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Abstract

Using the existence of infinite numbers k in the non-Archimedean ring of Robinson-Colombeau,
we define the hyperfinite Fourier transform (HFT) by considering integration extended to the
interval [−k, k]n instead of (−∞,∞)n. In order to realize this idea, the space of generalized
functions we consider is that of generalized smooth functions (GSF), an extension of classical
distribution theory sharing many nonlinear properties with ordinary smooth functions, like the
closure with respect to composition, a good integration theory, and several classical theorems
of calculus. Even if the final transform depends on k, we obtain a new notion that applies to
all GSF, in particular to all Schwartz distributions and to all Colombeau generalized functions
defined in [−k, k]n, without growth restrictions. We prove that this FT generalizes several clas-
sical properties of the ordinary FT, and in this way we also overcome the difficulties of FT in
Colombeau’s settings. Differences in some formulas, such as in the transform of derivatives, re-
veal to be meaningful since they allow to obtain also non-tempered global solutions of differential
equations.
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1. Introduction: extending the domain of the Fourier transform

Fourier transform (FT) and generalized functions (GF) are naturally interwoven, since

the former naturally leads to suitable spaces of the latter. This already occurs even

in trivial cases, such as transforming a simple sound wave f(t) = A sin(2πω0t), whose

spectrum must be, in some way, concentrated at the frequencies ±ω0. Even the link

between constants and delta-like functions was already conceived by Fourier (see e.g. [42]).

Although different theories of generalized functions arise for different motivations, from

distribution theory of Sobolev, Schwartz [56, 59] up to Hairer’s regularity structures

[32], almost all these theories are usually augmented with a corresponding calculus of

FT, which can be applied to an appropriate subspace of generalized functions. Since the

beginning of distribution theory, it was hence natural to try to extend the domain of the

FT with less or even with no growth restrictions imposed. In fact, e.g., as a consequence

of these restrictions, the only solution of the trivial ODE y′ = y we can achieve using

tempered distributions is the trivial one. We can hence cite in [21, 22] the definition of the

FT as the limit of a sequence of functions integrated on a finite domain, or [68] for a two-

sided Laplace transform defined on a space larger than that of tempered distributions,

and similarly in [3] for the directional short-time Fourier transform of exponential-type

distributions. In the same direction we can inscribe the works [2, 9, 15, 37, 52, 61, 58, 18,

19] on ultradistributions, hyperfunctions and thick distributions.

On the other hand, problems originating from physics, such as singularities and point-

source fields, also suggest us to consider alternative modeling, ranging from non-smooth

functions as test functions in the theory of distributions (see e.g. [66] and references

therein) to non-Archimedean analysis (i.e. mathematical analysis over a ring extending

the real field and containing infinitesimal and/or infinite numbers, see [31, 20]). In the

interplay between mathematics and physics, it is well-known that heuristically manipu-

lating non-linear pointwise equalities such as H2 = H (H being the Heaviside function)

can easily lead to contradictions (see e.g. [8, 31]). This can make particularly difficult

to realize the strategy of [44], where the authors search for a metaplectic representation

from symplectic maps to symplectic relations. According to A. Weinstein (personal com-

munication, May 2019), this would require an algebra of generalized functions extending

the usual algebra of smooth functions and a FT acting on them with the usual inversion

formula and transforming the Dirac delta into 1. As we will see more diffusely in the fol-

lowing sections, this is not possible in the classical approach to Colombeau’s algebra, see

[11, 13, 48, 35]. We will only arrive at a partial solution of this problem where equalities

are replaced by infinitely close relations or by limits, see Cor. 7.10 and Thm. 7.4, Cor.7.7.

[5]
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To overcome this type of problems, we are going to use the category of generalized

smooth functions (GSF), see [25, 26, 43, 24, 27]. This theory seems to be a good can-

didate, since it is an extension of classical distribution theory which allows us to model

nonlinear singular problems, while at the same time sharing many nonlinear properties

with ordinary smooth functions, like the closure with respect to composition (thereby,

they form an algebra extending the algebra of smooth functions with pointwise product)

and several non trivial classical theorems of the calculus. One could describe GSF as a

methodological restoration of Cauchy-Dirac’s original conception of generalized function,

see [16, 41, 39]. In essence, the idea of Cauchy and Dirac (but also of Poisson, Kirchhoff,

Helmholtz, Kelvin and Heaviside) was to view generalized functions as suitable types of

smooth set-theoretical maps obtained from ordinary smooth maps depending on suitable

infinitesimal or infinite parameters. For example, the density of a Cauchy-Lorentz dis-

tribution with an infinitesimal scale parameter was used by Cauchy to obtain classical

properties which nowadays are attributed to the Dirac delta, cf. [39].

The basic idea to define a very general FT in this setting is the following: Since

GSF form a non-Archimedean framework, we can consider a positive infinite generalized

number k (i.e. k > r for all r ∈ R>0) and define the FT with the usual formula, but

integrating over the n-dimensional interval [−k, k]n. Although k is an infinite number

(hence, [−k, k]n ⊇ Rn), this interval behaves like a compact set for GSF, so that, e.g.,

on these domains we always have an extreme value theorem and integrals always exist.

Clearly, this leads to a FT, called hyperfinite FT, that depends on the parameter k,

but, on the other hand, where we can transform all the GSF defined on this interval

and these include all tempered Schwartz distributions, all tempered Colombeau GF, but

also a large class of non-tempered GF, such as the exponential functions, or non-linear

examples like δa ◦ δb, δa ◦ Hb, a, b ∈ N, etc. Not all the properties of the classical FT

remain unchanged for this more general transform, but the final formalism still retains

the useful properties of the FT in dealing with differential equations. Even more, the new

formula for the transform of derivatives leads to discover also exponential solutions of

the aforementioned ODE y′ = y. Since [14] proves that ultradistributions and periodic

hyperfunctions can be embedded in Colombeau type algebra, this gives strong hints to

conjecture that the hyperfinite FT is very general, and it justifies the title of this article.

The structure of the paper is as follows. We start with an introduction into the setting

of GSF and give basic notions concerning GSF and their calculus that are needed for a first

study of the hyperfinite FT (Sec. 2). We then define the hyperfinite FT in Sec. 4 and the

convolution of compactly supported GSF in Sec. 3. In Sec. 6, we show how the elementary

properties of FT change for the hyperfinite FT. In Sec. 7 and Sec. 8, we respectively prove

the inversion theorem and that the embedding of a very large class of Sobolev-Schwartz

tempered distributions preserves their FT, i.e. that the hyperfinite FT commutes with

the embedding of Schwartz functions and tempered distributions. In this section, we also

recall the problems of FT in the Colombeau’s setting and how we overcome them. Finally,

in Sec. 9 we give several examples which underscore the new possibility to transform any

generalized function. Thanks to the developed formalism, which stresses the similarities

with ordinary smooth functions, frequently the proofs we are going to present are very
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simple and similar to those for smooth functions, but replacing the real field R with the

non-Archimedean ring of Robinson-Colombeau ρR̃.
The paper is self-contained, in the sense that it contains all the statements required

for the proofs we are going to present. If proofs of preliminaries are omitted, we clearly

give references to where they can be found. Therefore, to understand this paper, only a

basic knowledge of distribution theory is needed.

2. Basic notions

2.1. The new ring of scalars. In this work, I denotes the interval (0, 1] ⊆ R and we

will always use the variable ε for elements of I; we also denote ε-dependent nets x ∈ RI

simply by (xε). By N we denote the set of natural numbers, including zero.

We start by defining a new simple non-Archimedean ring of scalars that extends the

real field R. The entire theory is constructive to a high degree, e.g. neither ultrafilters

nor non-standard methods are used. For all the proofs of results in this section, see

[24, 25, 27, 26].

Definition 2.1. Let ρ = (ρε) ∈ (0, 1]I be a net such that (ρε) → 0 as ε → 0+ (in the

following, such a net will be called a gauge). Then

(i) I(ρ) := {(ρ−a
ε ) | a ∈ R>0} is called the asymptotic gauge generated by ρ.

(ii) If P(ε) is a property of ε ∈ I, we use the notation ∀0ε : P(ε) to denote ∃ε0 ∈
I ∀ε ∈ (0, ε0] : P(ε). We can read ∀0ε as for ε small.

(iii) We say that a net (xε) ∈ RI is ρ-moderate, and we write (xε) ∈ Rρ if

∃(Jε) ∈ I(ρ) : xε = O(Jε) as ε→ 0+,

i.e., if

∃N ∈ N ∀0ε : |xε| ≤ ρ−N
ε .

(iv) Let (xε), (yε) ∈ RI . Then we say that (xε) ∼ρ (yε) if

∀(Jε) ∈ I(ρ) : xε = yε +O(J−1
ε ) as ε→ 0+,

that is if

∀n ∈ N ∀0ε : |xε − yε| ≤ ρnε . (2.1)

This is a congruence relation on the ring Rρ of moderate nets with respect to

pointwise operations, and we can hence define

ρR̃ := Rρ/ ∼ρ,

which we call Robinson-Colombeau ring of generalized numbers. This name is justi-

fied by [55, 10]: Indeed, in [55] A. Robinson introduced the notion of moderate and

negligible nets depending on an arbitrary fixed infinitesimal ρ (in the framework

of nonstandard analysis); independently, J.F. Colombeau, cf. e.g. [10] and refer-

ences therein, studied the same concepts without using nonstandard analysis, but

considering only the particular gauge ρε = ε.
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We will also use other directed sets instead of I: e.g. J ⊆ I such that 0 is a closure

point of J , or I×N. The reader can easily check that all our constructions can be repeated

in these cases. We can also define an order relation on ρR̃ by saying that [xε] ≤ [yε] if

there exists (zε) ∈ RI such that (zε) ∼ρ 0 (we then say that (zε) is ρ-negligible) and

xε ≤ yε + zε for ε small. Equivalently, we have that x ≤ y if and only if there exist

representatives [xε] = x and [yε] = y such that xε ≤ yε for all ε. Although the order ≤
is not total, we still have the possibility to define the infimum [xε]∧ [yε] := [min(xε, yε)],

the supremum [xε] ∨ [yε] := [max(xε, yε)] of a finite number of generalized numbers. See

[47] for a complete study of supremum and infimum in ρR̃. Henceforth, we will also use

the customary notation ρR̃∗ for the set of invertible generalized numbers, and we write

x < y to say that x ≤ y and x − y ∈ ρR̃∗. Our notations for intervals are: [a, b] :=

{x ∈ ρR̃ | a ≤ x ≤ b}, [a, b]R := [a, b] ∩ R, and analogously for segments [x, y] :=

{x+ r · (y − x) | r ∈ [0, 1]} ⊆ ρR̃n and [x, y]Rn = [x, y]∩ Rn. We also set Cρ := Rρ + i · Rρ

and ρC̃ := ρR̃+ i · ρR̃, where i =
√
−1. On the ρR̃-module ρR̃n we can consider the natural

extension of the Euclidean norm, i.e. |[xε]| := [|xε|] ∈ ρR̃, where [xε] ∈ ρR̃n.

As in every non-Archimedean ring, we have the following

Definition 2.2. Let x ∈ ρR̃n be a generalized number. Then

(i) x is infinitesimal if |x| ≤ r for all r ∈ R>0. If x = [xε], this is equivalent to

limε→0+ |xε| = 0. We write x ≈ y if x− y is infinitesimal.

(ii) x is finite if |x| ≤ r for some r ∈ R>0.

(iii) x is infinite if |x| ≥ r for all r ∈ R>0. If x = [xε], this is equivalent to limε→0+ |xε| =
+∞.

For example, setting dρ := [ρε] ∈ ρR̃, we have that dρn ∈ ρR̃, n ∈ N>0, is an invertible

infinitesimal, whose reciprocal is dρ−n = [ρ−n
ε ], which is necessarily a positive infinite

number. Of course, in the ring ρR̃ there exist generalized numbers which are not in any

of the three classes of Def. 2.2, like e.g. xε =
1
ε sin

(
1
ε

)
.

Definition 2.3. We say that x is a strong infinite number if |x| ≥ dρ−r for some r ∈ R>0,

whereas we say that x is a weak infinite number if |x| ≤ dρ−r for all r ∈ R>0. For example,

x = −N log dρ, N ∈ N, is a weak infinite number, whereas if xε = ρ−1
ε for ε = 1

k , k ∈ N>0,

and xε = − log ρε otherwise, then x is neither a strong nor a weak infinite number.

The following result is useful to deal with positive and invertible generalized numbers.

For its proof, see e.g. [31].

Lemma 2.4. Let x ∈ ρR̃. Then the following are equivalent:

(i) x is invertible and x ≥ 0, i.e. x > 0.

(ii) For each representative (xε) ∈ Rρ of x we have ∀0ε : xε > 0.

(iii) For each representative (xε) ∈ Rρ of x we have ∃m ∈ N∀0ε : xε > ρmε .

(iv) There exists a representative (xε) ∈ Rρ of x such that ∃m ∈ N ∀0ε : xε > ρmε .

2.2. Topologies on ρR̃n. As we mentioned above, on the ρR̃-module ρR̃n we defined

|[xε]| := [|xε|] ∈ ρR̃, where [xε] ∈ ρR̃n. Even if this generalized norm takes values in ρR̃, it



A Fourier transform for all generalized functions 9

shares some essential properties with classical norms:

|x| = x ∨ (−x)
|x| ≥ 0

|x| = 0 ⇒ x = 0

|y · x| = |y| · |x|
|x+ y| ≤ |x|+ |y|
||x| − |y|| ≤ |x− y|.

It is therefore natural to consider on ρR̃n a topology generated by balls defined by this

generalized norm and the set of radii ρR̃>0 of positive invertible numbers:

Definition 2.5. Let c ∈ ρR̃n then:

(i) Br(c) :=
{
x ∈ ρR̃n | |x− c| < r

}
for each r ∈ ρR̃>0.

(ii) BE
r (c) := {x ∈ Rn | |x − c| < r}, for each r ∈ R>0, denotes an ordinary Euclidean

ball in Rn if c ∈ Rn.

The relation < has better topological properties as compared to the usual strict order

relation a ≤ b and a ̸= b (that we will never use) because the set of balls {Br(c) | r ∈
ρR̃>0, c ∈ ρR̃n} is a base for a topology on ρR̃n called sharp topology. We will call sharply

open set any open set in the sharp topology. The existence of infinitesimal neighborhoods

(e.g. r = dρ) implies that the sharp topology induces the discrete topology on R. This
is a necessary result when one has to deal with continuous generalized functions which

have infinite derivatives. In fact, if f ′(x0) is infinite, and we take only |x−x0| < δ ∈ R>0,

we can have that f(x) is far from f(x0): only δ ≈ 0 sufficiently small surely implies

f(x) ≈ f(x0), see [24, pag. 8]. Also open intervals are defined using the relation <,

i.e. (a, b) := {x ∈ ρR̃ | a < x < b}.

2.3. The language of subpoints. The following simple language allows us to simplify

some proofs using steps that recall the classical real field R, see [47]. We first introduce

the notion of subpoint :

Definition 2.6. For subsets J ,K ⊆ I we writeK ⊆0 J if 0 is an accumulation point ofK

and K ⊆ J (we read it as: K is co-final in J). Note that for any J ⊆0 I, the constructions

introduced so far in Def. 2.1 can be repeated using nets (xε)ε∈J . We indicate the resulting

ring with the symbol ρR̃n|J . More generally, no peculiar property of I = (0, 1] will ever

be used in the following, and hence all the presented results can be easily generalized

considering any other directed set. If K ⊆0 J , x ∈ ρR̃n|J and x′ ∈ ρR̃n|K , then x′ is called

a subpoint of x, denoted as x′ ⊆ x, if there exist representatives (xε)ε∈J , (x
′
ε)ε∈K of x, x′

such that x′ε = xε for all ε ∈ K. In this case we write x′ = x|K , dom(x′) := K, and the

restriction (−)|K : ρR̃n −→ ρR̃n|K is a well defined operation. In general, for X ⊆ ρR̃n we

set X|J := {x|J ∈ ρR̃n|J | x ∈ X}.

In the next definition, we introduce binary relations that hold only on subpoints.

Clearly, this idea is inherited from nonstandard analysis, where co-final subsets are always

taken in a fixed ultrafilter.
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Definition 2.7. Let x, y ∈ ρR̃, L ⊆0 I. Then we say

(i) x <L y : ⇐⇒ x|L < y|L (the latter inequality has to be meant in the ordered

ring ρR̃|L). We read x <L y as “x is less than y on L”.

(ii) x <s y : ⇐⇒ ∃L ⊆0 I : x <L y. We read x <s y as “x is less than y on

subpoints”.

Analogously, we can define other relations holding only on subpoints such as e.g.: =L,

∈L, ∈s, ≤s, =s, ⊆s, etc.

For example, we have

x ≤ y ⇐⇒ ∀L ⊆0 I : x ≤L y

x < y ⇐⇒ ∀L ⊆0 I : x <L y,

the former following from the definition of ≤, whereas the latter following from Lem. 2.4.

Moreover, if P {xε} is an arbitrary property of xε. Then

¬
(
∀0ε : P {xε}

)
⇐⇒ ∃L ⊆0 I ∀ε ∈ L : ¬P {xε} . (2.2)

Note explicitly that, generally speaking, relations on subpoints, such as ≤s or =s, do

not inherit the same properties of the corresponding relations for points. So, e.g., both

=s and ≤s are not transitive relations.

The next result clarifies how to equivalently write a negation of an inequality or of an

equality using the language of subpoints.

Lemma 2.8. Let x, y ∈ ρR̃. Then

(i) x ≰ y ⇐⇒ x >s y

(ii) x ̸< y ⇐⇒ x ≥s y

(iii) x ̸= y ⇐⇒ x >s y or x <s y

Using the language of subpoints, we can write different forms of dichotomy or tri-

chotomy laws for inequality.

Lemma 2.9. Let x, y ∈ ρR̃. Then

(i) x ≤ y or x >s y

(ii) ¬(x >s y and x ≤ y)

(iii) x = y or x <s y or x >s y

(iv) x ≤ y ⇒ x <s y or x = y

(v) x ≤s y ⇐⇒ x <s y or x =s y.

As usual, we note that these results can also be trivially repeated for the ring ρR̃|L. So,
e.g., we have x ̸≤L y if and only if ∃J ⊆0 L : x >J y, which is the analog of Lem. 2.8.(i)

for the ring ρR̃|L.

2.4. Open, closed and bounded sets generated by nets. A natural way to obtain

sharply open, closed and bounded sets in ρR̃n is by using a net (Aε) of subsets Aε ⊆ Rn.

We have two ways of extending the membership relation xε ∈ Aε to generalized points

[xε] ∈ ρR̃n (cf. [51, 25]).

Definition 2.10. Let (Aε) be a net of subsets of Rn. Then
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(i) [Aε] := {[xε] ∈ ρR̃n | ∀0ε : xε ∈ Aε} is called the internal set generated by the net

(Aε).

(ii) Let (xε) be a net of points of Rn. Then we say that xε ∈ε Aε, and we read it as

(xε) strongly belongs to (Aε), if

(i) ∀0ε : xε ∈ Aε.

(ii) If (x′ε) ∼ρ (xε), then also x′ε ∈ Aε for ε small.

Moreover, we set ⟨Aε⟩ := {[xε] ∈ ρR̃n | xε ∈ε Aε}, and we call it the strongly

internal set generated by the net (Aε).

(iii) We say that the internal set K = [Aε] is sharply bounded if there exists M ∈ ρR̃>0

such that K ⊆ BM (0).

(iv) Finally, we say that the (Aε) is a sharply bounded net if there exists N ∈ R>0 such

that ∀0ε∀x ∈ Aε : |x| ≤ ρ−N
ε .

Therefore, x ∈ [Aε] if there exists a representative [xε] = x such that xε ∈ Aε for ε

small, whereas this membership is independent from the chosen representative in case

of strongly internal sets. An internal set generated by a constant net Aε = A ⊆ Rn will

simply be denoted by [A].

The following theorem (cf. [51, 25, 27]) shows that internal and strongly internal sets

have dual topological properties:

Theorem 2.11. For ε ∈ I, let Aε ⊆ Rn and let xε ∈ Rn. Then we have

(i) [xε] ∈ [Aε] if and only if ∀q ∈ R>0 ∀0ε : d(xε, Aε) ≤ ρqε. Therefore [xε] ∈ [Aε] if

and only if [d(xε, Aε)] = 0 ∈ ρR̃.
(ii) [xε] ∈ ⟨Aε⟩ if and only if ∃q ∈ R>0 ∀0ε : d(xε, A

c
ε) > ρqε, where A

c
ε := Rn \ Aε.

Therefore, if (d(xε, A
c
ε)) ∈ Rρ, then [xε] ∈ ⟨Aε⟩ if and only if [d(xε, A

c
ε)] > 0.

(iii) [Aε] is sharply closed.

(iv) ⟨Aε⟩ is sharply open.

(v) [Aε] = [cl (Aε)], where cl (S) is the closure of S ⊆ Rn.

(vi) ⟨Aε⟩ = ⟨int(Aε)⟩, where int (S) is the interior of S ⊆ Rn.

For example, it is not hard to show that the closure in the sharp topology of a ball of

center c = [cε] and radius r = [rε] > 0 is

Br(c) =
{
x ∈ ρR̃d | |x− c| ≤ r

}
=
[
BE

rε(cε)
]
, (2.3)

whereas

Br(c) =
{
x ∈ ρR̃d | |x− c| < r

}
= ⟨BE

rε(cε)⟩.

2.5. Generalized smooth functions and their calculus. Using the ring ρR̃, it is

easy to consider a Gaussian with an infinitesimal standard deviation. If we denote this

probability density by f(x, σ), and if we set σ = [σε] ∈ ρR̃>0, where σ ≈ 0, we obtain the

net of smooth functions (f(−, σε))ε∈I . This is the basic idea we are going to develop in

the following



12 A. Mukhammadiev et al.

Definition 2.12. Let (Ωε) be a net of open subsets of Rn. Let X ⊆ ρR̃n and Y ⊆ ρR̃d be

arbitrary subsets of generalized points. Then we say that

f : X −→ Y is a generalized smooth function

if there exists a net fε ∈ C∞(Ωε,Rd) defining the map f : X −→ Y in the sense that

(i) X ⊆ ⟨Ωε⟩,
(ii) f([xε]) = [fε(xε)] ∈ Y for all x = [xε] ∈ X,

(iii) (∂αfε(xε)) ∈ Rd
ρ for all x = [xε] ∈ X and all α ∈ Nn.

The space of generalized smooth functions (GSF) from X to Y is denoted by ρGC∞(X,Y ).

Let us note explicitly that this definition states minimal logical conditions to ob-

tain a set-theoretical map from X into Y and defined by a net of smooth functions

of which we can take arbitrary derivatives still remaining in the space of ρ-moderate

nets. In particular, the following Thm. 2.13 states that the equality f([xε]) = [fε(xε)] is

meaningful, i.e. that we have independence from the representatives for all derivatives

[xε] ∈ X 7→ [∂αfε(xε)] ∈ ρR̃d, α ∈ Nn.

Theorem 2.13. Let X ⊆ ρR̃n and Y ⊆ ρR̃d be arbitrary subsets of generalized points. Let

fε ∈ C∞(Ωε,Rd) be a net of smooth functions that defines a generalized smooth map of

the type X −→ Y . Then

(i) ∀α ∈ Nn ∀(xε), (x′ε) ∈ Rn
ρ : [xε] = [x′ε] ∈ X ⇒ (∂αfε(xε)) ∼ρ (∂αfε(x

′
ε)).

