmod

� (k)vI(k):

vI(k) =

8
><

>:

v(3)(k), k 2 [�ic, ic] \ U

N(k), k 2 @DU

�1N(�k)�1, k 2 @DL

with N(k) defined by (3.6),
(ii) the symmetry condition

emmod(�k) = emmod(k)

✓
0 1
1 0

◆
,

(iii) and the normalization condition

lim
k!1

emmod(k) =
�
1 1

�
.
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The solution has the form

emmod(k) = mmod(k), k 2 C \ U

emmod(k) = mmod(k)N(k), k 2 U
(5.1)

where mmod(k) satisfies the model R-H problem and is taken from [8] (for a proof of
uniqueness see [12]), where it is given explicitly in terms of Jacobi theta functions:

mmod
1 (k) = 4

r
k2 + a2

k2 + c2

✓
⇣
A(k)� i⇡ �

itB̂
2

⌘
✓
⇣
A(k)� itB̂

2

⌘
✓2

�
⇡i
2

�

✓ (A(k)� i⇡) ✓ (A(k)) ✓
⇣

⇡i
2 �

itB̂
2

⌘
✓
⇣

⇡i
2 + itB̂

2

⌘ ,

mmod
2 (k) = 4

r
k2 + a2

k2 + c2

✓
⇣
�A(k)� i⇡ �

itB̂
2

⌘
✓
⇣
�A(k)� itB̂

2

⌘
✓2

�
⇡i
2

�

✓ (�A(k)� i⇡) ✓ (�A(k)) ✓
⇣

⇡i
2 �

itB̂
2

⌘
✓
⇣

⇡i
2 + itB̂

2

⌘ .

Here, A : C \ [�ic, ic] ! C, is the Abel map restricted to the upper sheet (cf. [8,
Sect. 5]). Furthermore, uniqueness of mmod(k) implies uniqueness of m̃mod(k), as
any model vector solution would give rise to a solution to the R-H problem I via
(5.1).

Riemann-Hilbert problem II. Find a vector-valued function em(2)(k), holomor-
phic in C \ (⌃ [ @U), satisfying:

(i) The jump condition em(2)
+ (k) = em(2)

� (k)vII(k):

vII(k) =

8
><

>:

v(2)(k), k 2 ⌃ \ U

A�1(k), k 2 @DU

�1A�1(�k)�1, k 2 @DL

with A(k) defined by (3.4),
(ii) the symmetry condition

em(2)(�k) = em(2)(k)

✓
0 1
1 0

◆
,

(iii) and the normalization condition

lim
k!1

em(2)(k) =
�
1 1

�
.

The solution has the form

em(2)(k) = m(2)(k), k 2 C \ U

em(2)(k) = m(2)(k)A�1(k), k 2 U

where again uniqueness of m(2)(k) implies uniqueness of em(2)(k).

Let us remark once again that N(k) is chosen to cancel the jump matrix inside
U , and the same is true for A�1(k). Hence, while R-H problem I has only jumps
on the imaginary segments [�ic, ic] \ U and @U , R-H problem II additionally has
jump exponentially converging to the identity matrix away from the discs.
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Note that vI(k) = vII(k) for k 2 [�ic, ic] \
�
U [ [ia, ib] [ [�ia,�ib]

�
. On the

boundary of the discs we have the estimate (3.7), hence we can conclude that

kvII � vIkL1(e⌃;C2⇥2) = O(t�1),

where e⌃ := (⌃ \ U) [ @U and we set vI(k) ⌘ I for k 2 ⌃ \ [�ic, ic]. We can now
use the results from the previous sections, to prove that m(2)(k) and mmod(k) are
asymptotically close to one another as t ! 1.

As we have an explicit solution of R-H problem I, we can use our uniqueness
result and Fredholm theory to solve the equation

(I�S
e⌃
uI )�I(k) = S

e⌃
�((1 1)uI).

with uI := vI � I, by inverting I�S
e⌃
uI . As uI is periodic in time, we can conclude

that the continuous family of operators I�S
e⌃
uI is uniformly invertible

k(I�S
e⌃
uI )�1

kL2(e⌃;C2)  C.

Here, C can be chosen locally uniformly in the parameter ⇠ = x
12t (see remark below

and Appendix A).

Remark 5.1. It should be emphasized that uI,II
are not only time dependent but

also dependent on ⇠ = x
12t . As shown in appendix A, we can choose the contour e⌃

such that it does not depend on the parameter ⇠, as long as ⇠ stays in some compact

subinterval of (� c2

2 ,
c2

3 ). As the jump matrices are continuous functions of ⇠, we
can vary ⇠ when letting t ! 1 and all estimates would still hold. In our subsequent

computations we suppress the ⇠-dependence as it does not change the asymptotics

as long it stays in (�c2/2 + ", c2/3� "), for some " > 0.

From now on we abbreviate the norms k.kLp(e⌃;C2) and k.kLp(e⌃;C2⇥2) by k.kp, for

p 2 [1,1]. We note that

kvI � vIIk1 = kuI
� uII

k1 = O(t�1)

kvI � vIIk2 = kuI
� uII

k2 = O(t�1)

and
kS⌃̃

uI �S
e⌃
uIIk2 = kS

e⌃
uI�uIIk2 = O(t�1).

As the set of bounded invertible operators is open in the operator norm topology,

we conclude that for t large enough the operator I �S
e⌃
uII must also be uniformly

invertible. Denote by �II(k) the unique solution of

(5.2) (I�S
e⌃
uII )�II(k) = S

e⌃
�((1 1)uII).

The following computations shows that �I(k) and �II(k) are in fact also close to
one another in L2(e⌃;C2):

k�I(k)� �II(k)k2 = k(I�S
e⌃
uI )�1S

e⌃
�((1 1)uI)� (I�S

e⌃
uII )�1S

e⌃
�((1 1)uII)k2

k[(I�S
e⌃
uI )�1

� (I�S
e⌃
uII )�1]S

e⌃
�((1 1)uI)k2+k(I�S

e⌃
uII )�1S

e⌃
�((1 1)(uI

�uII))k2

 C1k(I�S
e⌃
uI )�1S

e⌃
uI�uII (I�S

e⌃
uII )�1

k2 + C2ku
I
� uII

k2 = O(t�1)
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where we use the second resolvent formula. Furthermore, k�I,II(k)k2 are uniformly
bounded by the uniform invertibility of the corresponding singular integral opera-
tors, as well as the uniform boundedness of kuI,II

k2. Now, developing 1/(s � k)
into a truncated Neumann series

1

s� k
= �

1

k
�

s

k2
�

s2

k3
1

1� s/k

and taking into account the exponential decay of the matrices uI , uII at infinity,
one obtains for k ! 1 such that |1� s/k| � " > 0 for all s 2 ⌃̃

mmod(k) = (1 1)�
1

k

Z

e⌃
(�I(s) + (1 1))uI(s) ds

�
1

k2

Z

e⌃
(�I(s) + (1 1))uI(s)s ds+O(k�3)

and

m(2)(k) = (1 1)�
1

k

Z

e⌃
(�II(s) + (1 1))uII(s) ds

�
1

k2

Z

e⌃
(�II(s) + (1 1))uII(s)s ds+O(k�3).

Next we compute
���
Z

e⌃
(�I(s) + (1 1))uI(s) ds�

Z

e⌃
(�II(s) + (1 1))uII(s) ds

���



���
Z

e⌃
(�I(s)� �II(s))uI(s) ds

���+
���
Z

e⌃
�II(s)(uI(s)� uII(s)) ds

���

+
���
Z

e⌃
(1 1)(uI(s)� uII(s)) ds

��� = O(t�1)

and analogously
���
Z

e⌃
(�I(s) + (1 1))uI(s)s ds�

Z

e⌃
(�II(s) + (1 1))uII(s)s ds

��� = O(t�1).

Hence, we can conclude

m(2)(k) = mmod(k) +
1

k
O(t�1) +

1

k2
O(t�1) +O(k�3).

We will now make use of the formula (2.5)

m1(k, x, t)m2(k, x, t) = 1 +
q(x, t)

2k2
+O(k�4).

There is no need to trace back our deformation and conjugation steps, as we
are only interested in the asymptotics of m(k) at infinity, and conjugation by

e(t�(k)/2�itg(k))�3F (k)�3 will not change the product m(2)
1 (k)m(2)

2 (k). Hence we
can conclude that

m1(k)m2(k) = m(2)
1 (k)m(2)

2 (k) = mmod
1 (k)mmod

2 (k) +
1

k2
O(t�1) +O(k�4).

Note that the odd terms k�1, k�3 . . . drop out because of the symmetry condi-
tion (2.2) satisfied by m(k), m(2)(k) and mmod(k), implying that all of the above
products are even functions. For the solution of q(x, t) of the KdV equation we
obtain

q(x, t) = qmod(x, t) +O(t�1)
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where

mmod
1 (k)mmod

2 (k) = 1 +
qmod(x, t)

2k2
+O(k�4).

In [10] it has been shown that qmod(x, t) has the form of a periodic Its–Matveev
solution modulated by the parameter ⇠. A general theorem summarizing the above
argumentation in the abstract setting is given in Appendix B.

6. discussion

The main di↵erence in our nonlinear steepest descent analysis compared to the
usual one (see [2], [5], [6]), has been the avoidance of a small norm R-H problem.
Instead, to obtain invertibility of the associated singular integral operators, we
relied on Fredholm index theory (c.f. [25]). This Fredholm R-H approach could be
used in other scenarios where an invertible model matrix solution fails to exist. For
this purpose we have also included a general theorem in Appendix B.

An issue not covered here in detail, is the computation of a full asymptotic
expansion of the R-H solution, as it is done in [4] for the case of orthogonal poly-
nomials. This works analogously in our case, as we have a shifted Neumann series
given by:

(I�S⌃̃
uII )�1 =

1X

n=0

h
(I�S⌃̃

uI )�1(S⌃̃
uII �S⌃̃

uI )
in

(I�S⌃̃
uI )�1.

This in itself is not enough to write down an expansion of the solution to the
singular integral equation (5.2) in powers of t�1. We also need an expansion of

S⌃̃
uII�uI = S⌃̃

uII �S⌃̃
uI

which is equivalent to an expansion of

uII(k)� uI(k) = A�1(k)�N(k)

on @U , as uII(k) � uI(k) = o(t�`) for ` 2 N on the rest of the contour. To this
end we make use of the full expansion of the Airy functions [22, Ch. 9] in powers
of w�3/2 which translates to an expansion in t�1. This results in

�II(k, x, t) =
X̀

j=0

�II
j (k, x, t)

tj
+ Er(k, x, t)

for ` 2 N and ⇠ fixed, with �II
j (k, x, t) being a periodic function in t, �II

0 = �I

and kEr(., x, t)k2 = O(t�`�1). Consequently, one obtains a similar expansion of
m(k, x, t) in terms of t�1 and k�1

m(2)(k, x, t) = mmod(k, x, t) +
X̀

i=1

nX

j=1

cij(x, t)

kitj
+O(k�`�1t�1) +O(k�1t�n�1).

where cij(x, t) are periodic in t for fixed ⇠. Hence, we see that the existence of an
asymptotic expansion of the R-H solution follows from an asymptotic expansion of
the jump matrices, just as with the traditional small norm approach.

Another future challenge would be characterizing those R-H problems which
admit a vector solution but in general no matrix solution. Note that precisely for
n⇡ = tB̂(⇠), n 2 Z, the model R-H problem has an additional symmetry:

v(3)(k) = �1v
(3)(k)�1
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where �1 is the first Pauli matrix. In particular, one can check that for those values
of t, mmod(k)�1 is also a solution. From uniqueness it follows that mmod(k)�1 =
mmod(k), or equivalently mmod

1 (k) = mmod
2 (k). This makes it easier to satisfy

the equation mmod(k) = (0 0) for some k, which is related to the nonexistence
of an invertible matrix model solution (see [12, Sect. 3]). Indeed for odd n,
mmod(0) = (0 0) holds and no holomorphic invertible matrix solution exists. It
would be interesting to explore the question whether such symmetric problems have
a distinguished role in the R-H analysis of integrable equations.

Appendix A. Uniformity of operator bounds

Observe that the contour ⌃ of the model RH problem with the exponentially
converging matrices depends on the parameter ⇠ = x

12t , via the point a = a(⇠) 2

(0, c). However, it is possible to make the contour e⌃ = (⌃ \U)[ @U at least locally
in ⇠, independent of ⇠. To see this, note that while we for simplicity always assumed
ia to be the center of DU , this is not essential. Furthermore, we can always choose
the rays emanating from ia to hit the boundary of the disc at the same points. This
then allows us to choose the rest of the contour e⌃ independent of ⇠ as long as ia
stays in the interior of DU .

ia(⇠0)

ia(⇠)

Figure 4. The inner rays in dependence of ⇠.

This greatly simplifies the analysis, as we now have to deal with only one ⇠-
independent Hilbert space L2

s(e⌃;C2). While we might not be able to choose U

as large as possible because of the constraint that k ! w should be bijective, we
certainly can cover any compact interval contained in (0, ic) with finitely many
discs. Hence all our estimates will be uniform, as long as ⇠ stays in some compact
subinterval of (�c2/2, c2/3).

Another issue neglected in the main text is the uniform boundedness of

(I�S⌃̃
uI,II )�1.

Note that for two operators O and P where O is invertible and P is some pertur-
bation of O we have the formulas

(A.1) k(O + P )�1
k  kO�1

k
1

1� kO�1kkPk
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and similarly

k(O + P )�1
k � kO�1

k
1

1 + kO�1kkPk
.

whenever kO�1
kkPk < 1. This implies continuity of the norm of the inverse. In

particular, we can conclude that for (⇠, t) 2 K ⇥ [T1, T2], where K ⇢ (�c2/2, c2/3)
is compact and T1 < T2, we have the estimate

k(I�S
e⌃
uI )�1

k2  C < 1.

