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Abstract. We start from the simple idea to define a generalized holomorphic

function (GHF) without already assuming the Cauchy-Riemann equations but
using a natural definition of complex differentiability, i.e. of limit of the incre-

mental ratio. The setting is that of Robinson-Colombeau ring, which general-

izes the ring of Colombeau generalized numbers by considering a more general
“growth condition” (ρε) (called gauge) instead of the usual ρε = ε. This nat-

ural definition actually uses two gauges in order to define two different sharp

topologies on the domain and on the codomain, and hence a new notion of limit
and little-oh in the definition of GHF. This conduct us to a more general the-

ory, where several classical theorems of differential calculus can be extended

from the ordinary holomorphic case to generalized holomorphic framework,
overpassing several drawbacks of Colombeau theory of holomorphic functions.

1. Introduction

Since the beginning of Colombeau theory of generalized functions (CGF) it
was natural to define an holomorphic generalized functions using Cauchy-Riemann
equations (CRE), see e.g. [21, 2, 5, 1]. Indeed, the notion of partial derivatives of
a CGF was already clear and, mainly, using pointwise evaluation of CGF one can
define the complex function of a complex variable starting from its real and imag-
inary parts. Note that the latter step is not so easy using Schwartz distributions.
Even if an important result such as the CRE is directly taken in the definition,
this approach probably appeared more natural than considering the limit of the
incremental ratio in a ring with a sharp topology usually managed through valua-
tion and sharp norm. On the other hand, already in [2] a more general notion of
differentiability in the Colombeau setting, both for the complex and the real case,
is considered using a classical Newton quotient. This allows [2] to show that all
CGF are also differentiable in this more classical way.

Similarly, in this article we want to define a GHF by using some kind of limit
of the incremental ratio, and to prove from this the CRE. It is not immediate to
understand that this apparently stylistic problem leads to a more general theory and
is also deeply related to a non trivial drawback of the Colombeau approach. Indeed,
any good theory of GHF has to be well linked with a good notion of power series.

However, in the ring R̃ of Colombeau generalized numbers (see below Def. 1), we

have that (xn)n∈N ∈ R̃N is a Cauchy sequence if and only if limn→+∞ |xn+1 − xn| =
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0 (in the sharp topology; see [15, 19]). As a consequence, a series of CGN

∞∑
n=0

an converges ⇐⇒ an → 0 (in the sharp topology). (1.1)

Once again, this is a well-known property of every ultrametric space, cf., e.g. [13].

For example,
∑∞
n=1

1
n2 ∈ R̃ converges in the sharp topology if and only if 1

n2 → 0

in the same topology, for n→ +∞, n ∈ N>0. But the sharp topology on R̃ neces-

sarily has to deal with balls having infinitesimal radius r ∈ R̃ (because generalized
functions can have infinite derivatives and are continuous in this topology), and
thus 1

n2 6→ 0 if n → +∞, n ∈ N>0, because we never have R>0 3 1
n2 < r if r is

infinitesimal. Similarly, one can easily prove that if the exponential series
∑+∞
n=0

xn

n!

converges, then necessarily x ≈ 0 must be an infinitesimal number because if x
n

n! → 0

in the sharp topology, then |xε| ≤ n!ε1/n for all n ∈ N sufficiently large.

Intuitively, the only way to have 1
n2 < r ≈ 0 is to take for n ∈ R̃ an infinite

number, in this case an infinite natural number. However, we intuitively would like

to have 1
logn → 0, but we have 1

lognε
< εq if and only if nε > eε

−q
and the net(

eε
−q
)
ε

is not moderate. In order to settle this problem, it is hence important to

generalize the role of the net (ε) as used in Colombeau theory, into a more general

ρ = (ρε)→ 0 (which is called a gauge), and hence to generalize R̃ into some ρR̃ (see
Def. 1). The aforementioned set of infinite natural numbers (called hypernatural

numbers) would be ρÑ :=
{

[nε] ∈ ρR̃ |nε ∈ N ∀ε
}

, and we have 1
logn → 0 in ρR̃ as

n→ +∞ for n ∈ σÑ, but only for a suitable gauge σ (depending on ρ), whereas this
limit does not exist if σ = ρ (cf. [15, Example 33]). This is also related to the former

problem of series of generalized numbers an ∈ ρR̃ because instead of ordinary series,

we have better results summing over all n ∈ σÑ: e.g. we have
ρ∑

n∈σÑ
xn

n! = ex for

all x ∈ ρR̃ where the exponential is moderate, i.e. if |xε| ≤ log
(
ρ−Rε

)
for some

R ∈ N. Intuitively, the smaller is the second gauge σ, the greater are the infinite
numbers we can consider with it (i.e. represented by σ-moderate nets), and hence

the greater is the number of summands in summations of the form
ρ∑

n∈σÑ an ∈
ρR̃.