(ii) Each f ∈ ρGC∞(X,Y ) is continuous with respect to the sharp topologies induced on

X, Y .

(iii) f : X −→ Y is a GSF if and only if there exists a net vε ∈ C∞(Rn,Rd) defining a

generalized smooth map of type X −→ Y such that f = [vε(−)]|X .

(iv) GSF are closed with respect to composition, i.e. subsets S ⊆ ρR̃s with the trace

of the sharp topology, and GSF as arrows form a subcategory of the category of

topological spaces. We will call this category ρGC∞, the category of GSF. Therefore,

with pointwise sum and product, any space ρGC∞(X, ρR̃) is an algebra.

The differential calculus for GSF can be introduced by showing existence and unique-

ness of another GSF serving as incremental ratio (sometimes this is called derivative á la

Carathéodory, see e.g. [40]).

Theorem 2.14 (Fermat-Reyes theorem for GSF). Let U ⊆ ρR̃n be a sharply open set,

let v = [vε] ∈ ρR̃n, and let f ∈ ρGC∞(U, ρR̃) be a GSF generated by the net of smooth

functions fε ∈ C∞(Ωε,R). Then

(i) There exists a sharp neighborhood T of U × {0} and a generalized smooth map

r ∈ ρGC∞(T, ρR̃), called the generalized incremental ratio of f along v, such that

∀(x, h) ∈ T : f(x+ hv) = f(x) + h · r(x, h).

(ii) Any two generalized incremental ratios coincide on a sharp neighborhood of U×{0},
so that we can use the notation ∂f

∂v [x;h] := r(x, h) if (x, h) are sufficiently small.

(iii) We have ∂f
∂v [x; 0] =

[
∂fε
∂vε

(xε)
]
for every x ∈ U and we can thus define df(x) · v :=

∂f
∂v (x) :=

∂f
∂v [x; 0] =

[
∂fε
∂vε

(xε)
]
[x; 0], so that ∂f

∂v ∈ ρGC∞(U, ρR̃).
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Note that this result permits us to consider the partial derivative of f with respect to

an arbitrary generalized vector v ∈ ρR̃n which can be, e.g., infinitesimal or infinite. Using

recursively this result, we can also define subsequent differentials djf(x) as j−multilinear

maps, and we set djf(x) · hj := djf(x)(h, j. . . . . . , h). The set of all the j−multilinear

maps (ρR̃n)j −→ ρR̃d over the ring ρR̃ will be denoted by Lj(ρR̃n, ρR̃d). For A = [Aε(−)] ∈
Lj(ρR̃n, ρR̃d), we set ∥A∥ := [|Aε|], the generalized number defined by the operator norms

of the multilinear maps Aε ∈ Lj(Rn,Rd).

The following result follows from the analogous properties for the nets of smooth

functions defining f and g.

Theorem 2.15. Let U ⊆ ρR̃n be an open subset in the sharp topology, let v ∈ ρR̃n and f ,

g : U −→ ρR̃ be generalized smooth maps. Then

(i) ∂(f+g)
∂v = ∂f

∂v + ∂g
∂v

(ii) ∂(r·f)
∂v = r · ∂f

∂v ∀r ∈ ρR̃

(iii) ∂(f ·g)
∂v = ∂f

∂v · g + f · ∂g
∂v

(iv) For each x ∈ U , the map df(x).v := ∂f
∂v (x) ∈

ρR̃ is ρR̃-linear in v ∈ ρR̃n

(v) Let U ⊆ ρR̃n and V ⊆ ρR̃d be open subsets in the sharp topology and let g ∈
ρGC∞(V,U), f ∈ ρGC∞(U, ρR̃) be generalized smooth maps. Then for all x ∈ V and

all v ∈ ρR̃d, we have ∂(f◦g)
∂v (x) = df (g(x)) .∂g∂v (x).

One dimensional integral calculus of GSF is based on the following

Theorem 2.16. Let f ∈ ρGC∞([a, b], ρR̃) be a GSF defined in the interval [a, b] ⊆ ρR̃,
where a < b. Let c ∈ [a, b]. Then, there exists one and only one GSF F ∈ ρGC∞([a, b], ρR̃)
such that F (c) = 0 and F ′(x) = f(x) for all x ∈ [a, b]. Moreover, if f is defined by the

net fε ∈ C∞(R,R) and c = [cε], then F (x) =
[´ xε

cε
fε(s)ds

]
for all x = [xε] ∈ [a, b].

We can thus define

Definition 2.17. Under the assumptions of Theorem 2.16, we denote by
´ (−)

c
f :=´ (−)

c
f(s) ds ∈ ρGC∞([a, b], ρR̃) the unique GSF such that:

(i)
´ c
c
f = 0

(ii)
(´ (−)

u
f
)′

(x) = d
dx

´ x
u
f(s) ds = f(x) for all x ∈ [a, b].

All the classical rules of integral calculus hold in this setting:

Theorem 2.18. Let f ∈ ρGC∞(U, ρR̃) and g ∈ ρGC∞(V, ρR̃) be two GSF defined on

sharply open domains in ρR̃. Let a, b ∈ ρR̃ with a < b and c, d ∈ [a, b] ⊆ U ∩ V . Then

(i)
´ d
c
(f + g) =

´ d
c
f +
´ d
c
g

(ii)
´ d
c
λf = λ

´ d
c
f ∀λ ∈ ρR̃

(iii)
´ d
c
f =
´ e
c
f +
´ d
e
f for all e ∈ [a, b]

(iv)
´ d
c
f = −

´ c
d
f

(v)
´ d
c
f ′ = f(d)− f(c)

(vi)
´ d
c
f ′ · g = [f · g]dc −

´ d
c
f · g′

(vii) If f(x) ≤ g(x) for all x ∈ [a, b], then
´ b
a
f ≤
´ b
a
g.
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(viii) Let a, b, c, d ∈ ρR̃, with a < b and c < d, and f ∈ ρGC∞([a, b]× [c, d], ρR̃d). Then

d

ds

ˆ b

a

f(τ, s) dτ =

ˆ b

a

∂

∂s
f(τ, s) dτ ∀s ∈ [c, d].

Theorem 2.19. Let f ∈ ρGC∞(U, ρR̃) and φ ∈ ρGC∞(V,U) be GSF defined on sharply

open domains in ρR̃. Let a, b ∈ ρR̃, with a < b, such that [a, b] ⊆ V , φ(a) < φ(b),

[φ(a), φ(b)] ⊆ U . Finally, assume that φ([a, b]) ⊆ [φ(a), φ(b)]. Thenˆ φ(b)

φ(a)

f(t)dt =

ˆ b

a

f [φ(s)] · φ′(s)ds.

We also have a generalization of the Taylor formula:

Theorem 2.20. Let f ∈ ρGC∞(U, ρR̃) be a generalized smooth function defined in the

sharply open set U ⊆ ρR̃d. Let a, b ∈ ρR̃d such that the line segment [a, b] ⊆ U , and set

h := b− a. Then, for all n ∈ N we have

(i) ∃ξ ∈ [a, b] : f(a+ h) =
∑n

j=0
djf(a)

j! · hj + dn+1f(ξ)
(n+1)! · hn+1.

(ii) f(a+ h) =
∑n

j=0
djf(a)

j! · hj + 1
n! ·
´ 1
0
(1− t)n dn+1f(a+ th) · hn+1 dt.

Moreover, there exists some R ∈ ρR̃>0 such that

∀k ∈ BR(0) ∃ξ ∈ [a, a+ k] : f(a+ k) =

n∑
j=0

djf(a)

j!
· kj + dn+1f(ξ)

(n+ 1)!
· kn+1 (2.4)

dn+1f(ξ)

(n+ 1)!
· kn+1 =

1

n!
·
ˆ 1

0

(1− t)n dn+1f(a+ tk) · kn+1 dt ≈ 0. (2.5)

Formulas (i) and (ii) correspond to a plain generalization of Taylor’s theorem for

ordinary smooth functions with Lagrange and integral remainder, respectively. Dealing

with generalized functions, it is important to note that this direct statement also includes

the possibility that the differential dn+1f(ξ) may be an infinite number at some point.

For this reason, in (2.4) and (2.5), considering a sufficiently small increment k, we get

more classical infinitesimal remainders dn+1f(ξ) · kn+1 ≈ 0. We can also define right

and left derivatives as e.g. f ′(a) := f ′+(a) := limt→a
a<t

f ′(t), which always exist if f ∈
ρGC∞([a, b], ρR̃d).

2.6. Embedding of Sobolev-Schwartz distributions and Colombeau functions.

We finally recall two results that give a certain flexibility in constructing embeddings of

Schwartz distributions. Note that both the infinitesimal ρ and the embedding of Schwartz

distributions have to be chosen depending on the problem we aim to solve. A trivial

example in this direction is the ODE y′ = y/dε, y(0) = 1, which cannot be solved for

ρ = (ε) (in a finite interval), but it has a solution for all t ∈ R if we consider another

gauge ρ̄ := (e−1/ε). As another simple example, if we need the property H(0) = 1/2,

where H is the Heaviside function, then we have to choose the embedding of distributions

accordingly. In other words, both the gauges and the particular embedding we choose have

to be thought of as elements of the mathematical structure we are considering to deal

with the particular problem we want to solve. See also [28, 46] for further details in this
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direction.

If φ ∈ D(Rn), r ∈ R>0 and x ∈ Rn, we use the notations r ⊙ φ for the function x ∈
Rn 7→ 1

rn · φ
(
x
r

)
∈ R and x⊕ φ for the function y ∈ Rn 7→ φ(y− x) ∈ R. These notations

permit us to highlight that ⊙ is a free action of the multiplicative group (R>0, ·, 1) on

D(Rn) and ⊕ is a free action of the additive group (R>0,+, 0) on D(Rn). We also have

the distributive property r ⊙ (x⊕ φ) = rx⊕ r ⊙ φ.

Lemma 2.21. Let b ∈ ρR̃ be a net such that limε→0+ bε = +∞ and d ∈ (0, 1)R. There

exists a net (ψε)ε∈I of D(Rn) with the properties:

(i) supp(ψε) ⊆ B1(0).

(ii) Let ωn denote the surface area of Sn−1 and set cn := 2n
ωn

for n > 1 and c1 := 1.

Then ψε(0) = cn for all ε ∈ I.

(iii)
´
ψε = 1 for all ε ∈ I.

(iv) ∀α ∈ Nn∃p ∈ N : supx∈Rn |∂αψε(x)| = O(bpε) as ε→ 0+.

(v) ∀j ∈ N ∀0ε : 1 ≤ |α| ≤ j ⇒
´
xα · ψε(x) dx = 0.

(vi) ∀η ∈ R>0 ∀0ε :
´
|ψε| ≤ 1 + η.

(vii) ψε is even for all ε ∈ I

(viii) If n = 1, then the net (ψε)ε∈I can be chosen so that only (i) - (vi) hold but
´ 0
−∞ ψε =

d.

Moreover, also ψb
ε := b−1

ε ⊙ ψε satisfies (ii) - (vi) and supp(ψε) ⊆ Bb−1
ε
(0). For n = 1,

the net (ψε)ε∈I can be taken independently from ε by setting ψ := F−1(β), the inverse

Fourier transform of β, where β ∈ C∞(R) is supported e.g. in [−1, 1] and identically

equals 1 in a neighborhood of 0; in this case it satisfies (iii) - (v).

Concerning embeddings of Schwartz distributions, we have the following result, where

c(Ω) := {[xε] ∈ [Ω] | ∃K ⋐ Ω ∀0ε : xε ∈ K} is called the set of compactly supported

points in Ω ⊆ Rn. Note that c(Ω) = {x ∈ [Ω] | x is finite, d(x, ∂Ω) ∈ R>0} (see Def. 2.2).

Theorem 2.22. Under the assumptions of Lemma 2.21, let Ω ⊆ Rn be an open set and

let (ψb
ε) be the net defined in Lemma 2.21. Then the mapping

ιbΩ : T ∈ E ′(Ω) 7→
[(
T ∗ ψb

ε

)
(−)
]
∈ ρGC∞(c(Ω), ρR̃) (2.6)

uniquely extends to a sheaf morphism of real vector spaces

ιb : D′ −→ ρGC∞(c(−), ρR̃),

and satisfies the following properties:

(i) If b ∈ ρR̃>0 is a strong infinite number, then ιb|C∞
(−) : C

∞(−) −→ ρGC∞(c(−), ρR̃)

is a sheaf morphism of algebras and ιbΩ(f)(x) = f(x) for all smooth functions

f ∈ C∞(Ω) and all x ∈ Ω;

(ii) If T ∈ E ′(Ω) then supp(T ) = stsupp(ιbΩ(T )), where

stsupp(f) :=
(⋃

{Ω′ ⊆ Ω | Ω′ open, f |Ω′ = 0}
)c

(2.7)

for all f ∈ ρGC∞(c(Ω), ρR̃).
(iii) Let b ∈ ρR̃>0 be a strong infinite number. Then

[ ´
Ω
ιbΩ(T )ε(x) · φ(x) dx

]
= ⟨T, φ⟩

for all φ ∈ D(Ω) and all T ∈ D′(Ω);
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(iv) ιb commutes with partial derivatives, i.e. ∂α
(
ιbΩ(T )

)
= ιbΩ (∂αT ) for each T ∈ D′(Ω)

and α ∈ N.

(v) Similar results also hold for the embedding of tempered distributions: setting

S ′(Ω) :=
{
T ∈ D′(Ω) | ∃T̃ ∈ S ′(Rn) : T̃ |Ω = T in D′(Ω)

}
,

we have

ιbΩ : T ∈ S ′(Ω) 7→
[(
T̃ ∗ ψb

ε

)
|Ω(−)

]
∈ ρGC∞(c(Ω), ρR̃),

where T̃ ∈ S ′(Rn), T̃ |Ω = T in D′(Ω), is any extension of T .

Concerning the embedding of Colombeau generalized functions (CGF), we recall that

the special Colombeau algebra on Ω is defined as the quotient Gs(Ω) := EM (Ω)/N s(Ω)

of moderate nets over negligible nets, where the former is

EM (Ω) := {(uε) ∈ C∞(Ω)I | ∀K ⋐ Ω ∀α ∈ Nn ∃N ∈ N : sup
x∈K

|∂αuε(x)| = O(ε−N )}

and the latter is

N s(Ω) := {(uε) ∈ C∞(Ω)I | ∀K ⋐ Ω∀α ∈ Nn ∀m ∈ N : sup
x∈K

|∂αuε(x)| = O(εm)}.

Using ρ = (ε), we have the following compatibility result (see e.g. [25]):

Theorem 2.23. Let ρ = (ε). A Colombeau generalized function u = (uε) + N s(Ω)d ∈
Gs(Ω)d defines a GSF u : [xε] ∈ c(Ω) −→ [uε(xε)] ∈ ρR̃d. This assignment provides a

bijection of Gs(Ω)d onto ρGC∞(c(Ω), ρR̃d) for every open set Ω ⊆ Rn.

Example 2.24.

(i) Let δ ∈ ρGC∞(c(Rn), ρR̃) and H ∈ ρGC∞(c(R), ρR̃) be the ιb-embeddings of the Dirac

delta and of the Heaviside function. Then δ(x) = bn ·ψ(b·x), where ψ(x) := [ψε(xε)]

is called n-dimensional Colombeau mollifier. Note that δ is an even function because

of Lem. 2.21.(vii). We have that δ(0) = cnb
n is a strong infinite number and δ(x) = 0

if |x| > r for some r ∈ R>0 because of Lem. 2.21.(i) (see Lem. 2.21.(ii) for the

definition of cn ∈ R>0). If n = 1, by the intermediate value theorem (see [27]), δ

takes any value in the interval [0, b] ⊆ ρR̃. Similar properties can be stated e.g. for

δ2(x) = b2·ψ(b·x)2. Using these formulas, we can simply consider δ ∈ ρGC∞(ρR̃n, ρR̃)
and H ∈ ρGC∞(ρR̃, ρR̃).

(ii) Analogously, we have H(x) = 1 if x > r for some r ∈ R>0; H(x) = 0 if x < −r for

some r ∈ R>0, and finally H(0) = 1
2 because of Lem. 2.21.(vii). By the intermediate

value theorem, H takes any value in the interval [0, 1] ⊆ ρR̃.
(iii) If n = 1, The composition δ ◦δ ∈ ρGC∞(ρR̃, ρR̃) is given by (δ ◦δ)(x) = bψ

(
b2ψ(bx)

)
and is an even function. If |x| > r for some r ∈ R>0, then (δ ◦ δ)(x) = b. Since

(δ ◦ δ)(0) = 0, again using the intermediate value theorem, we have that δ ◦ δ
takes any value in the interval [0, b] ⊆ ρR̃. Suitably choosing the net (ψε) it is

possible to have that if 0 ≤ x ≤ 1
kb for some k ∈ N>1 (hence x is infinitesimal),

then (δ ◦ δ)(x) = 0. If x = k
b for some k ∈ N>0, then x is still infinitesimal but

(δ ◦δ)(x) = b. Analogously, one can deal with compositions such as H ◦δ and δ ◦H.



A Fourier transform for all generalized functions 17

Fig. 1. Representations of Dirac delta and Heaviside function

See Fig. 1 for a graphical representations of δ and H. The infinitesimal oscillations shown

in this figure can be proved to actually occur as a consequence of Lem. 2.21.(v) which

is a necessary property to prove Thm. 2.22(i), see [27, 28]. It is well-known that the

latter property is one of the core ideas to bypass the Schwartz’s impossibility theorem,

see e.g. [31].

2.7. Functionally compact sets and multidimensional integration.

2.7.1. Extreme value theorem and functionally compact sets. For GSF, suit-

able generalizations of many classical theorems of differential and integral calculus hold:

intermediate value theorem, mean value theorems, suitable sheaf properties, local and

global inverse function theorems, Banach fixed point theorem and a corresponding Picard-

Lindelöf theorem both for ODE and PDE, see [25, 26, 27, 46, 28].



18 A. Mukhammadiev et al.

Even though the intervals [a, b] ⊆ ρR̃, a, b ∈ R, are not compact in the sharp topology

(see [24]), analogously to the case of smooth functions, a GSF satisfies an extreme value

theorem on such sets. In fact, we have:

Theorem 2.25. Let f ∈ GC∞(X, ρR̃) be a GSF defined on the subset X of ρR̃n. Let

∅ ≠ K = [Kε] ⊆ X be an internal set generated by a sharply bounded net (Kε) of compact

sets Kε ⋐ Rn . Then

∃m,M ∈ K ∀x ∈ K : f(m) ≤ f(x) ≤ f(M). (2.8)

We shall use the assumptions on K and (Kε) given in this theorem to introduce

a notion of “compact subset” which behaves better than the usual classical notion of

compactness in the sharp topology.

Definition 2.26. A subsetK of ρR̃n is called functionally compact, denoted byK ⋐f
ρR̃n,

if there exists a net (Kε) such that

(i) K = [Kε] ⊆ ρR̃n.

(ii) ∃R ∈ ρR̃>0 : K ⊆ BR(0), i.e. K is sharply bounded.

(iii) ∀ε ∈ I : Kε ⋐ Rn.

If, in addition, K ⊆ U ⊆ ρR̃n then we write K ⋐f U . Finally, we write [Kε] ⋐f U if (ii),

(iii) and [Kε] ⊆ U hold. Any net (Kε) such that [Kε] = K is called a representative of

K.

We motivate the name functionally compact subset by noting that on this type of sub-

sets, GSF have properties very similar to those that ordinary smooth functions have on

standard compact sets.

Remark 2.27.

(i) By Thm. 2.11(iii), any internal set K = [Kε] is closed in the sharp topology and

hence functionally compact sets are always closed. In particular, the open interval

(0, 1) ⊆ ρR̃ is not functionally compact since it is not closed.

(ii) If H ⋐ Rn is a non-empty ordinary compact set, then the internal set [H] is

functionally compact. In particular, [0, 1] = [[0, 1]R] is functionally compact.

(iii) The empty set ∅ = ∅̃ ⋐f
ρR̃.

(iv) ρR̃n is not functionally compact since it is not sharply bounded.

(v) The set of compactly supported points c(R) is not functionally compact because

the GSF f(x) = x does not satisfy the conclusion (2.8) of Thm. 2.25.

In the present paper, we need the following properties of functionally compact sets.

Theorem 2.28.

(i) Let K ⊆ X ⊆ ρR̃n, f ∈ GC∞(X, ρR̃d). Then K ⋐f
ρR̃n implies f(K) ⋐f

ρR̃d.

(ii) Let K, H ⋐f
ρR̃n. If K ∪H is an internal set, then it is a functionally compact set.

If K ∩H is an internal set, then it is a functionally compact set.

(iii) Let H ⊆ K ⋐f
ρR̃n, then if H is an internal set. Then H ⋐f

ρR̃n.

As a corollary of this theorem and Rem. (2.27).(ii) we get

Corollary 2.29. If a, b ∈ ρR̃ and a ≤ b, then [a, b] ⋐f
ρR̃.
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Let us note that a, b ∈ ρR̃ can also be infinite numbers, e.g. a = dρ−N , b = dρ−M or

a = −dρ−N , b = dρ−M with M > N , so that e.g. [−dρ−N ,dρ−M ] ⊇ R. Finally, in the

following result we consider the product of functionally compact sets:

Theorem 2.30. Let K ⋐f
ρR̃n and H ⋐f

ρR̃d. Then K × H ⋐f
ρR̃n+d. In particular, if

ai ≤ bi for i = 1, . . . , n, then
∏n

i=1[ai, bi] ⋐f
ρR̃n.

Applying the extreme value theorem Thm. 2.25 to the first derivative, we also have

the following

Theorem 2.31. Let a, b ∈ ρR̃n, a < b, f ∈ ρGC∞([a, b], ρR̃) be a GSF. Then

(i) ∃c ∈ [a, b] : f(b)− f(a) = (b− a) · f ′(c).
(ii) Setting M := maxc∈[a,b] |f ′(c)| ∈ ρR̃, we hence have ∀x, y ∈ [a, b] : |f(x)− f(y)| ≤

M · |x− y|.

A theory of compactly supported GSF has been developed in [24], and it closely

resembles the classical theory of LF-spaces of compactly supported smooth functions.

2.7.2. Multidimensional integration. Finally, to define FT of multivariable GSF we

have to introduce multidimensional integration on suitable subsets of ρR̃n (see [27]).

Definition 2.32. Let µ be a measure on Rn and let K be a functionally compact subset

of ρR̃n. Then, we call K µ-measurable if the limit

µ(K) := lim
m→∞

[µ(BE
ρm
ε
(Kε))] (2.9)

exists for some representative (Kε) of K. Here m ∈ N, the limit is taken in the sharp

topology on ρR̃, and BE
r(A) := {x ∈ Rn : d(x,A) ≤ r}.

Let K ⋐f
ρR̃n. Let (Ωε) be a net of open subsets of Rn, and (fε) be a net of continuous

maps fε: Ωε −→ R. Then we say that

(fε) defines a generalized integrable map : K −→ ρR̃

if

(i) K ⊆ ⟨Ωε⟩ and [fε(xε)] ∈ ρR̃ for all [xε] ∈ K.

(ii) ∀(xε), (x′ε) ∈ Rn
ρ : [xε] = [x′ε] ∈ K ⇒ (fε(xε)) ∼ρ (fε(x

′
ε)).

If f : K −→ ρR̃ is such that

∀[xε] ∈ K : f ([xε]) = [fε(xε)] (2.10)

we say that f is a generalized integrable function.

We will again say that f is defined by the net (fε) or that the net (fε) represents f . The

set of all these generalized integrable functions will be denoted by ρGI(K, ρR̃).