By periodicity of uI in time this inequality can be extended to t 2 R. Analogously,
because of kuI

� uII
k1 = O(t�1) we get

k(I�S
e⌃
uII )�1

k2  C 0 < 1.

for t large enough.

Appendix B. A General theorem

We now mention a theorem generalizing the argumentation given in the proof
of the main result (c.f [2, Cor. 7.108], [14, Ch. 3], [25, Prop. 4.4]). Let � be
an oriented contour, such that the associated Cauchy operators C�

± are bounded
operators from L2(�) to itself. Explicit conditions on the contour for the above
statement to hold can be found in [17]. Furthermore, let an n ⇥ n matrix-valued
function v 2 I + L2(�;Cn⇥n) be given, such that v�1

2 I + L2(�;Cn⇥n). We
associate to v a factorization data u = (u+, u�) 2 L2(�;Cn⇥n) \ L1(�;Cn⇥n),
such that v = (I � u�)�1(I + u+) on the contour �. Note that the factorization
data is nonunique, but always exists, as one can choose u� = 0 and u+ = v � I, as
it is done in the main text. For any factorization data we define a singular integral
operator

C�
u : L2(�;Cn) ! L2(�;Cn), � 7! C�

+(�u
�) + C�

�(�u
+).

Again, we are interested in solutions of the R-H problem on the contour � with
jump matrix v. The normalization for the vector-valued solution m(k) is assumed
to take the simple form

lim
k!1

m(k) = m1 2 Cn

where the limit is taken such that |1� s/k| � " > 0 for all s 2 � and some positive
constant ". As before the above R-H problem is equivalent to the following singular
integral equation

(B.1)
�
I� C�

u

�
� = C�

u(m1)

where m(k) can be obtained by the formula

m(k) = m1 +
1

2⇡i

Z

�
(�(s) +m1)(u+(s) + u�(s))

ds

s� k

= m1 + C�((�+m1)(u+ + u�)).

(B.2)

Indeed, assume � satisfies (B.1) and define m(k) as above. Then
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m+ = m1 + C�
+((�+m1)(u+ + u�))

= m1 + C�
�(�u

+) + �u+ + C�
+(�u

�) + C�
�(m1u+) +m1u+ + C�

+(m1u�)

= m1(I+ u+) + C�
u(�) + C�

u(m1)| {z }
�

+�u+

= (m1 + �)(I+ u+)

where we used C�
+ � C�

� = I. Analogously one computes

m� = (m1 + �)(I� u�),

which then implies

m+ = m�(I� u�)�1(I+ u+) = m�v.

Hence, m(k) is a solution of the R-H problem with limk!1 m(k) = m1. Con-
versely, assume m(k) be a solution to the R-H problem. Then by the Sokhotski–
Plemelj formula for additive scalar R-H problems, m(k) can be written as

m(k) = m1 + C�(m+(I� v�1)) = m1 + C�(m�(v � I)).
Define

� := m�(I� u�)�1
�m1 = m+(I+ u+)�1

�m1.

Then relation (B.2) is fulfilled. From the definition of � it follows that

m+ = (�+m1)(I+ u+),

m� = (�+m1)(I� u�).

Meanwhile, (B.2) together with C�
+ � C�

� = I, implies as before

m+ = m1(I+ u+) + C�
u(�) + C�

u(m1) + �u+,

m� = m1(I� u�) + C�
u(�) + C�

u(m1)� �u�.

Comparing the two expressions of either m+ or m� results in (B.1). We are now
in a position to state a theorem generalising the arguments given in Section 5.

Theorem B.1. Let � be a contour such that the Cauchy operators C�
± are bounded

operators from L2(�) to itself with operator bounds less than C > 0, and let for

i = 1, 2
vi : R+ ! I+ L2(�;Cn⇥n), t 7! vi(t) = vi(t, k)

together with a factorization

vi(t) = (I� u�
i (t))

�1(I+ u+
i (t)), t > 0

be given, such that v�1
i (t) 2 I+L2(�;Cn⇥n) and u±

i (t) 2 L2(�;Cn⇥n)\L1(�;Cn⇥n).
Furthermore assume that the operator I� C�

u1
is invertible for all t > 0 with

k(I� C�
u1
)�1

k2  ⇢(t)

and

ku±
1 � u±

2 k2  ✏(t), ku±
1 � u±

2 k1  �(t)
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where ⇢(t), ✏(t) and �(t) are given positive functions and k.kp := k.kLp(�), p 2 [1,1],
where the norm is naturally generalized to matrix and vector functions. Then I�C�

u2

is also invertible as long as C⇢(t)�(t) < 1 with

k(I� C�
u2
)�1

k2 
⇢(t)

1� C⇢(t)�(t)
.

For t > 0 such that C⇢(t)�(t) < 1, denote by �1,2 the unique solutions of

(I� C�
u1,2

)� = C�
u1,2

(m1)

for some fixed m1 2 Cn
. Then

k�1 � �2k2 
2C⇢(t)✏(t)

1� C⇢(t)�(t)
km1k1 +

2C2⇢2(t)�(t)

1� C⇢(t)�(t)
km1k1ku1k2.

Now, assume that the i-th moments of u±
1 and u±

2 exist, in the sense that

ku±
j (k)k

i
kp  1

for j = 1, 2, p = 1, 2 and i = 0, . . . , `. Then for the vector solutions of the R-H

problem m1 and m2 associated to �1 and �2 respectively, we have the formula

mj(k) = m1 �

X̀

i=1

1

ki

Z

�
(�j(s) +m1)(u+

j (s) + u�
j (s))s

i�1ds+O(k�`�1)

for j = 1, 2 where k ! 1 such that |1� s/k| � c > 0 for s 2 �. Furthermore, if

ku±
1 (k)k

i
� u±

2 (k)k
i
k2  ⇢i(t)

ku±
1 (k)k

i
� u±

2 (k)k
i
k1  �i(t)

for i = 0, . . . , `� 1, then

m1(k)�m2(k) =
X̀

i=1

ci
ki

+O(k�`�1)

with

|ci|  k�1 � �2k2k(u
+
1 (k) + u�

1 (k))k
i�1

k2 + 2k�2k2⇢i�1(t) + 2km1k1�i�1(t).

Moreover,

|m1(k)�m2(k)|  dist(k,�)�1
h
k�1 � �2k2k(u

+
1 (k) + u�

1 (k))k2 + 2k�2k2⇢0(t)

+ 2km1k1�0(t)
i
.

Proof. The statement concerning the existence and bound of (I � C�
u2
)�1 follows

directly from formula (A.1) in Appendix A. The estimates for k�1 � �2k2 and ci
can be computed as is done in the proof of our main result concerning the KdV
equation, where we identify u1 with uI and u2 with uII . The last estimate is
obtained similarly by bounding (k� s)�1 by dist(k,�) instead of writing down the
Neumann series. ⇤
Remark B.2. With the identification of u1 with uII

and u2 with uI
one obtains

analogously the estimates

k�1 � �2k2  2C⇢(t)✏(t)km1k1 +
2C2⇢2(t)�(t)

1� C⇢(t)�(t)
km1k1ku2k2,
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|ci|  k�1 � �2k2k(u
+
2 (k) + u�

2 (k))k
i�1

k2 + 2k�1k2⇢i�1(t) + 2km1k1�i�1(t),

|m1(k)�m2(k)|  dist(k,�)�1
h
k�1 � �2k2k(u

+
2 (k) + u�

2 (k))k2 + 2k�1k2⇢0(t)

+ 2km1k1�0(t)
i
.
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A SCALAR RIEMANN–HILBERT PROBLEM ON THE TORUS:

APPLICATIONS TO THE KDV EQUATION

MATEUSZ PIORKOWSKI AND GERALD TESCHL

Abstract. We take a closer look at the Riemann–Hilbert problem associated
to one-gap solutions of the Korteweg–de Vries equation. To gain more insight,
we reformulate it as a scalar Riemann–Hilbert problem on the torus. This
enables us to derive deductively the model vector-valued and singular matrix-
valued solutions in terms of Jacobi theta functions. We compare our results
with those obtained in recent literature.

1. Introduction

1.1. Background. The main goal of this short note is to present an alternative
approach to the existence/uniqueness results for the model Riemann–Hilbert (R-H)
problem presented in [6] and the construction of a singular matrix-valued solution
found in [8, Sect. 6] (see also [10, Sect. 3]). Recall, that the objective of [6] and [8]
was to apply rigorously the nonlinear steepest descent method to the initial value
problem for the Korteweg–de Vries (KdV) equation,

qt(x, t) = 6q(x, t)qx(x, t)� qxxx(x, t), (x, t) 2 R⇥ R+,

with steplike initial data q(x, 0) = q(x):

lim
x!1

q(x) = 0, lim
x!�1

q(x) = �c2, c > 0.

For large t, solutions to this problem display di↵erent behaviours in three regions
of the (x, t)-plane characterized by the ratio x/t (see [6, Sect. 1]). Of particular
interest to us is the transition region given by �6c2t < x < 4c2t, where solutions
asymptotically converge to a modulated elliptic wave. This result was proven in
[8], where an ill-posedness of the corresponding holomorphic matrix model R-H
problem was found.

The ill-posedness is closely related to the fact that the R-H problem for the
KdV equation is formulated as a vector-valued problem. Note that, the stan-
dard Liouville-type argument relating existence to uniqueness for matrix-valued
R-H problems having jump matrices with unit determinant (see for example [13,
Thm. 5.6]), cannot be generalized to the vector case in a straightforward manner.
In fact, uniqueness can fail despite existence, as demonstrated in [11, Sect. 2] for
the simple case of a one soliton solution. Uniqueness was restored by assuming an
additional symmetry condition.

Another feature of the KdV equation playing an important role in the present
note is the relationship between finite-gap solutions and elliptic Riemann surfaces

2000 Mathematics Subject Classification. Primary 35Q15, 35Q53; Secondary 30F10, 33E05.
Key words and phrases. Riemann–Hilbert problem, KdV equation, Jacobi theta functions.
Research supported by the Austrian Science Fund (FWF) under Grants No. P31651 and

W1245.
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(see [1, Ch. 3]). Algebro-geometric finite-gap solutions to the KdV equation can be
given explicitly in terms of Jacobi theta functions via the Its–Matveev formula [12]
(see also [7]). Unsurprisingly, the solution of the corresponding model R-H problem
is also expressed in terms of Jacobi theta functions. Given that these functions can
be regarded as multivalued functions on an underlying Riemann surface, the natural
question arises whether the model R-H problem in the plane found in [6] can be
viewed as a R-H problem on a Riemann surface instead. In our simple one-gap
case, that would correspond to a R-H problem on a torus.

1.2. Outline of this work. In the next section we will show that the one-gap
KdV model R-H problem can in fact be formulated as a scalar-valued R-H prob-
lem on the torus. Equivalently, solutions to this problem can be characterized by
quasiperiodic meromorphic functions in the complex plane (see Eq. (2.12)), leading
to the explicit R-H model solution found in [6] and singular solutions similar to the
one described in [8] (see also [10]) in a straightforward manner. Moreover, we show
that the symmetry condition from [11, Sect. 2] translates to halving the period (see
Eq. (2.13)), while uniqueness follows from Liouville’s Theorem.

Section 3 compares di↵erent regular and singular matrix-valued model solutions.
As shown in [8], there is no regular matrix-valued model solution satisfying all
the standard assumptions, hence it is necessary to drop some of them. We also
comment on the regularity of the determinant of the solution in each case.

In the final section we compare our singular matrix-valued model solution to
the ones found previously (see [8], [10]). We point out that the corresponding
vanishing problem has a nontrivial solution, meaning that there is no uniqueness
for the associated singular model problem. In particular, the solutions described in
[8] and [10] di↵er from the one we presented in Section 3.

2. The model Riemann–Hilbert problem

In the following we recall the model vector-valued R-H problem for one-gap
solutions of the KdV equation. For the underlying scattering theory and nonlinear
steepest descent analysis leading to this problem in the transition region, we refer
to [6, Sect. 4].

Find a vector-valued function m
mod(k) = (mmod

1 (k), m
mod
2 (k)) holomorphic in

the domain C \ [ic,�ic], continuous up to the boundary except at points G :=
{ic, ia,�ia,�ic} and satisfying the jump condition (with ⇤̃ = 1

2⇡ (⇤ + tB), cf. [8,
Sect. 3]):

(2.1) m
mod
+ (k) = m

mod
� (k)vmod(k),

where

(2.2) v
mod(k) =

8
>>>>>>><

>>>>>>>:

✓
0 i
i 0

◆
, k 2 [ic, ia],

✓
0 �i
�i 0

◆
, k 2 [�ia,�ic],

 
e�2⇡i⇤̃ 0

0 e2⇡i⇤̃

!
, k 2 [ia,�ia],

the symmetry condition

(2.3) m
mod(�k) = m

mod(k)

✓
0 1
1 0

◆
,
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and the normalization condition

(2.4) lim
k!i1

m
mod(k) = (1 1).

At any point  2 G the vector function m
mod(k) can have at most a fourth root

singularity: mmod(k) = O((k � )�1/4), k ! .

ic

�ic

ia

�ia

R
�
e�2⇡i⇤̃ 0

0 e2⇡i⇤̃

�

�
0 �i
�i 0

�

�
0 i
i 0

�

Figure 1. Jump contour for the model R-H problem

The solution to this problem was given in [6]. As mentioned in the introduction,
we want to solve this problem in a slightly di↵erent way, which should shed some
further light on the model problem. For this, it will be convenient to denote by
m(k) a generic vector-valued meromorphic function satisfying the jump condition
(2.2).

