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The main aim of the proposed project is to develop hyperfinite methods for the solution of PDE

in the framework of generalized smooth functions. The nonlinear theory of generalized smooth

functions has recently emerged as a minimal extension of Colombeau’s theory that allows for more

general domains for generalized functions, resulting in the closure with respect to composition

and a better behaviour on unbounded sets. By hyperfinite methods, we mean both the use

of infinite integer Colombeau generalized numbers and the use of closed intervals with infinite

boundary points. The former will be used to introduce a better notion of power series and

hence a corresponding Cauchy-Kowalevski theorem which, in principle, will be applicable to any

distributional PDE (not only to standard analytic ones). The latter will be used to define a

Fourier transform applicable to any generalized smooth function (not only to those of tempered

type). We plan to study the method of characteristics, to prove a Picard-Lindelöf theorem

with hyperfinite iterations of contractions for a Cauchy problem with a normal PDE, i.e. of

1This proposal is a resubmission. This part is completely new and elaborated in accordance with reviewers’ indications.

1



the form ∂kt y(t, x) = G

[
t, x,

(
∂jt ∂

α
x y(t, x)

)
0≤j<k
|α|+j≤k

]
, and to study operators defined by using

hyperfinite methods. The proposal thus aims at both solving hard open problems like general

existence theorems for nonlinear singular PDE, and at widely extending well known methods of

mathematical analysis.

1 Aims and research objectives

The main objective of the present research project is to introduce hyperfinite methods into the study of

generalized functions, in particular for solving nonlinear PDE. The framework is the category of generalized

smooth functions (GSF), an extension of classical distribution theory which enables to model nonlinear

singular problems, while at the same time sharing a number of fundamental properties with ordinary smooth

functions, such as the closure with respect to composition and several non trivial classical theorems of the

calculus, see [GiKuVe15, GioKun16a, GiKu16, GiKuSt16, LuGi16a, LeLuGi16]. One could describe GSF

as a methodological restoration of Cauchy-Dirac’s original conception of generalized function, see [Dir26,

Laug89, KatTal12]. In essence, the idea of Cauchy and Dirac (but also of Poisson, Kirchhoff, Helmholtz,

Kelvin and Heaviside) was to view generalized functions as suitable types of smooth set-theoretical maps

obtained from ordinary smooth maps depending on suitable infinitesimal or infinite parameters. For example,

the density of a Cauchy-Lorentz distribution with an infinitesimal scale parameter was used by Cauchy to

obtain classical properties which nowadays are attributed to the Dirac delta, cf. [KatTal12]. Moreover,

GSF are a minimal extension of Colombeau’s theory of generalized functions (CGF), see [Col84, Col85,

Col92, NePiSc98, Obe92, Pil94]. In fact, when the domain is of the form Ω̃c, i.e. it is the set of compactly

supported generalized points in the open set Ω ⊆ Rn, then the two spaces of generalized functions coincide,

cf. [GiKuVe15]. Therefore, we expect that the methods envisaged in the present project will also exert

a considerable impact on Colombeau’s theory. For these reasons, the department of Mathematics of the

University of Vienna, and in particular the research group of Prof. M. Kunzinger, seem the ideal place

where to implement the present research project, because of the group’s specific competences on generalized

functions, PDE and functional analysis.

A first presentation of the project’s main aims is the following:

(i) Basic hyperfinite methods in the ring ρR̃ of generalized numbers

Problems and motivations: It is well known that, in the sharp topology on the ring of Colombeau

generalized numbers R̃, the sequence n ∈ N>0 7→ 1
n ∈ R̃ does not converge to zero as n → +∞,

because 1
n is never infinitesimal for n ∈ N>0. Analogously, a series

∑+∞
n=0 an in R̃ converges in the

sharp topology if and only if an → 0 as n→ +∞, cf. [Ver11, PiScVa09, Ar-Fe-Ju05]. This is a general

property of every ultrapseudometric space like R̃, see [Kob84]. As a consequence, we have that if the

series
∑+∞

n=0
zn

n! converges, then the generalized complex number z ∈ C̃ is necessarily an infinitesimal;

analogously, e.g.,
∑+∞

n=0
1

2n do not converge in R̃, and if
∑+∞

n=0 anz
n converges and z is not infinitesimal,

then an is infinitesimal for all n ∈ N sufficiently big.

The idea: We want to consider the set Ñ :=
{

int ([|xε|]) | [xε] ∈ R̃
}

of hyperfinite generalized number,

where int(−) is the integer part function. The counter-intuitive properties mentioned above can be

easily solved by considering n ∈ Ñ instead of n ∈ N (see below for details).

The plan: Let ρR̃ be the ring of generalized numbers, i.e. the ring defined exactly as R̃ (the quotient

ring of moderate nets modulo negligible nets) but using an arbitrary net ρ = (ρε) ↓ 0 instead of the net

(ε), see [GiLu15, GiKuSt16, LuGi16b]. Taking into account that Ñ is a directed set, we plan to study
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hyperfinite sequences, hyperfinite numerical series, hyperfinite power series, hyperfinite Riemann sums,

and the hyperfinite Euler method for solving ODE. The basic method of derivation will be a careful

generalization to ρR̃ of classical proofs in R, possibly taking hints from the nonstandard approach to

similar problems, see [LigRob75, Gol88].

Innovative features and deliverables: For example, we already proved that
∑

n∈Ñ
xn

n! = ex for

all x ∈ ρR̃ finite. See below for the definition of
∑

n∈Ñ an. We thus expect to obtain more flexible

and general notions of sequence and series, in particular of power series. The corresponding notion

of hyperanalytic GSF will have a wider scope and better properties, since it is based on Ñ and hence

it is different from the general notion of power series in non-Archimedean analysis, see [Kob84]. As

already done for GSF, the generalization of classical proofs into the non-Archimedean setting of ρR̃
typically also leads to a smoother acceptance of this new theory outside the community of CGF.