E.g., if f = [fε(−)]|K ∈ ρGC∞(K, ρR̃), then both f and |f | = [|fε(−)|]|K are integrable

on K (but note that, in general, |f | is not a GSF).

In the following result, we show that this definition generates a correct notion of multi-

dimensional integration for GSF.

Theorem 2.33. Let K ⊆ ρR̃n be µ-measurable.

(i) The definition of µ(K) is independent of the representative (Kε).
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(ii) There exists a representative (Kε) of K such that µ(K) = [µ(Kε)].

(iii) Let (Kε) be any representative of K and let f = [fε(−)]|K ∈ ρGI(K, ρR̃). Thenˆ
K

f dµ := lim
m→∞

[ˆ
BE

ρmε
(Kε)

fε dµ

]
∈ ρR̃

exists and its value is independent of the representative (Kε).

(iv) There exists a representative (Kε) of K such thatˆ
K

f dµ =

[ˆ
Kε

fε dµ

]
∈ ρR̃ (2.11)

for each f = [fε(−)]|K ∈ ρGI(K, ρR̃). From (2.11), it also follows that
∣∣´

K
f dµ

∣∣ ≤´
K
|f | dµ.

(v) If K =
∏n

i=1[ai, bi], then K is λ-measurable (λ being the Lebesgue measure on Rn)

and for all for each f = [fε(−)]|K ∈ ρGI(K, ρR̃) we have

ˆ
K

f dλ =

[ˆ b1,ε

a1,ε

dx1 . . .

ˆ bn,ε

an,ε

fε(x1, . . . , xn) dxn

]
∈ ρR̃ (2.12)

for any representatives (ai,ε), (bi,ε) of ai and bi respectively. Therefore, if n = 1,

this notion of integral coincides with that of Thm. 2.16 and Def. 2.17. Note that

(2.12) also directly implies Fubini’s theorem for this type of integrals.

(vi) Let K ⊆ ρR̃n be λ-measurable, where λ is the Lebesgue measure, and let φ ∈
ρGC∞(K, ρR̃d) be such that φ−1 ∈ ρGC∞(φ(K), ρR̃n). Then φ(K) is λ-measurable

and ˆ
φ(K)

f dλ =

ˆ
K

(f ◦ φ) |det(dφ)| dλ

for each f ∈ ρGI(φ(K), ρR̃).

In order to state a continuity property for this notion of integration, we have to introduce

hypernatural numbers and hyperlimits as follows

Definition 2.34.

(i) ρÑ := {[nε] ∈ ρR̃ | nε ∈ N ∀ε}. Elements of ρÑ are called hypernatural numbers or

hyperfinite numbers. We clearly have N ⊆ ρÑ, but among hypernatural numbers we

also have infinite numbers.

(ii) Nρ := {(nε) ∈ Rρ | nε ∈ N ∀ε}.
(iii) A map x : σÑ −→ ρR̃, whose domain is the set of hyperfinite numbers σÑ is called a

(σ−) hypersequence (of elements of ρR̃) and denoted by (xn)n∈σÑ, or simply (xn)n
if the gauge on the domain is clear from the context. Let σ, ρ be two gauges,

x : σÑ −→ ρR̃ be a hypersequence and l ∈ ρR̃. We say that l is the hyperlimit of

(xn)n as n→ ∞ and n∈ σÑ, if

∀q ∈ N∃M ∈ σÑ ∀n ∈ σÑ≥M : |xn − l| < dρq.

It can be easily proved that there exists at most one hyperlimit, and in this case it

is denoted by ρlimn∈σÑ xn = l. Note that dρ < 1
n if n ∈ N>0 so that 1

n ̸→ 0 in the
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sharp topology. On the contrary ρlimn∈ρÑ
1
n = 0 because ρÑ contains arbitrarily

large infinite hypernatural numbers.

The following continuity result once again underscores that functionally compact sets

(even if they can be unbounded from a classical point of view) behaves as compact sets

for GSF.

Theorem 2.35. Let K ⊆ ρR̃n be a µ-measurable functionally compact set and fn ∈
ρGC∞(K, ρR̃d) for all n ∈ σÑ. Then, if the hyperlimit ρlimn∈σÑ fn(x) exists for each x ∈ K,

then the convergence is uniform on K and ρlimn∈σÑ fn ∈ ρGC∞(K, ρR̃d). Finally

ρ lim
n∈σÑ

ˆ
K

fn dxn =

ˆ
K

ρ lim
n∈σÑ

fn dxn. (2.13)

For the proof of this theorem see [27], and for the notion of hyperlimit see [47].

3. Convolution on ρR̃n

In this section, we define and study convolution f∗g of two GSF, where f or g is compactly

supported. Compactly supported GSF were introduced in [24] for the gauge ρε = ε. For

an arbitrary gauge, we here define and study the notions needed for the HFT as well as

for the study of convolution of GSF.

Definition 3.1. Assume that X ⊆ ρR̃n, Y ⊆ ρR̃d and f ∈ ρGC∞ (X,Y ), then

(i) supp (f) := {x ∈ X | |f (x)| > 0}, where (·) denotes the relative closure in X with

respect to the sharp topology, is called the support of f . We recall (see just after

Def. 2.1 and Lem. 2.4) that x > 0 means that x ∈ ρR̃≥0 is positive and invertible.

(ii) For A ⊆ ρR̃ we call the set ext (A) := {x ∈ ρR̃ | ∀a ∈ A : |x− a| > 0} the strong

exterior of A. Recalling Lem. 2.4, if x ∈ ext(A), then |x − a| ≥ dρq for all a ∈ A

and for some q = q(a) ∈ N.

(iii) Let H ⋐f
ρR̃n, we say that f ∈ ρGD (H,Y ) if f ∈ ρGC∞(ρR̃n, Y ) and supp (f) ⊆ H.

We say that f ∈ ρGD(ρR̃n, Y ) if f ∈ ρGD (H,Y ) for some H ⋐f
ρR̃n. Such an f

is called compactly supported ; for simplicity we set ρGD(H) := ρGD(H, ρC̃). Note

that supp(f) is clearly always closed, and if f ∈ ρGD (H,Y ) then it is also sharply

bounded. However, in general it is not an internal set so it is not a functionally

compact set. Accordingly, the theory of multidimensional integration of Sec. 2.7.2

does not allow us to consider
´
supp(f)

f even if f is compactly supported.

Remark 3.2.

(i) Note that the notion of standard support stsupp (f) as defined in Thm. 2.22 and

the present notion supp (f) of support, as defined above, are different. The main

distinction is that stsupp (f) ⊆ Rn while supp (f) ⊆ ρR̃n. Moreover if we consider

a CGF f ∈ ρGC∞(c(Ω), ρR̃d), then supp (f) ∩ Ω ⊆ stsupp (f).

(ii) Since δ (0) > 0 then δ|Br(0) > 0 for some r ∈ ρR̃>0 by the sharp continuity of δ,

i.e. Thm. 2.13.(ii), hence Br (0) ⊆ supp (δ), whereas stsupp (δ) = {0}. Example

2.24.(i) also yields that supp(δ) ⊆ [−r, r]n for all r ∈ R>0.
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(iii) Any rapidly decreasing function f ∈ S(Rn) satisfies the inequality 0 ≤ f (x) ≤
|x|−q

, ∀q ∈ N, for |x| finite sufficiently large. Therefore, for all strongly infinite x,

we have f (x) = 0 i.e., f ∈ ρGD(ρR̃n).

Lemma 3.3. Let ∅ ≠ H ⋐f
ρR̃n. Then ext (H) is sharply open.

Proof. If x = [xε] ∈ ext (H), we set dε := d (xε, Hε) where H = [Hε] and ∅ ≠ Hε ⋐ Rn

for all ε (because H ̸= ∅). Then ∃hε ∈ Hε : dε = d (xε, hε), we set h := [hε] ∈ H and

|x− h| = [dε] =: d > 0 because x ∈ ext(H) and h ∈ H. Now, by taking r := d
2 > 0,

we prove that Br (x) ⊆ ext (H). Pick y ∈ Br (x), then for all a ∈ H, we have |y − a| ≥
|x− a| − |y − x| ≥ d− d

2 > 0.

Theorem 3.4. Let H ⋐f
ρR̃n and f ∈ ρGC∞(ρR̃n, ρC̃). Then the following properties hold:

(i) f ∈ ρGD (H) if and only if f |ext(H) = 0.

If f ∈ ρGD (H), x ∈ ρR̃n and α ∈ Nn, then:

(ii) ∂αf (x) = 0 for all x ∈ ext(H).

(iii) If H ⊆ [−h, h]n then ∂αf(x) = 0 whenever xp ≥ h or xp ≤ −h for some p =

1, . . . , n.

(iv) If H ⊆ [−h, h]n ⊆
∏n

p=1[ap, bp], then

b1ˆ

a1

dx1 . . .

bnˆ

an

f (x) dxn =

hˆ

−h

dx1 . . .

hˆ

−h

f (x) dxn

Proof. (i): Assume that supp(f) ⊆ H and x = [xε] ∈ ext(H), but f(x) ̸= 0. This implies

that |f(x)| ̸≤ 0 because always |f(x)| ≥ 0. Consequently, Lem. 2.8 yields |f(x)| >L 0

for some L ⊆0 I. Applying Lem. 2.4 for the ring ρR̃|L we get |f(x)| >L dρq for some

q ∈ R>0, i.e. |fε(xε)| > ρqε for all ε ∈ L≤ε0 . Define x̄ε := xε for all ε ∈ L and x̄ε := xε0
otherwise, so that x̄ := [x̄ε] ∈ ρR̃n and |f(x̄)| > dρq. This yields x̄ ∈ supp(f) ⊆ H, and

hence |x− x̄| > 0, which is impossible by construction because x̄|L = x|L and because of

Lem. 2.4.

Vice versa, assume that f |ext(H) = 0 and take x = [xε] ∈ supp(f) \H. The property

∀q ∈ R>0 ∀0ε : d(xε, Hε) ≤ ρqε

cannot hold, because for q → +∞ Thm. 2.11.(i) would imply x ∈ H = [Hε]. Therefore,

for some q ∈ R>0 and some L ⊆0 I, we have d(xε, Hε) ≥ ρqε for all ε ∈ L. Consequently,

if a = [aε] ∈ H where aε ∈ Hε for all ε, we get d(xε, aε) ≥ d(xε, Hε) ≥ ρqε for all ε ∈ L,

i.e. x|L ∈ ext(H)|L. Applying Lem. 3.3 for the ring ρR̃|L we get

Br(x)|L ⊆ ext(H)|L (3.1)

for some r ∈ ρR̃>0. From x ∈ supp(f), we get the existence of a sequence (xp)p∈N of

points of {x ∈ ρR̃n | |f(x)| > 0} such that xp → x as p → +∞ in the sharp topology.

Therefore, xp ∈ Br(x) for p ∈ N sufficiently large. Consequently, xp|L ∈ ext(H)|L from

(3.1) and hence f(xp)|L =
[
(fε(xpε))ε∈L

]
= 0, which contradicts |f(xp)| > 0.
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Property (ii) follows by induction on |α| ∈ N using Thm. 2.14. We prove property (iii)

for the case xp ≥ h, the other case being similar. We consider

x̄q := (x1,
p−1. . . . . . , xp−1, xp + dρq, xp+1, . . . , xn) ∀q ∈ N.

Then |x̄q − a| ≥ |xp + dρq − ap| ≥ dρq for all a ∈ [−h, h]n ⊇ H because xp ≥ h ≥ ap.

Therefore, x̄q ∈ ext(H) and hence ∂αf(x̄q) = 0 from the previous (ii). The conclusion

now follows from the sharp continuity of the GSF ∂αf (Thm. 2.13(ii)).

(iv): The inclusion ±(h, . . . , h) ∈ [−h, h]n ⊆
∏n

p=1[ap, bp] implies ap ≤ −h and bp ≥ h

for all p = 1, . . . , n. Using Thm. 2.33(v), we can write

b1ˆ

a1

dx1 . . .

bnˆ

an

f (x) dxn =

b1ˆ

a1

dx1 . . .

bn−1ˆ

an−1

dxn−1

−hˆ

an

f (x) dxn+

b1ˆ

a1

dx1 . . .

bn−1ˆ

an−1

dxn−1

+hˆ

−h

f (x) dxn+

b1ˆ

a1

dx1 . . .

bn−1ˆ

an−1

dxn−1

bnˆ

h

f (x) dxn.

But if xn ∈ [an,−h] or xn ∈ [h, bn], then property (iii) yields f(x) = 0 and we obtain

b1ˆ

a1

dx1 . . .

bnˆ

an

f (x) dxn =

b1ˆ

a1

dx1 . . .

bn−1ˆ

an−1

dxn−1

hˆ

−h

f (x) dxn.

Proceeding in the same way with all the other integrals we get the claim.

In particular, if T ∈ E ′(Ω), then Thm. 3.4(i) implies that ιbΩ(T ) ∈
ρGD(ρR̃n). Also observe

that f(x) = e−x2

, x ∈ {x ∈ ρR̃ | ∃N ∈ N : x2 ≥ N log dρ}, satisfies f(x) ≤ x−q for all

infinite x and all q ∈ N. Therefore

∀Q ∈ N : f ∈ ρGD
(
[−dρ−Q,dρ−Q]

)
.

Based on these results, we can define

Definition 3.5. Let f ∈ ρGD(ρR̃n), then

ˆ
f :=

ˆ
ρR̃n

f :=

b1ˆ

a1

dx1 . . .

bnˆ

an

f (x) dxn (3.2)

where supp(f) ⊆
∏n

p=1[ap, bp]. This equality does not depend on ap, bp because of

Thm. 3.4(iv).

Note that we can also write (3.2) as

ˆ
f = lim

ap→−∞
bp→+∞
p=1,...,n

b1ˆ

a1

dx1 . . .

bnˆ

an

f (x) dxn = lim
h→+∞

hˆ

−h

dx1 . . .

hˆ

−h

f (x) dxn (3.3)
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even if we are actually considering limits of eventually constant functions. The limits of

the type written in (3.3) are always taken in the sharp topology, e.g. the limit on the

right hand side of (3.3) is l ∈ ρR̃ if

∀q ∈ N ∃h̄ ∈ ρR̃∀h ∈ ρR̃≥h̄ :

∣∣∣∣∣∣
hˆ

−h

dx1 . . .

hˆ

−h

f (x) dxn − l

∣∣∣∣∣∣ ≤ dρq. (3.4)

Using this notion of integral of a compactly supported GSF, we can also write the value

of a distribution ⟨T, φ⟩ as an integral: let b ∈ ρR̃>0 be a strong infinite number, Ω ⊆ Rn

be an open set, T ∈ D′(Ω) and φ ∈ D(Ω), with supp(φ) ⊆
∏n

i=1[ai, bi]R =: J . Then from

Thm. 2.22(iii) and Thm. 2.33(v) we get

⟨T, φ⟩ =
ˆ
[J]

ιbΩ(T )(x) · φ(x) dx =

ˆ
ιbΩ(T )(x) · φ(x) dx, (3.5)

where the equalities are in ρR̃. A similar property can be proved if T ∈ S ′(Ω) and φ ∈ S(Ω)
(recall that then φ ∈ ρGD(ρR̃n), see Rem. 3.2(iii)).

Definition 3.6. Let f , g ∈ ρGC∞(ρR̃n), with f ∈ ρGD(ρR̃n) or g ∈ ρGD(ρR̃n). In the

former case, by Thm. 2.13(iv) and Thm. 3.4(i), for all x ∈ ρR̃n, f ·g(x−·) ∈ ρGD(ρR̃n) with

supp (f · g(x− ·)) ⊆ supp(f) ⋐f
ρR̃n. Moreover, supp (f(x− ·) · g) ⊆ x− supp(f) ⋐f

ρR̃n.

Similarly, we can argue in the latter case, and we can hence define

(f ∗ g) (x) :=
ˆ
f (y) g (x− y) dy =

ˆ
f (x− y) g (y) dy ∀x ∈ ρR̃n. (3.6)

Note that directly from Thm. 2.16 and Def. 3.5, it follows that f ∗ g ∈ ρGC∞(ρR̃n). The

next theorems provide the usual basic properties of convolution suitably formulated in

our framework. We start by studying how the convolution is in relation to the supports

of its factors:

Theorem 3.7. Let f , g ∈ ρGD(ρR̃n). Then the following properties hold:

(i) Let supp(f) ⊆ [−a, a]n, supp(g) ⊆ [−b, b]n, a, b ∈ ρR̃>0, and x ∈ ρR̃n. Set Lx :=

[−a, a]n ∩ (x− [−b, b]n). Then

supp (f · g(x− ·)) ⊆ Lx =

n∏
p=1

[max(−a, xp − b),min(a, xp + b)] (3.7)

(f ∗ g) (x) =
ˆ

Lx

f (y) g (x− y) dy. (3.8)

(ii) supp(f ∗ g) ⊆ supp(f) + supp(g), therefore f ∗ g ∈ ρGD(ρR̃n).

Proof. (i): If |f(t)g(x − t)| > 0, then t ∈ supp(f) and x − t ∈ supp(g). Therefore,

supp (f · g(x− ·)) ⊆ [−a, a]n ∩ (x− [−b, b]n). As in the case of real numbers, we can say

that if t ∈ [−a, a]n ∩ (x− [−b, b]n), then −a ≤ tp ≤ a and −b ≤ xp − tp ≤ b for all

p = 1, . . . , n. Therefore, tp ∈ [max(−a, xp − b),min(a, xp + b)]. Similarly, we can prove

that also Lx ⊆ [−a, a]n ∩ (x− [−b, b]n). The conclusion (3.7) now follows from Def. 3.5.

For completeness, recall that in general supp(f) and supp(g) are not functionally compact
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sets and our integration theory allows us to integrate only over the latter kind of sets.

This justifies our formulation of the present property using intervals.

(ii): Since f and g are compactly supported, we have supp(f) ⊆ H and supp(g) ⊆ L for

some H, L ⋐f
ρR̃n. Assume that |(f ∗ g)(x)| > 0. Then, by Thm. 2.18(vii), Thm. 2.33(v)

and the extreme value Thm. 2.25, we get

0 < |(f ∗ g)(x)| ≤ λ(H) ·max
y∈H

|f(y)g(x− y)|,

where λ is the extension of the Lebesgue measure given by Def. 2.32. Therefore, there

exists y ∈ H such that 0 < λ(H) · |f(y)g(x− y)|. This implies that y ∈ supp(f) and

x − y ∈ supp(g). Consequently, x = y + (x − y) ∈ supp(f) + supp(g). Taking the sharp

closure we get the conclusion. Finally, supp(f) + supp(g) ⊆ H + L = H+L and H+L ⋐f
ρR̃n because it is the image under the sum + of H ×L (see Thm. 2.30 and Thm. 2.28).

Now, we consider algebraic properties of convolution and its relations with derivations

and integration:

Theorem 3.8. Let f , g, h ∈ ρGC∞(ρR̃n) and assume that at least two of them are

compactly supported. Then the following properties hold:

(i) f ∗ g = g ∗ f .
(ii) (f ∗ g) ∗ h = f ∗ (g ∗ h).
(iii) f ∗ (h+ g) = f ∗ h+ f ∗ g.
(iv) f ∗ g = f ∗ g
(v) t⊕ (f ∗ g) = (t⊕ f) ∗ g = f ∗ (t⊕ g) where t⊕ f is the translation of the function

f by t defined by (t⊕ f) (x) = f (x− t) (see Sec. 2.6).

(vi) ∂
∂xp

(f ∗ g) = ∂f
∂xp

∗ g = f ∗ ∂g
∂xp

for all p = 1, . . . , n.

(vii) If both f and g are compactly supported, thenˆ
(f ∗ g) (x) dx =

(ˆ
f (x) dx

)(ˆ
g (x) dx

)
.

Proof. (i): We assume, e.g., that f ∈ ρGD(ρR̃n). Take h ∈ ρR̃>0 such that supp(f) ⊆
[−h, h]n. By (3.8) and Def. 3.5, we can write

(f ∗ g) (x) =
hˆ

−h

dy1 . . .

hˆ

−h

f (y) g (x− y) dyn.

We can now proceed as in the classical case, i.e. considering the change of variable z = x−y
(Thm. 2.19). We get

(f ∗ g) (x) =
x1+hˆ

x1−h

dz1 . . .

xn+hˆ

xn−h

f (x− z) g (z) dzn.

Taking the limit h→ +∞ (see (3.3) and (3.4)), we obtain the desired equality. Similarly,

we can also prove (ii) and (iii).

As usual, (iv) is a straightforward consequence of the definition of complex conjugate.
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(v): The usual proof applies, in fact

t⊕ (f ∗ g) (x) = (f ∗ g) (x− t) =

ˆ
f (y) g (x− t− y) dy

=

ˆ
f (y) (t⊕ g) (x− y) dy = (f ∗ (t⊕ g)) (x) . (3.9)

Finally, the commutativity property (i) yields (t⊕ f) ∗ g = g ∗ (t⊕ f) and applying (3.9)

g ∗ (t⊕ f) = t⊕ (g ∗ f) = t⊕ (f ∗ g).
(vi): Set h := f ∗ g and take x ∈ ρR̃n. Using differentiation under the integral sign

(Thm. 2.18(viii)) and Def. 3.5 we get

∂

∂xp
h (x) =

ˆ

ρR̃n

f (y)
∂g

∂xp
(x− y) dy =

(
f ∗ ∂g

∂xp

)
(x) .

Using (i), we also have ∂
∂xp

h = ∂f
∂xp

∗ g.
To prove (vii) we show the case n = 1, even if the general one is similar. Let a,

b ∈ ρR̃>0 be such that supp(f ∗ g) ⊆ [−a, a] (Thm. 3.7) and supp(f) ⊆ [−b, b]. Then
ˆ
(f ∗ g)(x) dx =

ˆ a

−a

dx

ˆ b

−b

f(y)g(x− y) dy.

Using Fubini’s Thm. 2.33(v), we can write
ˆ
(f ∗ g)(x) dx =

ˆ b

−b

f(y)

ˆ a

−a

g(x− y) dxdy

=

ˆ b

−b

f(y)

ˆ a−y

−a−y

g(z) dz dy

=

ˆ b

−b

f(y) dy

ˆ c

−c

g(z) dz,

where we have taken a→ +∞ or equivalently, considered any c ≥ a+ b.

Young’s inequality for convolution is based on the generalized Hölder’s inequality, on

the inequality
∣∣´

K
f dµ

∣∣ ≤ ´
K
|f | dµ (see Thm. 2.33(iv)), monotonicity of integral (see

Thm. 2.18(vii)) and Fubini’s theorem (see Thm. 2.33(v)). Therefore, the usual proofs can

be repeated in our setting if we take sufficient care of terms such as |f(x)|p if p ∈ ρR̃≥1:

Definition 3.9. Let f ∈ ρGD(ρR̃n) and p ∈ ρR̃≥1 be a finite number. Then, we set

∥f∥p :=

(ˆ
|f(x)|p dx

)1/p

∈ ρR̃≥0.

Note that |f |p is a generalized integrable function (Def. 2.32) because p is a finite number

(in general the power xy is not well-defined, e.g. (1/ρε)
1/ρε = ρ

−1/ρε
ε is not ρ-moderate).