For our first transformation we define

�̃(k) = 4

r
k2 + a2

k2 + c2

with the branch cuts along [±ia,±ic] and the branch chosen such that �̃(k) > 0 for
k 2 [ic,1). Note that we have �̃(�k) = �̃(k) and �̃(k) > 0 for k 2 R. Then �̃(k)
solves the scalar R-H problem

�̃+(k) = ±i�̃�(k), k 2 [±ia,±ic],

and we set

(2.5) m(k) = �̃(k)n(k)

such that n(k) satisfies the jump condition (2.2), except that the jumps on [�ic,�ia]
and [ic, ia] are replaced by

(2.6) n+(k) = n�(k)

✓
0 1
1 0

◆
.

The reason for this change is that it will be convenient to look at this problem on
the elliptic Riemann surface X associated with the function

w(k) =
p
(k2 + c2)(k2 + a2),
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defined on C\([�ic,�ia][[ia, ic]) with w(0) > 0. The two sheets ofX are glued along
the cuts [ic, ia] and [�ia,�ic]. Points on this surface are denoted by p = (k,±). To
simplify formulas we keep the notation k = (k,+) for points on the upper sheet of
X.

In this setup, the two components n1, n2 of the vector n : C \ [�ic, ic]! C2 can
be regarded as the values of a single function N : X ! C on the upper, lower sheet,
respectively. Explicitly,

(2.7) n(k) = (N((k,+)), N((k,�))).

In this case the jump condition (2.6) implies that N will have no jump along the
cuts, where the two sheets are glued together. However, the other jump will remain.
In fact, the jump contour on X is a circle through the two branch points �ia and
ia, on which we have the jump condition

(2.8) N+(p) = N�(p)e
�2⇡i⇤̃

.

Note that the symmetry condition (2.3) translates to

(2.9) N(p⇤) = N(�p),

where (k,±)⇤ = (k,⌥) denotes the sheet exchange map and �(k,±) = (�k,±).
Next we choose a canonical homology basis of cycles {a,b} as follows: The a-

cycle surrounds the points�ia, ia starting on the upper sheet from the left side of the
cut [ic, ia] and continues on the upper sheet to the left part of [�ia,�ic] and returns
after changing sheets. The cycle b surrounds the points ia, ic counterclockwise on
the upper sheet.

Then the normalized holomorphic di↵erential is given by

d! = �
d⇣

w(⇣)
, where � :=

✓Z

a

d⇣

w(⇣)

◆�1

2 iR�,

such that
R
a d! = 1 and

⌧ =

Z

b
d! 2 iR+.

Let

✓3(z
�� ⌧) =

X

n2Z
exp

�
(n2

⌧ + 2nz)⇡i
�
, z 2 C,

be the associated Jacobi theta function (see for example [2]). Recall that ✓3 is even,
✓3(�z

�� ⌧) = ✓3(z
�� ⌧), and satisfies

(2.10) ✓3(z + n+ ⌧`
�� ⌧) = ✓3(z

�� ⌧)e�⇡i⌧`2�2⇡i`z for `, n 2 Z.

Furthermore, let A(p) =
R p
ic d! be the Abel map on X. We identify the upper

sheet of X with the complex plane C \ ([ic, ia][ [�ia,�ic]). Restricting the path of
integration to C \ [ic,�ic] we observe that A(k) is a holomorphic function in that
given domain with the following properties:

• A+(k) = �A�(k) (mod 1), for k 2 [ic, ia] [ [�ia,�ic];
• A+(k)�A�(k) = �⌧ , for k 2 [ia,�ia];
• A(�k) = �A(k) + 1

2 , for k 2 C \ [ic,�ic],
• A+(ia) = � ⌧

2 = �A�(ia), A+(�ia) = � ⌧
2 + 1

2 , A�(�ia) = ⌧
2 + 1

2 .
• A(1) = 1

4 , A(k) = 1
4 � �k�1 +O(k�3), as k !1.
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For points on the lower sheet we set A(p⇤) = �A(p). Finally, denote by K = 1+⌧
2

the Riemann constant associated with X and abbreviate 1± = (1,±), 0± =
(0,±). Note that A(0+) =

1
4 +

⌧
2 . By Riemann’s vanishing theorem [9] the zeros of

✓3 are simple and given by z = K + Z+ ⌧Z.
According to the Jacobi inversion theorem [9], the Abel map A maps our Rie-

mann surface X bijectively to its associated Jacobi variety C/(Z+ ⌧Z) depicted in
Figure 2. The jump contour is indicated by the dashed line, while the dark/light

1

⌧

ic�ic �ic
1�

0+0�

0+0�

1+

ia

ia

�ia �ia

�ia �ia

Figure 2. Jacobi variety (dark/light gray denotes the up-
per/lower sheet)

shaded region correspond to the upper/lower sheet. Moreover, a meromorphic
function E(z) given by

(2.11) E(A(p)) = N(p)

will satisfy our original jump condition if and only if

(2.12) E(z + 1) = E(z), E(z + ⌧) = E(z)e2⇡i⇤̃,

and it will satisfy the symmetry condition if and only if

(2.13) E(z + 1
2 ) = E(z).

If this latter condition holds we will call E symmetric. If we have E(z+ 1
2 ) = �E(z),

we will call E anti-symmetric.
At this stage we remind the reader that we have four equivalent ways of describing

vector-valued functions satisfying the jump condition (2.2):

m(k)  ! n(k)  ! N(p)  ! E(z)

related via (2.5), (2.7) and (2.11) respectively. The most convenient framework will
be given through the quasiperiodic meromorphic functions E(z). Let us consider the
space F(⇤̃) of all quasiperiodic meromorphic functions on C/(Z + ⌧Z) satisfying
(2.12), without imposing any symmetry requirements. Note that E 2 F(⇤̃) is
uniquely determined up to a constant by its divisor (E) =

Pn
j=1 Dzj �

Pn
j=1 Dpj ,
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since the quotient of two such functions with the same divisor is elliptic without
poles, hence a constant. Moreover, since E0

E is elliptic, integrating this function
along a fundamental polygon shows that the number of zeros and poles must be
equal. Note also that there must be at least one pole (unless ⇤̃ = 0). Integrating

z
E0(z)
E(z) along a fundamental polygon gives

(2.14)
nX

j=1

zj �
nX

j=1

pj = ⇤̃ (mod Z+ ⌧Z).

Choosing representatives zj , pj 2 C such that

(2.15)
nX

j=1

zj �
nX

j=1

pj = ⇤̃ (mod Z),

we can represent E as

(2.16) E(z) = E0

nY

j=1

✓3(z � zj �K|⌧)
✓3(z � pj �K|⌧) .

Indeed the right-hand side has the required zeros and poles while (2.10) and (2.15)
ensure that it is elliptic.

Lemma 2.1. The divisor of E 2 F(⇤̃) is invariant with respect to translations of
1
2 if and only if E is either symmetric or anti-symmetric

Proof. Observe that C =
E(z+ 1

2 )
E(z) is elliptic without poles and hence constant. More-

over, C2 =
E(z+ 1

2 )
E(z) · E(z+1)

E(z+ 1
2 )

= 1 shows C = ±1. The converse is trivial. ⇤

Lemma 2.2. If E 2 F(⇤̃) is (anti-)symmetric and has at most two poles, it is
already uniquely determined up to a constant by its poles. Conversely, for each
choice of two poles p1, p2 = p1 +

1
2 there is a unique (up to constants) symmetric

and a unique anti-symmetric function E 2 F(⇤̃), with at most simple poles at p1
and p2. In fact p1, p2 are simple poles, unless ⇤̃ 2 Z, in which case the symmetric
solution is constant.

Proof. Let E be (anti-)symmetric and nonconstant. Denote its poles by p1, p2 =
p1 + 1

2 (mod Z + ⌧Z) and its zeros by z1, z2 = z1 + 1
2 (mod Z + ⌧Z). Choosing

representatives in C, (2.14) implies 2(z1 � p1) = ⇤̃+m+ n⌧ for some m,n 2 Z. In
particular, since adding a period to z1 is irrelevant, we can assume m,n 2 {0, 1}. If
m = 1 this just amounts to exchanging z1 and z2 and hence we can assume m = 0

without loss of generality. Now using z1 = p1+
⇤̃
2 +n

⌧
2 , we can set z2 = z1+

1
2 �n⌧

and p2 = p1+
1
2 such that (2.15) holds. Now one computes using (2.10) that (2.16)

fulfills E(z+ 1
2 ) = (�1)nE(z). In other words, p1 2 C/(Z+⌧Z) and n 2 Z2 uniquely

determine E up to a constant. One can check, that the zeros and poles cancel if
and only if n = 0 and ⇤̃ 2 Z, corresponding to a constant symmetric solution. ⇤

Corollary 2.3. If E 2 F(⇤̃) has at most two poles p1, p2 = p1+
1
2 then there exist

unique cs, ca 2 C such that E = csEs + caEa, where Es, Ea are the symmetric,
anti-symmetric solutions constructed in the previous lemma, respectively.
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Returning to our original model problem, we want the poles of E to lie at the
images of ia and �ia under the Abel map A, that is p1 = ⌧

2 and p2 = 1+⌧
2 = K.

The reason is that we require mmod(k) to be holomorphic, with at most fourth root
singularities at points of G. As �̃(k) has fourth root zeros at ±ia and the Abel
map A has square root singularities at the points of G, simple poles at ⌧

2 ,
1+⌧
2

in C/(Z + ⌧Z) translate to fourth root singularities at ±ia of mmod(k) under the
inverse of the Abel map. In fact, this is the only choice of the pole structure leading
to a holomorphic m

mod(k) with at most fourth root singularities.
For the zeros of the symmetric (n = 0) and the anti-symmetric (n = 1) solution

we use z1 = ⇤̃
2 + (n+1)⌧

2 , z2 = ⇤̃
2 + 1�(n�1)⌧

2 . Denote by

(2.17) Es(z) =
✓3(z � ⇤̃

2 + 1
2 |⌧)✓3(z �

⇤̃
2 |⌧)

✓3(z +
1
2 |⌧)✓3(z|⌧)

the corresponding symmetric and by

(2.18) Ea(z) =
✓3(z � ⇤̃

2 �
1+⌧
2 |⌧)✓3(z � ⇤̃

2 + ⌧
2 |⌧)

✓3(z +
1
2 |⌧)✓3(z|⌧)

the corresponding anti-symmetric solution. Using the identity (cf. [5] formula
(1.4.3))

✓3(z|⌧)✓3(z + 1
2 |⌧) = ✓3(2z +

1
2 |2⌧) ✓3(

1
2 |2⌧),

(note that the quotient of both sides is a holomorphic elliptic function which equals
1 at z = 1

2 ) we can write the formula for Es somewhat more compactly as

Es(z) =
✓3(2z � ⇤̃+ 1

2 |2⌧)
✓3(2z +

1
2 |2⌧)

.

So for the symmetric case n = 0, we have i Im(zj) = ⌧
2 (mod Z + ⌧Z) and both

zeros will be on [�ia, ia] (see Figure 2). In the anti-symmetric case n = 1 we have
i Im(zj) = 0 (mod Z+⌧Z) and both zeros will be on (1,�ic][[ic,1]. In particular,
if ⇤̃ = 1

2 (mod 1) the two zeros of the anti-symmetric solution will be at 1± and

we cannot normalize at this point. Moreover, if ⇤̃ = 0 (mod 1) such that we are
looking for elliptic functions, we have Es(z) = 1 (i.e. zeros and poles coincide) and
the zeros of Ea(z) will be at z1 = 0 and z2 = 1

2 + ⌧ .
Hence all solutions of (2.8) with poles at most at ±ia are given by

N(p) = csNs(p) + caNa(p), Ns(p) = Es(A(p)), Na(p) = Ea(A(p)), cs, ca 2 C,
and we have

N(1±) = csEs(
1
4 )± caEa(

1
4 ), N(0±) = csEs(

1
4 + ⌧

2 )± caEa(
1
4 + ⌧

2 ),

with Es(
1
4 ) 6= 0 for all ⇤̃ 2 R and Ea(

1
4 ) 6= 0 for all ⇤̃ 6= 1

2 (mod 1). Moreover, N
will satisfy (2.9) if and only if ca = 0.

Note that in the special case ⇤̃ = 0 (mod 1) we have (up to constants):

Ns((k,±)) = 1 Na((k,±)) =
k
2 + c

2

±w(k)

In the case ⇤̃ = 1
2 (mod 1) we have (again up to constants):

Ns((k,±)) =
kp

k2 + a2
Na((k,±)) =

1p
k2 + a2

,
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where the root has the branch cut along [�ia, ia].
Returning to our original problem we have shown:

Lemma 2.4. The function

m
mod(k) =

�̃(k)

Ns(1+)

�
Ns((k,+)), Ns((k,�))

�

is the unique vector-valued function which is holomorphic in the domain C\[ic,�ic],
has square integrable boundary values, and satisfies the jump condition (2.1), the
symmetry condition (2.3) and the normalization condition (2.4).

Specifically, mmod(k) is continuous up to the boundary except at points of the set
G := {ic, ia,�ia,�ic} where it has at most a fourth root singularity: m

mod(k) =
O((k � )�1/4)), k ! .

3. Matrix-valued solutions

In the framework of the nonlinear steepest descent analysis one usually needs to
construct a matrix-valued R-H solutions which is invertible. This is a necessary step
to arrive at a small-norm R-H problem which can be solved via a Neumann series.
However, while many integrable wave equations like the modified KdV equation [3]
or the nonlinear Schrödinger equation [4] have a matrix-valued R-H formulation,
this is not the case for the KdV equation.