(ii) The method of characteristics and hyperfinite Fourier transform

Problems and the plan: GSF form a concrete category, i.e. they are closed with respect to compo-

sition. The classical method of characteristics, see e.g. [Eva10], seems thus extendible to the setting

of GSF. The inverse and implicit function theorems for GSF, see [GiKu16, LeLuGi16], are helpful

instruments in this generalization.

A different idea is based on the property that every GSF can be integrated on every closed interval

[a, b], a, b ∈ ρR̃, a < b, even if the boundary points are infinite numbers. This is a consequence of the

extreme value theorem for GSF, see [GioKun16a, GiKuSt16]. We can hence consider a Fourier-like

integral of the type Fk(f)(ω) := (2π)−1/2
´ k
−k e

iωtf(t) dt ∈ ρR̃ (1-dimentional case), where k ∈ ρR̃ is

an infinite number and f ∈ ρGC∞(ρR̃, ρR̃) is an arbitrary GSF. What are the properties of this Fk? Is

it a convenient instrument to approach PDE?

Innovative features and deliverables: By generalizing the classical Picard-Lindelöf method, we

already proved that every ODE has a local solution, [LuGi16a]. This and the above mentioned hyper-

finite Euler method for ODE would give an innovative way to deal with the method of characteristics

for non-smooth nonlinear PDE.

Concerning the domain-dependent Fourier transform Fk, besides the usual elementary properties,

suitably formulated, we already proved that Fk(F−1
k (f))(ω) = f(ω) for every f which is zero outside

[−k − dρa, k + dρa], for k infinite and for every ω finite. We recall that this result does not hold

in the classical Colombeau’s theory, see e.g. [Hor99]. For example, every CGF can be extended to a

function of this type (i.e. a compactly supported GSF, see [GioKun16a, Thm. 28]) because they are

defined only on finite points R̃c. Therefore, this Fourier-like transform seems to have a broad range

of applications and good properties.

(iii) Generalized smooth operators

Problems and motivations: Like CGF, also GSF are defined by a net (fε) of smooth functions,

see below. One could say that generalized numbers in ρR̃ are “dynamical numbers” (obtained by

using ε-nets of real numbers) if compared to static numbers in R; analogously, we could say that GSF

are “dynamical smooth functions” if compared to static smooth functions in C∞(Rn,Rd). How to

define and study a notion of generalized smooth operator as generated by nets of ordinary operators

Tε : Xε −→ Yε, where Xε and Yε are, e.g., real Banach spaces?

The idea and the plan: We already have a promising definition of generalized smooth operator,

and we used it to solve suitable ODE in non-infinitesimal neighbourhoods by using hyperfinite Picard-

Lindelöf iterates, see [LuGi16a]. See below for a description of this idea. However, it is not yet clear
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when a given sharply closed space of GSF is closed under hyperfinite iterates. We therefore want to

continue the study of these operators, e.g. characterizing the property of possessing hyperfinite iterates

or proving that every GSF can be seen as a density of an integral generalized smooth operator. This

is a first step in the study of ρR̃-modules of GSF, which are complete in the sharp topology defined

by a countable family of ρR̃-valued norms, see e.g. [GioKun16a, Sec. 4, 7, 8] and below.

Innovative features and deliverables: This part of the research proposal could initiate a functional

analysis of generalized smooth operators, which could expand into new approaches to unbounded

operators, monotone operators, compact operators, ρR̃-Banach or Hilbert spaces, fixed point theory,

etc.

(iv) General existence theorems for singular PDE2

Problems and the plan: In this part of the project, we plan to propose two solutions for the

important open problem of proving general existence theorems for singular PDE. The first idea is

based on our new notion of hyperanalytic GSF. In fact, since we have a new notion of power series

and of analytic function, a corresponding version of the Cauchy-Kowalevski theorem is expected to

hold.

We already proved, see [GioLup17], a general existence theorem for the Cauchy problem for arbitrary

nonlinear normal PDE, i.e. of the form ∂kt y(t, x) = G

[
t, x,

(
∂jt ∂

α
x y(t, x)

)
0≤j<k
|α|+j≤k

]
, (where both G and

y are GSF) by suitably generalizing the classical Banach fixed point theorem and the corresponding

Picard-Lindelöf theorem. It is therefore natural to consider, as we already did for ODE in [LuGi16a],

hyperfinite iterations of contractions and the use of the aforementioned method of characteristics to

formulate sufficient conditions for the uniqueness of solutions of PDE. A full understanding of the

classical Lewy counter-example [Lew57, Horm63] and its relations with GSF is also mandatory.

Innovative features and deliverables: We note that the classical example of smooth but not real

analytic function, i.e. f(x) = e−1/x if x > 0 and f(x) = 0 otherwise, is identically zero in ρR̃ on

every ball centred at x = 0 and with radius dρa because |e−1/dρ| ≤ dρn for all n ∈ N. It is hence

real hyperanalytic in the new sense, using hyperfinite sequences and sharp neighbourhoods (see also

below). Moreover, by the Schwartz-Paley-Wiener theorem, any Colombeau mollifier, cf. [GrKuObSt01,

Del05, NePiSc98], is analytic and hence there are strong reasons to expect that the embedding of any

distribution, by convolution with this mollifier, would be hyperanalytic in the new sense. This would

give to this new Cauchy-Kowalevski theorem a remarkable range of applicability because it would

be applicable to any PDE given by the embedding of a distribution. Finally, our existence result

for Cauchy problem with normal PDE is one of the few general results in the field of PDE. Since in

general finite iterations of contractions guarantee existence only in infinitesimal sharp time intervals,

its extension to hyperfinite iterations would allow to include solutions on standard time intervals.