On the other hand, Hölder’s inequality, if ∥f∥p > 0 and ∥g∥q > 0, is simply based on

monotonicity of integral, Fubini’s theorem and Young’s inequality for products. The latter

holds also in ρR̃≥0 because it holds in the entire R≥0, see e.g. [57].
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Theorem 3.10 (Hölder). Let fk ∈ ρGD(ρR̃n) and pk ∈ ρR̃≥1 for all k = 1, . . . ,m be such

that
∑m

k=1
1
pk

= 1 and ∥fk∥pk
> 0. Then∥∥∥∥∥

m∏
k=1

fk

∥∥∥∥∥
1

≤
m∏

k=1

∥fk∥pk
.

Theorem 3.11 (Young). Let f , g ∈ ρGD(ρR̃n) and p, q, r ∈ ρR̃≥1 be such that the

equality 1
p + 1

q = 1 + 1
r holds and ∥f∥p, ∥g∥q > 0. Then ∥f ∗ g∥r ≤ ∥f∥p · ∥g∥q.

In the following theorem, we consider when the equality (δ ∗ f) (x) = f(x) holds. As we

will see later in Sec. 5, as a consequence of the Riemann-Lebesgue lemma we necessarily

have a limitation concerning the validity of this equality.

Theorem 3.12. Let δ be the ιbRn-embedding of the n-dimensional Dirac delta (Thm. 2.22).

Assume that f ∈ ρGC∞(ρR̃n) satisfies, at the point x ∈ ρR̃n, the condition

∃r ∈ R>0 ∃M, c ∈ ρR̃∀y ∈ Br(x)∀j ∈ N :
∣∣djf (y)∣∣ ≤Mcj , (3.10)

b

c
is a large infinite number

i.e. in a finite neighborhood of x all its differentials djf(y) are bounded by a suitably

small polynomial Mcj (such a function f will be called bounded by a tame polynomial

at x). Then (δ ∗ f) (x) = f(x).

Proof. Considering that δ(y) = bnψ(by), where ψ is the considered n-dimensional Co-

lombeau mollifier and b is a strong infinite number. (see Example 2.24.(i)), we have:

(δ ∗ f) (x)− f (x) =

ˆ
f (x− y) δ (y) dy − f (x)

ˆ
δ (y) dy

=

ˆ
(f (x− y)− f (x)) δ (y) dy

=

ˆ
[
− r√

n
, r√

n

]n (f (x− y)− f (x)) δ (y) dy

=

ˆ
[
− r√

n
, r√

n

]n (f (x− y)− f (x)) bnψ (by) dy,

where r ∈ ρR̃>0 is the radius from (3.10), so that supp(δ) ⊆
[
− r√

n
, r√

n

]n
since r ∈ R>0.

By changing the variable by = t, and setting H :=
[
− br√

n
, br√

n

]n
we have

(f ∗ δ) (x)− f (x) =

ˆ
H

(
f

(
x− t

b

)
− f (x)

)
ψ (t) dt.

Using Taylor’s formula (Thm. 2.20(ii)) up to an arbitrary order q ∈ N, we get
ˆ
H

(
f

(
x− t

b

)
− f (x)

)
ψ (t) dt =

ˆ
H

∑
0<|α|≤q

1

α!

(
− t
b

)α

∂αf (x)ψ (t) dt+

ˆ
H

1

(q + 1)!

ˆ 1

0

(1− z)
q
dq+1f

(
x− z

t

b

)(
− t
b

)q+1

ψ (t) dz dt. (3.11)
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But (i) and (v) of Lem. 2.21 yield:
ˆ
H

tαψ(t) dt =

[ˆ
[
− bεr√

n
, bεr√

n

]n tαψε(t) dt

]
=

[ˆ
tαψε(t) dt

]
= 0 ∀|α| ≤ q,

where we also used that bεr√
n
> 1 for ε sufficiently small because b > 0 is an infinite

number and r ∈ R>0. Consequently, in (3.11) we only have to consider the remainder

Rq (x) :=

ˆ
H

1

(q + 1)!

ˆ 1

0

(1− z)
q
dq+1f

(
x− z

t

b

)(
− t
b

)q+1

ψ (t) dz dt

=
(−1)q+1

bq+1(q + 1)!

ˆ
H

ˆ 1

0

(1− z)
q
dq+1f

(
x− z

t

b

)
tq+1ψ (t) dz dt.

For all z ∈ (0, 1) and t ∈ H =
[
− br√

n
, br√

n

]n
, we have

∣∣ zt
b

∣∣ ≤ ∣∣ tb ∣∣ ≤ √
n|t|∞
b ≤ rb

b = r and

hence x− z t
b ∈ Br(x). Consequently, assumption (3.10) yields dq+1f

(
x− z t

b

)
≤Mcq+1,

and hence

|Rq (x)| ≤ b−q−1 Mcq+1

(q + 1)!

ˆ

H

∣∣tq+1ψ (t)
∣∣ dt

=

(
b

c

)−q−1
M

(q + 1)!

ˆ

[−1,1]n

∣∣tq+1ψ (t)
∣∣ dt

≤
(
b

c

)−q−1
M

(q + 1)!

ˆ

[−1,1]n

|ψ (t)| dt

≤
(
b

c

)−q−1
2M

(q + 1)!
,

where we used (i) and (vi) of Lem. 2.21 and br√
n
> 1. We can now let q → +∞ considering

that b
c > dρ−s for some s ∈ R>0, so that |Rq (x)| → 0 and hence (δ ∗ f) (x) = f(x).

Example 3.13.

(i) If fω(x) = e−ixω, b ≥ dρ−r and ω ∈ ρR̃ satisfies |ω| ≤ dρ−s with s < r (e.g. if ω

is a weak infinite number, see Def. 2.3), then b
|ω| ≥ dρ−(r−s) and fω is bounded

by a tame polynomial at each point x ∈ ρR̃. On the contrary, e.g. if b = dρ−r and

|ω| ≥ dρ−r, then b
|ω| ≤ 1 and fω is not bounded by a tame polynomial at any

x ∈ ρR̃.
(ii) If f ∈ ρGC∞(ρR̃n) has always finite derivatives in a finite neighborhood of a finite

point x ∈ ρR̃n (e.g. it originates from the embedding of an ordinary smooth func-

tion), and b ≥ dρ−a, then it suffices to take M = 1 and c = dρ−a+1 to prove that f

is bounded by a tame polynomial at x. Similarly, we can argue if f is polynomially

bounded for x→ ∞ and x ∈ ρR̃n is not finite.

(iii) The Dirac delta δ(x) = bnψ(bx) is not bounded by a tame polynomial at x = 0.

This also shows that, generally speaking, the embedding of a compactly supported

distribution is not bounded by a tame polynomial. Below we will show that indeed
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δ ∗ δ ̸= δ, even if we clearly have (δ ∗ δ) (x) = δ(x) = 0 for all x ∈ ρR̃n such that

|x| ≥ r ∈ R>0.

(iv) If f ∈ ρGC∞(ρR̃n) is bounded by a tame polynomial at 0, then since δ is an even

function (see Example 2.24.(i)), we have:ˆ
δ(x) · f(x) dx =

ˆ
δ(0− x) · f(x) dx = (f ∗ δ) (0) = f(0). (3.12)

Finally, the following theorem considers the relations between convolution of distri-

butions and their embedding as GSF:

Theorem 3.14. Let S ∈ E ′(Rn), T ∈ D′(Rn) and b ∈ ρR̃>0 be a strong positive infinite

number. Then for all φ ∈ D(Rn):

(i) ⟨S∗T, φ⟩ =
´
ιbRn(S)(x)·ιbRn(T )(y)·φ(x+y) dx dy =

´ (
ιbRn(S) ∗ ιbRn(T )

)
(z)·φ(z) dz.

(ii) T ∗ φ = ιbRn(T ) ∗ φ.
Proof. (i): Using (3.5), we have

⟨S ∗ T, φ⟩ = ⟨S(x), ⟨T (y), φ(x+ y)⟩⟩ = ⟨S(x),
ˆ
ιbRn(T )(y)φ(x+ y) dy⟩

=

ˆ
ιbRn(S)(x)

ˆ
ιbRn(T )(y)φ(x+ y) dy dx

=

ˆ (
ιbRn(S) ∗ ιbRn(T )

)
(z)φ(z) dz;

note that the function x 7→
´
ιbRn(T )(y)φ(x + y) dy is (the embedding of) a compactly

supported smooth function, and that, in the last step, we used the change of variables

x = z − y and Fubini’s theorem.

(ii): For all x ∈ c(Rn), using again (3.5), we have (T ∗ φ) (x) = ⟨T (y), φ(x − y)⟩ =´
ιbRn(T )(y)φ(x− y) dy =

(
ιbRn(T ) ∗ φ

)
(x).

We note that an equality of the type ιbRn(S ∗ T ) = ιbRn(S) ∗ ιbRn(T ) cannot hold because

otherwise we would have ιbRn [1∗(δ′∗H)] = ιbRn(1)∗[ιbRn(δ′)∗ιbRn(H)] and, using Thm. 3.8(ii),

this would imply ιbRn [1 ∗ (δ′ ∗ H)] = ιbRn [(1 ∗ δ′) ∗ H] and hence 1 ∗ (δ′ ∗ H) = (1 ∗ δ′) ∗
H as distributions from the injectivity of ιbRn . Considering their embeddings, we have

ιbRn(1) ∗
(
ιbRn(δ′) ∗ ιbRn(H)

)
= ιbRn(1) ∗

(
ιbRn(δ) ∗ ιbRn(δ)

)
=
(
ιbRn(1) ∗ ιbRn(δ′)

)
∗ ιbRn(H) =(

ιbRn(1′) ∗ ιbRn(δ)
)
∗ ιbRn(H) = 0. In particular, at the term ιbRn(δ)∗ ιbRn(δ) we cannot apply

Thm. 3.12 because δ(j)(x) = bj+1ψ(j)(bx). This also implies that ιbRn(δ) ∗ ιbRn(δ) ̸= ιbRn(δ)

because otherwise we would have 0 = ιbRn(1)∗
(
ιbRn(δ) ∗ ιbRn(δ)

)
= ιbRn(1)∗ιbRn(δ) =

´
δ = 1.

4. Hyperfinite Fourier transform

Definition 4.1. Let k ∈ ρR̃>0 be a positive infinite number. Let f ∈ ρGC∞(K, ρC̃),
we define the n-dimensional hyperfinite Fourier transform (HFT) Fk(f) of f on K :=

[−k, k]n as follows:

Fk (f) (ω) :=

ˆ

K

f (x) e−ix·ω dx =

kˆ

−k

dx1 . . .

kˆ

−k

f (x1, . . . , xn) e
−ix·ω dxn, (4.1)
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where x = (x1 . . . xn) ∈ K and ω = (ω1 . . . ωn) ∈ ρR̃n. As usual, the product x·ω on
ρR̃n denotes the dot product x·ω =

∑n
j=1 xjωj ∈ ρR̃. For simplicity, in the following we

will also use the notation ρGC∞(X) := ρGC∞(X, ρC̃). If f ∈ ρGD(X) and supp(f) ⊆ K =

[−k, k]n, based on Def. 3.5, we can use the simplified notation F(f) := Fk(f).

In the following, k = [kε] ∈ ρR̃>0 will always denote a positive infinite number, and

we set K := [−k, k]n ⋐f
ρR̃n.

The adjective hyperfinite can be motivated as follows: on the one hand, k ∈ ρR̃ is

an infinite number, but on the other hand we already mentioned that GSF behave on

a functionally compact set like K as if it were a compact set. Similarly to the case of

hyperfinite numbers ρÑ (see Def. 2.34), the adjective hyperfinite is frequently used to

denote mathematical objects which are in some sense infinite but behave, from several

points of view, as bounded ones.

Theorem 4.2. Let f ∈ ρGC∞ (K). Then the following properties hold:

(i) Let ω = [ωε] ∈ ρR̃n and let f be defined by the net (fε). Then we have:

Fk (f) (ω) =

 kεˆ

−kε

dx1 . . .

kεˆ

−kε

fε (x1, . . . , xn) e
−ix·ωε dxn

 =
[
F̂(χKε

fε)(ωε)
]
∈ ρC̃,

where F̂ : S(Rn) −→ S(Rn) is the classical FT, and χKε is the characteristic

function of Kε.

(ii) ∀ω ∈ ρR̃n : |Fk(f)(ω)| ≤
´
K
|f(x)| dx = ∥f∥1, so that the HFT is always sharply

bounded.

(iii) Fk : ρGC∞ (K) −→ ρGC∞(ρR̃n).

Proof. (i): For all ω ∈ ρR̃n fixed, the map x ∈ K 7→ f (x) e−ix·ω is a GSF by the closure

with respect to composition, i.e. Thm. 2.13(iv). Therefore, we can apply Thm. 2.33(v).

To prove (iii), we have to show that Fk(f) :
ρR̃n −→ ρC̃ is defined by a net (Fk)ε ∈

C∞ (Rn,C) (see Def. 2.12). We can naturally define such a net as

(Fk)ε (y) :=

kεˆ

−kε

dx1 . . .

kεˆ

−kε

fε (x1, . . . , xn) e
−ix·y dxn ∀y ∈ Rn,

and we claim it satisfies the following properties:

(a) [(Fk)ε (ωε)] ∈ ρC̃, ∀ [ωε] ∈ ρR̃n.

(b) ∀ [ωε] ∈ ρR̃n ∀α ∈ Nn : (∂α (Fk)ε (ωε)) ∈ Cρ.

Claim (a) is justified by (i) above. From (i) it directly follows (ii). In order to prove (b),

we use the standard derivation under the integral sign to have

∂α (Fk)ε (ωε) =

kεˆ

−kε

dx1 . . .

kεˆ

−kε

fε (x1, . . . , xn) e
−ix·ωε(−ixα) dxn.

We can now proceed as above to prove (b) and hence the claim (iii).
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4.1. The heuristic motivation of the FT in a non-Archimedean setting. Fre-

quently, the formula for the definition of the FT (e.g. for rapidly decreasing functions) is

informally motivated using its relations with Fourier series. In order to replicate a similar

argument for GSF, we need the notion of hyperseries. In fact, exactly as the ordinary

limit limn∈N an is not well suited for the sharp topology (because of its infinitesimal

neighbourhoods) and we have to consider hyperlimits ρlimn∈σÑ an (see Def. 2.34.(iii)),

likewise to study series of an ∈ ρC̃, n ∈ N, we have to consider

ρ∑
n∈σÑ

an := ρ lim
N∈σÑ

N∑
n=0

an ∈ ρC̃,

ρ∑
n∈σZ̃

an := ρ lim
N∈σÑ

N∑
n=−N

an ∈ ρC̃,

where σZ̃ := σÑ ∪
(
−σÑ

)
⊆ σR̃. The main problem in this definition is how to define the

hyperfinite sums
∑N

n=M an ∈ ρC̃ for arbitrary hypernatural numbers N , M ∈ σÑ and

starting from suitable ordinary sequences (an)n∈N of ρC̃. However, this can be done, and

the resulting notion extends several classical theorems, see [62].

Only for this section, we hence assume that f ∈ ρGD([−T, T ]), T ∈ ρR̃>0, can be

written as a Fourier hyperseries

f(t) =
ρ∑
n∈σZ̃

cne
2πi n

T t ∀t ∈ (−T, T ),

where σ is another gauge such that σε ≤ ρqε for all q ∈ N and for ε small (so that Rρ ⊆ Rσ,

see Def. 2.1). Using Thm. 2.35 to exchange hyperseries and integration, for each h ∈ σZ̃,
we have ˆ T

−T

f(t)e−2πi h
T t dt =

ρ∑
n∈σZ̃

cn

ˆ T

−T

e2πi
t
T (n−h) dt = 2T · ch.

That is ch = 1
2T F(f)

(
2π h

T

)
.

It is also well-known that, informally, if T is “sufficiently large”, then the Fourier

coefficients cn “approximate” the FT scaled by 1
2T and dilated by 2π. Using our non-

Archimedean language, this can be formalized as follows: Let ω = [ωε] ∈ ρR̃, and assume

that T = [Tε] is an infinite number, then setting hω := [⌊ωε · Tε⌋] ∈ ρZ̃ (where ⌊−⌋ is the

integer part function; note that here we use Rρ ⊆ Rσ), we have ωε ≤ hωε

Tε
≤ ωε +

1
Tε
, so

that hω

T ≈ ω because T is an infinite number. By Thm. 4.2, F(f) is a GSF. Let a, b, c,

d ∈ρR̃, with a < c < d < b, and set M := maxω∈[2πa,2πb] F(f)′(ω). Using Lem. 2.4, we

can find q ∈ N such that c− a ≥ dρq and b− d ≥ dρq. Assume that T is sufficiently large

so that the following conditions hold

1

T
≤ dρq,

M

T
≈ 0.

Then, for all ω ∈ [c, d], we have hω

T ≤ ω + 1
T ≤ d+ dρq ≤ b, and hω

T ≥ ω ≥ c > a, so that
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hω

T , ω ∈ [a, b]. From the mean value theorem Thm. 2.31, we hence have∣∣∣∣F(f)

(
2π
hω
T

)
−F(f) (2πω)

∣∣∣∣ ≤ 2πM

∣∣∣∣hωT − ω

∣∣∣∣ ≤ 2π
M

T
≈ 0.

We hence proved that

∃Q ∈ N∀T ≥ dρ−Q : chω
≈ 1

2T
F(f)(2πω).

Finally, note that since T is an infinite number, if hω ∈ Z, then necessarily ω must be

infinitesimal; on the contrary, if ω ≥ r ∈ R̸=0, then necessarily hω ∈ σZ̃ \ Z is an infinite

integer number.

Therefore, with the precise meaning given above, the heuristic relations between

Fourier coefficients and HFT holds also for GSF.

5. The Riemann-Lebesgue lemma in a non-linear setting

The following result represents the Riemann-Lebesgue lemma in our framework. It imme-

diately highlights an important difference with respect to the classical approach since it

states that the HFT of a very large class of compactly supported GSF is still compactly

supported (see also Thm. 7.12 for a classical formulation of the uncertainty inequality for

GSF).

Lemma 5.1. Let H ⋐f
ρR̃n and f ∈ ρGD (H) be a compactly supported GSF. Assume that

f is uniformly bounded by a tame polynomial, i.e.

∃C, b ∈ ρR̃>0 ∀x ∈ H ∀j ∈ N :
∣∣djf(x)∣∣ ≤ C · bj . (5.1)

For all N1, . . . , Nn ∈ N and ω ∈ ρR̃n, if ωN1
1 · . . . · ωNn

n is invertible, then

|F(f)(ω)| ≤ 1∣∣∣ωN1
1 · . . . · ωNn

n

∣∣∣ ·
ˆ
H

∣∣∣∂N1
1 . . . ∂Nn

n f(x)
∣∣∣ dx. (5.2)

Therefore

lim
ω→∞

|F(f)(ω)| = 0 (5.3)

(see e.g. (3.4) for the definition of a similar limit). Actually, (5.2) yields the stronger

result:

∃Q ∈ N : F(f) ∈ ρGD
(
Bdρ−Q(0)

)
. (5.4)

Proof. Take any h ∈ ρR̃>0 such that H ⊆ [−h, h]n. Let us apply integration by parts

Thm. 2.18(vi) at the p-th integral in (4.1) (assuming that Np > 0):

hˆ

−h

f (x) e−iω·x dxp = −f (x)
iωp

e−iω·x
∣∣∣∣xp=h

xp=−h

+
1

iωp

hˆ

−h

∂pf (x) e
−iω·x dxp

=
1

iωp

hˆ

−h

∂pf (x) e
−iω·x dxp.
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because Thm. 3.4(iii) yields f(x) = 0 if xp = ±h. Applying the same idea with Np ∈ N
repeated integrations by parts for each integral in (4.1), and using Thm. 3.4(iii), we obtain

F(f)(ω) =
1

ωN1
1 · . . . · ωNn

n iN1+...+Nn

ˆ
H

∂N1
1 . . . ∂Nn

n f(x)e−ix·ω dρ.

Claims (5.2) and (5.3) both follows from Thm. 2.33(iv) and from the closure of GSF with

respect to differentiation, i.e. Thm. 2.14.

To prove (5.4), we first recall (2.3), so that Bdρ−Q(0) ⋐f
ρR̃n. Let C, b ∈ ρR̃>0 from

(5.1) and λ(H) ∈ ρR̃, where λ is the Lebesgue measure. Therefore, b ≤ dρ−R for some

R ∈ N, and we can set Q := R + 1. We want to prove the claim using Thm. 3.4(i), so

that we take ω = (ω1, . . . , ωn) ∈ ext(Bdρ−Q(0)). It cannot be |ω| <s dρ−Q because this

would yield |ω − a| =s 0 for some a ∈ Bdρ−Q(0); consequently, |ω| ≥ dρ−Q by Lem. 2.9.

It always holds maxl=1,...,n |ωl| ≥ 1
n |ω|, i.e. [maxl=1,...,n |ωlε|] ≥ 1

n [|ωε|], where ωl = [ωlε]

and ωε := |(ω1ε, . . . , ωnε)|. In general, we cannot say that |ωp| = maxl=1,...,n |ωl| for some

p = 1, . . . , n because at most this equality holds only for subpoints. In fact, set

Lp :=

{
ε ∈ I | max

l=1,...,n
|ωlε| = |ωpε|

}
and let P ⊆ {1, . . . , n} be the non empty set of all the indices p = 1, . . . , n such that

Lp ⊆0 I. We hence have |ωp| =Lp maxl=1,...,n |ωl| ≥ 1
n |ω| ≥

1
ndρ

−Q for all p ∈ P , and

∀0ε∃p ∈ P : ε ∈ Lp. (5.5)

We apply assumption (5.1) and inequality (5.2) with an arbitrary Np = N ∈ N, p ∈ P ,

and with Nj = 0 for all j ̸= p to get

|F(f)(ω)| ≤ 1

|ωp|N
·
ˆ
H

∣∣∂Np f(x)∣∣ dx ≤Lp n
N · dρNQCbNλ(H)

≤ dρ−1 · dρN(Q−R)Cλ(H) = dρN−1Cλ(H).

For N → +∞ (in the ring ρR̃|Lp
), we hence have that F(f)(ω) =Lp

0. From (5.5) we

hence finally get F(f)(ω) = 0.

Remark 5.2.

(i) Considering that δ(t) = bnψ(bt) and that ψ is an even function (Lem. 2.21.(vii)),

we have

F(δ)(ω) =

ˆ
δ(t)e−itω dt =

ˆ
δ(0− t)e−itω dt =

(
δ ∗ e−i(−)ω

)
(0). (5.6)

We already know that if b/|ω| is a strong infinite number, then the function fω(t) =

e−itω is bounded by a tame polynomial. Consequently, using Thm. 3.12, we have

F(δ)(ω) = fω(0) = 1; in particular, F(δ)|R = 1.

(ii) On the other hand (taking for simplicity ψ := F−1(β), where β ∈ C∞(R) is sup-

ported e.g. in [−1, 1] and identically equals 1 in a neighborhood of 0, see Thm. 2.22),
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δ(j)(t) = bj+1ψ(j)(bt) if n = 1, and hence for all t ∈ ρR̃, we have

δ(j)(t) = bj+1ψ(j)(bt) = bj+1 ·
[
dj

dtj

(
1

2π

ˆ
β(x)eibεtx dx

)]
=
bj+1

2π

[ˆ
(ibεx)

jβ(x)eibεtx dx

]
∣∣∣δ(j)(t)∣∣∣ ≤ b2j+1

2π

ˆ 1

−1

|x|jβ(x) dx =: C(b2)j .

Thus, Dirac’s delta satisfies condition (5.1) and hence

∃Q ∈ N : F(δ) ∈ ρGD(Bdρ−Q(0)). (5.7)

In the following, we will use the notation 1 := F(δ).