This kind of summations are called hyperseries, and their theory has been developed
in [19, 20].

Based on these (a posteriori!) motivations, it is now natural that we generalize

the notions of hyperlimit of the incremental ratio, of little-oh in ρC̃, and finally the
definition of GHF, by considering two gauges, one on the domain and one on the
codomain.

1.1. The Ring of Robinson Colombeau Numbers. In this section, we intro-
duce our non-Archimedean ring of scalars. For more details and proofs about the
basic notions introduced here, the reader can refer e.g. to [10, 4, 9]. As we men-
tioned above, in order to accomplish the theory of hyperlimits, it is important to
generalize Colombeau generalized numbers by taking an arbitrary asymptotic scale
instead of the usual net (ε) (see also [14] for a more general notion of scale, and [7]
and references therein for a comparison).
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Definition 1. Let ρ = (ρε) : (0, 1] → (0, 1] =: I be a net such that (ρε) → 0 as
ε → 0+ (in the following, such a net will be called a gauge and all the asymptotic
relation will be for ε→ 0+), then

(i) We say that a net (xε) ∈ RI is ρ-moderate, and we write (xε) ∈ Rρ if ∃N ∈ N
: xε = O(ρ−Nε ).

(ii) Let (xε), (yε) ∈ RI , then we say that (xε) ∼ρ (yε) if ∀N ∈ N : |xε − yε| =
O(ρNε ). This is a congruence relation on the ring Rρ of moderate nets with
respect to pointwise operations, and we can hence define

ρR̃ := Rρ/ ∼ρ,
which we call Robinson-Colombeau ring of generalized numbers. The corre-
sponding equivalence classes are simply denoted by x = [xε] or x = [xε]ρ in
case we have to underscore the dependence from the gauge ρ. In particular,

dρ := [ρε] ∈ ρR̃.
(iii) If P(ε) is a property of ε ∈ I, we use the notation ∀0ε : P(ε) to denote

∃ε0 ∈ I ∀ε ∈ (0, ε0] : P(ε). We can read ∀0ε as for ε small.

(iv) Let x, y ∈ ρR̃. We write x ≤ y if for all representative [xε] = x, there exists
[yε] = y such that ∀0ε : xε ≤ yε.

(v) We denote by ρR̃>0 the set of positive invertible generalized numbers. In
general, we write x < y to say that x ≤ y and x− y is invertible.

(vi) A generalized complex number z := x+ iy ∈ ρC̃, where x, y ∈ ρR̃ and i is the
imaginary unit.

On ρR̃, we consider the natural extension of the Euclidean norm, i.e. |[xε]| :=

[|xε|] ∈ ρR̃. Even if this generalized norm takes value in ρR̃, it shares essential prop-

erties with classical norms. It is therefore natural to consider on ρR̃ the topology

generated by balls Br(x) :=
{
y ∈ ρR̃ : |x− y| < r

}
, r ∈ ρR̃>0, which is called sharp

topology.

A natural way to obtain some particular sets in ρR̃ is by using a net (Aε) of
subset Aε ⊆ R. We have two ways of extending the membership relation xε ∈ Aε
to generalized points [xε] ∈ ρR̃.

Definition 2. Let (Aε) be a net of subsets of R, then

(i) A set of the type

[Aε] :=
{

[xε] ∈ ρR̃ | ∀0ε : xε ∈ Aε
}

is called internal set, and it is sharply closed.
(ii) A set of the type

〈Aε〉 :=
{
x ∈ ρR̃ | ∀[xε] = x∀0ε : xε ∈ Aε

}
is called strongly internal set, and it is sharply open.

A thorough investigation of internal sets can be found in [17, 1]; see [9] for
strongly internal sets.

2. Generalized Holomorphic Functions

2.1. Hyperlimit and Little-oh. Starting from the theory of GSF and CGF, we
still want to have generalized function of the form f(z) = [fε(zε)] but without
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considering the differentiability of fε, we therefore define the notion of basic function
below:

Definition 3. Let U ⊆ ρC̃. We say that f : U → ρC̃ is a basic function, if

(i) f : U → ρC̃ is a set-theoretical function;
(ii) There exists a net (fε) such that fε : Uε → C, U ⊆ 〈Uε〉, and for all z =

[zε] ∈ U , f(z) = [fε (zε)].