(v) Hyperfinite methods for GSF in nonstandard analysis3

Problems and motivations: Since its inception, the use of hyperfinite sets in nonstandard analysis

(NSA) has been of considerable importance. The classical work [BerRob66] of Bernstein and Robinson

represents the main example. On the other hand, even if NSA allows to create frameworks which are

formally more powerful than the corresponding ones in standard analysis (see e.g. [ObeTod98, Tod11,

Tod13, TodVer08] and below), the matter of fact is that its acceptance in the corresponding mathe-

matical community, and hence the publication of the associated works, faces non trivial problems. In

2This proposal is a resubmission. This part is completely new.
3This part is completely new and elaborated in accordance with reviewers’ indications.
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the final part of the project, we therefore want to dedicate some months to develop the first results

of this project in the framework of [Tod11, Tod13], i.e. of the valuation field ρR, or directly in the

hyperreal field ∗R, and to evaluate the interest of our research group in this further advancement.

The idea and the plan: Thanks to the use of powerful formal tools of NSA, like the transfer prin-

ciple, the saturation principle, Loeb measure, etc., several results listed in the first part of the present

proposal have been already established, see e.g. [Lind88, CapCut95, Gol88]. We plan to use these

tools to start the theory of GSF using the field of scalars ρR, instead of the ring ρR̃. In this way, our

research group will have a more clear idea about the potentialities of this branch of the theory and

can hence evaluate whether to prepare another FWF research proposal to pursue it further.

Innovative features and deliverables: Due to the better formal properties of the field of hyper-

reals ∗R as compared to the ring ρR̃, we expect to obtain formally more powerful and simpler results.

A classical example in this direction is the possibility to prove the Hahn-Banach theorem in the NSA

counterpart of Colombeau’s theory (see [TodVer08]), whereas this classical result does not hold in the

standard theory.

The present research project is designed for three co-workers: the two applicants (P. Giordano and M. Kun-

zinger) and one PostDoc. The latter and the main applicant will work on this project full time for three

years.

2 State of the art

2.1 State of the art in the research field

Generalized functions:

F. Colombeau’s theory of generalized functions has been developed since 1984 and enables to perform certain

non linear operations (up to polynomial growth) between embedded distributions, avoiding the difficulty

of Schwartz’s impossibility theorem. See e.g. [Ned-Pil06, GrKuObSt01, NePiSc98, Pil94, Obe92, Col92]

for an introduction with applications. This theory makes it possible to find generalized solutions of some

well-known PDE which do not have solutions in the classical space of distributions, see [Obe92], and has

manifold applications, e.g. to the theory of elasticity, fluid mechanics and in the theory of shock waves (see

e.g. [Col92, Obe92]), to differential geometry and relativity theory [GrKuObSt01, Kun04, SteVic06] and to

quantum field theory [CoGs08].

It is also remarkable to compare this theory with the approach given in NSA [Tod13, Tod11, TodVer08,

TodWol04, Tod99], where a strong simplification and generalization has been obtained. Moreover, in this

NSA-based approach, the set of scalars of the spaces of generalized function is always an algebraically closed

non-Archimedean Cantor complete field, whereas in Colombeau’s theory we have zero divisors. Having a

field of scalars, a version of the Hahn-Banach theorem holds, whereas this is not the case for the classical

CGN, see [Ver10, TodVer08].

A new and fundamental step in the theory of generalized functions based on CGN, which presents several

analogies with our present proposal, has first been achieved in [Ar-Fe-Ju05, Ar-Fe-Ju12]. In this work,

the basic idea is to generalize the derivative as a limit of an incremental ratio taken with respect to the

e-norm, [Ar-Fe-Ju05, Ar-Fe-Ju09] and with increments which are asymptotic to invertible infinitesimals of

the form [εr] ∈ R̃, for r ∈ R≥0. This theory extends the usual classical notion of derivative and smoothness

to set-theoretical functions on CGN, e.g. of the form f : R̃n −→ R̃d, and enables to prove that every CGF

is infinitely differentiable in this new sense. Several important applications have already been achieved
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(see [Ar-Fe-Ju12]) and hence the theory promises to be very relevant. As explained in greater detail in

[GiKuVe15, GiKuSt16, GiKu16], the notion of smoothness developed in [Ar-Fe-Ju05] includes functions like

i(x) = 1 if x is infinitesimal and i(x) = 0 otherwise. This makes it impossible to prove classical theorems like

the intermediate value one, whereas in our approach this theorem holds. The theory of GSF, on the other

hand, while fully compatible with the approach in [Ar-Fe-Ju05], singles out a subclass of smooth functions

with more favourable compatibility properties with respect to classical calculus and hence may be viewed

as a refinement of that theory (cf. below).

It is also important to mention the approach to generalized solutions of PDEs by Dedekind order com-

pletion of spaces of piecewise smooth functions (see e.g. [Ang-Ros07, Ang04, ObeRos94]). In this approach,

a general and type independent theory for the existence of solutions of a large class of systems of nonlinear

PDEs is presented. The solutions may be assimilated with usual real measurable functions. The latter

result is based on the characterization of the Dedekind order completion of sets of continuous functions in

terms of spaces of Hausdorff continuous interval valued functions [Ang04]. Recently, the regularity of the

solutions has been improved by introducing suitable uniform convergence structures on appropriate spaces

of piecewise smooth functions; see [vdW09a, vdW09b] and references therein.

Analytic generalized functions and Cauchy-Kowalevski theorem for CGF

The theory of (real or complex) analytic CGF has been developed as a consequence of the definition of

holomorphic CGF, see e.g. [Ar-Fe-Ju05, Ver08, PiScVa09] and references therein. The natural Cauchy-

Riemann condition (∂x + i∂y)u = 0 is coupled with a study of analyticity by using classical C̃-valued power

series which converge in the sharp topology. Due to the ultrapseudonorm property of the sharp norm, we

have that the series
∑+∞

n=0 anz
n of C̃ converges if and only if anz

n → 0 as n→ +∞ (in the sharp topology).

Although a notion of radius of convergence and related suitable properties have been established, the typical

example of this type of convergent power series is
∑+∞

n=0 an dεP (n)zn, where P (n) ∈ R[n] is a polynomial

with positive leading coefficient, (an)n∈N is a sharply bounded sequence, and dε := [ε] ∈ R̃. As said above,

this notion of series doesn’t enable to include the classical exponential function on compactly supported

points.