(iii) The previous result also yields that f ∗δ = f cannot hold in general since otherwise,

we can argue as in (5.6) to prove that F(δ)(ω) = 1 for all ω ∈ ρR̃, in contradiction

with (5.7).

Inequality (5.2) can also be stated as a general impossibility theorem (where we

intuitively think n = 1).

Theorem 5.3. Let (R,≤) be an ordered ring and G be an R-module. Assume that we

have the following maps (for which we use notations aiming to draw the interpretation

where G is a space of GF)

(−)′ : G −→ Gˆ
: G −→ R

(−) · expω : G −→ G ∀ω ∈ R

| − | : R −→ R.

These maps satisfy the following integration by parts formulaˆ
f · expω =

1

ω

ˆ
f ′ · expω (5.8)

for all invertible ω ∈ R∗, f ∈ G, and

|rs| = |r||s| ∀r, s ∈ R (5.9)

∀f ∈ G∃C ∈ R ∀ω ∈ R∗ :

∣∣∣∣ˆ f · expω
∣∣∣∣ ≤ C. (5.10)

Then for all f ∈ G and all N ∈ N>0 there exists C = C(f,N) ∈ R such that

∀ω ∈ R∗ :

∣∣∣∣ˆ f · expω
∣∣∣∣ ≤ C

|ω|N
. (5.11)

Therefore, if δ ∈ G satisfies C(δ,N)
|ω|N < 1 for some ω ∈ R and some N ∈ N, then∣∣∣∣ˆ δ · expω

∣∣∣∣ < 1.
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Proof. For f ∈ G, in the usual way we recursively define f (p) ∈ G using the map (−)′ :

G −→ G. Taking formula (5.8) for N ∈ N>0 times we get
´
f · expω = 1

ωN

´
f (N) · expω.

Applying | − | and using (5.9) and (5.10) we get the conclusion (5.11).

Note that we can take R = ρC̃ and as G the set of all to f ∈ ρGD (H) satisfying (5.1)

to apply this abstract result to the case of Lem. 5.1. This result also underscores that in

the case G = D′(R), R = R we cannot have an integration by parts formula such as (5.8)

and where
´
equals the usual integral for f ∈ D(R). Once more, it also underscores that,

since (5.8) holds in our setting, we cannot have f ∗ δ = f without limitations because

this would imply F(δ)(ω) = 1 for all ω ∈ ρR̃.

Example 5.4. Let f (x) = ex for all |x| ≤ k, where k := − log (dρ). The hyperfinite

Fourier transform Fk of f is

Fk (f) (ω) =
ek(1−iω) − e−k(1−iω)

1− iω
=

dρ(iω−1) − dρ(1−iω)

1− iω

=
1

1− iω

(
dρiω

dρ
− dρ

dρiω

)
∀ω ∈ ρR̃.

Note that 1 − iω, ω ∈ ρR̃, is always invertible with the usual inverse 1+iω
1+ω2 , moreover,

dρiω = eiω log dρ and hence |dρiω| = 1. Therefore, Fk(f)(ω) is always an infinite complex

number for all finite numbers ω. If ω ≥ dρ−1−r, r ∈ R>0, then Fk(f)(ω) is infinitesimal

but not zero. Clearly, f /∈ ρGD(K).

Considering Robinson-Colombeau generalized numbers, the Gaussian is compactly

supported:

Lemma 5.5. Let f (x) = e−
|x|2
2 for all x ∈ ρR̃n. Then f ∈ ρGD(Bh(0)) for all strong

infinite numbers h ∈ ρR̃>0. Moreover, F (f) = (2π)
n
2 f .

Proof. The function f satisfies the inequality 0 ≤ f (x) ≤ |x|−q
, ∀q ∈ N, for |x| finite suf-

ficiently large. Therefore, for all strongly infinite x, we have f (x) = 0 i.e., f ∈ ρGD(ρR̃n).

We first prove the second claim in dimension n = 1; denoting by F̂ the classical Fourier

we have

F(f)(ω) = Fdρ−1(f)(ω) =

ˆ dρ−1

−dρ−1

e−x2/2e−iωx dx

=

[ˆ ρ−1
ε

−ρ−1
ε

e−x2/2e−iωεx dx

]

=

[ˆ −∞

−ρ−1
ε

e−x2/2e−iωεx dx+ F̂
(
e−x2/2

)
(ωε) +

ˆ ρ−1
ε

+∞
e−x2/2e−iωεx dx

]

=

[√
2πe−ω2

ε/2 − 2

ˆ +∞

ρ−1
ε

e−x2/2e−iωεx dx

]
=

√
2πf(ω)− 2 ·

[ˆ +∞

ρ−1
ε

e−x2/2e−iωεx dx

]
.

Using L’Hôpital rule we can prove that limy→0+

´±∞
1/y

e−
x2

2 dx

yq = 0 for all q ∈ N, conse-
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quently
[´ +∞

ρ−1
ε

e−x2/2e−iωεx dx
]
= 0 in ρR̃. In dimension n > 1, we directly calculate using

Fubini’s theorem:

F
(
e−

|x|2
2

)
(ω) =

n∏
j=1

ˆ
e−ixj ·ωje−

x2
j
2 dxj

=

n∏
j=1

F
(
e−

x2
j
2

)
(ωj) =

n∏
j=1

(2π)
1
2 e−

ω2
j
2 = (2π)

n
2 e−

|ω|2
2 .

6. Elementary properties of the hyperfinite Fourier transform

In this section, we list and prove elementary properties of the HFT.

Theorem 6.1. (see Sec. 2.6 for the notations ⊙ and ⊕) Let f ∈ ρGC∞ (K) and g :
ρR̃n −→ ρC̃. Then

(i) Fk (f + g) = Fk (f) + Fk (g) if g ∈ ρGC∞(K).

(ii) Fk (bf) = bFk (f) for all b ∈ ρC̃.
(iii) Fk

(
f
)
= −1 ⋄ Fk(f), where −1⋄f is the reflection of f , i.e. (−1 ⋄ f) (x) := f (−x).

(iv) Fk (−1 ⋄ f) = −1 ⋄ Fk(f)

(v) Fk (t ⋄ g) = t ⊙ Ftk (g) for all t ∈ ρR̃>0 such that tk is still infinite and g|K ∈
ρGC∞(K), g|tK ∈ ρGC∞(tK). Here, t⋄g is the dilation of f, i.e. (t ⋄ g) (x) := g (tx).

(vi) Let k > h > 0 be infinite numbers, s ∈ [−(k−h), k−h]n, f ∈ ρGD([−h, h]n). Then
Fk (s⊕ f) = e−is·(−)Fk (f) = e−is·(−)Fh (f) = e−is·(−)F (f) .

In particular, if h ≥ dρ−p, k ≥ dρ−q, p, q ∈ R>0, q > p, and s ∈ c(Rn), then

s ∈ [−(k − h), k − h]n. In particular, Rn ⊆ [−(k − h), k − h]n.

(vii) Fk

(
eis·(−)f

)
= s⊕Fk (f) for all s ∈ ρR̃n.

(viii) Let ω ∈ ρR̃n and α ∈ Nn \ {0}. For p = 1, . . . , |α|, define βp = (βp,q)q=1,...,n ∈ Nn

with

β0 := α

βp+1 := (0, jp−1. . . . . . , 0, βp,jp − 1, βp,jp+1, . . . , βp,n) if jp := min {q | βp,q > 0} .
Finally, for all f̄ ∈ ρGC∞(K) and j = 1, . . . , n, set

∆1kf̄(ω) :=
[
f̄(x)e−ix·ω]x1=k

x1=−k

∆jkf̄(ω) :=

kˆ

−k

dx1 . . .

kˆ

−k

dxj−1

kˆ

−k

dxj+1 . . .

kˆ

−k

[
f̄(x)e−ix·ω]xj=k

xj=−k
dxn.

Then, we have

Fk (∂jf) = iωjFk (f) + ∆jkf ∀j = 1, . . . , n (6.1)

Fk (∂
αf) = (iω)

α Fk (f) +

|α|−1∑
p=0

(iω)α−βp∆jpk(∂
βp+1f). (6.2)
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In particular, if

f (x1, . . . , xj−1, k, xj+1) = f (x1, . . . , xj−1,−k, xj+1) = 0 ∀x ∈ K, (6.3)

then

Fk (∂jf) = iωjFk (f) .

(ix) ∂
∂ωj

Fk (f) = −iFk (xjf) for all j = 1, . . . , n.

(x) If f ∈ ρGD(K) or g ∈ ρGD(K), then Fk (f ∗ g) = Fk (f)Fk (g). Therefore, if

f ∈ ρGD(ρR̃n) and g ∈ ρGD(ρR̃n), then F (f ∗ g) = F (f)F (g).

(xi) Fk (s⊙ g) = s ⋄ F k
s
(g) for all invertible s ∈ ρR̃>0 such that k

s is infinite, g|K ∈
ρGC∞(K) and g|K/s ∈ ρGC∞(K/s).

Proof. Properties (i)-(v) can be proved like in the case of rapidly decreasing smooth

functions. For (vi), we have

Fk (s⊕ f) (ω) = Fk (f (x− s)) (ω) =

ˆ

K

f (x− s) e−ix·ω dx

=

kˆ

−k

dx1 . . .

kˆ

−k

f (x− s) e−ix·ω dxn.

Considering the change of variable x− s = u we have

Fk (s⊕ f) (ω) = e−is·ω
k−s1ˆ

−k−s1

du1 . . .

k−snˆ

−k−sn

f (u) e−iu·ω dun.

Finally, considering that k > h and s ∈ [−k+h, k−h]n we have k−si ≥ h, −h ≥ −k−si
and k + si ≥ h for all i = 1, . . . , n, so that

k−s1ˆ

−k−s1

du1 . . .

k−snˆ

−k−sn

f (u) e−iu·ω dun =

hˆ

−h

du1 . . .

hˆ

−h

f (u) e−iu·ω dun

=

kˆ

−k

du1 . . .

kˆ

−k

f (u) e−iu·ω dun

from Def. 3.5 since f ∈ ρGD([−h, h]n).

(vii) is immediate from the Def. 4.1.
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To prove (viii), using integration by parts formula, we have

Fk (∂jf) (ω) =

ˆ

K

∂jf (x) e
−ix·ω dx =

kˆ

−k

dx1 . . .

kˆ

−k

∂jf (x) e
−ix·ω dxn

= −
kˆ

−k

dx1 . . .

kˆ

−k

f (x) (−iωj) e
−ix·ω dxn+

kˆ

−k

dx1 . . .

kˆ

−k

dxj−1

kˆ

−k

dxj+1 . . .

kˆ

−k

[
f(x)e−ix·ω]xj=k

xj=−k
dxn

= iωjFk (f) (ω) + ∆jkf(ω).

Therefore, by applying this formula with ∂pf instead of f , we obtain

Fk (∂j∂pf) (ω) = −ωjωpFk(f)(ω) + iωj∆pk (f) (ω) + ∆jk (∂pf) (ω).

Proceeding similarly by induction on |α|, we can prove the general claim.

To prove (ix), we use Thm. 2.18(viii), i.e. derivation under the integral sign:

∂

∂ωj
Fk (f) (ω) =

∂

∂ωj

 kˆ

−k

dx1 . . .

kˆ

−k

f (x) e−ix·ω dxn


=

kˆ

−k

dx1 . . .

kˆ

−k

∂

∂ωj

(
f (x) e−ix·ω) dxn

=

kˆ

−k

dx1 . . .

kˆ

−k

−ixjf (x) e−ix·ω dxn

= −iFk (xjf) (ω) .

(x):

Fk ((f ∗ g)) (ω) =
ˆ

K

e−ixω (f ∗ g) (x) dx

=

ˆ

K

e−ixω

ˆ

K

f (y) g (x− y) dy dx.

Considering the change of variable x− y = t and using Fubini’s theorem, we haveˆ

K

e−i(t+y)ω

ˆ

K

f (y) g (t) dy dt =

ˆ

K

e−iyωf (y) dy

ˆ

K

e−itωg (t) dt

= Fk (f) (ω)Fk (g) (ω) .

Finally, we prove (xi):

Fk (s⊙ g) (ω) = Fk

(
1

sn
g
(x
s

))
(ω) =

ˆ

K

e−ix·ωg
(x
s

) dx

sn
.
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Considering the change of variable x
s = y we have

ˆ

K

e−ix·ωg
(x
s

) dx

sn
=

k/sˆ

−k/s

dy1 . . .

k/sˆ

−k/s

g (y) e−isy·ω dyn

=

ˆ

K/s

g (y) e−iy·sω dy = Fk/s (g) (sω)

=
[
s ⋄ Fk/s (g)

]
(ω).

We will see in Sec. 9 that the additional term in (6.2) plays an important role in finding

non-tempered solutions of differential equations (like the exponentials of the trivial ODE

y′ = y). We also note that condition (6.3) is clearly weaker than asking f compactly

supported. For example, setting

lj(x) :=
1

2k

[
f (x) |xj=k − f (x) |xj=−k

]
· (xj + k) + f (x) |xj=−k,

then f̄ := f − lj satisfies (6.3).

7. The inverse hyperfinite Fourier transform

We naturally define the inverse HFT as follows:

Definition 7.1. Let f ∈ ρGC∞ (K), the inverse HFT is

F−1
k (f) (x) :=

1

(2π)
n

ˆ

K

f (ω) eix·ω dω (7.1)

for all x ∈ ρR̃n. As we proved in Thm. 4.2, we have F−1
k : ρGC∞ (K) −→ ρGC∞(ρR̃n). We

immediately note that the notation of the inverse function F−1
k is an abuse of language

because the codomain of Fk is larger than the domain of F−1
k (and vice versa). When

dealing with inversion properties, it is hence better to think at

Fk|K := (−)|K ◦ Fk : ρGC∞ (K) −→ ρGC∞ (K)

F−1
k |K := (−)|K ◦ F−1

k : ρGC∞ (K) −→ ρGC∞ (K) .

We will see in Sec. 9 that lacking this precision can easily lead to inconsistencies.

Note that

(2π)
n F−1

k (f) = Fk (−1 ⋄ f) = −1 ⋄ Fk(f), (7.2)

where −1⋄ denotes the reflection (−1 ⋄ g) (x) := g(−x).

7.1. The Fourier inversion theorem. Our main goal is clearly to investigate the rela-

tionship between HFT and its inverse HFT, i.e. to prove the Fourier inversion theorem for

the HFT. Three important results used in the classical proof of the Fourier inversion theo-

rem are: the application of approximate identities for convolution defined by Gaussian like

functions (see [43, Lem. 4.3] for a similar result), Lebesgue dominated converge theorem
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(we can replace it with Thm. 2.35), and the translation property of FT. In our setting,

the last property corresponds to Thm. 6.1(vi), which works only for compactly supported

GSF. A first idea could hence to avoid proving the inversion theorem firstly at the origin

and then employing the translation property, but to prove it directly at an arbitrary

interior point y ∈ K̊ using approximate identities obtained by mollification of a Gaussian

function. Unfortunately, this idea does not work: in fact, if g(z) := (2π)−n/2e−
z2

2 , then

our approximate identity would be the mollification Gp := 1
p ⊙ g, where we think p ∈ ρÑ,

p→ +∞. We would also need a function gp such that F [gp(−, y)] (x) = (2π)n/2Gp(y−x),
i.e. gp(−, y) := eiy·(−) · (p ⋄ g). The first problem is that supp (gp(−, y)) ⊆ Bpdρ−1(0) ↑ ρR̃
as p→ +∞. In an integral of the type

´
K
Fk(f)(ω)gp(ω, y) dω we would therefore need k

non-ρ-moderate (see below, Def. 7.5) to contain all the support of gp(−, y). On the other

hand, we would also need ρlimp∈ρÑ gp(ω, y) = 1
(2π)n/2 e

iy·ω , and it is not hard to prove

that |gp(ω, y)− 1
(2π)n/2 e

iy·ω| ≤ dρq if p ≥ C2kdρ
−q/2 for some C2 ∈ R>0, and this implies

that k must be ρ-moderate.

The idea for a different proof starts from the following calculations (for n = 1):

Fk(f)(ω) =

ˆ
K

f(x)e−ixω dx =

[ˆ
Kε

fε(x)e
−ixωε dx

]
=

[ˆ
R
χKε(x)fε(x)e

−ixωε dx

]
=
[
F̂ (χKεfε) (ωε)

]
,

where χKε
is the characteristic function of Kε := [−kε, kε], and F̂ is the classical Fourier

transform. Consequently, if we take another positive infinite number h = [hε] ∈ ρR̃ and

set H := [−h, h], Hε := [−hε, hε], then

F−1
h (Fk(f)) (y) =

1

2π

ˆ
H

eiyω
[
F̂ (χKεfε) (ω)

]
dω

=
1

2π

[ˆ
R
eiyεωχHε(ω)F̂ (χKε

fε) (ω)

]
=
[
F̂−1

(
χHε · F̂ (χKεfε)

)
(yε)

]
=
[(

F̂−1(χHε) ∗ χKεfε

)
(yε)

]
.

We now compute

F̂−1(χHε)(z) =
1

2π

ˆ
R
eizωχHε

(ω) dω =
1

2π

ˆ hε

−hε

eizω dω =
1

π
hεS(hεz),

where S(x) = 1
2

´ 1
−1

cos(xt) dt is the smooth extension of sin(x)
x at x = 0. Therefore, we

can write

F−1
h (Fk(f)) (y) =

ˆ
K

h

π
S(h(y − x))f(x) dx. (7.3)

For n ≥ 1, we similarly have

F̂−1(χHε
)(z) =

1

πn
h1εS(z1h1ε) · n. . . . . . ·hnεS(znhnε) =: δnhε

(z), (7.4)
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and

F−1
h (Fk(f)) (y) =

ˆ
K

δnh(y − x) · f(x) dx. (7.5)

We call the GSF (h is an infinite number) δnh Dirichlet delta function (recall that the

delta sequence (δnn)h∈N converges to δ in D′, see e.g. [6]). In fact, these calculations lead

us to consider the so-called Dirichlet sifting theorem

lim
h→+∞
h∈R

ˆ +∞

−∞
δ1h(x)f(x) = f(0), (7.6)

which holds for any f ∈ D(R) (see e.g. [6, pag. 34]). Formula (7.6) also justifies why

we considered another infinite number h; moreover, in the following proof, we will see

that the use of the functionally compact set K instead of
´ +∞
−∞ allows us to avoid any

limitation on the GSF f .

We first need the following results:

Lemma 7.2. For all sharply interior points y ∈ K̊, we have

lim
h→+∞

ˆ
K

δnh(y − x) dx = 1.

Here, the limit is in the sharp topology, i.e.

∀q ∈ N∃h̄ ∈ ρR̃ ∀h ∈ ρR̃≥h̄ :

∣∣∣∣ˆ
K

δnh(y − x) dx− 1

∣∣∣∣ ≤ dρq.

Proof. We actually prove the case n = 1, since n > 1 is similar. From y = [yε] ∈
K̊ = (−k, k), we can take the representative (yε) so that −kε < yε < kε for all ε.

We have
´
K
δ1h(y − x) dx =

[
hε

π

´ kε

−kε
S (hε(yε − x)) dx

]
. With the change of variables

x′ = hε(yε − x), we get

hε
π

ˆ kε

−kε

S (hε(yε − x)) dx =
1

π

ˆ hεyε+hεkε

hεyε−hεkε

S

=
1

π

(ˆ −∞

hεyε−hεkε

S +

ˆ +∞

−∞
S +

ˆ hεyε+hεkε

+∞
S

)

=
1

π

(ˆ −∞

hεyε−hεkε

S + π +

ˆ hεyε+hεkε

+∞
S

)
.

Note that hεyε + hεkε ≥ 0 and hεyε − hεkε ≤ 0 because −kε ≤ yε ≤ kε. In general, if

0 < a ≤ b or a ≤ b < 0, we have∣∣∣∣∣
ˆ b

a

S

∣∣∣∣∣ =
∣∣∣∣∣
ˆ b

a

sinx

x
dx

∣∣∣∣∣ =
∣∣∣∣−cos y

y

∣∣∣∣b
a

+

ˆ b

a

cos y

y2
dy

∣∣∣∣∣
≤ 1

|b|
+

1

|a|
+

ˆ b

a

dy

y2
=

2

|a|
+

2

|b|
.



42 A. Mukhammadiev et al.

In our cases, this yields ∣∣∣∣ˆ +∞

hεyε+hεkε

S

∣∣∣∣ ≤ 2

|hεyε + hεkε|∣∣∣∣∣
ˆ hεyε−hεkε

−∞
S

∣∣∣∣∣ ≤ 2

|hεyε − hεkε|

(recall that −kε ≤ yε ≤ kε). Therefore∣∣∣∣ˆ
K

δ1h(y − x) dx

∣∣∣∣ ≤ 1 +
2

|hy + hk|
+

2

|hy − hk|
→ 1

as h→ +∞ because −k < y < k.

Now, we have to deal with estimations of the convolution (7.5) on the “tails”, i.e. arbi-

trarily near y:

Lemma 7.3. Let K ⊆ X ⊆ ρR̃n and f ∈ ρGC∞(X).Then for all δ ∈ ρR̃>0 such that

Bδ(y) ⊆ K, we have:

(i) limh→+∞
´ y−δ

−k
δnh(y − x) · f(x) dx = 0 = limh→+∞

´ k
y+δ

δnh(y − x) · f(x) dx.

(ii) limh→+∞

(
F−1

h (Fk(f)) (y)−
´ y+δ

y−δ
δnh(y − x) · f(x) dx

)
= 0.

As above, the limits are in the sharp topology.

Proof. For y < a ≤ b ≤ k or −k ≤ a ≤ b < y, we first considerˆ b

a

δ1h(y − x)f(x) dx =

ˆ b

a

1

π

sin(h(y − x))

y − x
f(x) dx

= −
ˆ hy−hb

hy−ha

1

π

sin z

z
f
(
y − z

h

)
dz

=
1

π

([
−cos z

z
f
(
y − z

h

)]hy−ha

hy−hb
+

ˆ hy−ha

hy−hb

cos(z)
d

dz

[
f
(
y − z

h

)
z

]
dz

)
. (7.7)

The first summand in (7.7) yields∣∣∣∣[−cos z

z
f
(
y − z

h

)]hy−ha

hy−hb

∣∣∣∣ = ∣∣∣∣− cos(hy − ha)
f(a)

hy − ha
+ cos(hy − hb)

f(b)

hy − hb

∣∣∣∣
≤ |f(a)|

h
· 1

|y − a|
+

|f(b)|
h

· 1

|y − b|
(7.8)

The second summand in (7.7) yields

ˆ hy−ha

hy−hb

cos(z)
d

dz

[
f
(
y − z

h

)
z

]
dz = −

ˆ hy−ha

hy−hb

cos(z)
f ′
(
y − z

h

)
hz

dz (7.9)

−
ˆ hy−ha

hy−hb

cos(z)
f
(
y − z

h

)
z2

dz. (7.10)

If hy − hb ≤ z ≤ hy − ha, then −k ≤ a ≤ y − z
h ≤ b ≤ k, so that

∣∣f ′ (y − z
h

)∣∣ ≤
maxx∈K |f ′(x)| =: M1 ∈ ρR̃ (note that this step would not be so trivial if we had to let
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k → +∞). Consequently, from the mean value theorem applied to (7.9)∣∣∣∣∣
ˆ hy−ha

hy−hb

cos(z)
f ′
(
y − z

h

)
hz

dz

∣∣∣∣∣ ≤ (b− a) · M1

|ζ|

for some ζ ∈ [hy − hb, hy − ha] (note that a ≤ b implies hy − ha ≥ hy − hb). In the first

case we assumed, i.e. y < a ≤ b ≤ k, we have hy − ha < 0, so that |ζ| = −ζ ≥ ha − hy,

and hence (b − a) · M1

|ζ| ≤ (b − a) · M1

ha−hy . In the second case −k ≤ a ≤ b < y, we have

|ζ| = ζ ≥ hy − hb, and hence (b − a) · M1

|ζ| ≤ (b − a) · M1

hy−hb . The last term in (7.10) can

be estimated as∣∣∣∣∣
ˆ hy−ha

hy−hb

cos(z)
f
(
y − z

h

)
z2

dz

∣∣∣∣∣ ≤M0

ˆ hy−ha

hy−hb

dz

z2
=M0

(
1

hy − hb
− 1

hy − ha

)
,

where M0 := maxx∈K |f(x)| ∈ ρR̃. Applying these estimates with a = −k and b = y − δ

(so that the second case holds), we get∣∣∣∣∣
ˆ y−δ

−k

δnh(y − x) · f(x) dx

∣∣∣∣∣ ≤ |f(−k)|
h

· 1

|y + k|
+

|f(y − δ)|
h

· 1
δ
+

(y − δ + k)M1

hδ
+

M0

h

(
1

δ
− 1

y + k

)
≤ 3

M0

h

(
1

|y + k|
+

1

δ

)
+

(y − δ + k)M1

hδ
.