Note that a similar concept was first introduced in [6] to define basic linear
maps. Since we aim to define a generalized holomorphic function using a natural
definition of complex differentiability, we also need to define the limit of a basic
function. This can be accomplished using two gauges to generate two topologies in
the domain and codomain respectively.

Definition 4. Let σ, ρ be two gauges, then we say σ ≤ ρ if ∀0ε : σε ≤ ρε.
The relation (−) ≤ (−) is reflexive, transitive, and antisymmetric in the sense

that σ ≤ ρ and ρ ≤ σ imply σε = ρε for ε small. Clearly, σ ≤ ρ implies the inclusion
of ρ-moderate nets Rρ ⊆ Rσ. This means that we have larger infinities and smaller
infinitesimals.

Even assuming that we need two gauges σ and ρ to define the notion of hyperlimit

of a basic function, at the end we aim at defining a GHF of the type f : U −→ ρC̃,

where U ⊆ ρC̃. On the other hand, we want to consider f(z0 + h) ∈ ρC̃ and take

h → 0 in σC̃. We therefore need to link “small” numbers in σC̃ with those in ρC̃:

If σ ≤ ρ, we define ρ
σC̃ :=

{
[xε] ∈ σC̃ | (xε) ∈ Cρ

}
as the set of σC̃ numbers which

are ρ-moderate. We can also well-define a natural map ι : [xε]σ ∈ ρ
σC̃ 7→ [xε]ρ ∈

ρC̃ because σ ≤ ρ, and we simply write xι := ι(x) where no risk of confusion
exists. This map is surjective but generally not injective, even if ι(x) = ι(y) implies

|x− y| ≤ [ρε]
q
σ for all q ∈ R≥0. Similarly, we can define ρ

σR̃.
In the next definition, we introduce in our framework hyperlimit of basic func-

tions; see [15] for a deeper study of hyperlimit of hypersequences, i.e. of functions

of the form s : σÑ −→ ρR̃d.

Definition 5. Let U ⊆ ρC̃ be a sharp neighborhood of 0. Let σ be a gauge such

that σ ≤ ρ, and R : U → ρC̃ be a basic function. We say that the (ρ-)hyperlimit of
f , as h tends to 0 in the (σ-)sharp topology is 0, and we write ρlim

h
σ−→0

R(h) = 0,

if the following property holds:

∀q ∈ N∃H ∈ ρ
σR̃>0 ∀h ∈ ρ

σC̃ : 0 < |h| < H ⇒ |R(hι)| < dρq. (2.1)

Note that if Br(0) ⊆ U , r = [rε]ρ ∈ (0, 1] ⊆ ρR̃, then for r̄ := [rε]σ ∈ σR̃>0, we

have Br̄(0) ⊆
{
h ∈ ρ

σC̃ | hι ∈ Br(0)
}

. Therefore, the map h 7→ R(hι) is defined in

a σ-neighborhood of 0, and the hyperlimit (2.1) is at most only one.
The following Thm. 6 equivalently states ε-wise convergence of hyperlimit.

Theorem 6. Let U ⊆ ρC̃ be a sharply neighborhood of 0 and R : U → ρC̃ be a basic
function such that R(h) := [Rε(hε)] for all h = [hε] ∈ U . There exists σ such that
σ ≤ ρ and ρlim

h
σ−→0

R(h) = 0 if and only if for ε small ∃ limh→0Rε(h) =: `ε, and

(`ε) ∼ρ 0, i.e. it is ρ-negligible.

Proof. We only give some first details of the proof that the ε-wise condition is
sufficient, because they underscore why we use two gauges in our definition of
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hyperlimit of a basic function: There exists ε1 ∈ I such that for all ε ∈ (0, ε1] and
η ∈ R>0, we can find Hε,η ∈ R>0 such that for all h ∈ C satisfying 0 < |h| < Hε,η

we get |Rε(hε) − `ε| < η. For all fixed q ∈ N, set η = ρqε ∈ R>0. For ε sufficiently
small, we also have that q ≤

⌈
1
ε

⌉
. Without loss of generality, we can assume to

have recursively chosen Hε,ρqε =: Hε,q such that 0 < Hε,q+1 ≤ Hε,q ≤ 1. Set

Ĥε := Hε,d 1
εe ∈ R>0. The main problem is that, for an arbitrary function R, we

have no control about how quickly Ĥε → 0+ as ε→ 0+, and indeed it can happen

that Ĥ :=
[
Ĥε

]
ρ

= 0. On the contrary, if we set σε := min
{
ρε, Ĥε

}
∈ (0, 1], then

we have a new gauge σ := (σε) ≤ ρ and Ĥ > 0 because our definition of σ yields

Ĥε ≥ σε for all ε. Using this gauge σ, for all h := [hε] ∈ ρ
σC̃ satisfying 0 < |h| < Ĥ,

we can prove that |R(hι)| < 2dρq. �

It is also possible to prove that if there exists σ such that σ ≤ ρ and ρlim
h
σ−→0

R(h) =

0, then for all other gauges σ̄ such that σ̄ ≤ σ, we have ρlim
h
σ̄−→0

R(h) = 0. This

underscores that the existence of this gauge σ is a condition of topological nature.