A linear version of the Cauchy-Kowalevski theorem for CGF with holomorphic generalized coefficients has

been proved in [Col85]. The existence proof is a classical ε-wise reduction to the standard Cauchy-Kowalevski

theorem. We underscore here two limitations of this approach: (1) in Colombeau algebras one is forced to

consider only bounded coefficients because of the moderateness condition (we always recall the classical

ODE y′ = [1/ε]y); (2) The classical obvious proof of uniqueness of classical holomorphic solutions does not

work here since a holomorphic generalized function and all its partial derivatives may have the value 0 at a

point of its domain, without being null in any standard neighbourhood of this point. In the present research

proposal, the former limitation is solved by choosing a suitable gauge ρ (depending on the PDE we want to

solve) for the ring of generalized numbers ρR̃, whereas the latter is again tied to the above mentioned notion

of hyperfinite power series.

Hyperfinite methods in nonstandard analysis4

Hyperfinite methods first appeared in NSA, where infinite natural numbers are frequently used to approxi-

mate continuum spaces and problems by hyperfinite discrete ones. A standard example of use of hyperfinite

methods in NSA is the Bernstein-Robinson solution of the problem raised by P.R. Halmos and K.T. Smith

4This part is completely new and elaborated in accordance with reviewers’ indications.
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concerning invariant subspaces of polynomial compact operators; see [BerRob66, Ber67], and [Hal66] for a

simpler proof in a standard setting. Hyperfinite sets are also used in NSA, e.g., in the approximation of

Riemann integrals by hyperfinite sums and in the hyperfinite Euler method, see e.g. [Gol88].

The idea to fix an hyperreal infinitesimal ρ ∈ ∗R and to consider the ring {x ∈ ∗R | ∃n ∈ N : |x| < ρ−n}
modulo the ideal {x ∈ ∗R | ∀n ∈ N : |x| < ρn} date back to [Rob73, LigRob75] for applications to

asymptotic analysis (see also [Lux76, Pes91, TodWol04, TodVer08] for more recent works). Independently,

J.F. Colombeau in [Col84] had the same algebraic idea, but without using the hyperreal field ∗R and

considering only the infinitesimal ρε = ε. It is therefore clear that the trivial generalization ρR̃ owes its

inception to both A. Robinson and J.F. Colombeau. On the other hand, the field ρR and the ring ρR̃ have

very different formal properties. For example, ρR is real closed and totally ordered and, under a suitable

form of the generalized continuum hypothesis, see [Tod13, TodVer08], a field isomorphism ρ1R ' ρ2R for

any pair of infinitesimal ρ1, ρ2 ∈ ∗R holds. The ring ρR̃ is only partially ordered and the ring isomorphism
ρ1R̃ ' ρ2R̃ holds e.g. if both the infinitesimals ρi are strictly decreasing to zero, see [LuGi16b].

It is not completely clear why NSA finds difficulties in getting accepted by a large community of math-

ematicians, and hence why one frequently encounters difficulties in getting published in this field. The

important problem of constructive and non-constructive models of the continuum has been analysed thor-

oughly in [ScBeOs01]. As proved by [Pal95, Palm97, Palm98], a key non constructive property of NSA is

surely tied to the standard part map (and hence basic NSA tools to deal with hyperfinite sets, such as the

full transfer principle and the Loeb measure have to be considered, generally speaking, non constructive).

Fourier transform for CGF

The Fourier transform for CGF has first been studied in [Col85, Das91, NedPil92]. The basic idea is to

define the notion of integral of a tempered CGF on the whole of R̃n. This is accomplished by multiplying the

generalized function by a suitable damping measure, see [Hor99] for a general approach using this idea. This

notion of Fourier transform shares several properties with the classical one, but it lacks the Fourier inversion

theorem, which holds only at the level of association in the sense of generalized tempered distributions, see

[Col85, Thm. 4.3.4] and [Sor98]. See also [Sor96] for a Paley-Wiener like theorem. Intuitively, one could say

that the use of the multiplicative damping measure introduces a perturbation of infinitesimal frequencies that

inhibit the inversion result. The only known possibility to obtain a strict Fourier inversion theorem is the

approach used by [Nig16], where smoothing kernels are used as index set and therefore infinite dimensional

calculus in convenient vector spaces is needed.

Operator theory for locally convex C̃-modules

The theory of locally convex C̃-modules is the key reference for the last part of the present project, see

[Gar05a, Gar05b, Gar09, GarVer11]. Even if a general notion of operator defined by a net (Tε) of classical

operators has never been considered in these works, very general theorems like the closed graph and open

mapping theorems, [Gar09], and the uniform boundedness principle, [Gar05a] have been proved. For the

Hahn-Banach theorem in non-Archimedean valued fields, see [Ing52]. For a version of the Hahn-Banach

theorem framed in subfields of C̃, see [May07]. The impossibility of a general Hahn-Banach theorem for C̃-

functionals has been proved in [Ver10]. Therefore, note that the possibility to prove a general Hahn-Banach

theorem for C̃-functionals defined by a suitable net (Tε) of classical functionals is still an open problem.
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2.2 State of the art in applicants’ research

In this section, we will briefly introduce some of the key notions of the present research proposal.

Some basic notations we will use in the following are: nets in the variable ε ∈ I := (0, 1] are written as

(xε); if (xε) is a net of real numbers, x = [xε] denotes the corresponding equivalence class with respect to

the equivalence relation (xε) ∼ρ (yε) iff |xε − yε| = O(ρmε ) for every m ∈ N = {0, 1, 2, . . .}.