Recall that the model matrix-valued R-H problem related to the KdV equation
has a jump matrix satisfying (see [6], [11])

v
mod(�k) = �1(v

mod(k))�1
�1, det v(k) = 1, k 2 ⌃.(3.1)

For the corresponding holomorphic matrix-valued solution M
mod(k), one would

then require

lim
k!1

M
mod(k) =

✓
1 0
0 1

◆
.(3.2)

Moreover, given holomorphicity of Mmod(k), we can derive from (3.1) and (3.2):

M
mod(�k) = �1M

mod(k)�1, detMmod(k) ⌘ 1.(3.3)

Note that (3.3) implies that Mmod(k) must have the form

M
mod(k) =

✓
↵̃(k) �̃(�k)
�̃(k) ↵̃(�k)

◆

and that (1, 1)Mmod(k) will satisfy the symmetry condition (2.3).
Let us now present three di↵erent ways of writing down matrix-valued solutions

of the model R-H problem corresponding to the KdV equation with steplike initial
data in the transition region. Each one will violate some standard assumption
described above, as satisfying all of them is in general impossible, see [8, Rem. 4.1].

3.1. Partial normalization at infinity. We start with the function

M
mod
1 (k) = �̃(k)

✓
↵1(k) �1(�k)
�1(k) ↵1(�k)

◆
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where

↵1(k) =
1

2

�
Na(1+)Ns(k) +Ns(1+)Na(k)

�
,

�1(k) =
1

2

�
Na(1+)Ns(k)�Ns(1+)Na(k)

�
.

Note that Mmod
1 (k) satisfies the symmetry condition in (3.3) and satisfies partially

the normalization (3.2). In fact we have

lim
k!1

M
mod
1 (k) = Ns(1+)Na(1+)

✓
1 0
0 1

◆
,

with

detMmod
1 (k) = Ns(1+)

2
Na(1+)

2
.

The problem here is that the prefactor vanishes for ⇤̃ = 1
2 (mod 1) as Na(1+) = 0,

hence we cannot enforce the normalization (3.2) for all ⇤̃. In particular, Mmod
1 (k)

is not invertible for these values of ⇤̃. The relation to m
mod(k) is given through

m
mod(k) =

1

Ns(1+)Na(1+)
(1, 1)Mmod(k).

where one needs to use the rule of l’Hôspital for ⇤̃ = 1
2 (mod 1).

3.2. Di↵erent symmetry condition. The function

M
mod
2 (k) = �̃(k)

✓
Ns(k) Ns(�k)
Na(k) Na(�k)

◆

is a matrix-valued solution which satisfies the new symmetry condition M(�k) =
�3M(k)�1 and is nondiagonal at infinity. Moreover,

detMmod
2 (k) = �2�̃(0)Ns(0+)Na(0+) = �2Ns(1+)Na(1+),

and the relation to the vector-valued model solution is given by

m
mod(k) =

1

Ns(1+)
(1, 0)Mmod

2 (k),

which does not require the rule of l’Hôsptial as Ns(1+) 6= 0 for all ⇤̃. The ad-
vantage of this matrix-valued solution is that its determinant has only first order
zeros.

3.3. Singularity at the origin. Finally, we write down a matrix-valued solution
M

mod
3 (k) with determinant constant equal to 1. The price we have to pay is a

singularity at the origin, making M
mod
3 (k) a meromorphic solution. To be precise,

we will move the poles of the anti-symmetric solution to p̂1,2 = ± 1
4 + ⌧

2 , which
corresponds to a pole at (0,±) on X. Following Section 2, this gives rise to an
anti-symmetric solution of the form

Êa(z) =
✓3(z +

1
4 �

⇤̃
2 �

⌧
2 |⌧)✓3(z �

1
4 �

⇤̃
2 + ⌧

2 |⌧)
✓3(z +

1
4 |⌧)✓3(z �

1
4 |⌧)

, N̂a(p) = Êa(A(p)).(3.4)

We can now define M
mod
3 (k) analogously to M

mod
1 (k), but substituting N̂a(k) for

Na(k), and including the correct normalization at infinity for ⇤̃ 6= 0 (mod 1):

M
mod
3 (k) =

�̃(k)

Ns(1+)N̂a(1+)

✓
↵3(k) �3(�k)
�3(k) ↵3(�k)

◆
, ⇤̃ 6= 0 (mod 1),
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where

↵3(k) =
1

2

�
N̂a(1+)Ns(k) +Ns(1+)N̂a(k)

�
,

�3(k) =
1

2

�
N̂a(1+)Ns(k)�Ns(1+)N̂a(k)

�
,

Note that Ns(1+)N̂a(1+) 6= 0 for ⇤̃ 6= 0 (mod 1) and thus we have:

lim
k!1

M
mod
3 (k) =

✓
1 0
0 1

◆
, ⇤̃ 6= 0 (mod 1).

Moreover, detMmod
3 (k) is an even meromorphic function with at most a simple pole

at the origin, hence detMmod
3 (k) ⌘ detMmod

3 (1) = 1. We do not define M
mod
3 (k)

for ⇤̃ = 0 (mod 1), which should not pose a problem in applications, as explained
in the next section.

4. Comparison to previous work

It turns out that sacrificing holomorphicity, while retaining (3.2) and (3.3), is
the most convenient way to deal with the ill-posedness of the holomorphic matrix-
valued model problem for the KdV equation. Indeed, this was the strategy in [8].
Note however, that the anti-symmetric meromorphic vector solutions found [8] and
[10] are not the same as given by (3.4). The reason is, that while we assumed that
N̂a(p) = Êa(A(p)) has only poles at 0±, the pole condition was not necessary, as
we could still allow for singularities at ±ia, as is the case for m

mod(k). Indeed,
m

mod(k)/k is an anti-symmetric solution to the vanishing problem where solutions
are required to vanish at infinity. Hence, there is no chance for uniqueness if we
allow for poles at 0 and fourth root singularities at ±ia. Moreover for ⇤̃ = 0
(mod 1), mmod(k) has no singularities at ±ia, and hence by our uniqueness Lemma
2.2 must coincide with the solution generated by N̂a(p).

Interestingly, any anti-symmetric solution with a simple pole at the origin and
fourth root singularities at ±ia, which is normalized to (�1, 1) at infinity, is ade-
quate for the analysis performed in [8]. The reason is that the pole cancellation
in the final step of the nonlinear steepest descent analysis is due to the underlying
symmetry class, rather than the exact form of the second vector-valued solution
(see Lemma 6.4 in [8]). While the solution generated by (3.4) is not normalizable
for ⇤̃ = 0 (mod 1), this is not an issue, as for these values of ⇤̃ there is a regular
matrix-valued model solution given in terms of (2.17), (2.18) anyways.
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RIEMANN–HILBERT THEORY WITHOUT

LOCAL PARAMETRIX PROBLEMS:

APPLICATIONS TO ORTHOGONAL POLYNOMIALS

MATEUSZ PIORKOWSKI

Abstract. We study whether in the setting of the Deift–Zhou nonlinear steep-
est descent method one can avoid solving local parametrix problems, while
still obtaining asymptotic results. We show that this can be done, provided
an a priori estimate for the exact solution of the Riemann–Hilbert problem is
known. This enables us to derive asymptotic results for orthogonal polynomi-
als on [�1, 1] with a new class of weight functions. These weight functions are
in general too badly behaved to allow a reformulation of the local parametrix
problem to a global one with constant jump matrices. Possible implications
for edge universality in random matrix theory are also discussed.

1. Introduction

1.1. Background. Local parametrix problems appear frequently in the context
of the nonlinear steepest descent method for Riemann–Hilbert (R-H) problems,
formulated by Deift and Zhou ([12, Sect. 4], [14, Sect. 7], [16], [18, Sect. 4], for
details see [17]). Throughout this paper, local parametrix problem will refer, as
the name suggests, to the restriction of a R-H problem to a bounded set together
with a matching condition on the boundary1 (for an example see Section 4.3). This
should be contrasted with the term limiting parametrix problem, which corresponds
to the R-H problem one gets after taking a limit of the local parametrix problems
as the asymptotic parameter tends to infinity. Most common examples of such R-H
problems are the Airy R-H problem ([6], [9, Ch. 5], [13], [14], [53], see Appendix A),
the Bessel R-H problem [33] and the cylindrical parabolic R-H problem ([16], [17],
[29], [32], [35]). We introduce this distinction, as we do not assume that the local
parametrix problems in this paper converge to a limiting parametrix problem. Note
that in most applications the limiting parametrix problem exists, and the term local

parametrix problem or more generally model problem
2 is also used for it.

Solutions to limiting parametrix problems can determine either the leading
asymptotics ([17], [27], [32]), or contribute to higher-order corrections ([9, Ch. 7],
[12], [14], [33]). Interestingly, even in the former case one has to study the limiting
parametrix problem to obtain rigorous leading asymptotics. Usually this is done

2020 Mathematics Subject Classification. Primary 42C05, 60B20; Secondary 35Q15, 45E05.
Key words and phrases. Riemann–Hilbert Theory, Orthogonal Polynomials, RandomMatrices.
Research supported by the Austrian Science Fund (FWF) under Grants No. P31651 and

W1245.
1Some results on the matching condition for higher-dimensional R-H problems have been ob-

tained in [47].
2In this work however, we will reserve the term model problem for the global parametrix

problem.
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by explicitly constructing the solution. There are however a few exception which
serve as the motivation for this paper. In [13, Sect. 5] (see also [7, Sect. 2.2]) a
solution to the limiting parametrix problem was shown to exist without an explicit
construction. The approach was based on Fredholm theory for singular operators
and a vanishing lemma.3 A similar technique was used in [31], where polynomials
orthogonal with respect to the Freud weight e��|x|, � > 0 were studied. Note
that the weight function is not analytic locally around 0, giving rise to a new kind
of limiting parametrix problem. For � 2 (0, 1) a vanishing lemma was used to
show existence of the solution, while for � � 1 the authors relied on a small-norm
argument in the Wiener space to show invertibility of the corresponding singular
integral operator via a Neumann series.

Note that in these cases the formulation of a limiting local parametrix prob-
lem was still necessary. However, the existence of such a problem puts additional
constraints on the regularity of the weight function. Hence, the natural question
arises, whether in general the construction of explicit solutions, or even the compu-
tation/existence of a limiting parametrix problem is necessary. A negative answer
would be useful in applications with no known limiting parametrix problems, see
for example [8] which we discuss towards the end of this subsection.

In this paper we show how the computation of a limiting parametrix problem
can be avoided and use our method to obtain new error estimates for Plancherel–
Rotach asymptotics of orthogonal polynomials [54]. Asymptotics of more general
orthogonal polynomials were studied thoroughly by Bernstein and Szegő on the unit
interval and unit circle (see [56, Ch. 12] and references in therein). There has been
renewed interested in these asymptotics motivated by the Wigner–Dyson–Mehta
universality conjecture in random matrix theory ([21], [22], [45], [46]). In this
setting orthogonal polynomials can be applied most naturally to unitary ensembles
([6], [9], [13], [52]), but also to orthogonal and symplectic ensembles ([10], [11], [49],
[50]). The R-H formulation, first introduced by Fokas, Its and Kitaev ([24], [25]),
in conjunction with the nonlinear steepest descent method is particularly useful
in this context. The nonlinear steepest descent method was applied to orthogonal
polynomials on the real line by Bleher and Its in [6], (see also [12]) and by Deift et
al. in [13] and [14] (for an introduction see the book by Deift [9]). Based on this
work Kuijlaars et al. computed in [33] the asymptotics of polynomials orthogonal on
[�1, 1] and related quantities. The leading asymptotic terms were already known
[56, Thm. 12.1.1–4]. However, the R-H analysis leads to more explicit error terms
and in the case of [33] even an asymptotic expansion of the orthogonal polynomials
was obtained. The follow-up paper [34] relates these results to bulk and edge
universality in random matrix theory (see also [49]). We comment more on this
topic in relation to our results in the discussion section.

As part of the R-H analysis performed in [33] one is confronted with local
parametrix problems at x = ±1. The convergence to a limiting Bessel parametrix
problem puts constraints on the local behaviour of the weight function at the cor-
responding endpoints. In particular, the authors considered the modified Jacobi
weight function ⇢↵,�Jac:

⇢↵,�Jac(x) := (1� x)↵(1 + x)�h(x), x 2 (�1, 1), ↵,� > �1,(1.1)

3See [53] for a similar application of Fredholm index theory to the R-H problem for the KdV
equation.
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where h is strictly positive on [�1, 1] and assumed to have an analytic continuation
to a neighbourhood of [�1, 1] (note the inclusion of the endpoints ±1). In our
work we do not consider the prefactor (1�x)↵(1+x)� , but rather assume that our
weight function ⇢ has an analytic continuation only in a lens-shaped neighbourhood
of (�1, 1), together with some growth conditions near x = ±1. The di↵erence
might seem to be minor, but the possibility that the weight function does not have
an analytic continuation in a neighbourhood of x = ±1 makes the R-H analysis
performed in [33, Sect. 6] impossible. In particular, one cannot write down the
limiting parametrix problem with constant jump matrices, as this step relies on
the local analyticity of the function h in (1.1) around x = ±1 (see Eq. (6.7) in
[33]). For an alternative approach to this problem see [44], where the @ steepest
descent method is used instead, which can also deal with nonanalytic varying weight
functions e�NV (x) on the real line via an analytic approximation, leading to known
local parametrix problems. The external field V (x) is assumed to have only two
Lipschitz continuous derivatives. Subsequently, the @ method was used in [3] for the
case of Hölder perturbations of the Jacobi weight. For more recent developments
in Plancherel–Rotach asymptotics see the work by Lubinsky [42], [43].