Definition 7. Let H ⊆ ρC̃ be a sharp neighborhood of 0 and P , Q : H → ρC̃ be
basic maps defined on H. Let σ be a gauge such that σ ≤ ρ. Then we say that

P (hι) = o(Q(hι)) as h
σ−→0, if there exists a basic function R : H → ρC̃ such that

ρ lim
h
σ−→0

R(h) = 0 and ∀ι(h) ∈ H : P (hι) = R(hι)Q(hι). (2.2)

Note that we use expression (2.2) since ρC̃ is not a field but only a ring.

2.2. Complex differentiable function. Having a notion of little-oh working with
two gauges, it is now natural the following:

Definition 8. Let U ⊆ ρC̃ be a sharply open set, f : U → ρC̃ be a basic function

and z0 ∈ U . Then f is said to be ρC̃-differentiable at z0 if there exist m ∈ ρC̃ and
a gauge σ such that σ ≤ ρ and

f(z0 + hι) = f(z0) +m · hι + o(h) as h
σ−→ 0 in the sharp topology. (2.3)

We use the notation o(h) instead of o(hι) for simplicity. We then define the deriv-
ative of f at a point z0 by the unique m =: f ′(z0) satisfying Def. 8. We say that f

is a generalized holomorphic function (GHF) at z0 if it is ρC̃-differentiable at every
point in some neighborhood of z0. Moreover, a function f is a GHF on a sharply

open set V ⊆ U , if it is ρC̃-differentiable at every point of V .

The first step is to prove ε-wise differentiability of ρC̃-differentiable function:

Theorem 9. Let U ⊆ ρC̃ be a sharply open set and (fε) be a net of functions

fε : Uε → C with Uε ⊆ C. If U ⊆ 〈Uε〉 andf = [fε(−)] : U → ρC̃ is a basic

function, then f is ρC̃-differentiable at z0 := [z0ε] ∈ U if and only if fε is complex
differentiable on some open neighborhood of z0ε for small ε and f ′(z0) = [f ′ε(z0ε)].

In the proof of this theorem, a basic idea is that we can always have a basic

function R satisfying Def. 7 for the o(h) of (2.3), and such that R(h) = [R̂ε(hε)]

and R̂ε(0) = 0, for all ε ∈ I. We can indeed define a net of functions R̂ε : Hε → C,



6 SEKAR NUGRAHENI, PAOLO GIORDANO

where H ⊆ 〈Hε〉, and for all h ∈ Hε

R̂ε(h) :=

{
fε(z0ε+h)−fε(z0ε)

h −mε if h ∈ Hε \ {0} ,
0 otherwise.

From Thm. 9 it also follows that if f is a GHF, then its real and imaginary parts
are GSF. This result is well-known in the case of Colombeau holomorphic function
satisfying CRE (cf. [5, 16, 1]). The main difference is that we consider a larger class
of functions, without considering the differentiability of the representatives.

It is natural to expect that several classical theorems of differential calculus,
such as algebraic properties and chain rule can be extended from the ordinary
holomorphic case to the generalized holomorphic framework.

Theorem 10. Let U ⊆ ρC̃ be a sharply open set, f , g : U → ρC̃ be basic functions,

z0 ∈ U , and c ∈ ρC̃. If f , g are ρC̃-differentiable at z0, then

(i) f + g is ρC̃-differentiable at z0 and (f + g)′(z0) = f ′(z0) + g′(z0);

(ii) cf is ρC̃-differentiable at z0 and (cf)′(z0) = cf ′(z0);

(iii) fg is ρC̃-differentiable at z0 and (fg)′(z0) = f ′(z0)g(z0) + f(z0)g′(z0).

Theorem 11 (Chain rule). Let U , V ⊆ ρC̃ be sharply open sets, f : V → U ,

g : U → ρC̃, and z0 ∈ V . If f is ρC̃-differentiable at z0 and g is ρC̃-differentiable at

f(z0), then (g ◦ f) is ρC̃-differentiable at z0 and

(g ◦ f)′(z0) = g′(f(z0))f ′(z0).