The ring of generalized numbers ρR̃

The role of the infinitesimal nets (εn), n ∈ N, has been generalized in several ways, cf. [GioNig15, GiLu15]

and references therein. In the work [GiLu15], we showed that our notion of asymptotic gauge is the most

general one since it is able to include all the different types of Colombeau-like algebras: the special one

Gs, the full one Ge, the NSA-based based algebra of asymptotic functions Ĝ, the diffeomorphism invariant

algebras Gd, G2 and Ĝ, the Egorov algebra, and the algebra of non-standard smooth functions ∗C∞(Ω),

see also [LuGi16b]. However, minimal consistency properties of the embeddings ι of distributions and σ

of smooth functions, cf. [GiLu15, Thm. 4.12], imply that the simple initial choice of a different net (ρε)

instead of (ε) is necessarily the one that enables general results and good embedding properties. The

definition of ρR̃ is therefore that of ρ-moderate nets (∃N ∈ N : xε = O(ρ−Nε )) modulo ρ-negligible nets

(∀n ∈ N : xε = O(ρnε )). The point of view of GSF is frequently that of a theory where ρR̃ acts as the ring

of scalars for all the subsequent constructions. For example, sharp topology is preferably defined using the

absolute value |[xε]| := [|xε|] ∈ ρR̃ and the balls Br(x) := {y ∈ ρR̃d | |y − x| < r}, where r > 0 is a strictly

positive generalized number, i.e. r ∈ ρR̃≥0 and r is invertible. Different types of topologies are possible on
ρR̃d, in particular the Fermat one, where we take r ∈ R>0 as possible radii, see [GiKuVe15]. In this proposal,

we use the notation dρ := [ρε] ∈ ρR̃.

Generalized smooth functions as a category of smooth set-theoretical maps

If X ⊆ ρR̃n and Y ⊆ ρR̃d are arbitrary subsets of generalized numbers, a GSF f ∈ ρGC∞(X,Y ) can be

simply defined as a set-theoretical map f : X −→ Y such that

∃(fε) ∈ C∞(Rn,Rd)I ∀[xε] ∈ X ∀α ∈ Nn : (∂αfε(xε)) is ρ−moderate and f(x) = [fε(xε)], (1)

see [GiKuVe15, GiKuSt16]. If (1) holds, we say that the net (fε) defines f . If X = Ω̃c, the set of compactly

supported points in the open set Ω ⊆ Rn, then ρGC∞(Ω̃c,
ρR̃) coincides exactly with the set-theoretical

maps induced by all the CGF of the algebra Gs(Ω). The greater flexibility in the choice of the domains X

leads to the closure of GSF with respect to composition, to the extreme value theorem on closed intervals

bounded by infinite numbers, to purely infinitesimal solutions of ODE or also to inverses of given GSF, see

[GiKuVe15, GiKuSt16, LuGi16a, GiKu16].

Classical theorems like the chain rule, existence and uniqueness of primitives, integration by change of vari-

ables, the intermediate value theorem, mean value theorems, the extreme value theorem, Taylor’s theorem in

several forms for the remainder, suitable sheaf properties, the local inverse and implicit function theorems,

some global inverse function theorems, the Banach fixed point theorem, the Picard-Lindelöf theorem and

several results in the classical theory of calculus of variations, hold for these GSF, see [GiKuVe15, GiKuSt16,

GiKu16, LuGi16a, LeLuGi16]. One of the peculiar properties of GSF is that these extensions of classical

theorems for smooth functions have very natural statements, formally similar to the classical ones but, e.g.,

where the sharp topology replaces the Euclidean one, where assumptions of invertibility in ρR̃ replace the
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property of being different from zero in R and where the strict order relation > of ρR̃ replaces the usual > of

R, mostly for topological properties. All this underscores the different philosophical approach as compared

to [Ar-Fe-Ju05], which constitutes a more general approach (in [GiKuVe15, GiKu16] it is proved that every

GSF is smoothly differentiable in the sense of [Ar-Fe-Ju05]), but where some of these classical theorems do

not hold.

Particularly interesting for the present research proposal are the Fermat-Reyes theorem, [GiKuSt16], and

the theory of compactly supported GSF, [GioKun16a]. The former states that given f ∈ ρGC∞(U, ρR̃) defined

on a sharply open set U ⊆ ρR̃n and v = [vε] ∈ ρR̃n, there exists another GSF r ∈ ρGC∞(T, ρR̃) defined on a

sharp neighbourhood T of U × {0} such that f(x+ hv) = f(x) + h · r(x, h) for all (x, h) ∈ T . Any two such

functions r coincide in a sharp neighbourhood of U ×{0}. This allows to define intrinsically ∂f
∂v (x) := r(x, 0)

and to compute derivatives as suitable incremental ratios. Clearly, one also has that ∂f
∂v (x) =

[
∂fε
∂vε

(xε)
]
.

The theory of compactly supported GSF is based on the notion of functionally compact set, i.e. sharply

bounded internal sets K = [Kε] = {[xε] ∈ ρR̃n | xε ∈ Kε for ε small} ⊆ Br(0), for some r ∈ ρR̃>0, generated

by a net Kε b Rn of compact sets. For example, every closed interval [a, b] ⊆ ρR̃ is functionally compact.

On this type of sets, GSF satisfy the extreme value theorem and hence on every closed interval they can be

integrated
´ b
a f ∈

ρR̃. If S ⊆ ρR̃n, then ext(S) := {x ∈ ρR̃n | |x− s| > 0 ∀s ∈ S} is called strong exterior of

S, and a GSF f ∈ ρGC∞(X,Y ) is called compactly supported in K, and we write f ∈ GDK(X,Y ), if f can

be defined by a net (fε) ∈ C∞(Rn,Rd) such that

∀α ∈ Nn ∀[xε] ∈ ext(K) : [∂αfε(xε)] = 0. (2)

The spaces GDK(U, ρR̃d) share many properties with the classical spaces DK of compactly supported smooth

functions. In particular, they are sharply complete, their strict inductive limit is sharply complete, and

their sharp topology can be defined using a countable family ‖f‖i :=

[
max |α|≤i

1≤k≤d
supx∈Rn |∂αfkε (x))|

]
∈ ρR̃,

i ∈ N, of ρR̃-valued norms, see [GioKun16a]. Concerning the previously mentioned proposal about a

generalization of the Fourier transform, it is finally important to say that if k ∈ ρR̃>0 is an infinite number,

i.e. limε→0 kε = +∞, and Kε := {x ∈ Ω | |x| ≤ kε}, then for all CGF f ∈ ρGC∞(Ω̃c,
ρR̃d) there exists a