As already mentioned, the methods described in this papers can be used for
problems that do not have known limiting parametrix solutions. However, they
can be also used in cases where the limiting parametrix problem cannot be derived.
A recent example can be found in [8], where the weight function ⇢log on [�1, 1] with
a logarithmic singularity at x = 1 was considered:

⇢log(x) := log
2k

1� x
, x 2 (�1, 1), k > 1.

To the best of the authors knowledge the corresponding R-H problem has no known
limiting parametrix problem around x = 1. This issue was circumvented through
a comparison argument with the Legendre problem (⇢Leg(x) ⌘ 1). However, the
analytic continuation of ⇢log around the point x = 1, which introduces an explicit
jump condition on (1, 1+�), � > 0, has been crucial. The weights considered in this
paper, are not required to have such analytic continuation around the endpoints.

1.2. Outline of this paper. In the next section we set the stage by discussing
the notion of approximating solutions to R-H problems. We then show that the
construction of a limiting parametrix solution can be avoided, provided a certain
a priori Lp-estimate of the exact solution to the global R-H problem and a regu-
lar enough global parametrix solution is known. Our method uses the connection
between R-H problems and singular integral equations, which will be briefly sum-
marized.

In Section 3 we describe local parametrix problems as they appear in practice,
and analyze them using our method. We summarize our findings in Theorem 3.1 and
also state Lemma 3.3 which will be crucial for obtaining the a priori Lp-estimate.

Following this, an application of our approach is presented for the case of or-
thogonal polynomials on the interval [�1, 1]. We consider a new class of weight
functions and obtain a bound of the error term in the pointwise asymptotics of the
orthogonal polynomials, as the degree goes to infinity. The main result is summa-
rized in Theorem 4.4. We then elaborate on why the local parametrix problem does
not converge in our setting to a limiting parametrix problem with constant jump
matrices (cf. [33, Sect. 6]). Moreover, we illustrate how our method uses the exact
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R-H solution consisting of orthogonal polynomials and their Cauchy transforms, as
a local parametrix solution.

In the discussion section we elaborate on connections with random matrix the-
ory, in particular eigenvalue universality near the edge of the spectrum. Moreover,
we describe the advantages and limitations of our approach, mention possible ap-
plications and point towards future challenges related to obtaining the a priori
Lp-estimate.

The first appendix contains a description of the Airy R-H problem, including the
heuristics by which the explicit parametrix solution can be found. In the second
appendix it is shown that a local a priori Lp-estimate, instead of the one described
in Section 3, is also su�cient. This is crucial in applications di↵erent than the one
considered in this paper.

2. Approximating solutions of Riemann–Hilbert problems

2.1. Two Riemann–Hilbert problems. Consider a R-H problem with data
(vS ,⌃), meaning with jump matrix vS and jump contour ⌃. We are looking for a
matrix-valued function S, normalized at infinity, such that:

(i) S(z) is analytic for z 2 C \ ⌃,

(ii) S+(k) = S�(k)vS(k), for k 2 ⌃,

(iii) S(z) = I+O(z�1), as z ! 1.

Note that condition (iii) is not specified by the data (vS ,⌃) and has to be stated
separately. Also, to guarantee uniqueness, one usually has to assume additional
regularity requirements for S±, see for example [33, Eqs. (4.6)–(4.8)]. Here ⌃ is
a ’su�ciently smooth’ oriented contour and the +(�) sign corresponds to taking
the left (right) limit to ⌃. The precise conditions on ⌃ and the sense in which the
limits are taken can be found [36].

Next, consider a global parametrix R-H problem with data (vN ,⌃mod), which is
suppose to approximate, or model, the R-H problem for S. We assume ⌃mod

✓ ⌃,
and the same normalization at infinity as for S. Hence we are looking for a matrix
valued-function N , such that:

(i) N(z) is analytic for z 2 C \ ⌃mod,

(ii) N+(k) = N�(k)vN (k), for k 2 ⌃mod,

(iii) N(z) = I+O(z�1), as z ! 1.

We assume that both R-H problems are solvable. Despite the aforementioned
uniqueness issue, denote by S and N two special solutions (fixed by e.g. regularity
assumptions for S± and N± on ⌃). We refer to S as the exact solution and to N
as the model solution.4 The general question we try to answer in this section is the
following:

4We refrain from using the term global parametrix solution for N to simplify nomenclature.
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Under what conditions is the model solutionN a good
approximation to the exact solution S?(2.1)

Before tackling (2.1), we need to answer the more basic question:

What does it mean for a model solution N to be a
good approximation to the exact solution to S?

(2.2)

The answer to question (2.2) depends on the problem at hand. In the case of
orthogonal polynomials pointwise estimates are of interest, meaning we would like
S(z) to be close to N(z) for z 2 C \⌃. In problems involving Toeplitz and Hankel
determinants, or scattering theory, we are interested in the first Laurent term of S
at infinity, meaning the complex number ✓S given by

S(z) = I+ ✓S
z

+O(z�2), z ! 1.

Hence, we would like ✓N with

N(z) = I+ ✓N
z

+O(z�2), z ! 1,

to be close to ✓S .
Usually, the jump matrix vS (and sometimes vN )5 depends on some auxiliary

continuous or discrete parameter. In the case of orthogonal polynomials this pa-
rameter is the polynomial degree n and we demand for the n-dependent solution
S:

S(z, n) = (I+ o(1))N(z), z 2 C \ ⌃, n ! 1.

In the case of scattering theory this parameter, denoted by t, is time and we demand:

✓S(t) = ✓N (t) + o(1), t ! 1,

where the error term is a measure of the accuracy of the approximation. Having
answered question (2.2), we now move to question (2.1). For this we need to
reformulate a R-H problem as a singular integral equation.

2.2. Singular integral formulation of Riemann–Hilbert problems. To find
approximations to solutions of R-H problems as described in the last section, we
need to reformulate a R-H problem as an equivalent singular integral equation. The
underlying theory can be found in [5], [48], [60], for more recent developments see
[36], [53]. Let us define the Cauchy operator C⌃ associated to an oriented contour
⌃:

C
⌃ : Lp(⌃) ! O(C \ ⌃), f ! C

⌃(f)(z) :=
1

2⇡i

Z

⌃

f(k)

k � z
dk,

with p 2 (1,1), which shall be assumed throughout this section. The only further
requirement needed for C

⌃ to be well-defined is that (k � z)�1 is in Lq(⌃) with
p�1 + q�1 = 1 for some, and hence for every z 2 C \ ⌃. Given some further

5In the case of orthogonal polynomials vN is independent of the degree n. For integrable wave
equations in the elliptic wave region, vN is periodic in the time parameter (see [23]).
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regularity assumptions on ⌃ which are fulfilled in most applications including ours
[36], we can define two bounded operators given by:

C
⌃
± : Lp(⌃) ! Lp(⌃), f 7! C

⌃
±(f)(k) := lim

z!k±
C
⌃(f)(z),

where the limits are assumed to be nontangential, in which case they exist a.e. on
⌃.

We now turn to a bijection between solutions of R-H problems and solutions of
a certain singular integral equation. These results can be found in [60]. We assume
that wR := vR � I 2 Lp(⌃)6, where we abuse notation by denoting as Lp(⌃) the
space of matrix functions with entries in Lp(⌃) (the subscript R is chosen for later
convenience). Associated to wR and ⌃, let M⌃

wR be the maximal domain of the
multiplication operator defined by wR, meaning

M⌃
wR := {f 2 Lp(⌃) : fwR 2 Lp(⌃)}.

With this we can define the operator C⌃
wR associated to a R-H problem with data

(vR,⌃):

C
⌃
wR : M⌃

wR ! Lp(⌃), f 7! C
⌃
�(fwR).

The operator C⌃
� is evaluated componentwise for matrix inputs. To next proposition

found in [60, Prop. 3.3] describes the correspondence between R-H problems and
certain singular integral equation and is central for our approach.

Proposition 2.1. Let (vR,⌃) be the data of a R-H problem, and assume that

wR := vR�I 2 Lp(⌃). Then there is a bijection between R-H solutions R, satisfying

lim
z!1

R(z) ! I, R± � I 2 Lp(⌃)

and solutions � 2 M⌃
wR of

(2.3) (I� C
⌃
wR)� = C

⌃
�(wR).

Moreover the relation between R and � is given by

R = I+ C
⌃((�+ I)wR),(2.4)

� = R� � I.(2.5)

Proof. Let R be a solution of the R-H problem and define � := R� � I. Then by
assumption � 2 Lp(⌃) and as

�wR = (R� � I)(vR � I) = R+ �R� � wR 2 Lp(⌃)

we indeed see that � 2 M⌃
R. Next, using the Sokhotski–Plemelj formula for additive

R-H problems, we obtain from

R+ �R� = R�wR

the equality

(2.6) R = I+ C
⌃(R�wR).

Taking the limit to the contour ⌃ from the right, we get

R� = I+ C
⌃
wR(R�).

6Usually it is assumed that wR 2 L1(⌃), which would imply M⌃
wR = Lp(⌃) and the bound-

edness of C⌃
wR . This assumption will not be needed and even violated in our application to

orthogonal polynomials
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which after substituting R� = �+ I is equivalent to (2.3).
Next, let � 2 M⌃

wR satisfy (2.3) and define R := I+ C
⌃((�+ I)wR). Note that

from the assumptions on � and wR it follows that R(z) ! I, as z ! 1. By the
Sokhotski–Plemelj formula we have

(2.7) R+ �R� = (�+ I)wR.

On the other hand we compute

R� � I = C
⌃
�((�+ I)wR)

= C
⌃
wR(�) + C⌃

�(wR)

= �,

as � satisfies (2.3). Substituting this into (2.7) results in

R+ = R�vR.

Furthermore, we have

R� � I = � 2 Lp(⌃)

R+ � I = �wR + �+ wR 2 Lp(⌃).

Hence we see that R is a solution of the R-H problem with the required properties
and the proof is finished. ⇤

For analogous results in the case of inhomogeneous R-H problems consult [20,
Prop. 2.5].

2.3. Residual Riemann-Hilbert problem. Let us now return to the solutions
S and N from the beginning of the section, under the assumption that vS and
hence S depends on a discrete parameter n 2 N0. Moreover let N and its limits
to the contour ⌃mod be invertible. As vN = N+N

�1
� , this implies that vN is also

invertible.
We can now define a new matrix-valued function R := SN�1. Assuming ⌃mod

✓

⌃, we see that R will have jumps only on ⌃. We call R the residual solution and it
satisfies the residual R-H problem with data (vR,⌃), where

vR := N�vSN
�1
+ .

Assuming that R�wR is integrable on ⌃, where wR = vR � I, we know from the
Sokhotski–Plemelj formula that R can be also written in integral form:

R(z, n) = I+ C
⌃((R�wR)(z, n)

= I+ 1

2⇡i

Z

⌃

R�(k, n)wR(k, n)

k � z
dk(2.8)

= I+ 1

2⇡i

Z

⌃

S�(k, n)(vS(k, n)� vN (k))N�1
+ (k)

k � z
dk.

The quantity of interest is the n-dependent L1(⌃)-norm of the integrand without
(k � z)�1:

(2.9)
��S�(vS � vN )N�1

+

��
L1(⌃)

.

Let us assume that (2.9) is of order "(n) where " : N0 ! R+. Observe that in this
case we have

R(z, n) = I+O("(n) dist(z,⌃)�1),
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which implies
S(z, n) = (I+O("(n) dist(z,⌃)�1)N(z).

Here dist(z,⌃) denotes the distance between z and ⌃. Hence, we see that in order
to show convergence of N to S away from the contour ⌃, we need to control (2.9).

3. Riemann–Hilbert problems in applications

We now compare the setting described in the last section with R-H problems
appearing in practise. In the case of orthogonal polynomials ([14], [33]) and scat-
tering theory ([1], [53]), the contour ⌃ is a disjoint union of the contours ⌃mod and
⌃exp, except for finitely many points of intersections. The n-independent matrix
vN is given by

(3.1) vN (k) =

(
vS(k, n), k 2 ⌃mod,

I, k 2 ⌃exp
\ ⌃mod.

In particular, vS(k, n) is assumed to be n-independent for k 2 ⌃mod. Moreover,
assume that det vS ⌘ det vN ⌘ 1 and also that detS ⌘ detN ⌘ 1. Note that
the latter assumption usually follows from the former one under some additional
regularity requirements [9].

On ⌃exp the jump matrix vS converges uniformly exponentially fast as to the
identity matrix as n ! 1, except in the vicinity of a finite number of points
 2 K ⇢ ⌃exp. For each  2 K the local behaviour of wS = vS � I is given by:

(3.2) |wS(k, n)| = O(e�cn|k�|�),

for two positive constants c and �. Moreover, vN is uniformly bounded for z 2

C \⌃mod. The same holds true for the n-independent model solution N , except in
the vicinities of the points  2 K, where N it can have fourth root singularities7

(3.3) |N(z)| = O(|z � |�1/4).

The same is true for N�1 as detN ⌘ 1.
In applications, a local parametrix problem has to be solved in vicinities of the

points  2 K. The value of � is critical, as it determines the class of special
functions from which the explicit limiting parametrix solution can be constructed.
For � = 2, these are the parabolic cylindrical functions, and this case occurs in
the study of nonlinear integrable systems in the dispersive region ([16], [17], [29],
[32], [35]). The cases � = 1/2 and � = 3/2 are common in the R-H analysis of
orthogonal polynomials. Here, the exponent � depends on the behaviour of the
associated equilibrium measure at the endpoints of its support. An example for
� = 1/2 leading to a Bessel parametrix problem can be found in [33], while cases of
� = 3/2 leading to an Airy parametrix problem are covered in [6], [9, Ch. 5], [13],
[14], [53]. Moreover, � = 3/2 is also related to the Painléve II equation ([2], [18])
and appears in the analysis of integrable systems with rarefaction/steplike initial
data ([1], [30], [53]). For higher-dimensional R-H problems, the Meijer-G function
has been used to construct explicit parametrix solutions ([4], [47]).