Using the new notion of hyperlimit and of little-oh, we also define new notions

of continuity, ρR̃-differentiability, and ρR̃-partial differentiability (see also [2] for
similar notions, even if in our setting we use two gauges, the notion of hyperlimit
and of little-oh. We also prefer to state these notions without considering quotients,
i.e. without using the density of invertible elements).
Definition 12.

(i) Let U ⊆ ρC̃ be a sharply open set, f : U → ρC̃ be a basic function and z0 ∈ U .
Then f is said to be Landau continuous at z0 if there exists a gauge σ, such
that σ ≤ ρ and

f(z0 + hι)− f(z0) = o(1) as h
σ−→ 0.

(ii) Let V ⊆ ρR̃2 be a sharply open set, f : V → ρR̃2 be a basic function and
z = (x, y) ∈ V . Then,

(i) A function f is said to be ρR̃-differentiable at z if there exists a gauge

σ, such that σ ≤ ρ, and a linear mapping Tz : ρR̃2 → ρR̃2, satisfying
the condition:

f(z + hι)− f(z)− Tz(hι) = o(h) as h
σ−→ 0.

This unique Tz is called the differential of f at z and is denoted by
f ′(z) or df(z).

(ii) A function f is said to be ρR̃-partial differentiable with respect to x
(resp. y) if there exists a gauge σ, such that σ ≤ ρ, and mx (resp. my)∈
ρR̃, satisfying the condition:

f(x+ hι, y) = f(x+ y) + hιmx + o(h) as h
σ−→ 0
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resp. f(x, y + hι) = f(x+ y) + hιmy + o(h) as h

σ−→ 0
)
.

We define the ρR̃-partial derivative of f with respect to x (resp. y) as
∂f
∂x = ∂1f = ∂xf := mx (or ∂f

∂y = ∂2f = ∂2f := m2).

It is possible to prove that all basic functions are Landau continuous if and only
if they are defined by nets of continuous functions. In this result is important to
consider a smaller gauge σ, like in Thm. 6, in order to still have balls defined by
σ-invertible radii (only this type of balls is closed with respect to intersection).

Finally, it is also natural to expect that ρC̃-differentiable function satisfies the
CRE. However, from Def. 8 it is also clear that necessarily the real and imaginary

parts of a ρC̃-differentiable map f are Landau continuously differentiable, and this
notion, on the contrary with respect to the CRE, depends on some gauge σ ≤ ρ:

Theorem 13 (Cauchy-Riemann equations). Consider U ⊆ ρR̃2 be a sharply open

set and (x0, y0) ∈ U . Let u, v : U → ρR̃2 be ρR̃-differentiable functions at (x0, y0).

Set Ū :=
{
z ∈ ρC̃ : (Re(z), Im(z)) ∈ U

}
and for all z = (x, y) ∈ U , f(z) := u(x, y)+

iv(x, y). Then, f is ρC̃-differentiable at z0 := x0 +iy0 if and only if u, v are Landau
continuously differentiable at (x0, y0) and satisfy the CRE:

∂1u = ∂2v and ∂2u = −∂1v. (2.4)

From this result, it immediately follows that if f is a Colombeau holomorphic
function, as defined in [21], then we can take σ = ρ = (ε) and we get that f is also
a GHF. The opposite is false, in general, as proved by our natural extension of the

(embedding of the) Dirac delta to a subset U such that ρR̃ ⊆ U ⊆ ρC̃ (see [18]).
Note that this implies that in our setting the identity principle does not hold. This
already occurs for generalized real analytic function (see [20]) and is a consequence

of the disconnectedness of ρR̃ due to the existence of infinitesimal numbers (e.g. the
set of all the infinitesimals is a clopen set). In our opinion, this is not a negative
result because, on the other hand, it allows us to include interesting examples of
GHF. See also [12] for general results about sets of uniqueness in the Colombeau
generalized setting.

3. Conclusions

The idea to consider a definition of GHF starting from some kind of limit of the
incremental ratio actually was born from a classical Hadamard sense of beauty: one
of the most beautiful result of complex analysis is indeed that a simple request of
differentiability implies very strong regularities on the function. It was a deep and
careful attempt to prove the ε-wise version of the hyperlimit Thm. 6, starting from
a similar theorem in [15], that allows the first author to understand the importance
to consider two gauges. A posteriori, this was clear because of the motivations
related to the use of hyperseries we explained in the introduction.
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