GSF f̄ ∈ GDK(ρR̃n, ρR̃d) compactly supported in K := [Kε] such that f̄ |
Ω̃c

= f . Therefore, since CGF, and

hence also distributions, are defined only on finite points of Ω̃c, they can be viewed as compactly supported

GSF, i.e. as GSF which are zero with all their derivatives in the strong exterior of any infinite functionally

compact set.
5To deal with partial derivatives at boundary points (note that the Fermat-Reyes theorem considers only

interior points), one frequently considers solid functionally compact sets, i.e. functionally compact sets

K ⊆ ρR̃n such that the interior of K in the sharp topology is dense in K. If K is a solid functionally

compact set then, as above, on the space ρGC∞(K, ρR̃d) we can introduce a countable family of ρR̃-valued

norms that defines a Cauchy complete sharp topology.

We also recently proved a generalization of the Banach fixed point theorem and of the corresponding

Picard-Lindelöf theorem that are applicable to any Cauchy problem with a normal generalized smooth

PDE, see [GioLup17]. The basic idea to generalize these results of ODE theory is the classical notion of loss

of derivatives: if K ⊆ ρR̃n is a solid functionally compact set, and y0 ∈ X ⊆ ρGC∞(K, ρR̃d), then we say

that P : X −→ X is a finite contraction on X with loss of derivatives L ∈ N starting from y0 if

∀i ∈ N ∃αi ∈ ρR̃>0 : ‖P (u)− P (v)‖i ≤ αi · ‖u− v‖i+L ∀u, v ∈ X
5The following part is completely new.
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and

lim
n,m→+∞
n≤m

αni+mL · ‖P (y0)− y0‖i+mL = 0,

where the limit is taken with respect to the sharp topology and with n, m ∈ N (the use of finite natural

numbers N instead of hyperfinite ones ρÑ justifies the name finite contraction). We proved that if αi ≤ αi+1

and X is sharply Cauchy complete, then P is sharply continuous, ∃ limn→+∞ P
n(y0) =: y and P (y) = y.

Note explicitly that, in general, we don’t have the uniqueness of the fixed point y, exactly because we can have

a loss of L > 0 derivatives. If T ⊆ ρR̃, S ⊆ ρR̃n are solid functionally compact sets, Y ⊆ ρGC∞(T × S, ρR̃d)
and the set-theoretical map F : T × S × Y −→ ρR̃d satisfies F (−,−, y) ∈ ρGC∞(T × S, ρR̃d) for all y ∈ Y ,

then we say that F is uniformly Lipschitz on Y with constants (Λi)i∈N ∈ ρR̃N
>0 and loss of derivatives L ∈ N

if

∀i ∈ N ∀u, v ∈ Y : ‖F (−,−, u)− F (−,−, v)‖i ≤ Λi · ‖u− v‖i+L.

We can prove that any PDE of the form

∂ty(t, x) = G [t, x, ∂xy(t, x)] , (3)

where G is a GSF, defines a uniformly Lipschitz map on the space

Y =
{
y ∈ ρGC∞(T × S, ρR̃d) | ‖y − y0‖i ≤ ri ∀i ∈ N

}
. (4)

We finally proved the following generalization of the Picard-Lindelöf theorem: let t0 ∈ ρR̃, α, ri ∈ ρR̃>0 and

Tα := [t0−α, t0 +α]. Let y0 ∈ ρGC∞(S,H), where H ⊆ ρR̃d is a sharply closed set such that Br(y0(x)) ⊆ H
for all x ∈ S. Define Yα as in (4), but using Tα instead of T , and assume that F is uniformly Lipschitz on

Yα with constants (Λi)i∈N and loss of derivatives L. Finally, assume that

Λi ≤ Λi+1 ∀i ∈ N

‖F (−,−, y)‖i ≤Mi(y) ∀y ∈ Yα
α ·Mi(y) ≤ ri ∀i ∈ N

lim
n,m→+∞
n≤m

αn+1 · Λni+mL · ‖F (−,−, y0)‖i+mL = 0

Then there exists a solution y ∈ ρGC∞(Tα × S, ρR̃d) of the Cauchy problem∂ty(t, x) = F (t, x, y) ∀(t, x) ∈ Tα × S

y(0, x) = y0(x) ∀x ∈ S

Note explicitly that this is only an existence result and nothing is stated about the uniqueness of the solution.

The proofs are essentially a generalization of the classical Banach fixed point theorem and Picard-Lindelöf

theorem to the GSF framework. Therefore, the importance of this result lies on treating Cauchy problems

for normal PDE (i.e. of the form (3) in case of first order PDE) as a generalization of ODE. A generalization

of these results to k-th order PDE is a work in progress.
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3 Work program

In this section, we describe the methods we plan to employ in carrying out the research program sketched

above. For each one of the four parts of the research project, we will also give a (subjective) judgement of

its feasibility. Of course, this quantitative judgement of feasibility will be justified and will also be used to

quantify and support the project’s time planning.

3.1 Basic hyperfinite methods in the ring ρR̃ of generalized numbers

In this part of the project, we have to lay the foundations for the use of hyperfinite numbers ρÑ :={
int ([|xε|]) | [xε] ∈ ρR̃

}
for subsequent more advanced topics. We therefore start to prove classical proper-

ties of limits of hyperfinite sequences s : ρÑ −→ ρR̃: algebraic properties, relations with continuous functions,

squeeze theorem, monotonous sequences, Cauchy sequences, relations with limits of classical sharply con-

vergent sequences in ρR̃N, etc.