7In our application to orthogonal polynomials in the next section, this condition can be violated
for certain singular weight functions.
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Let us now apply Hölder’s inequality to (2.9) assuming condition (3.1):
��S�(vS � vN )N�1

+

��
L1(⌃)

=
��S�wSN

�1
+

��
L1(⌃exp)

 kS�kLp(⌃exp)

��wSN
�1
+

��
Lq(⌃exp)

.(3.4)

Note that we made use of vN (k) = I for k 2 ⌃exp, and as vN (k) = vS(k, n) for
k 2 ⌃mod, we only need to integrate over ⌃exp. Now, from the assumptions (3.2)
and (3.3), it follows that

(3.5) kkiwS(k, n)N
�1
+ (k)kLq(⌃exp) = O(n

1
4�� 1

q� ), q 2 [1, 4), i 2 N0,

where the main contributions come from the points  2 K. The motivation for
including ki will become clear in the next theorem. Note that the condition on q
implies p 2 (4/3,1].

We see that in order to guarantee that (3.4) goes to 0, it is su�cient to show
that

(3.6) kS�kLp(⌃exp) = O(nr)

with

r <
1

q�
�

1

4�
.

We call estimates of the form (3.6) a priori Lp-estimates, as they have to be estab-
lished before an approximation for S is known.8 We show in the next section that
such estimates can be computed in the case of the R-H problem associated with
orthogonal polynomials on the interval [�1, 1].

We can now state the following theorem:

Theorem 3.1. Suppose vS , vN , S,N satisfy (3.1), (3.2), (3.3), (3.6) and ⌃ =
⌃mod

[ ⌃exp
. Let

s :=
1

q�
�

1

4�
� r > 0, l 2 N0.

Then

(3.7) S(z, n) = (I+O(n�s dist(z,⌃exp)�1))N(z).

for z 2 C \ ⌃exp
. Moreover,

(3.8) S(z, n) =
⇣
I+

X̀

i=1

✓i(n)

zi
+O(z�`�1)

⌘
N(z),

for z ! 1 such that |1 � k/z| � " > 0 for all k 2 ⌃exp
, with the matrices ✓i

satisfying

|✓i(n)|1 = O(n�s).

Proof. Equation (3.7) follows from writing S = RN and using the expression (2.8)
for R, together with Hölder’s inequality (3.4) and the estimates (3.5) and (3.6). The
asymptotic expansion follows analogously after substituting the partial Neumann
series

1

k � z
= �

X̀

i=1

ki�1

zi
�

k`

z`+1

1

1� k/z
.

8A priori Lp-estimates of solutions have been considered in R-H theory previously by Deift
and Zhou [19] in their study of long-time asymptotics of solutions to the perturbed nonlinear
Schrödinger equation on the real line.
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into the integrand in (2.8). ⇤
Remark 3.2. Instead of the a priori Lp

-estimate (3.6), local Lp
-estimates around

the points  2 K together with some auxiliary assumptions are su�cient for the

conclusion of Theorem 3.1 to hold. For a proof and additional references, see the

appendix.

The next lemma tells us that a priori Lp-estimates of solutions to R-H problems
can be uniformly extended to larger contours which are often introduced in the
nonlinear steepest descent method (cf. [20, Eq. 2.4]).

Lemma 3.3. Let ⌃ and � be oriented contours in Ĉ := C[ {1}. Assume that the

Cauchy boundary operators C
⌃[�
± are well-defined and bounded on Lp(⌃ [ �). Let

f 2 O(Ĉ \⌃) be given, such that f is continuous at infinity in the case that 1 2 ⌃
and the ±-limits on ⌃ exist in the usual sense satisfying f+ � f� 2 Lp(⌃). Then

kf � f(1)kLp(�)  C(� [ ⌃)kf+ � f�kLp(⌃)

for some positive constant C(� [ ⌃) independent of f .

Proof. Note that because of the conditions on f it follows from the properties of
the Cauchy integral operator that

f � f(1) = C
⌃(f+ � f�) = C

⌃[�(f+ � f�).

where the last equality is true because f+ = f� on � \ ⌃, as f 2 O(Ĉ \ ⌃). Hence
we conclude

kf � f(1)kLp(�)  kC
⌃[�
± kLp(⌃[�)!Lp(⌃[�) kf+ � f�kLp(⌃[�)| {z }

=kf+�f�kLp(⌃)

which shows that we can choose C(⌃ [ �) = kC
⌃[�
± kLp(⌃[�)!Lp(⌃[�). ⇤

Remark 3.4. Similar arguments work in the case that the R-H problem is not stated

for a matrix S, but rather for a vector s which is normalized to be s1 at infinity.

However, we still need a matrix-valued model solution N , which is normalized to the

identity matrix at infinity. As before we define a vector-valued function r := sN�1

which can be written in integral form

r(z, n) = s1 +
1

2⇡i

Z

⌃

s�(k, n)(vS(k, t)� vN (k))N�1
+ (k, n)

k � z
dk.

The rest of the analysis is analogous. An example of a vector-valued R-H problem

comes from the inverse scattering transform of the KdV equation ( [23], [27] [53]).

4. Application to orthogonal polynomials on [�1, 1]

4.1. Riemann–Hilbert formulation of orthogonal polynomials. Let us con-
sider an example for which our method can provide new results, namely the R-H
problem for orthogonal polynomials on [�1, 1]. We assume that the corresponding
measure dµ on [�1, 1] is absolutely continuous and thus can be written as

dµ(x) = ⇢(x)dx, x 2 (�1, 1),

for some real-valued function ⇢ � 0. Following [25], [24] the R-H problem charac-
terizing the n-th orthogonal polynomial is stated as follows:
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For any n 2 N0 find a 2⇥ 2 matrix-valued function X on C \ [�1, 1], such that:

(i) X(z, n) is analytic in for z 2 C \ [�1, 1],

(ii) X+(x, n) = X�(x, n)

✓
1 ⇢(x)
0 1

◆
, for x 2 (�1, 1),

(iii) X(z, n) = (I+O(z�1))

✓
(2z)n 0
0 (2z)�n

◆
, as z ! 1.

The following theorem explains how the R-H solution X is related to orthogonal
polynomials:

Theorem 4.1. (Fokas, Its, Kitaev ( [24], [25])) The R-H problem for X is solved

by

(4.1) X(z, n) =

✓
pn(z) C

(�1,1)(pn⇢)(z)
⌘n�1pn�1(z) ⌘n�1C

(�1,1)(pn�1⇢)(z)

◆

where pn(z) is the n-th orthogonal polynomial with leading coe�cient 2n and

⌘n := �⇡ikpnk
�2
L2((�1,1),⇢(x)dx).

Note that given some additional regularity assumptions on solutions, one also
obtains uniqueness (c.f. [33]). Usually the R-H problem for orthogonal polynomials
is normalized without the factor 2±n at infinity, in which case the pn(z) would be
the monic orthogonal polynomials. The next theorem found in [56, Thm. 12.7.1]
explains this discrepancy:

Theorem 4.2. Assume the weight ⇢(x) on (�1, 1) satisfies the Szegő condition,

given by Z 1

�1

log ⇢(x)
p
1� x2

dx > �1.

Then

lim
n!1

kpnkL2([�1,1],⇢(x)dx) =
p
⇡ exp

⇣ 1

2⇡

Z 1

�1

log ⇢(x)
p
1� x2

dx
⌘
.

Hence, we see that with our normalization, the L2((�1, 1), ⇢(x)dx)-norm of pn
converges as n goes to infinity. This uniform boundedness of the norm is similar,
though not identical, to the a priori Lp-estimate needed for our approach to local
parametrix problems. The di↵erence is the measure ⇢(x)dx, as we need a priori
Lp-estimates in the space Lp((�1, 1), dx).

4.2. Large n limit without a parametrix solution. In [14] the authors were
considering orthogonal polynomials with an exponential weight of the form e�Q(x)

on the real line, where Q(x) was a polynomial of even degree and positive leading
coe�cient. To extract asymptotic results, they introduced a series of transforma-
tions of R-H problems and their solutions, starting with the solution

Y := 2�n�3X, �3 :=

✓
1 0
0 �1

◆
,
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for monic polynomials:

(4.2) Y �! U �! T �! S �! R

In each step a conjugation or deformation step has been performed to obtain a new
R-H problem. An analogous procedure has been done by Kuijlaars et al. in [33]
for the modified Jacobi weight function ⇢↵,�Jac on [�1, 1] (see (1.1)). In this case the
R-H problem for U was not needed. We will not repeat the steps (4.2) here, but
rather simply define the R-H problem for S and N , for details see [33].

In our setting, we will assume that ⇢ has an analytic continuation to a lens-
shaped neighbourhood L of (�1, 1) as shown in Figure 1:
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Figure 1. Neighbourhood L.

Moreover, |⇢±1
| should remain bounded in L, except possibly near the points

z = ±1, where it can have the behaviour

(4.3) |⇢(z)| = O(|z ± 1|�1/⌫++"), |⇢(z)�1
| = O(|z ± 1|�1/⌫�+"),

for two constants ⌫± > 1 and some " > 0. This implies that for any smooth curve
� going through L from �1 to 1, we have

k⇢kL⌫+ (�,dz) < 1, and k⇢�1
kL⌫� (�,dz) < 1.

The R-H problem for S is defined on the contour ⌃ := ⌃1 [ ⌃2 [ ⌃3 as shown in
Figure 2.
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Figure 2. Jump contour for S.



RIEMANN–HILBERT THEORY WITHOUT LOCAL PARAMETRIX PROBLEMS 85

Here the region enclosed by ⌃1 and ⌃2 is denoted by ⌦2 and assumed to be a
subset of L, analogously for ⌦3. Moreover, we set ⌦1 := C \ ⌦2 [ ⌦3. The corre-
sponding R-H problem for S is now stated as follows:

For any n 2 N find a 2⇥ 2 matrix-valued function S such that:

(i) S(z, n) is analytic for z 2 C \ ⌃,

(ii) S+(k, n) = S�(k, n)vS(k, n), for k 2 ⌃ with:

(4.4) vS(k, n) =

8
>>>><

>>>>:

 
1 0

⇢(k)�1'(k)�2n 1

!
, for k 2 ⌃1 [ ⌃3,

 
0 ⇢(k)

�⇢(k)�1 0

!
, for k 2 ⌃2 = (�1, 1),

(iii) S(z, n) = I+O(z�1), as z ! 1.

Here
'(z) := z +

p
z2 � 1

maps C \ [�1, 1] biholomorphically to the exterior of the unit disc. In particular
|'(z)| > 1 for z 2 C \ [�1, 1] and |'(z)| ! 1 as z approaches [�1, 1]. Looking at
the jump matrix (4.4) and observing that

log'(z) = O(
p
|z ⌥ 1|), as z ! ±1,

we identify z = ±1 as the oscillatory points with � = 1/2 (cf. (3.2)).
A solution S can be expressed in terms of the solution X from Theorem 4.1 via

S(z, n) =

8
>>>>>><

>>>>>>:

X(z, n)'(z)�n�3 , z 2 ⌦1,

X(z, n)'(z)�n�3

 
1 0

�⇢(z)�1'(z)�2n 1

!
, z 2 ⌦2,

X(z, n)'(z)�n�3

 
1 0

⇢(z)�1'(z)�2n 1

!
, z 2 ⌦3.

and satisfies

(4.5) lim
z!1

S(z, n) = lim
z!1

X(z, n)'�n�3 = I.

The corresponding model problem has the same normalization at infinity, but only
a jump condition on (�1, 1),

N+(x) = N�(x)

✓
0 ⇢(x)

�⇢(x)�1 0

◆

| {z }
=:vN (x)

, x 2 (�1, 1),

and is independent of n. The explicit solution given in [33, Eq. 5.5] has the form

N(z) = D�3
1

0

B@

a(z) + a(z)�1

2

a(z)� a(z)�1

2i
a(z)� a(z)�1

�2i

a(z) + a(z)�1

2

1

CAD(z)��3
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where D(z) is the Szegő function associated to ⇢ [56]:

D(z) := exp

 p
z2 � 1

2⇡

Z 1

�1

log ⇢(x)
p
1� x2

dx

z � x

!
, z 2 C \ [�1, 1],

D1 := lim
z!1

D(z) = exp

 
1

2⇡

Z 1

�1

log ⇢(x)
p
1� x2

dx

!

and

a(z) :=
⇣z � 1

z + 1

⌘1/4

with a branch cut on [�1, 1] and a(1) = 1. We note that

⌃exp := ⌃1 [ ⌃3, ⌃mod := ⌃2 = (�1, 1).

Remark 4.3. It is important to note that vN might not be uniformly bounded and

N might not satisfy condition (3.3). This is because of the singular behaviour of the

weight function ⇢, and hence D, near the endpoints (4.3). However, we will still

use Hölder’s inequality to get similar results as in Theorem 3.1.

Next we want to arrive at estimates for kS�wSNkL1(⌃exp,dz). As N has no jumps
on ⌃exp, the ± subscripts can be left out:

(4.6)

kS�wSN
�1

kL1(⌃exp,dz) =

�����X'�n�3

✓
0 0

⇢�1'�2n 0

◆
N�1

�����
L1(⌃exp,dz)

. kX'�n�3kLp(⌃exp,dz) k⇢
�1

kL#(⌃exp,dz)

⇥ k'�2n(z ± 1)�1/4
kL⌧ (⌃exp,dz) kD

�3kL!(⌃exp,dz),

with

(4.7)
1

p
+

1

#
+

1

⌧
+

1

!
= 1.