For h → +∞, this proves the first part of (i). Once again, note that if h = k → +∞, in

general the term |f(−k)|
k ̸→ 0; it is hence important that k is fixed and only h → +∞.

Similarly, we can estimate the other integral in (i) for a = y+ δ and b = k (the first case

holds) obtaining∣∣∣∣∣
ˆ k

y+δ

δnh(y − x) · f(x) dx

∣∣∣∣∣ ≤ 3
M0

h

(
1

|y − k|
+

1

δ

)
+

(k − y − δ)M1

hδ
→ 0

as h→ +∞.

The claim (ii) is proved considering (7.5) and (i).

Finally, we have the Fourier inversion theorem:

Theorem 7.4. Let K ⊆ X ⊆ ρR̃n and f ∈ ρGC∞(X). Then for all sharply interior y ∈ K̊,

we have

lim
h→+∞

F−1
h (Fk(f)) (y) = lim

h→+∞
Fh

(
F−1

k (f)
)
(y) = f(y). (7.11)

Proof. To link the integrals of the previous Lem. 7.3 with f(y), we use the Fermat-Reyes

Thm. 2.14: for any δ ∈ ρR̃>0 sufficiently small such that Bδ(y) ⊆ K ⊆ X, we can write

f(x) = f(y) + (y − x)f ′[y; y − x] for all x ∈ [y − δ, y + δ]. Therefore

ˆ y+δ

y−δ

δ1h(y − x) · f(x) dx =

ˆ y+δ

y−δ

δ1h(y − x) · (f(y) + (y − x)f ′[y; y − x]) dx

= f(y)

ˆ y+δ

y−δ

δ1h(y − x) dx+
1

π

ˆ y+δ

y−δ

sin(h(y − x))f ′[y; y − x] dx.
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Consequently∣∣∣∣∣
ˆ y+δ

y−δ

δ1h(y − x) · f(x) dx− f(y)

ˆ y+δ

y−δ

δ1h(y − x) dx

∣∣∣∣∣ ≤ 1

π
2δM1δ,

where M1δ := maxx∈[y−δ,y+δ] |f ′[x; y − x]| ∈ ρR̃. Considering (7.5), we have

∣∣F−1
h (Fk(f)) (y)− f(y)

ˆ k

−k

δ1h(y − x) dx

∣∣∣∣∣ ≤ 1

π
2δM1δ+∣∣∣∣∣

ˆ y−δ

−k

δ1h(y − x) · f(x) dx+

ˆ k

y+δ

δ1h(y − x) · f(x) dx

− f(y)

ˆ y−δ

−k

δ1h(y − x) dx− f(y)

ˆ k

y+δ

δ1h(y − x) dx

∣∣∣∣∣ .
Take the limit both for h→ +∞ and for δ → 0+ in this inequality, considering that the

left hand side does not depend on δ. Using Lem. 7.3, we obtain

lim
h→+∞

∣∣∣∣∣F−1
h (Fk(f)) (y)− f(y)

ˆ k

−k

δ1h(y − x) dx

∣∣∣∣∣ = 0.

Finally, Lem. 7.2 yields limh→+∞ f(y)
´ k
−k
δ1h(y − x) dx = f(y) and this proves the first

part of the claim. To prove the second equality in (7.11), we use the general equalities

(2π)nF−1
h (g) = Fh(−1 ⋄ g) ∀g ∈ ρGC∞(H) (7.12)

(2π)nF−1
k (f) = −1 ⋄ Fk(f) ∀f ∈ ρGC∞(K). (7.13)

Applying (7.12) with g = Fk(f)|H , we get

(2π)nF−1
h (Fk(f)) = Fh(−1 ⋄ Fk(f)). (7.14)

Consequently, using (7.13) and (7.14), we get (2π)nFh(F−1
k (f)) = Fh((2π)

nF−1
k (f)) =

Fh(−1 ⋄ Fk(f)) = (2π)nF−1
h (Fk(f)).

One way to summarize the meaning of this version of the Fourier inversion theorem is as

follows: If for a smooth function g ∈ C∞(R), we want to defineˆ +∞

−∞
g(ω)eixω dω := lim

h→+∞

ˆ h

−h

g(ω)eixω dω,

we can assume some sufficiently strong behavior of g at ±∞, e.g. that g is rapidly decreas-

ing. On the one hand, this is only a sufficient condition deeply linked to the limitations

of the Lebesgue integral, as the function g(x) = sin(x)
x shows. On the other hand, (7.11)

shows that this type of limit exists (in the sharp topology) for all the GSF of the form

g = Fk(f), where f is an arbitrary GSF and k ∈ ρR̃ is any fixed infinite number. Indeed,

Thm. 7.4 is strongly related to the Dirichlet delta, as (7.5) already shows. In other words,

a key idea of the present work is to consider the HFT F−1
h (f) for arbitrary f ∈ ρGC∞(H),

and to take the limit for h→ +∞ only in the Fourier inversion theorem.

We can also state the Fourier inversion theorem using a strong equivalence relation

instead of a limit. For this aim, we need the following notions:
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Definition 7.5. If σ is a gauge smaller than ρ, and we write σ ≤ ρ∗, i.e. if

∃R ∈ R>0 ∀0ε : σε ≤ ρRε ,

then we have Rρ ⊆ Rσ and we can hence consider the set of ρ-moderate numbers in σR̃:

ρ
σR̃ :=

{
[xε] ∈ σR̃ | (xε) ∈ Rρ

}
.

Let ∂ρ := [ρε] ∈ σR̃ denotes the generalized number in σR̃ defined by the net (ρε). If x,

y ∈ σR̃, we say that x is equal up to ρ to y, and we write x =ρ y, if

∀q ∈ N : |x− y| ≤ ∂ρq.

We say that σ is an auxiliary gauge of ρ, and we write σ ≪ ρ, if

∃Q ∈ N ∀q ∈ N∀0ε : σQ
ε ≤ ρqε. (7.15)

Finally, we say that k ∈ σR̃ is ρ-immoderate, and we write k ≫ ∂ρ−∗ if

∀Q ∈ N : k ≥ ∂ρ−Q.

Remark 7.6.

(i) Clearly, ρ
σR̃ is a subring of σR̃, but in general it is not isomorphic to ρR̃ because the

notion of equality ∼σ in σR̃ is generally stronger than the one ∼ρ in ρR̃. However,

if [xε]σ ∈ σR̃ and [xε]ρ ∈ ρR̃ denotes the equivalence classes generated by the net

(xε) ∈ Rρ, then the map

ι : [xε]σ ∈ ρ
σR̃ 7→ [xε] ∈ ρR̃

is surjective and “injective up to ρ”, i.e. ι(x) = ι(y) implies x =ρ y. Similarly, we

can define

f ∈ ρ
σGC

∞(X,Y ) :⇔ X ⊆ ρ
σR̃, Y ⊆ ρ

σR̃, ∀x ∈ X ∀α ∈ Nn : ∂αf (x) ∈ ρ
σR̃,

and the map j : ρσGC
∞(X,Y ) −→ ρGC∞(ι(X), ι(Y )) defined by j(f)(ι(x)) := ι(f(x))

is surjective and satisfies j(f) = j(g) if and only if f(x) =ρ g(x) for all x ∈ X.

(ii) σ1ε := ρ
1/ε
ε , σ2ε := exp(− 1

ρε
) and σ3ε := exp(−ρ−1/ε

ε ) are all auxiliary gauges of ρ,

kj := σ−1
j and − log k3 are ρ-immoderate numbers. On the other hand, if σ is an

arbitrary gauge, and ρε := − log(σε)
−1, then σ ≪ ρ.

Corollary 7.7. Let σ ≪ ρ and k ≫ ∂ρ−∗. Let f ∈ σGC∞(X), with K ⊆ X. Then for

all h ∈ σR̃ sufficiently large, we have

F−1
h (Fk(f)) (y) =ρ Fh

(
F−1

k (f)
)
(y) =ρ f(y)

for all y ∈ K ∩ ρ
σR̃.

Proof. From Thm. 7.4 (with σ in the role of ρ), we have that for all h ∈ σR̃ sufficiently

large ∣∣F−1
h (Fk(f)) (y)− f(y)

∣∣ ≤ dσQ ≤ ∂ρq

for all q ∈ N from (7.15). Note that y ∈ K ∩ ρ
σR̃ and k ≫ ∂ρ−∗ imply y ∈ K̊ (in the

σ-sharp topology).

The following result allows one to have independence from k or both k and h.
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Corollary 7.8. If f ∈ ρGD(ρR̃), there exists k ∈ ρR̃>0 infinite such that

lim
h→+∞

F−1
h (F(f)) (y) = lim

h→+∞
Fh

(
F−1(f)

)
(y) = f(y)

for all y ∈ K̊.

Corollary 7.9. Let H ⋐f
ρR̃n and f ∈ ρGD(H). Assume that

∃C, b ∈ ρR̃>0 ∀x ∈ H ∀j ∈ N :
∣∣djf(x)∣∣ ≤ C · bj .

Then

F−1 (F(f)) (y) = F
(
F−1(f)

)
(y) = f(y) ∀y ∈ H.

Proof. See the Riemann-Lebesgue Lem. 5.1, which guarantees that also F(f) is compactly

supported.

In the following result, we summarize some properties of Dirichlet delta function:

Corollary 7.10. Let K ⊆ X ⊆ ρR̃n, f ∈ ρGC∞(X). Then, the following properties hold:

(i) δnh = δ1h · n. . . . . . ·δ1h for all h ∈ ρR̃ positive infinite number;

(ii) F−1
h (Fk(f)) = Fh

(
F−1

k (f)
)
=
´
K
δnh(y − x) · f(x) dx =: δnh ∗k f for all h ∈ ρR̃

positive infinite number;

(iii) limh→+∞ (δnh ∗k f) (y) = f(y) for all y ∈ K̊;

(iv) limh→+∞
´ k
−k
δnh(x)f(x) dx = f(0) if 0 ∈ K̊;

(v) limh→+∞
´ k
−k
δnh(x) dx = 1;

(vi) limh→+∞
´ −δ

−k
δnh(x) dx = limh→+∞

´ k
δ
δnh(x) dx = 0 for all δ ∈ (0, 1];

(vii) limh→+∞ Fk (δ
n
h) = 1 and F−1

h (1) = δnh for all h ∈ ρR̃ positive infinite number.

If σ ≪ ρ, and k ∈ σR̃, k ≫ ∂ρ−∗, then in the previous properties we can replace the limits

with =ρ and with h ∈ σR̃ sufficiently large.

Proof. For (i), see (7.4). For (v), see Lem. 7.2. For (vi), see Lem. 7.3. Property (iv) is

exactly Thm. 7.4 with y = 0 and considering (7.3); the same for (iii). To prove the first

equality of (vii), use (iii) with f(x) = e−iωx; for the second one, simply compute F−1
h (1)

and use (7.4) for n = 1. Finally, (ii) can be proved as in (7.5).

7.2. Parseval’s relation, Plancherel’s identity and the uncertainty principle.

Theorem 7.11. Let h ∈ ρR̃>0 be an infinite number and set H := [−h, h]n. Let f ∈
ρGC∞ (K) and g ∈ ρGC∞ (H). Then

(i)
´
H
Fk (f) (ω) g (ω) dω =

´
K
f (x)Fh (g) (x) dx.

(ii) Fk|K : ρGC∞(K) −→ ρGC∞(K) is an injective homeomorphism such that

∀f ∈ ρGC∞(K)∃g ∈ ρGC∞(K) : lim
h→+∞

Fh(g) = f. (7.16)

(iii) Recalling that −1 ⋄ f is the reflection of f , we have limh→+∞ Fh|H(Fk|K(f)) =

(2π)n (−1 ⋄ f) and limh→+∞ F−1
h |H(F−1

k |K(f)) = (2π)−n (−1 ⋄ f).
(iv) (Parseval’s relation) (2π)n

´
K
fg = limh→+∞

´
K
Fh (f)Fk (g).

(v) (Plancherel’s identity) (2π)n
´
K
|f |2 = limh→+∞

´
K
|Fh (f)|2.

(vi)
´
K
fg = limh→+∞

´
K
Fh (f)F−1

k (g).
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In the assumptions of Cor. 7.7, we can also write all the relations involving limh→+∞
using =ρ instead. Finally, using Thm. 2.35, we can also take the limit under the integral

sign.

Proof. (i) follows from Def. 4.1 and Fubini’s theorem.

In order to prove (ii), we assume Fk(f) = Fk(g), so that F−1
h (Fk(f)) = F−1

h (Fk(g))

and hence f = g on K̊ by the inversion theorem (Thm. 7.4). The equality on the entire

K follows by sharp continuity. If f ∈ ρGC∞(K), set g := F−1
k (f)|K ∈ ρGC∞(K), then

(7.16) follows again from the Fourier inversion theorem.

To prove (iii), using (7.2) we have

Fh (Fk(f)) = Fh (Fk(−1 ⋄ (−1 ⋄ f))) = Fh (−1 ⋄ Fk(−1 ⋄ f)) =
(2π)nFh

(
F−1

k (−1 ⋄ f)
)
→ (2π)n(−1 ⋄ f)

as h→ +∞.

To prove (iv), use (i) with Fk (g) instead of g, then Thm. 6.1(iii), and finally (iii).

Plancherel’s identity (v) is a trivial consequence of (iv).

Finally, (vi) follows from (i) and the inversion theorem (Thm. 7.4).

We close this section with a proof of the uncertainty principle:

Theorem 7.12. If ψ ∈ ρGD(ρR̃), then

(i) If ψ ∈ ρGD(H) ∩ ρGD(K), then
ˆ

H

ω2 |F (ψ) (ω)|2 dω =

ˆ

K

ω2 |F (ψ) (ω)|2 dω =:

ˆ
ω2 |F (ψ) (ω)|2 dω

(ii)
(´

x2 |ψ (x)|2 dx
)(´

ω2 |F (ψ) (ω)|2 dω
)
≥ 1

4∥ψ∥2∥F(ψ)∥2.

Proof. Properties (ii) and (i) of Thm. 3.4 imply that also ψ′ ∈ ρGD(H). Therefore,

Plancherel’s identity Thm. 7.11(v) yields
ˆ
H

|ψ′|2 =
1

2π

ˆ
H

|F(ψ′)|2 .

But |F(ψ′)|2 = ω2 |F(ψ)|2 from Thm. 6.1(viii) because ψ is compactly supported and

hence ∆1kψ = 0. Therefore
ˆ
H

|ψ′|2 =
1

2π

ˆ
H

ω2 |F(ψ)(ω)|2 dω. (7.17)

At the same result we arrive considering K instead of H. Finally, we apply Def. 3.5 of

integral of a compactly supported GSF, which yields independence from the functionally

compact integration domain.

To prove inequality (ii), we assume that ψ ∈ ρGD(K); using integration by parts, we
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get:
ˆ
xψ(x)ψ′(x) dx =

ˆ k

−k

xψ(x)ψ′(x) dx

=
[
xψ(x)ψ(x)

]x=k

x=−k
−
ˆ
ψ(x)

(
ψ(x) + xψ′(x)

)
dx

= −
ˆ [

|ψ(x)|2 + xψ(x)ψ′(x)
]
dx.

Consequently ˆ
|ψ(x)|2 dx = −2Re

(ˆ
xψ(x)ψ′(x) dx

)
≤ 2

∣∣∣∣Re(ˆ xψ(x)ψ′(x) dx

)∣∣∣∣
≤ 2

ˆ ∣∣∣xψ(x)ψ′(x)
∣∣∣ dx.

Where we used the triangle inequality for integrals (see Thm. 2.33(iv)). Using Cauchy-

Schwarz inequality (see Thm. 3.10), we hence obtain(ˆ
|ψ(x)|2 dx

)2

≤ 4

(ˆ ∣∣∣xψ(x)ψ′(x)
∣∣∣ dx)2

≤ 4

(ˆ
x2 |ψ(x)|2 dx

)(ˆ
|ψ′(x)|2 dx

)
.

From this, thanks to (7.17) and Plancherel’s equality, the claim follows.

Note that if ∥ψ∥2 ∈ ρR̃ is invertible, then also ∥F(ψ)∥2 is invertible by Plancherel’s

equality, and we can hence write the uncertainty principle in the usual normalized form.

Example 7.13. On the contrary with respect the classical formulation in L2(R) of the

uncertainty principle, in Thm. 7.12 we can e.g. consider ψ = δ ∈ ρGD(ρR̃), and we have
ˆ
x2δ(x)2 dx =

[ˆ 1

−1

x2b2εψε(bεx)
2 dx

]
where ψ(x) = [ψε(xε)] is a Colombeau mollifier and b = [bε] ∈ ρR̃ is a strong infinite

number (see Example 2.24). Since normalizing the function ε 7→ b2εψε(bεx)
2 we get an ap-

proximate identity, we have limε→0+
´ 1
−1
x2b2εψε(bεx)

2 dx = 0, and hence
´
x2δ(x)2 dx ≈ 0

is an infinitesimal. The uncertainty principle Thm. 7.12 implies that it is an invertible

infinitesimal. Considering the HFT 1 = F(δ) ∈ ρGD(ρR̃), we have
ˆ
ω21(ω)2 dω ≥

ˆ r

−r

ω2 dω = 2
r3

3
∀r ∈ R>0.

Consequently,
´
ω21(ω)2 dω is an infinite number.
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8. Preservation of classical Fourier transform

It is natural to inquire the relations between classical FT of tempered distributions and

our HFT.

Let us start with a couple of exploring examples:

(i) Fk(1)(ω) =
´ k
−k

1 · e−ixω dx =
´ k
−k

cos(xω) dx. If L ⊆0 I and ω|L is invertible (see

Sec. 2.3 for the language of subpoints), then Fk(1)(ω) =L 2 sin(kω)
ω ; if ω =L 0, then

Fk(1)(ω) = 2k. Classically, we have 1̂ = 2πδ.

(ii) Since classically we do not have infinite numbers such as k, the example above leads

us to the following idea

F(1 · 1) = F(F(δ)) = 2π (−1 ⋄ δ) = 2πδ.

Note that if f ∈ ρGC∞(K), then (f · 1) (ω) = f(ω) for all finite points ω ∈ K. We

therefore call f ·1 the finite part of f . The same idea works for eiax and hence also

for sin, cos.

(iii) Let us now consider δ · 1:

F(δ · 1)(ω) =
ˆ
δ(x)F(δ)(x)e−ixω dx.

We recall that integrating against δ yields the evaluation of the second factor at 0

only if the latter is bounded by a tame polynomial at 0 (see Example 3.13.(iv)).

But the function x 7→ F(δ)(x)e−ixω is bounded by a tame polynomial at x = 0 for

all ω, and we get F(δ · 1)(ω) = 1.

These exploratory examples lead us to the following

Theorem 8.1. Let f ∈ ρGC∞(K), and assume that Fk(f) is bounded by a tame polyno-

mial at ω ∈ ρR̃n. Then F(f · 1)(ω) = Fk(f)(ω).

Proof. It suffices to apply Thm. 7.11(i):

F(f · 1)(ω) =
ˆ
f(x)F(δ)(x)e−ix·ω dx

=

ˆ
δ(x)Fk

(
f · e−i(−)·ω

)
(x) dx

=

ˆ
δ(x)Fk (f) (x+ ω) dx = Fk (f) (ω).

Since ∂
∂xj

[Fk(f)] (ω) = −iFk(xjf)(ω), we have the following sufficient condition for

Fk(f) being bounded by a tame polynomial at ω ∈ ρR̃n:

Theorem 8.2. Let b ∈ ρR̃>0 be a large infinite number, and let f ∈ ρGC∞(K) be uniformly

bounded by a tame polynomial at K, i.e.

∃M, c ∈ ρR̃ ∀y ∈ K ∀j ∈ N :
∣∣djf(y)∣∣ ≤M · cj , b

c
is a large infinite number. (8.1)
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Then for all ω ∈ ρR̃n, the HFT Fk(f) is bounded by a tame polynomial at ω. In particular,

every f ∈ S(Rn) satisfies condition (8.1), and hence

F(f) = F(f · 1) = ιbRn(f̂), (8.2)

where f̂ ∈ S(Rn) is the classical FT of f .

Proof. Up to the use of equivalent norms for the j-th differentials, for a suitable constant

C ∈ R>0, we have ∣∣djFk(f)(ω)
∣∣ ≤ C max

h∈Nn

|h|≤j

∣∣∣∣∂hFk(f)

∂ωh
(ω)

∣∣∣∣ .
Therefore, using Thm. 6.1(ix), we get∣∣djFk(f)(ω)

∣∣ ≤ C max
h∈Nn

|h|≤j

∣∣Fk

(
xhf

)∣∣ ≤ C max
h∈Nn

|h|≤j

ˆ
K

∣∣xhf(x)∣∣ dx
≤ CMcj

ˆ
K

|xh|dx =: M̄cj .

If f ∈ S(Rn), then
∣∣djf(y)∣∣ ∈ R, so that if b ≥ dρ−r, r ∈ R>0, it suffices to take c = dρ−r+s

where 0 < s < r to have that (8.1) holds. The last equality in (8.2) is equivalent to say

that
´

Rn f(x)e
−ix·ω dx =

´
K
f(x)e−ix·ω dx, which can be proved as for the Gaussian, see

Lem. 5.5.

We can now consider the relations between ιbRn(T̂ ) and Fk(ι
b
Rn(T )) when T ∈ S ′(Rn).

A first trivial link is given by the so-called equality in the sense of generalized tempered

distributions: For all φ ∈ S(Rn), from (3.5) we haveˆ
ιbRn(T̂ )φ = ⟨T̂ , φ⟩ = ⟨T, φ̂⟩ =

ˆ
ιbRn(T )φ̂.

Using the previous Thm. 8.2 we get φ̂ = F(φ) (identifying a smooth function with its

embedding). Consequentlyˆ
ιbRn(T̂ )φ =

ˆ
ιbRn(T )F(φ) =

ˆ
F
(
ιbRn(T )

)
φ ∀φ ∈ S(Rn). (8.3)

In Colombeau’s theory, this relation is usually written ιbRn(T̂ ) =g.t.d. F
(
ιbRn(T )

)
.