The definition of hyperfinite series applies to ordinary sequences (an)n∈N of ρR̃:

∑
n∈Ñ

an :=

[
Nε∑
n=0

an

]
, (5)

where N = [Nε] ∈ ρÑ. Note explicitly that, in order to define (5), we don’t need to give a meaning to

terms an for n ∈ ρÑ because Nε ∈ N for each ε. For example, in a power series we do not need to define

xn for x ∈ ρR̃ and n ∈ ρÑ. On the other hand, the sequence of partial sums N ∈ ρÑ 7→
∑N

n=0 an ∈ ρR̃ is

defined on ρÑ and can hence possibly converge to any value in ρR̃, similarly to the sharp convergence of

n ∈ ρÑ>0 7→ 1
n ∈

ρR̃ to 0. We then plan to extend to hyperfinite series classical convergence criteria.

Once the notion (5) has been introduced and studied, it is natural to open the examination of hyperfinite

power series, their radius of convergence, algebraic operations on them, composition and their differentiation

and integration. Note explicitly that in this setting the notion of radius of convergence gives only a sufficient

condition for the convergence of a hyperfinite series: if the series converges at an invertible x0 ∈ ρR̃, then it

also converges at any x with |x| < |x0|. The convergence of the zero hyperfinite power series for the function

f(x) = e1/x if x > 0 and f(x) = 0 otherwise in any ball Bdρa(0), a ∈ R>0, shows that a supremum of these

radii of convergence need not exist in this non-Archimedean setting.

Hyperfinite sequences and sums will also be used to prove properties of hyperfinite Riemann sums for

GSF, and to formalize a hyperfinite Euler method with an invertible infinitesimal step size.

To underscore the differences with respect to the standard notion of series used for CGF, we finally

want to recover classical examples of analytic elementary functions. We recall that we already proved that∑
n∈Ñ k

n = 1
1−k for all k ∈ (0, 1) ⊆ ρR̃ and that

∑
n∈Ñ

xn

n! = ex for all finite x ∈ ρR̃.

Risks: The plan is systematic and reasonably certain. Several properties could also be proved ε-wise. For

these reasons, we do not expect problems in this part of the project.

Subjective assessment of feasibility: Because the risks are really minimal, we assess as very high the

feasibility of this unit of the proposal.
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3.2 The method of characteristics and hyperfinite Fourier transform

Method of characteristics

As presented by [Eva10], the key instruments adopted to develop the method of characteristics are: free

composition of sufficiently regular functions and their calculus, implicit and inverse function theorems. Since

all these results are available for GSF, and with formally very similar statements (cf. [GiKuVe15, GiKuSt16,

GiKu16, LeLuGi16]), we strongly believe that this method can be fully carried out for GSF.

Hyperfinite Fourier transform

The idea of defining a domain-dependent Fourier-like transform on a functionally compact unbounded inter-

val [−k, k] is not related to the hypernatural numbers ρÑ. However, we already mentioned that GSF behave

on functionally compact sets like if they were compact sets: e.g. the extreme value theorem, the existence

of definite integrals and a full theory of compactly supported GSF hold for this type of sets. Therefore, we

can say that GSF behave on functionally compact sets like ordinary smooth functions operate on compact

sets. We can hence note the analogy between ρÑ, which contains also infinite numbers but which act as

finite ones, and functionally compact sets. This provides a strong motivation for our use of the adjective

“hyperfinite” also in the case of this Fourier transform.

In general, we define

FK(f)(ω) := (2π)−n/2
ˆ
K
f(x)e−ix·ω dx,

where K ⊆ ρR̃n is a functionally compact set, ω ∈ ρR̃h and f ∈ ρGC∞(ρR̃n, ρR̃) is any GSF. Clearly, the

fact that FK : ρGC∞(ρR̃n, ρR̃) −→ ρGC∞(ρR̃n, ρR̃) is one of the key properties of this hyperfinite Fourier

transform. The plan to advance this idea is the following:

(i) We already proved several basic properties in one dimension, and we hence plan to generalize these

derivations, and different other classical results, to several dimensions. For example, we have that

FK(τsf) = eis(−)FK+s(f), FK(f)′(ω) = −iFK(t · f(t)), FK(g(−.))(ω) = FK(g)(−ω), etc. For a

full understanding of the ideas presented below, here we mention that if K = [−k, k] ⊆ ρR̃ and

f(k) = f(−k) = 0, then FK(f ′)(ω) = iωFK(f)(ω). As we will see below, the applicability of this

weak version of the derivative property is related to the possibility to view any CGF as a compactly

supported function which is hence zero at the boundary points of the interval [−k, k], see Sec. 2.2.

(ii) We already proved that FK(F−1
K (f))(ω) = f(ω) (the equality = here is clearly that in ρR̃) for all

compactly supported f ∈ GDK(ρR̃, ρR̃) and all finite ω ∈ ρR̃. It is interesting to note that the proof

involves the use of two gauges ρ and σ and suitably connected infinite numbers. In fact, we first

proved that if σε := ρ
1/ε
ε , h = dρ ∈ σR̃, k = dσ ∈ σR̃ and we set x =ρ y to denote |x − y| ≤ dρn in

σR̃ for all n ∈ N, then f(−ω) =ρ Fh(Fk(f))(ω) for all finite ω ∈ σR̃. Clearly, this relation =ρ on σR̃
entails the usual equality on ρR̃. We therefore plan to generalize this proof to several dimensions.

(iii) Finally, it is also important to study whether this hyperfinite Fourier transform commutes with the

embedding of standard Schwartz functions.

Our procedure to apply FK in the study of PDE is the following:

(a) We can start from a linear differential problem and assume that it has a solution u ∈ ρGC∞(Ω̃c,
ρR̃).

(b) We can hence take any infinite number k ∈ ρR̃ and consider K := {x ∈ Ω | |x| ≤ k}, K/2 :=

{x ∈ Ω | |x| ≤ k/2} ⊆ ρR̃n, and the (unique, see [GioKun16a, Thm. 24]) compactly supported
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function ū ∈ GDK/2(ρR̃n, ρR̃) such that ū|
Ω̃c

= u. Since ū(x) = 0 for all x ∈ ext(K), we have

FK(∂j ū)(ω) = iωjFK(ū)(ω). As usual, this often allows to transform the differential problem into a

simpler problem.