We have used for simplicity '�2n(z±1)�1/4, which has the same growth behaviour
as the more complicated expression

�����

✓
0 0

'�2n 0

◆
0

B@

a(z) + a(z)�1

2

a(z)� a(z)�1

�2i
a(z)� a(z)�1

2i

a(z) + a(z)�1

2

1

CAD��3
1

�����
L⌧ (⌃exp,dz)

.

Using (3.5) with � = 1/2 and q = ⌧ , we see that

k'�2n(z ± 1)�1/4
kL⌧ (⌃exp,dz) = O(n�2/⌧+1/2).

Hence, we should try to choose ⌧ as small as possible, which translates into max-
imizing p, # and ! under the constraint that all the corresponding terms in (4.6)
remain bounded.

Next we want to show that kX'�n�3kLp(⌃exp,dz) remains bounded for an appro-
priate p � 1. Using Lemma 3.3 together with (4.5), it is enough to establish the
Lp((�1, 1), dx)-boundedness of X'�n�3

± , which, as |'±(x)| = 1 for x 2 (�1, 1), is
equivalent to showing that

kX±kLp((�1,1),dx)  C1 < 1.
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Looking at the components of X in (4.1) and using the Lp-boundedness of the

Cauchy boundary operators C
(�1,1)
± on Lp((�1, 1), dx) for p 2 (1,1), we need to

show that

kpnkLp((�1,1),dx)  C2, kpn⇢kLp((�1,1),dx)  C3, C2, C3 < 1.

For both cases we can use Hölder’s inequality and theorem 4.2 which tells us that

kpn
p
⇢kLa((�1,1),dx)  C4 < 1

for a = 2 and thus automatically for a  2, as we integrate over a finite interval.
Using this we can write

kpnkLp((�1,1),dx)  kpn
p
⇢kLa((�1,1),dx)k

p
⇢�1

kLb((�1,1),dx)

kpn⇢kLp((�1,1),dx)  kpn
p
⇢kLa0 ((�1,1),dx)k

p
⇢kLb0 ((�1,1),dx)

with
1

p
=

1

a
+

1

b
=

1

a0
+

1

b0
.

As we want to maximize p, we choose a = a0 = 2. The condition (4.3) tells us that
we can take b  2⌫� and b0  2⌫+. Again, maximizing p, we choose

b = b0 = 2⌫0 := 2min{⌫+, ⌫�}

which gives us

p :=
2⌫0

1 + ⌫0
.

The condition p > 1 translates to ⌫0 > 1, which was assumed right after (4.3).
Next, let us consider the term k⇢�1

kL#(⌃exp,dz). This is the simplest case, as
(4.3) implies that we can choose # := ⌫�.

The term kD�3kL!(⌃exp,dz) is more challenging. Recall that the Szegő function
satisfies [8, Eq. 2.14–15]

D+(x)D�(x) = ⇢(x), x 2 (�1, 1)

and
D(z) = D(z), C \ [�1, 1].

These two identities imply

|D±(x)| =
p
⇢(x) and D+(x)�D�(x) = 2 Im(D+(x)), x 2 (�1, 1).

Hence, D satisfies an additive R-H problem, with

kD+ �D�kL!((�1,1),dx)  k
p
⇢kL!((�1,1),dx).

As D has a limit at infinity, namely D1, we can apply lemma 3.3 to conclude that

kDkL!(⌃exp,dz) = O(k
p
⇢kL!((�1,1),dx)).

From (4.3) it follows that we must have !  2⌫+. The same argument works with
D�1, and in the end we can choose ! := 2⌫0.

We have computed the optimal values for p, # and !:

p =
2⌫0

1 + ⌫0
, # = ⌫�, ! = 2⌫0.

A quick calculation using the relation (4.7) shows that

⌧ =
2⌫0⌫�

⌫0⌫� � 2(⌫0 + ⌫�)
,
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which implies
k(z ± 1)�1/4'�2n

kL⌧ (⌃exp,dz) = O(n��),

with

(4.8) � :=
1

2
�

2(⌫0 + ⌫�)

⌫0⌫�
.

As all the other terms on the right-hand side of (4.6) remain bounded as n ! 1,
we conclude:

kS�wSN
�1

kL1(⌃exp,dz) = O(n��).

To ensure that � is positive it is enough to assume that

(4.9) ⌫0 > 8,

or in the case ⌫0 = ⌫+ 2 (4, 8), one would need

(4.10) ⌫� >
4⌫+

⌫+ � 4
.

For positive � we can conclude that

(4.11) S(z, n) = (I+O(n�� dist(z,⌃exp)�1))N(z).

In particular

X(z, n) = (I+O(n�� dist(z,⌃exp)�1))N(z)'(z)n�3 , z 2 ⌦1,(4.12)

X(z, n) = (I+O(n�� dist(z,⌃exp)�1))N(z)(4.13)

⇥

✓
1 0

⇢�1(z)'�2n(z) 1

◆
'(z)n�3 , z 2 ⌦2,

X(z, n) = (I+O(n�� dist(z,⌃exp)�1)N(z)(4.14)

⇥

✓
1 0

�⇢�1(z)'�2n(z) 1

◆
'(z)n�3 , z 2 ⌦3.

We can state our main result concerning orthogonal polynomials:

Theorem 4.4. Let the weight function ⇢ have an analytic continuation to a lens-

shaped neighbourhood L of (�1, 1) and satisfy condition (4.3), with ⌫± fulfilling

either (4.9) or (4.10). Moreover, let U be a compact subset of the Riemann sphere

contained in C \ [�1, 1] [ {1} and V be a compact set contained in L. Then, we

have for the n-th orthogonal polynomial with leading coe�cient 2n:

pn(z) =
D1'(z)n+1/2

p
2D(z)(z2 � 1)1/4

+O(n��z�1'(z)n)

=
⇣ D1'(z)n+1/2

p
2D(z)(z2 � 1)1/4

⌘�
1 +O(n��z�1)

�
, z 2 U,(4.15)

and

pn(z) =
1

p
2(z2 � 1)1/4

⇣ D1
D(z)

'(z)n+1/2
± i

D1D(z)

⇢(z)
'(z)�n�1/2

⌘
+O(n��'(z)n),

z 2 V,
(4.16)

with the +(�) sign in the case of z in the upper(lower)-half plan, and both signs

giving the same result for z 2 (�1, 1). The constant � is given by (4.8).



RIEMANN–HILBERT THEORY WITHOUT LOCAL PARAMETRIX PROBLEMS 89

Proof. First observe the two identities

(4.17)
a(z) + a(z)�1

2
=

'(z)1/2
p
2(z2 � 1)1/4

and

(4.18)
a(z)� a(z)�1

2i
= i

'(z)�1/2

p
2(z2 � 1)1/4

.

Next, let us consider the asymptotics in U . As U is assumed to be compact on
the Riemann sphere, it must be a finite distance away from [�1, 1]. In particular,
we can choose the contour ⌃exp

⇢ L such that

dist(U,⌃exp) > 0.

It follows that for z 2 U , we have that asymptotic terms of order O(z�1) and
O(dist(z,⌃exp)�1) become equivalent. Again by compactness of U , we see that the
functions D±1 and a±1 are bounded in U . With this information, (4.15) is obtained
by multiplying out (4.12) and using pn(z) = X11(z, n) from Theorem 4.1.

For the set V we can again choose ⌃exp
⇢ L such that

dist(V,⌃exp) > 0.

As V is bounded, asymptotic terms of order O(dist(z,⌃exp)�1) and O(1) become
equivalent. Similar to before the functions D±1 and a±1 are uniformly bounded,
as they are continuous in V \ (�1, 1) and take continuous limits on V \ (�1, 1).
Multiplying out (4.13) and (4.14) gives then (4.16). Moreover, using for x 2 (�1, 1),

(x2
� 1)1/4+ = i(x2

� 1)1/4�

D+(x)D�(x) = ⇢(x)

'+(x)'�(x) = 1

one can verify that both signs in (4.16) give the same result on V \ (�1, 1). ⇤
Remark 4.5. The leading terms in (4.15) and (4.16) have been obtained by Bern-

stein and Szegő in [56, Thm. 12.1.1–4]. However, the R-H method allows for more

explicit bounds on the error terms.

As a corollary, we obtain bulk universality for the unitary matrix ensemble as-
sociated to ⇢.

Corollary 4.6. Let the weight function ⇢ satisfy the assumption (4.3) and let

{⇡n}n2N0 be the associated monic polynomials. Then the corresponding kernel Kn

given by

Kn(x, y) =
p
⇢(x)

p
⇢(y)

n�1X

j=0

⇡j(x)⇡j(y),

satisfies

1

n⇠(x)
Kn

⇣
x+

u

n⇠(x)
, x+

v

n⇠(x)

⌘
=

sin⇡(u� v)

⇡(u� v)
+O(n�1),(4.19)

x 2 (�1, 1), u, v 2 R,

where ⇠(x) = (⇡
p
1� x2)�1

. The estimate holds uniformly for x in compact subsets

of (�1, 1) and u, v in compact subsets of R.
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Proof. The proof is analogous to the one given in [34, Sect. 3.2].9 Only the local
boundedness of d

dxS±(x) for x 2 (�1, 1), uniformly as n ! 1 requires additional
comments. It follows from the local boundedness of N±(x),

d
dxN±(x), R(x, n) and

d
dxR(x, n) for x 2 (�1, 1), uniformly as n ! 1 (recall S = RN). The statement
for N±(x) and

d
dxN±(x) follows directly from smoothness of the limits of the Szegő

function to (�1, 1) and n-independence. The statement for R(x, n) and d
dxR(x, n)

follows from (2.8), and the fact that the integral representation of R contains only
integrals over ⌃exp, where ⌃exp

\ [�1, 1] = {�1, 1}. ⇤
Remark 4.7. Interestingly, the error term in (4.19) is bounded by O(n�1) instead
of O(n��), where � is defined in (4.8). The reason is that convergence to the sine-
kernel follows from the relations (4.13) and (4.14) between X and S, rather than

the exact form of S.

4.3. Riemann–Hilbert problem with constant jump matrices. Finally, let
us explain why our choice of weight functions makes a reformulation of the local
parametrix problem to a limiting parametrix problem with constant jump matri-
ces, as found in [33, Sect. 6], impossible. In that paper the authors considered the
following local parametrix problem for P in a small but fixed disc U� of radius �
around z = 1 (and later analogously around z = �1):

Find a 2⇥ 2 matrix-valued function P , such that

(i) P (z, n) is analytic for z 2 U� \ ⌃,

(ii) P+(k, n) = P�(k, n)vS(k, n), for k 2 ⌃ \ U�,

(iii) P (k, n)N�1(k) = I+ o(1), uniformly for k 2 @U� as n ! 1.10

Hence, P should satisfy locally around z = 1 the same R-H problem as S, but the
normalization at infinity is changed to a matching condition with N . To transform
this R-H problem to an explicitly solvable one, a further conjugation step is needed
to make the jump matrices independent of k 2 ⌃. This is a crucial step that cannot
be performed in our case. Assume for a moment that ⇢ has an analytic nowhere
vanishing continuation in U�. In [33, Eq. 6.7] the authors define the function W
by11

(4.20) W (z) :=
p
⇢(z), z 2 U�.

This function can be used to construct P (1):

P (1)(z, n) := P (z, n)'n�3(z)W (z)�3 , U�.

Then P (1) satisfies the following R-H problem:

Find a 2⇥ 2 matrix-valued function P (1), such that

9The authors denote our matrix S by L.
10In [33] an error term of order O(n�1) is used instead of o(1).
11In [33] a Jacobi-weight prefactor (1� x)↵(1 + x)� was considered. In our case any singular

behaviour around ±1 is assumed to be absorbed into the weight function ⇢ (compare Eq. (1.1)
with (4.3)).
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(i) P (1)(z, n) is analytic in z 2 U� \ ⌃,

(ii) P (1)
+ (k, n) = P (1)

� (k, n)vP(k, n), for k 2 ⌃ \ U�, with

vP(k) =

8
>>>><

>>>>:

 
1 0

1 1

!
, for k 2 ⌃exp

\ U�,
 

0 1

�1 0

!
, for k 2 ⌃mod

\ U�.

(iii) P (1)(k, n)
�
N(k)'(k)n�3W (k)�3

��1
= I+ o(1),

uniformly for k 2 @U� as n ! 1.

After an n-dependent change of variables z ! ⇣, the matching condition (iii) for
P (1) can be transformed into a normalization at infinity for the matrix-valued func-
tion

 (⇣) := P (1)(z(⇣)).

The corresponding jump contour ⌃B := ⌃B
1 [ ⌃B

2 [ ⌃B
3 consists of three rays ema-

nating from the origin as in Figure 3:

⌃B
1

⌃B
2

⌃B
3

R0
.... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .....

Figure 3. Contour for the Bessel R-H problem

and the jump matrix vB has the form

vB(⇣) =

8
>>>><

>>>>:

 
1 0

1 1

!
, for ⇣ 2 ⌃B

1 [ ⌃B
3 ,

 
0 1

�1 0

!
, for ⇣ 2 ⌃B

2 .

The R-H problem for  is stated as follows:

Find a 2⇥ 2 matrix-valued function  , such that

(i)  (⇣) is analytic for ⇣ 2 C \ ⌃B,
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(ii)  +(⇣) =  �(⇣)vB(⇣), for ⇣ 2 ⌃B,

(iii)  (⇣) ! (2⇡⇣1/2)��3/2
1
p
2

✓✓
1 i
i 1

◆
+ o(1)

◆
e2⇣

1/2�3 , uniformly as ⇣ ! 1.