In the following result, we give a sufficient condition to have a pointwise equality

between the HFT of ιbRn(T ) and T̂ :

Theorem 8.3. Let b ∈ ρR̃>0 be a large infinite number and T ∈ S ′(Rn). Then

Fk(ι
b
Rn(T ))(ω) = ιbRn(T̂ )(ω).

Moreover, if Fk(ι
b
Rn(T )) is bounded by a tame polynomial at ω ∈ ρR̃n, then

F(ιbRn(T ) · 1)(ω) = ιbRn(T̂ )(ω)

Proof. For simplicity of notation, we use ι := ιbRn . Let ψ(x) = [ψε(xε)] be an n-dimensio-
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nal Colombeau mollifier defined by b, and set Kε := [−kε, kε]n; we have

Fk (ι(T )) (ω) =

[ˆ
Kε

⟨T (y), ψε(x− y)⟩e−ix·ωε dx

]
=

[
⟨T (y),

ˆ
ψε(x− y)e−ix·ωε dx⟩

]
=
[
⟨T (y), ŷ ⊕ ψε(ωε)⟩

]
=
[
⟨T̂ (y), (y ⊕ ψε) (ωε)⟩

]
=
[
⟨T̂ (y), ψε(ωε − y)⟩

]
= ι(T̂ )(ω).

Finally, using Thm. 8.1, we have the second part of the claim.

For example, Fk(ι(H))(ω) = ι(Ĥ)(ω) = ι(πδ − i vp( 1
ω )). Assuming that ω is far from

the origin, i.e. |ω| ≥ r ∈ R>0, we have ι(Ĥ)(ω) = πδ(ω) − i ιbR(vp(
1
ω ))(ω) = 0 − i

ω =

Fk(ι(H))(ω) (the equality ιbR(vp(
1
ω ))(ω) =

1
ω follows from Thm. 2.22 because |ω| ≥ r ∈

R>0). However, note that the latter steps cannot be repeated if ω ≈ 0.

8.1. Fourier transform in the Colombeau setting. Only in this section we assume

a very basic knowledge of Colombeau’s theory.

Assume that Ω ⊆ Rn is an open set. The algebra Gs
τ (Ω) of tempered generalized

functions was introduced by J.F. Colombeau in [11] for Ω = Rn and in [50] on arbitrary

open sets, in order to develop a theory of Fourier transform. Since then, there has been

a rapid development of Fourier analysis, regularity theory and microlocal analysis in this

setting.

Definition 8.4. The Gs
τ (Ω) algebra of Colombeau tempered GF (trivially generalized by

using an arbitrary gauge ρ) is defined as follows:

Es
τ (Ω) :=

{
(uε) ∈ C∞(Ω)I | ∀α ∈ Nn ∃N ∈ N :

sup
x∈Ω

(1 + |x|)−N |∂αuε (x)| = O(ρ−N
ε )

}
,

N s
τ (Ω) :=

{
(uε) ∈ C∞(Ω)I | ∀α ∈ Nn ∃p ∈ N ∀m ∈ N :

sup
x∈Ω

(1 + |x|)−p |∂αuε (x)| = O(ρmε )

}
,

Gs
τ (Ω) := Es

τ (Ω)/N s
τ (Ω).

Colombeau tempered GF can be embedded as GSF, at least if the internal set [Ω] is

sharply bounded. We first define

Definition 8.5. Let X ⊆ ρR̃n. Then

ρGC∞
τ (X) :=

{
u ∈ ρGC∞(X) | ∀α ∈ Nn ∃N ∈ N ∀x ∈ X : |∂αu (x)| ≤ (1 + |x|)N

dρN

}
.

For the proof of the following result, see e.g. [31, Prop. 1.2.47].
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Theorem 8.6. Let Ω ⊆ Rn be an n-dimensional box, i.e. a subset of the form I1×. . .×In,
where each Ik is a finite or infinite open interval in R. A Colombeau tempered GF u =

(uε) + N s
τ (Ω) ∈ Gs

τ (Ω) defines a GSF u : [xε] ∈ [Ω] −→ [uε(xε)] ∈ ρC̃. This assignment

provides an algebra isomorphism Gs
τ (Ω) ≃

ρGC∞
τ ([Ω]).

Integration of a CGF u = [uε] ∈ Gs(Ω) over a standard K ⋐ Ω can be defined ε-wise

as
´
K
u (x) dx :=

[´
K
uε (x) dx

]
∈ ρR̃. Similarly we can proceed for

´
Ω
u if u is compactly

supported and Ω ⊆ Rn is an arbitrary open set. On the other hand, to define the Fourier

transform, we have to integrate tempered CGF on the entire Rn. Using this integration of

CGF, this is accomplished by multiplying the generalized function by a so-called damping

measure φ, see e.g. [35]:

Definition 8.7. Let φ ∈ S(Rn) with
´

Rn φ = 1,
´

Rn x
αφ(x) dx = 0 for all α ∈ Nn \ {0},

and set φε(x) := ρε ⊙ φ(x) = ρ−n
ε φ(ρ−1

ε x). Let u = [uε] ∈ Gτ (Rn). Then uφ̂ := [uεφ̂ε],´
Rn u(x) dφ̂x :=

´
Rn uφ̂ dx =

[´
Rn uε(x)φ̂ε(x) dx

]
∈ C̃, where φ̂ε denotes the classical FT.

In particular,

Fφ̂(u)(ω) :=

ˆ
Rn

e−ixωu(x) dφ̂x =

[ˆ
Rn

e−ixωuε(x)φ̂ε(x) dx

]
F∗

φ̂(u)(x) := (2π)−n

ˆ
Rn

eixωu(ω) dφ̂ω =

[
(2π)−n

ˆ
Rn

eixωuε(ω)φ̂ε(ω) dω

]
.

As a result, although this notion of Fourier transform in the Colombeau setting shares

several properties with the classical one, it lacks e.g. the Fourier inversion theorem,

which holds only at the level of equality in the sense of generalized tempered distri-

butions [11, 13, 48], see also (8.3). See also [60] for a Paley-Wiener like theorem. In other

words, we only have e.g. Fφ̂(∂
αu) =g.t.d. i

|α|ωαFφ̂(u), i
|α|F∗

φ̂(∂
αu) =g.t.d. x

αF∗
φ̂(u),

Fφ̂F∗
φ̂u =g.t.d. F∗

φ̂Fφ̂u, where Fφ̂(u) denotes the Fourier transform with respect to

the damping measure. Moreover ⟨ιR(T̂ ), ψ⟩ ≈ ⟨Fφ̂ιR(T ), ψ⟩ for all T ∈ S ′(R) and all

ψ ∈ S(R), where ιR(T ) is the embedding of Thm. 2.22. Intuitively, one could say that the

use of the multiplicative damping measure introduces a perturbation of infinite frequen-

cies that inhibit several results that, on the contrary, hold for the HFT. On the other

hand, HFT lies on a better integration theory that allows us to integrate any GSF on

the functionally compact set K. The only possibilities to obtain a strict Fourier inversion

theorem in Colombeau’s theory, are the approach used by [49], where smoothing kernels

are used as index set (instead of the simpler ε ∈ I) and therefore the knowledge of infinite

dimensional calculus in convenient vector spaces is needed, or [54, 7], which are based on

the Colombeau space G(S(R)), but where the imbedding of S ′(R) is more complicated.

Finally, the following result links the HFT with the FT of tempered CGF as defined

above.

Theorem 8.8. Let u ∈ ρGC∞
τ (Rn) be a tempered CGF (identified with the corresponding

GSF). Finally, let φ ∈ S(Rn) be a dumping measure. Then

Fφ̂(u) = F [u · φ̂((−) · dρ)] = F [u · F(φ)((−) · dρ)] .
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Proof. Def. (8.7) yields

Fφ̂(u)(ω) =

ˆ
Rn

u(x)e−ix·ω dφ̂x

=

ˆ
Rn

u(x)e−ix·ωd̂ρ⊙ φ(x) dx

=

ˆ
Rn

u(x)e−ix·ω (dρ ⋄ φ̂) (x) dx

=

ˆ
Rn

u(x)e−ix·ωφ̂(dρ · x) dx

= F [u · φ̂((−) · dρ)] (ω)
= F [u · F(φ)((−) · dρ)] (ω),

where, in the last equality, we applied (8.2).

9. Examples and applications

In this section we present an initial study of possible applications of the HFT. Our

main aim is to highlight the new potentialities of the theory. For example, thanks to the

possibility of applying the HFT also to non-tempered GF, the next deductions are fully

rigorous, even if they correspond to the frequently used statement: “proceeding formally,

we obtain...”. We also note that the FT is often used to prove necessary conditions: if the

solution y satisfies a given differential equation, then necessarily y = . . . In the following,

we propose an attempt to also reverse this implication, even if this depends on a suitable

extensibility property : If the HFT of the given differential equation holds on some space,

e.g. K̊ × ρR̃≥0, then it also holds on the entire ρR̃ × ρR̃≥0. We discuss some sufficient

conditions for this property to hold, but a thorough study of this condition is out of the

scope of the present work.

9.1. Applications of HFT to ordinary differential equations.

The simplest ODE. We first consider the following, apparently trivial but actually

meaningful, example:

y′ = y, y (0) = c, y ∈ ρGC∞ ([−k, k]) , c ∈ ρR̃, (9.1)

where k = − log (dρ). Since we do not impose limitations on the initial value c, this simple

example clearly shows the possibilities of the HFT to manage non tempered generalized

functions. Applying the HFT to both sides of (9.1) and using the derivation formula

(6.1), we get

Fk (y) = ∆1ky + iωFk (y) . (9.2)

Set for simplicity ∆y (ω) := ∆1ky (ω) = y(k)e−ikω−y(−k)eikω and note that the function

∆y does not depend on the whole function y but only on the two values y(±k). We get
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Fk (y) (ω) =
∆y(ω)
1−iω , and applying the Fourier inversion Thm. 7.4, we obtain

y(x) = lim
h→+∞

F−1
h

(
∆y (ω)

1− iω

)
(x) ∀x ∈ K̊. (9.3)

Using the initial condition in (9.1), we have

y (0) = lim
h→+∞

F−1
h

(
∆y (ω)

1− iω

)
(0) = lim

h→+∞

ˆ h

−h

∆y (ω)

1− iω
dω = c. (9.4)

Clearly, e.g. by separation of variables, (9.1) necessarily yields y(x) = cex for all x ∈
[−k, k]. Therefore, y (k) = ce− log dρ = c

dρ , y (−k) = celog dρ = cdρ and ∆y (ω) = cdρiω−1−
cdρ−iω+1 because dρiω = e−ikω.

Vice versa, take a, b ∈ ρR̃, and set

∆k
a,b(ω) := a · e−ikω − b · eikω ∀ω ∈ ρR̃.

We also assume the following compatibility conditions on a, b:
a = limh→+∞ F−1

h

(
∆k

a,b(ω)

1−iω

)
(k)

b = limh→+∞ F−1
h

(
∆k

a,b(ω)

1−iω

)
(−k)

(9.5)

We will see in Rem. 9.1.(i) that actually these conditions overdetermine a, b. Set

y(x) := lim
h→+∞

F−1
h

(
∆k

a,b(ω)

1− iω

)
(x) ∈ ρR̃ ∀x ∈ K, (9.6)

where we also assumed that the limit in (9.6) exists. Consequently, (9.6) and (9.5) imply

∆k
a,b(ω) = ∆1ky(ω). Now, apply Fk to both sides of (9.6) and use Thm. 2.35, Thm. 7.4

to get

Fk(y)(ω) = Fk

(
lim

h→+∞
F−1

h

(
∆1ky(ω)

1− iω

))
(ω) (9.7)

= lim
h→+∞

Fk

(
F−1

h

(
∆1ky(ω)

1− iω

))
(ω) (9.8)

= lim
h→+∞

F−1
h

(
Fk

(
∆1ky(ω)

1− iω

))
(ω) (9.9)

=
∆1ky(ω)

1− iω
∀ω ∈ K̊. (9.10)

Note that in (9.9) we used Fubini’s theorem to exchange F−1
h with Fk. We can now

reverse all the calculations leading us to the necessary condition (9.3) to obtain

Fk(y)(ω) = Fk(y
′)(ω) ∀ω ∈ K̊. (9.11)

We would like to apply Fh to both sides of (9.11) and then take limh→+∞. However, to

make this step, we need equality (9.11) to hold for all ω ∈ ρR̃ because h → +∞, h ∈ ρR̃.
We therefore assume that (9.11) can be extended from K̊ to the entire ρR̃ (note that both

sides of (9.11) are GSF defined on ρR̃):

Fk(y)|K̊ = Fk(y
′)|K̊ ⇒ Fk(y) = Fk(y

′) on ρR̃. (9.12)
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This is the aforementioned extensibility property for the ODE y′ = y. Under this assump-

tion, we can apply the Fourier inversion Thm. 7.4 to obtain y(x) = y′(x) for all x ∈ K̊,

and hence y = y′ by continuity. We can simply, and more generally, state the extensibility

property saying: if the HFT of the differential equation holds in K̊ for the function y,

then it holds everywhere.

Remark 9.1.

(i) Since y(x) = y(0)ex, compatibility conditions (9.5) imply a = y(0)ek and b =

y(0)e−k. If y(0) is invertible, we obtain a = be2k. Therefore, (9.5) overdetermine

the constants a, b.

(ii) Using the notion of hyperseries we already mentioned in Sec. 4.1 (see [62]), we can

say that if both Fk(y) and Fk(y
′) can be expanded in Taylor hyperseries (we can

say that they are real hyper analytic), i.e. if for some ω̄ ∈ K̊ and for all ω ∈ ρR̃, we
have

Fk(y)(ω) =
ρ∑
n∈σÑ

Fk(y)
(n)(ω̄)

n!
· (ω − ω̄)n

Fk(y
′)(ω) =

ρ∑
n∈σÑ

Fk(y
′)(n)(ω̄)

n!
· (ω − ω̄)n,

then (9.12) holds, because (9.11) yields Fk(y)
(n)(ω̄) = Fk(y

′)(n)(ω̄) for all n ∈ N.

Even if this ODE is the simplest one, we want to underline our deductions with the

following statements:

Theorem 9.2. If k = − log dρ, y ∈ ρGC∞(K), ∆y := ∆1ky and y′ = y, then

y(x) = lim
h→+∞

F−1
h

(
∆y (ω)

1− iω

)
(x) ∀x ∈ K̊.

The sufficient condition deduction corresponds to the following

Theorem 9.3. Let a, b ∈ ρR̃, and set

∆k
a,b(ω) := a · e−ikω − b · eikω ∀ω ∈ ρR̃

∀x ∈ K ∃ lim
h→+∞

F−1
h

(
∆k

a,b(ω)

1− iω

)
(x) =: y(x) ∈ ρR̃.

Assume the compatibility conditions (9.5) and the extensibility property for the ODE

y′ = y, i.e. (9.12). Then {
y′ = y on K

y(0) = limh→+∞
´ h
−h

∆k
a,b(ω)

1−iω dω.

We finally underscore that:

(a) In the classical theory, the lacking of the term ∆1ky(ω) does not allow one to obtain

the non-tempered solution for c ̸= 0: in other words, if ∆1ky = 0, then (9.4) implies

that necessarily c = 0.
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(b) In the previous deduction, it is clearly important that the HFT can be applied to

all the GF of the space ρGC∞(K).

(c) Compare (9.3) with Example 5.4 to note that if c ≥ r ∈ R>0, then in (9.3) we are

considering the inverse HFT of a GSF which always takes infinite values for all finite

ω. Clearly, this strongly motivates the use of a non-Archimedean framework for this

type of problems.

(d) All our results, in particular the inversion theorem (Thm. 7.4), hold for an arbitrary

infinite number k. In this particular case, we considered k of logarithmic type to get

moderateness of the exponential function.

General constant coefficient ODE. Let us consider an arbitrary n-th order constant

(generalized) coefficient ODE

any
(n) + . . . a1y

(1) + a0y = g, y, g ∈ ρGC∞([−k, k]), aj ∈ ρR̃, n ∈ N≥1. (9.13)

Note that simply assuming to have a solution y defined on the infinite interval [−k, k],
already yields an implicit limitation on the coefficients aj ∈ ρR̃. In fact, the equation

y′ − 1
dρy = 0 has solution y(x) = y(0)ex/dρ, which is defined only if x ≤ −Ndρ log dρ ≈

0 for some N ∈ N. Consequently, its domain will never be of the type [−k, k] unless
y(0) = 0. By applying the HFT to both sides of equation (9.13), the differential equation

is converted into the algebraic equation

P · Fk (y) + ∆y = Fk (g) , (9.14)

where

P (ω) :=

n∑
j=0

aj (iω)
j
,

and ∆y (ω) is the sum of all the extra terms in Thm. 6.1(viii), which in this case becomes

∆y(ω) :=

n∑
j=1

aj ·
j∑

p=1

(iω)j−p∆1ky
(p−1)(ω) ∀ω ∈ ρR̃.

Note that the function ∆y depends on the points y(p)(±k) for p = 0, . . . , n−1. Assuming

that P (ω) is invertible for all ω ∈ K, from (9.14) and the inversion theorem (Thm. 7.4),

we get

y(x) = lim
h→+∞

F−1
h

(
Fk(g)−∆y

P

)
(x) ∀x ∈ K̊. (9.15)

Proceeding as in the previous example, i.e. using again the inversion theorem (Thm. 7.4),

the differentiation formula (6.1) and assuming suitable compatibility and extensibility

conditions, we can actually prove that (9.15) yields a solution of (9.13). For a generaliza-

tion to GSF of the usual results about n-th order constant generalized coefficient ODE,

see [45].

Airy equation. A simple example of a non-constant coefficient linear ODE is given by

the Airy equation

u′′(x)− x · u(x) = 0, u ∈ ρGC∞([−k, k] , ρR̃). (9.16)
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By applying the derivative formulas Thm. 6.1(viii) and Thm. 6.1(ix), we get

iω2Fk (u) + ω∆1ku− i∆1ku
′ −F ′

k (u) = 0.

Let us now set ∆u (ω) := ω∆1ku (ω)− i∆1ku
′ (ω), ∀ω ∈ ρR̃. Once again, the function ∆u

depends on the points u (±k) and u′ (±k).

F ′
k (u)− iω2Fk (u) = ∆u. (9.17)

Equation (9.17) is a first order non-constant coefficient, non-homogeneous generalized

ODE with respect to the variable ω. We can solve it e.g. by considering the integrating

factor µ (ω) := e
´ ω
0

−iz2 dz = e−iω3

3 . Then, the solution of (9.17) is given by

Fk (u) (ω) =

´ ω
0
µ (z)∆u (z) dz + c

µ (ω)
=

´ ω
0
e−

iz3

3 ∆u (z) dz + c

e−
iω3

3

∀ω ∈ ρR̃,

where c := Fk(u)(0) ∈ ρR̃. Finally, we apply the inversion theorem (Thm. 7.4) and

substitute ∆u (ω) to recover the original function

u(x) = lim
h→+∞

F−1
h

(´ ω
0
e−

iz3

3 ∆u (z) dz + c

e−
iω3

3

)
(x)

= lim
h→+∞

F−1
h

(´ ω
0
e−

iz3

3 ∆u (z) dz

e−
iω3

3

)
(x) + lim

h→+∞

c

π

ˆ h

0

cos

(
ω3

3
+ ωx

)
dω

= lim
h→+∞

1

2π

ˆ h

−h

e
i
(
ωx+ω3

3

) ˆ ω

0

e
−i

(
kz+ z3

3

)
(zu (k)− iu′ (k)) dz dω

− lim
h→+∞

1

2π

ˆ h

−h

e
i
(
ωx+ω3

3

) ˆ ω

0

e
−i

(
−kz+ z3

3

)
(zu (−k)− iu′ (−k)) dz dω

+ lim
h→+∞

c

π

ˆ h

0

cos

(
ω3

3
+ ωx

)
dω ∀x ∈ K. (9.18)

If we assume that u(±k) = 0, then we get the first Airy function u(x) = c ·Ai(x) because

the absolute values of the other two integrals are bounded by |u′(±k)|
´ h
−h

´ ω
0
dz dω = 0.

For example, if (an)n∈N is the sequence of negative zeros of Ai(x), then we can consider

any −kε := anε
≤ −ρ−1

ε to get that k is a strong infinite number, and hence Ai(±k) = 0

because 0 ≤ Ai(k) ≤ exp(− 2
3k

3/2) = 0, see e.g. [1, 63]. Moreover, the classical theory

[1, 63] yields that u(x) = aAi(x) + bBi(x), where a, b ∈ ρR̃, and Bi(x) is the second Airy

function:

Bi(x) =
1

π

ˆ +∞

0

{
exp

(
− t

3

3
+ xt

)
+ sin

(
t3

3
+ xt

)}
dt.

Now, let (bn)n∈N be the sequence of negative zeros of Bi(x), and consider −k̄ε := bnε
≥

− log ρ−1
ε . We have that Bi(−k̄) = 0, but Ai(−k̄) is invertible because the two Airy

functions differ in phase by π/2 as x→ −∞. Therefore, the condition u(−k̄) = 0 implies

a = 0 and hence u(x) = bBi(x). Moreover, u(k) ∈ ρR̃ is a well-defined infinite number

because k ≤ log dρ. We explicitly note that Bi(x) is of exponential order as x→ +∞ and

hence it is not a tempered distribution, so that classically we cannot obtain this solution.

On the other hand, the solution presented here is only partially satisfactory because we
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were not able to extract the second Airy function from (9.18), but we used the classical

theory to express u(x) as a linear combination of Ai(x) and Bi(x).

9.2. Applications of HFT to partial differential equations.

The wave equation. Let us consider the one dimensional (generalized) wave equation

∂2u

∂t2
= c2

∂2u

∂x2
, c ∈ ρR̃, u ∈ ρGC∞([−k, k]× ρR̃≥0), (9.19)

where c is positive and invertible, and subject to the initial conditions at t = 0

u(−, 0) = f, ∂tu(−, 0) = g, (9.20)

Where f , g ∈ ρGC∞(ρR̃). As usual, we directly apply the HFT Fk with respect to the

variable x to both sides and then apply the derivation formula of Thm. 6.1(viii) to the

right hand side

Fk

(
∂2u

∂t2

)
= c2Fk

(
∂2u

∂x2

)
,

∂2Fk (u)

∂t2
= −c2ω2Fk (u) + iω∆1ku+∆1k (∂xu) .

Note that also the ∆1k-terms refer to the variable x, but the result is a function of t.

More precisely, set

∆u (ω, t) := iω∆1k (u(−, t)) (ω) + ∆1k (∂xu(−, t)) (ω). (9.21)

The function ∆u does not depend on the whole functions u and ∂xu but only on its

boundary values: u (±k,−) and ∂xu (±k,−), which are functions of t. Hence, we get

∂2Fk (u)

∂t2
(ω,−) + c2ω2Fk (u) (ω,−) = ∆u(ω,−) ∀ω ∈ ρR̃. (9.22)

We obtain, for each fixed ω, a constant (generalized) coefficient, non-homogeneous, second

order ODE in the unknown Fk (u) (ω,−). Clearly, (9.22) already highlights a difference

with the classical FT, where ∆u = 0. To solve equation (9.22), we can use the standard

method of variation of parameters to get

Fk(u)(ω, t) = d2(ω)tS(cωt) + d1(ω) cos(cωt)+

tS(cωt)

ˆ t

1

∆u(ω, s) cos(cωs) ds− (9.23)

cos(cωt)

ˆ t

1

s∆u(ω, s)S(cωs) ds, (9.24)

S(z) :=
1

2

ˆ 1

−1

cos(zs) ds. (9.25)

More precisely, in the previous step we applied the general theory of linear constant

generalized coefficient, non-homogeneous ODE developed in [45], which generalizes the

classical theory proving that the space of all the solutions is a 2-dimensional ρR̃-module,

generated in this case by tS(cωt) and cos(cωt), and translated by a particular solution of

(9.22). Explicitly note that every function in (9.24) is a smooth function or a GSF and
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that S(z) = sin(z)
z if z ∈ ρR̃ is invertible. We also note that (9.24) and (9.20) imply that

the functions d1, d2 are given by

d1(ω) = Fk(f)(ω)−
ˆ 1

0

s∆u(ω, s)S(cωs) ds (9.26)

d2(ω) = Fk(g)(ω) +

ˆ 1

0

∆u(ω, s) cos(cωs) ds. (9.27)

They hence depend on the functions f , g of the initial conditions (9.20), but also on the

unknown function u because of (9.21). Finally, applying the inversion theorem (Thm. 7.4),

for all the interior points x ∈ K̊ and all t ∈ ρR̃≥0, we get

u(x, t) = lim
h→+∞

{
F−1

h (d2(ω)tS(cωt) + d1(ω) cos(cωt)) (x, t)+

F−1
h

(
tS(cωt)

ˆ t

1

∆u(ω, s) cos(cωs) ds

)
(x, t)−

F−1
h

(
cos(cωt)

ˆ t

1

s∆u(ω, s)S(cωs) ds

)
(x, t)

}
.

Following the usual calculations, the first summand yields the following generalizations

of the d’Alembert formula

u(x, t) =
1

2
[f(x− ct) + f(x+ ct)] +

1

2c

ˆ x+ct

x−ct

g(x′) dx′+

lim
h→+∞

{
2F−1

h

(
tS(cωt)

ˆ t

1

∆u(ω, s) cos(cωs) ds

)
(x, t)−

F−1
h

(
cos(cωt)

ˆ t

0

s∆u(ω, s)S(cωs) ds

)
(x, t)

}
(9.28)

for all the interior points x ∈ K̊ and all t ∈ σR̃≥0 such that x ± ct ∈ K̊ (note that in

(9.26) and (9.27) we have the term Fk and k is fixed, so that the usual calculations can

be adapted if x± ct ∈ K̊). Note explicitly that (9.28) does not yield a uniqueness result

because ∆u depends on u (±k,−) and ∂xu (±k,−) (see (9.21)). This proves the following

Theorem 9.4. Let f , g ∈ ρGC∞([−k, k]) and assume that u ∈ ρGC∞([−k, k] × ρR̃≥0)

is a solution of the wave equation (9.19) subject to the initial conditions (9.20). Then

necessarily u(x, t) satisfies relation (9.28) at all interior points x ∈ K̊ and all t ∈ ρR̃≥0

such that x± ct ∈ K̊. In particular, if we also assume that u (±k,−) = 0 = ∂xu (±k,−),

we get the usual d’Alembert solution, and if in addition we take f = 0, g = δ, we get the

wave kernel u(x, t) = 1
2c [H(x+ ct)−H(x− ct)].

Now, we want to see how to revert the previous steps to obtain a sufficient condition.

Given GSF F+, F−, G+, G− ∈ ρGC∞(ρR̃≥0), set for all ω ∈ ρR̃ and all t ∈ ρR̃≥0

∆k
±(ω, t) := iω

(
F+(t)e

−ik·ω − F−(t)e
ik·ω)+ (G+(t)e

−ik·ω −G−(t)e
ik·ω) (9.29)

Let W k
±(x, t) be the function defined by the right hand side of (9.28) with ∆k

± instead of
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∆u, i.e. for all (x, t) ∈ K × ρR̃≥0

W k
±(x, t) =

1

2
[f(x− ct) + f(x+ ct)] +

1

2c

ˆ x+ct

x−ct

g(x′) dx′+

lim
h→+∞

{
2F−1

h

(
tS(cωt)

ˆ t

1

∆k
±(ω, s) cos(cωs) ds

)
(x, t)−

2F−1
h

(
cos(cωt)

ˆ t

1

s∆k
±(ω, s)S(cωs) ds

)
(x, t)

}
(9.30)

(we are clearly implicitly assuming that such limit exists, which is, on the other hand a

necessary condition of the previous deduction). We assume the compatibility conditions

F+(t) =W k
±(k, t), F−(t) =W k

±(−k, t)
G+(t) = ∂xW

k
±(k, t), G−(t) = ∂xW

k
±(−k, t) (9.31)

(as usual, we will see that they are redundant because having a solution of the DE

imply further restrictions on these functions). Finally, set u(x, t) :=W k
±(x, t) ∈

ρR̃ for all

(x, t) ∈ K × ρR̃≥0. Conditions (9.31) and (9.29) imply

∆k
±(ω, t) = iω∆1k (u(−, t)) (ω) + ∆1k (∂xu(−, t)) (ω), (9.32)

which is an important equality to reverse all the previous steps. In fact, applying Fk to

both side of the equality u(x, t) =W k
±(x, t) we get

Fk (u) (ω, t) = Fk

(
1

2
[f(x− ct) + f(x+ ct)] +

1

2c

ˆ x+ct

x−ct

g(x′) dx′
)
(ω, t)+

Fk

(
lim

h→+∞

{
2F−1

h

(
tS(cωt)

ˆ t

1

∆k
±(ω, s) cos(cωs) ds

)
−

2F−1
h

(
cos(cωt)

ˆ t

1

s∆k
±(ω, s)S(cωs) ds

)
(x, t)

})
(ω, t). (9.33)

The first summand can be written as

Fk

(
1

2
[f(x− ct) + f(x+ ct)] +

1

2c

ˆ x+ct

x−ct

g(x′) dx′
)
(ω, t) =

= Fk

(
lim

h→+∞
F−1

h (d2(ω)tS(cωt) + d1(ω) cos(cωt))

)
(ω, t).

As above, we can exchange Fk and limh→+∞ because of Thm. 2.35. Consequently, ap-

plying the Fourier inversion Thm. 7.4, we obtain

Fk(u)(ω, t) = d2(ω)tS(cωt) + d1(ω) cos(cωt)+

tS(cωt)

ˆ t

1

∆k
±(ω, s) cos(cωs) ds− (9.34)

cos(cωt)

ˆ t

1

s∆k
±(ω, s)S(cωs) ds,

which holds for all interior point ω ∈ K and for all t ∈ ρR̃≥0. Reversing the previous
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calculations, we arrive at

∂2Fk (u)

∂t2
(ω, t) + c2ω2Fk (u) (ω, t) = ∆k

±(ω, t).

Now, we can substitute (9.32) and use the derivation formula of Thm. 6.1(viii), to get

Fk

(
∂2u

∂t2

)
(ω, t) = c2Fk

(
∂2u

∂x2

)
(ω, t) ∀ω ∈ K̊ ∀t ∈ ρR̃≥0.

We finally assume the extensibility property for the wave equation: If the HFT of the

wave equation holds on K̊× ρR̃≥0, then it also holds on ρR̃× ρR̃≥0. This allows us to apply

F−1
h to both sides and use again the Fourier inversion theorem:

F−1
h

(
Fk

(
∂2u

∂t2

))
= c2F−1

h

(
Fk

(
∂2u

∂x2

))
∀h ∈ ρR̃,

lim
h→+∞

F−1
h

(
Fk

(
∂2u

∂t2

))
(x, t) = c2 lim

h→+∞
F−1

h

(
Fk

(
∂2u

∂x2

))
(x, t),

∂2u

∂t2
(x, t) = c2

∂2u

∂x2
(x, t) (9.35)

for all x ∈ K̊ and all t ∈ ρR̃≥0, and hence also for all x ∈ K by continuity. It is important

to note that equation (9.35) implies the usual compatibility conditions (see e.g. [36] for

similar calculations) for t ≤ 2k/c:

F+(0) = f(k), F ′
+(0) = g(k), F ′′

+(0) = c2f ′′(k)

F−(0) = f(−k), F ′
−(0) = g(−k), F ′′

−(0) = c2f ′′(−k)
g(k − ct)− cf ′(k − ct) = F ′

+(t)− cG+(t)

g(−k + ct) + cf ′(−k + ct) = F ′
+(t) + cG+(t)

Therefore, conditions (9.31) over-determine the functions F± and G± which hence cannot

be freely chosen. In particular, if f , g ∈ ρGD([−a, a]), and we take F± = G± = 0,

then ∆k
±(ω, t) = 0, the solution u(x, t) = W k

±(x, t) consists only of the classical part of

d’Alembert formula, and hence u(±k, t) = 0 = ∂xu(±k, t) for some k ∈ ρR̃ sufficiently

large and for all t ∈ [0, k−a
c ].

This proves the following

Theorem 9.5. Let f , g ∈ ρGC∞([−k, k]), F+, F−, G+, G− ∈ ρGC∞(ρR̃≥0). Define ∆k
±

as in (9.29), W k
± as in (9.30) (assuming that the corresponding limh→+∞ exists) and

u(x, t) :=W k
±(x, t) for all (x, t) ∈ K × ρR̃≥0. Assume the compatibility conditions (9.31),

and the extensibility property: If Fk

(
∂2u
∂t2

)
= c2Fk

(
∂2u
∂x2

)
holds in K̊ × ρR̃≥0, then it also

holds on ρR̃ × ρR̃≥0. Then u satisfies the wave equation on K × ρR̃≥0. In particular, if

F± = G± = 0, then u also satisfies the initial conditions (9.20). Finally, if F± = G± = 0

and f , g ∈ ρGD([−a, a]), then the conditions u(±k, t) = 0 = ∂xu(±k, t) hold for some

k ∈ ρR̃ sufficiently large and for all t ∈ [0, k−a
c ], and u is given by the usual d’Alembert

formula.

Explicitly note that even the last case, F± = G± = 0 and f , g ∈ ρGD([−a, a]), includes
for f and g a large class of GSF, e.g. non-linear operations F̄ ((δ(p))a)0<a≤A

0≤p≤P
of Dirac delta
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and its derivatives, such that F̄ (0) = 0.

The Heat equation. Let us consider the one dimensional (generalized) heat equation

∂u

∂t
= a2

∂2u

∂x2
, u ∈ ρGC∞([−k, k]× ρR̃≥0), (9.36)

(where a ∈ ρR̃>0, t ≤ − N
a2k2 log (dρ), N ∈ N>0) and subject to the initial conditions at

t = 0

u(−, 0) = f, (9.37)

where f ∈ ρGC∞([−k, k]). Applying, as usual, the HFT with respect to the variable x to

both sides of (9.36) and Thm. 6.1(viii) we get

∂Fk (u)

∂t
= −a2ω2Fk (u) + iω∆1ku+∆1k (∂xu) .

For all ω ∈ ρR̃, set

∆u (ω, t) := iω∆1k (u(−, t)) + ∆1k (∂xu(−, t)) .

Therefore, we get

∂Fk (u)

∂t
(ω,−) + a2ω2Fk (u) (ω,−) = ∆u (ω,−) ∀ω ∈ ρR̃. (9.38)

Solving (9.38) with the integrating factor µ (t) := ea
2ω2

´ t
0
dt = ea

2ω2t (which is well-

defined if ω ∈ K because we assumed that t ≤ − N
a2k2 log (dρ)), we have

Fk (u) (ω, t) =

´ t
0
ea

2ω2t∆u (ω, t) dt+ c(ω)

ea2ω2t
,

where c(ω) := Fk (u) (ω, 0) = Fk(f)(ω) ∈ ρR̃, so that

Fk (u) (ω, t) = e−a2ω2t

tˆ

0

ea
2ω2t∆u (ω, t) dt+ Fk(f)(ω)e

−a2ω2t

= e−a2ω2t

tˆ

0

ea
2ω2t∆u (ω, t) dt+ Fk(f)(ω)F

(
1

2a
√
πt
e−

x2

4a2t

)
(ω, t)

=: e−a2ω2t

tˆ

0

ea
2ω2t∆u (ω, t) dt+ Fk(f)(ω)F (Ha

t (x)) (ω, t)

= e−a2ω2t

tˆ

0

ea
2ω2t∆u (ω, t) dt+ Fk (f ∗Ha

t ) (ω, t),

where Ha
t (x) := 1

2a
√
πt
e−

x2

4a2t is the heat kernel (which, in our setting, is a compactly

supported GSF). Finally, applying the inversion theorem (Thm.7.4) and the convolution

formula Thm. 6.1(x) we get

u(x, t) = (f ∗Ha
t )(x, t) + F−1

k

e−a2ω2t

tˆ

0

ea
2ω2t∆u (ω, t) dt

 (x, t). (9.39)
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As usual, if ∆u (ω, t) equals zero, we obtain the classical solution. This proves the following

Theorem 9.6. Let f ∈ ρGC∞([−k, k]), and assume that u ∈ ρGC∞([−k, k] × ρR̃≥0) is a

solution of the heat equation (9.36), where a ∈ ρR̃>0, t ≤ − N
a2k2 log (dρ), N ∈ N>0, subject

to initial condition (9.37). Then necessarily u(x, t) satisfies (9.39) at all interior points

x ∈ K̊ and all t ∈ ρR̃≥0. In particular, if we also assume that u(±k,−) = 0 = ∂xu(±k,−),

we get the usual solution, and if in addition we take f = δ, then we get the heat kernel

u(x, t) = Ha
t (x) =

1
2a

√
πt
e−

x2

4a2t .

It is now clear how one can proceed to obtain a sufficient condition for the heat

equation similar to Thm. 9.5, and for this reason, we omit it here.

Laplace’s equation. Actually, we show this example only for the sake of completeness,

but we present here only a preliminary study. Let us consider the one dimensional Laplace

equation
∂2u

∂x2
+
∂2u

∂y2
= 0 , u ∈ ρGC∞([−k, k]× [0,−N

k
log dρ]), (9.40)

where N ∈ N>0, and subject to the boundary conditions at y = 0

u(−, 0) = f, ∂yu(−, 0) = 0, (9.41)

u(±k,−) = 0, ∂xu(±k,−) = 0, (9.42)

where f ∈ ρGC∞([−k, k]). Set Y := [0,−N
k log dρ] ⊆ ρR̃. By applying the HFT with

respect to x and Thm. 6.1(viii), the problem is converted into

∂2Fk (u)

∂y2
= ω2Fk (u) (9.43)

because of (9.42). The general solution of (9.43) is

Fk(u)(ω, y) = d1(ω)e
ωy + d2(ω)e

−ωy,

where the functions d1, d2 satisfy Fk(f)(ω) = d1(ω) + d2(ω) and ∂yFk(u)(ω, 0) =

Fk (∂yu(−, 0)) (ω) = 0 = ωd1(ω)−ωd2(ω) because ∂yu(−, 0) = 0. Since the set of invert-

ible numbers in ρR̃ is dense in the sharp topology, we hence have

d1(ω) = d2(ω) =
1

2
Fk(f)(ω).

Note that e±ωy is well defined for all ω ∈ K and all y ∈ Y = [0,−N
k log dρ]. Finally,

applying the inversion theorem (Thm. 7.4), we get

u(x, y) = lim
h→+∞

F−1
h (Fk(f) · cosh(ωy)) (x, y) (9.44)

for all (x, y) ∈ K̊×Y . Note that a term of the type F−1
h (cosh(ωy)) cannot be considered

if h ∈ ρR̃ is sufficiently large and y is invertible because cosh(±hy) would yield a non

ρ-moderate number. Consequently, we cannot transform the product in (9.44) into a

convolution.

Theorem 9.7. Let f ∈ ρGC∞(K), N ∈ N>0, and set Y := [0,−N
k log dρ]. Assume

that u ∈ ρGC∞(K × Y ) is a solution of the Laplace equation subject to the boundary

conditions (9.41). Then necessarily u(x, y) satisfies relation (9.44) for all (x, y) ∈ K̊×Y .
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In particular, if f = δ then instead of F−1
h (Fk(f) · cosh(ωy)) in (9.44) we can take

F−1
h (1 · cosh(ωy)).

It is well-known that if f ∈ C∞ is a classical smooth function, and (9.40), (9.41) has

a classical solution, then f is necessarily an analytic function (see [33] and e.g. [34]).

Assuming that the classical Hadamard result [33] can be extended to GSF, this would

not exclude the case f = δ, which can be proved to be an analytic GSF.

To reverse the previous steps, assume that

f ∈ ρGD(H), H ⋐f
ρR̃

∃C,B ∈ ρR̃ ∀x ∈ H ∀j ∈ N :
∣∣∣f (j)(x)∣∣∣ ≤ C ·Bj . (9.45)

Note that if f ∈ C∞ is an ordinary smooth function and C, B ∈ R, assumption (9.45)

implies f ∈ Cω(H ∩ R), i.e. f is real analytic. Moreover, for the sake of clarity, finally

note that f ∈ Cω(H ∩ R) ∩ ρGD(H) implies only f(xε) ∼ρ 0 for all [xε] /∈ H, but it does

not imply f = 0.

The previous assumptions and the Riemann-Lebesgue Lem. 5.1 yield that also F(f) is

compactly supported in ρR̃. Define

u(x, y) := lim
h→+∞

F−1
h (F(f) · cosh(ωy)) (x, y) ∀x ∈ K ∀y ∈ Y. (9.46)

Since F(f) · cosh(ωy) is compactly supported in ρR̃ and satisfies the assumptions of

Riemann-Lebesgue Lem. 5.1, we have that also u(−, y) is compactly supported in ρR̃. We

hence assume to have considered k sufficiently large so that

u(±k,−) = 0 = ∂xu(±k,−). (9.47)

We now proceed in the usual way:

Fk (u) (ω) = Fk

(
lim

h→+∞
F−1

h (F(f) · cosh(ωy))
)
(ω)

= lim
h→+∞

Fk

(
F−1

h (F(f) · cosh(ωy))
)
(ω)

= lim
h→+∞

F−1
h (Fk (F(f) · cosh(ωy))) (ω)

= F(f)(ω) · cosh(ωy) (9.48)

for all ω ∈ K̊ and all y ∈ Y . Since iω∆1k (u(−, y)) +∆1k (∂xu(−, y)) = 0, from (9.48) we

can revert the previous calculations to obtain

Fk

(
∂2u

∂x2

)
(ω, y) + Fk

(
∂2u

∂y2

)
(ω, y) = 0 ∀(ω, y) ∈ K̊ × Y. (9.49)

Once again, we assume that our solution u satisfies the extensibility property, i.e. that

(9.49) implies that the same equation holds on ρR̃× Y . A final application of the Fourier

inversion Thm. 7.4 yields that u satisfies (9.40). Setting y = 0 in (9.46) we obtain the

first boundary condition in (9.41). Finally,

∂y
(
F−1

h (F(f) · cosh(ωy))
)
= F−1

h (F(f) · ω sinh(ωy))

converges for h → +∞ for all fixed y ∈ Y because F(f) · ω sinh(ωy) is compactly sup-

ported (see (3.3)). Since Y is functionally compact, Thm. 2.35 implies that the conver-
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gence of these partial derivatives is actually uniform on Y . Consequently ∂yu(x, 0) =

limh→+∞ ∂y
(
F−1

h (F(f) · cosh(ωy))
)∣∣

y=0
= 0.

Theorem 9.8. Assume that f satisfies (9.45) and that for all x ∈ K, y ∈ Y :=

[0,−N
k log dρ]

∃ lim
h→+∞

F−1
h (F(f) · cosh(ωy)) (x, y) =: u(x, y).

Finally, assume that u satisfies the extensibility property on K̊×Y for the Laplace equation

and k is sufficiently large so that (9.47) holds. Then u satisfies the Laplace equation (9.40)

and the boundary conditions (9.41) and (9.42).

9.3. Applications to convolution equations. Consider the following convolution

equation in y

g = f ∗ y, (9.50)

where we assume that y, g ∈ ρGC∞(K) and f ∈ ρGD(ρR̃). As in the classical theory, we

apply the convolution Thm. 6.1(x) to get

Fk (g) = F (f)Fk (y) .

Assuming that F (f) (ω) is invertible for all ω ∈ K, the inversion thereom (Thm. 7.4)

yields

y(t) = lim
h→+∞

F−1
h

(
Fk (g)

F (f)

)
(t), ∀t ∈ K̊.

For example, to highlight the differences with the classical theory, let us consider the

convolution equation (δ′ + δ) ∗ y = δ with y(−1) = 0. We have g = δ, and f = δ′ + δ

so that F(f) = iω1 + 1, where as usual 1 = Fk (δ). Since 1(ω) ∈ ρR̃, the quantity

iω1(ω) + 1(ω) is always invertible, and hence we obtain

y(t) = F−1

(
1

iω1 + 1

)
(t), ∀t ∈ K̊.

It is easy to prove that y(t)+y′(t) = F−1 (1|K) (t) = 1
2π

´ k
−k
eiωt dt = k

πS(kt) (see (9.25))

and hence y(t) = e−t k
π

´ t
−1
S(kx)ex dx e.g. for all log(dρ) ≤ t ≤ − log(dρ). Therefore

y(t) = e−t

ˆ t

−1

F−1 (1|K) (s)es ds ≈ e−t

ˆ t

−1

δ(s)es ds = e−tH(t),

for all t ∈ K̊ which are far from the origin, i.e. such that |t| ≥ r ∈ R>0 for some r.

10. Conclusions

In the introduction of this article, we motivated the natural attempts of several authors

to extend the domain of some kind of Fourier transform. The HFT presented in this paper

can be applied to the entire space of all the GSF defined in the infinite interval [−k, k]n.
These clearly include all tempered Schwartz distributions, all tempered Colombeau GF,

but also a large class of non-tempered GF, such as the exponential functions, or non-linear

examples like δa ◦ δb, δa ◦Hb, a, b ∈ N, etc.
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We want to close by listing some features of the theory that allow some of the main

results we saw:

(i) The power of a non-Archimedean language permeates the whole theory since the

beginning (e.g. by defining GF as set-theoretical maps with derivatives that can

possibly take infinite values or in the use of sharp continuity). This power turned

out to be important also for the HFT: see the heuristic motivation of the FT in

Sec. 4.1, Example 7.13 about application of the uncertainty principle to a delta

distribution, or the HFT of exponential functions in Example 5.4 and in Sec. 9.

(ii) The results presented here are deeply founded on a strong and flexible theory of

multidimensional integration of GSF on functionally compact sets: the possibility

to exchange hyperlimits and integration has been used several times in the present

work; the possibility to compute ε-wise integrals on intervals is another feature used

in several theorems and a key step in defining integration of compactly supported

GSF.

(iii) It can also be worth explicitly mentioning that the definition of HFT is based on

the classical formulas used only for rapidly decreasing smooth functions and not on

duality pairing. In our opinion, this is a strong simplification that even underscores

more the strict analogies between ordinary smooth functions and GSF. All this in

spite of the fact that the ring of scalars ρR̃ is not a field and is not totally ordered.

(iv) Important differences with respect to the classical theory result from the Riemann-

Lebesgue Lem. 5.1 and the differentiation formula (6.1). In the former case, we

explained these differences as a general consequence of integration by part formula,

i.e. of the non-linear framework we are working in, see Thm. 5.3. The compact

support of the HFT 1 of Dirac’s delta reveals to be very important in stating and

proving the preservation properties of HFT, see Sec. 8. Surprisingly (the classical

formula dates back at least to 1822), in Sec. 9 we showed that the new differentiation

formula is very important to get out of the constrained world of tempered solutions.

(v) Finally, Example 7.13 of application of the uncertainty principle, further suggests

that the space ρGC∞(K) may be a useful framework for quantum mechanics, so as

to have both GF and smooth functions in a space sharing several properties with

the classical L2(Rn).
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