This R-H problem is the corresponding limiting parametrix problem as it is obtained
by taking the limit of the local parametrix problems as n ! 1. It is solved explicitly
using the Bessel functions [33, Eq. 6.23–25]. A deductive argument leading to
the explicit solution for a similar limiting parametrix problem, namely the Airy
parametrix problem, can be found [28, Sect. 3.2].

As ⇢ is not assumed to have an analytic continuation to a disc U� around z = 1
(z = �1), the function W in (4.20) cannot be defined in general. Hence, the con-
vergence of the parametrix problem to a limiting parametrix problem with constant
jump matrices, at least with the usual approach, is not possible. However, we point
out that under the assumptions of Theorem 4.4 the local parametrix problem for
P indeed has a solution.

Theorem 4.8. The exact solution S, satisfies the local parametrix R-H problem

for P .

Proof. The matrix-valued function S satisfies trivially condition (i) and (ii) for P .
The only remaining condition (iii) is the matching condition:

S(k, n)N(k, n)�1 = R(k, n) = I+ o(1), for k 2 @U�.

uniformly as n ! 1. We can substitute O(n�� dist(k,⌃exp) for the error term
o(1), because of (4.11). However, by deforming the contour ⌃exp we see that the
points where ⌃exp and U� meet are movable, and that the error term is in fact
uniform on @U�, meaning

S(k, n)N(k, n)�1 = R(k, n) = I+O(n��), for k 2 @U�,

uniformly as n ! 1. Hence, S is a solution to the local parametrix R-H problem.
⇤

The solution S is unique in the following sense: For any other solution eP hav-
ing su�cient regularity, for example at most fourth root singularities at z = ±1
(c.f. [33]), the matrix-valued function H := ePS�1 will be analytic in U�, and satis-
fies

H(k, n) = eP (k, n)S(k, n)�1 = I+ o(1) for k 2 ⌃ \ U�,

uniformly as n ! 1. By the maximum principle for analytic function, we therefore
know that

H(z, n) = eP (z, n)S(z, n)�1 = I+ o(1) for z 2 U�,

uniformly as n ! 1. Hence we see that eP has the form

eP (z, n) = H(z, n)S(z, n), z 2 U�,

where H(z, n) is a sequence of matrix-valued function with analytic entries, such
that it converges uniformly to the identity matrix as n ! 1. Moreover, every
solution of the local parametrix problem can be obtained in this way.
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5. Discussion

We have shown that the formulation of a limiting parametrix problem is not
necessary for a rigorous R-H analysis, provided an a priori Lp-estimate of the exact
solution S is known. Our method has been illustrated on the example of orthogonal
polynomials on [�1, 1] with a new class of weight functions ⇢. We impose analytic
continuation of ⇢ to a lens-shaped neighbourhood of (�1, 1) and a growth condition
at the endpoints (cf. Figure 1 and Eq. (4.3)). In particular, we do not require any
sort of analytic continuation around x = ±1.

However, the error bound obtained that way is in general worse than the actual
error term. In [33] the authors show

(5.1) S(z, n) =
⇣
I+

X̀

k=1

Rk(z)

nk
+O(n�`�1)

⌘
N(z), as n ! 1, ` 2 N+,

uniformly away from x = ±1. They considered modified Jacobi weight functions of
the form (1.1). The series expansion stems from the series expansion of the Bessel
functions, which are contained in the solution of the limiting parametrix problem.
Our approach would only result in O(n�1/2) without a series expansion, for weight
functions ⇢ satisfying that |⇢±1

| is uniformly bounded. This case corresponds to
⌫± ! 1 in (4.3). This is unsurprising as the a priori Lp-estimate contains very lim-
ited information on the local structure of the exact solution S around the oscillatory
points.

Whether an expansion of the form (5.1) holds in our case, seems to be an open
problem. Also the optimal error bound in (4.15) and (4.16) is, to the best of
our knowledge, unknown. These questions relate to one of the main motivations
for obtaining large n asymptotics of orthogonal polynomials, namely the study of
eigenvalue statistics for ensembles of random matrices. This field of study has
been initiated by Wigner [59]. The statistics in the bulk of the spectrum have
been further studied for special cases by Dyson in [21], [22] and Mehta in [45]
and confirmed instances of the Wigner–Dyson–Mehta universality conjecture. This
universality conjecture states that the local statistics in the bulk of the spectrum
depend only on the type of the ensemble, which is either unitary, orthogonal or
symplectic.

More general instances of the universality conjecture were obtained by Lubinsky
in [38], [41] (see also [37], [39], [40], [55]), showing that bulk and edge universality
depend essentially only on the local behaviour of the weight function and do not
require smoothness. This generalizes the universality results in [34], by allowing for
continuity and positivity instead of analyticity of the function h in (1.1). The proof
is not based on the R-H method, but rather works directly with the correspond-
ing Christo↵el–Darboux kernel and uses localization and smoothing techniques. In
particular, Plancherel–Rotach asymptotics are not needed. In fact, recently the
implication from asymptotics of orthogonal polynomials to universality has been
inverted, meaning that pointwise asymptotics for orthogonal polynomials were ob-
tained from the corresponding universality results (see [42] for the bulk and [43] for
the edge case).

Our Theorem 4.4 implies the known universality in the bulk, but has more
interesting connections with universality near the edge. Just as for the bulk, most
of the previous work has been focused on proving edge universality for various
ensembles. Here one has to distinguish between two classes, the soft edge ([6], [9],
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[14], [26, Sect. 3]) and the hard edge ([26, Sect. 2], [33], [34], [51]). While the former
leads to local statistics described by the Airy kernel, the latter leads to the Bessel
kernel. Both kernels have been further studied by Tracy and Widom ([57], [58]).

Using the R-H method, the cited results on edge universality can be obtained
through the explicit solution of a limiting parametrix problem with constant jump
matrices. However, as shown in Section 4.3, for weight functions that do not have
an analytic continuation outside the lens L (cf. Figure 1) one cannot formulate
the corresponding limiting parametrix problem with the usual R-H approach (see
[3], [44] for an alternative @ R-H approach). The natural question arises, whether
the local parametrix problems converge in any other sense as the degree n goes to
infinity to some other limiting parametrix problem. A hypothetical limiting R-H
problem would likely determine the behaviour of the eigenvalues near the edge of
the spectrum. Our work suggests that such a limiting R-H problem might not
exist, as the nonlinear steepest descent method can be rigorously applied without
computing any limit of the local parametrix problems. More research is needed to
formalize and prove or disprove this statement.

Regarding future work, it would be interesting to see how the methods presented
in this paper can be used in other settings. For orthogonal polynomials, one can
consider di↵erent kinds of nonanalytic singularities in the interior of the support,
generalizing the work in [31]. In particular, one can apply our results to show
that certain families of local parametrix problems are solvable and use this fact
for other R-H applications with similar local parametrix problems, but without a
priori estimates. On the other hand one could try to derive more powerful a priori
information than the one given in Theorem 4.2. This could lead to qualitative
Plancherel–Rotach asymptotics, even in the vicinity of nonanalytic singularities like
the one considered in [8]. Another future challenge would be proving the a priori
Lp-estimate for R-H problems related to other areas. In particular, the inverse
scattering transform for integrable PDEs can be framed as a R-H problem, and
here it would be interesting to show and interpret the associated a priori estimates.

Appendix: Local a priori Lp-estimate

Let us consider the general setting of Section 3, with the additional assumption
that ⌃exp is unbounded. This was not the case in our application to orthogonal
polynomials on [�1, 1], for further examples of R-H problems having a bounded
⌃exp see ([2], [29], [32]). However, there are numerous examples of R-H problems
having an unbounded ⌃exp ([1], [14], [15], [16], [17], [18], [19], [23], [27], [30], [35],
[53]). Figure 4 displays the contour in the case the KdV equation with steplike
initial data [23], where the solid part is ⌃mod and the dashed ⌃exp. We see that
⌃exp extends to ±1.

The unboundedness assumption on ⌃exp poses a hurdle for obtaining the a priori
Lp-estimate. Namely, given that S(z) ! I, as z ! 1, we see that

(A.1) kS�kLp(⌃exp) = 1, for p 2 (1,1).

Luckily, it turns out that only local Lp-estimates around the points  2 K are
needed. To show this, we choose a bounded domain � ⇢ C, which contains all the
oscillatory points  2 K. Next, write ⌃exp as a disjoint union of an unbounded part
⌃exp

1 and a bounded part ⌃exp
K with K ⇢ ⌃exp

K :

⌃exp
1 := ⌃exp

\�, ⌃exp
K := ⌃exp

\�.
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Figure 4. Contour for the KdV equation with steplike initial data

We make the additional assumption

(A.2) kkiwS(k, n)kL1(⌃exp
1 ) = O(e�cn)

for some positive c and i = 0, . . . , ` � 1, where ` will play the same role as in
Theorem 3.1. The condition (A.2) is satisfied in most applications.

We can now introduce the following R-H problem with data (vG ,⌃G), where
⌃G := ⌃mod

[ ⌃exp
1 and the jump matrix is given by vG(k) = vS(k) for k 2 ⌃G .

Find a 2⇥ 2 matrix-valued function G such that

(i) G(z) is analytic for z 2 C \ ⌃G ,

(ii) G+(k) = G�(k)vG(k), for k 2 ⌃G

(iii) G(z) = I+O(z�1), as z ! 1.

The solution G will be later used as a substitute for the model solution N . From
(A.2) it follows that

(A.3) kvG � vN kL1(⌃) = kwSkL1(⌃exp
1 ) = O(e�cn)

Moreover, in (3.2) it was assumed that |wS(k, n)| = O(e�cn), without loss of gen-
erality with the same c, uniformly away from the points  2 K. Hence, we also
have

(A.4) kvG � vN kL1(⌃) = kwSkL1(⌃exp
1 ) = O(e�cn).

Let us now take a look at the corresponding singular integral equations for both
R-H problems (cf. Section 2.1)

(A.5) (I� C
⌃
wG )�G = C

⌃
�(wG),

(A.6) (I� C
⌃
wN )�N = C

⌃
�(wN ),
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where wG := vG � I, and for notational convenience we regard everything defined
on the larger contour ⌃. Note that

k(I� C
⌃
wG )� (I� C

⌃
wN )kLq(⌃)!Lq(⌃) = kC

⌃
wN�wGkLq(⌃)!Lq(⌃)(A.7)

 C(q)kwSkL1(⌃exp
1 ) = O(e�cn).

Moreover, as for q 2 (1, 4) a unique solution �N := N�� I of (A.6) exists, we know
that I � C

⌃
wN must be invertible as an operator on Lq(⌃). As the set of invertible

operators is open in the operator norm topology, it follows from (A.7) that for n
large enough I � C

⌃
wG is uniformly invertible on Lq(⌃). Moreover, using (A.3) and

(A.4) we see that

kwG � wN kLq(⌃) = kwSkLq(⌃exp
1 ) = O(e�cn).

Altogether this implies that for n large enough the unique solution �G of (A.5)
satisfies

k�G � �N kLq(⌃) = O(e�cn).

In particular, k�GkLq(⌃) is uniformly bounded as �N is n-independent.
As the goal will be to use G as a substitute of the model solution N , we need to

understand the behaviour of G in the vicinities of the oscillatory points  2 K. As
described in Section 2.2, we can relate G and N via:

G(z, n) =

 
I+ 1

2⇡i

Z

⌃exp
1

G�(k, n)wS(k, n)N�1(k)

k � z
dk

!
N(z).

Note that
kG�wSN

�1
kL1(⌃exp

1 ) = k(�G + I)wSN
�1

kL1(⌃exp
1 )



⇣
k�GkL2(⌃exp

1 )kwSkL2(⌃exp
1 ) + kwSkL1(⌃exp

1 )

⌘
kN�1

kL1(⌃exp
1 ) = O(e�cn),

which follows from the uniform boundedness of k�GkL2(⌃), and |N�1(k)| away from
the points  2 K. Hence, we conclude that

(A.8) G(z, n) = (I+O(e�cn dist(z,⌃exp
1 )�1))N(z).

In particular, we see that G has locally around  2 K the same behaviour as N ,

(A.9) |G(z, n)| = O(|z � |�1/4),

uniformly for n ! 1. However, G(z, n) might not be uniformly bounded away
from the points  2 K, as it can blow up near the contour ⌃exp

1 .
Let us now reconsider (3.4), but with G instead of N :

��S�(vS � vG)G
�1
+

��
L1(⌃)

=
��S�wSG

�1
��
L1(⌃exp

K )

 kS�kLp(⌃exp
K )

��wSG
�1
��
Lq(⌃exp

K )
.

Because of detG ⌘ 1 and the boundedness of ⌃exp
K , we have

kG�1
kLq(⌃exp

K ) = kGkLq(⌃exp
K ) = k�G + IkLq(⌃exp

K )  C < 1

Together with the local assumption (3.2) on wS and (A.9), it follows that

kkiwS(k, n)G
�1(k)kLq(⌃exp

K ) = O(n
1
4�� 1

q� ), q 2 [1, 4), i 2 N0,

which is in line with (3.5). Moreover, we see that we are now required to find only
a local a priori Lp-estimate of the form

(A.10) kS�kLp(⌃exp
K ) = O(nr).
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Thus, Theorem 3.1 remains valid with only the local a priori Lp-estimate for S�
(A.10) instead of (3.6) and G substituted for N . In fact, because of (A.8) the two
relations (3.7) and (3.8) between S and N continue to be true and Theorem 3.1
holds in its original form with condition (A.10) instead of (3.6).

Acknowledgments. The author thanks Andrei Mart́ınez-Finkelshtein for valu-
able discussions on related literature and Gerald Teschl for useful comments on the
manuscript.
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