(c) We finally use the inversion theorem, noting that it applies at all ω ∈ Ω̃c and to the compactly supported

GSF ū, so that we can recover the initial CGF u.

(d) Vice versa, we can directly start from the FK-transformed problem and show that the inverse hyperfinite

Fourier transform ū := F−1
K (Ū) of the solution Ū of the transformed problem is a GSF which is

compactly supported on K. This last property depends on the particular differential problem we are

interested in.

Risks: Because of the results we already proved, we think that no reasonable risk is foreseeable in this unit

of the proposal.

Subjective assessment of feasibility: Our assessment of feasibility for this section is therefore very high.

3.3 Generalized smooth operators

Definition of generalized smooth operators

To introduce our idea to define the concept of generalized smooth operator (GSO), we first need to fix two

properties S and O that we want “to lift” from the static Archimedean universe associated with R to the

dynamic non-Archimedean one associated with ρR̃. For example S(X) could be “X is a Fréchet space” or

“X is a Banach space”, and O(T ) could be “T is a Weissinger contraction” or “T is a monotone operator”,

etc. Now, let Sj ⊆ ρR̃n and Xj ⊆ ρGC∞(Sj ,
ρR̃d), j = 1, 2; we say that T : X1 −→ X2 is a generalized smooth

operator of type S, O if T : X1 −→ X2 is a set-theoretical function and there exist (Tε), (Xjε), (Sjε) such

that for all j = 1, 2 the following conditions hold

(i) ∀ε ∈ I : Sjε ⊆ Rn and Xjε ⊆
(
Rd
)Sjε .

(ii) For all ε ∈ I both the properties S(Xjε) and O(Tε) hold.

(iii) If f ∈ ρGC∞(Sj ,
ρR̃d), then f ∈ Xj if and only if there exists a net (fε) that defines f and such that

fε ∈ Xjε for ε small.

(iv) If f ∈ X1 and the net (fε) defines f and satisfies fε ∈ Xjε for all ε small, then the net (Tε(fε)) defines

T (f).

In this way, condition (ii) represents problem-related properties we want to extend from Xjε and Tε to Xj

and T . Condition (iii) links the membership f ∈ Xj to the ε-wise membership fε ∈ Xjε. Finally, condition

(iv) associates the values T (f) with the net (Tε(fε)). We can therefore say that (iii) and (iv) are more logical

conditions, whereas (ii) is the technical one.

The first important aim of this part of the project is to check how this notion of GSO fits into the

theory of locally convex C̃-modules and in what form the three pillars of functional analysis (closed graph

and open mapping theorems, [Gar09], the uniform boundedness principle, [Gar05a], and the Hahn-Banach

theorem framed in subfields of C̃, [May07]) hold for this type of operators. We also want to ensure that the

counterexample of the Hahn-Banach theorem presented in [Ver10] does not apply to GSO. Finally, we plan

to possibly prove a form of the Hahn-Banach theorem for generalized smooth ρR̃-functionals by substituting

the use of supremums in classical proofs with maximums of suitable GSF on functionally compact sets.
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Hyperfinite iterates

Generally speaking, Cauchy problems for ODE y′ = F (t, y), y(t0) = y0, where F ∈ ρGC∞(J × U, ρR̃),

have a unique solution on a sharp neighbourhood of t0. Sometimes this neighbourhood is infinitesimal,

and a larger domain is not possible (e.g. let F (t, y) = − t
1+y dρ−1, then the solution such that y(0) = 0

is y(t) =
√

1− t2 dρ−1 − 1, which is defined in the infinitesimal interval (−
√

dρ,
√

dρ) and cannot be

extended). To obtain a better result for particular but interesting F (a trivial example: ρR̃-linear ODE),

a possible solution is to consider hyperfinite Picard-Lindelöf iterates, see [LuGi16a]. In other words, if

X is a space of GSF and we take T : X −→ X and y ∈ X, we want to consider the map x ∈ ρR̃ 7→
T 〈n〉(y)(x) := [(T (y) ◦ nε. . . . . . ◦T (y)) (xε)] for n ∈ Ñ. In our proof of the Picard-Lindelöf theorem with

hyperfinite iterates, [LuGi16a], we formally assumed that F has the property that the iterates T 〈n〉(y)

are always GSF. Clearly, a more useful sufficient condition has to be found. Our first idea is to solve

the analogous problem for the hyperfinite iterates f 〈n〉 of f ∈ ρGC∞(ρR̃, ρR̃). The Faà di Bruno formula

yields that dk

dxk
f 〈n〉(x) = P (f (k)(yk), f

(k−1)(yk−1), . . . , f ′(y1)) for some yj ∈ ρR̃ and for some polynomial

P = [Pε(−)] of degree ≤ n = [nε]. If we thus assume that |f (k)(y)| ≤ − log dρ for all derivatives k ∈ N
and all points y ∈ ρR̃, then

∣∣∣f (k)
ε (yε)

nε
∣∣∣ ≤ − log(ρε)

nε ≤ nε · ρ−2
ε . We can hence prove that dk

dxk
f 〈n〉(x) is

ρ-moderate for all n ∈ Ñ. We plan to find a similar condition for the iterates T 〈n〉(y).

Generalized smooth functions as functionals

Every GSF f ∈ ρGC∞([a, b], ρR̃) defines a functional via Tf : ϕ ∈ GD[a,b](
ρR̃, ρR̃) 7→

´ b
a f · ϕ ∈

ρR̃. The

fundamental lemma of the calculus of variations, see [LeLuGi16, Lem. 37], entails that f is uniquely de-

termined by this functional. All these functionals Tf are GSO in the sense of the definition given above,

where Tε(ϕε) =
´ bε
aε
fε · ϕε, and where the net (ϕε) satisfies the definition of compactly supported GSF for

ϕ, see (2). The problem we want to solve in this unit of the research project is to investigate whether

every smooth operator of this type is of the form Tf for some GSF f . To make precise the notion of

infinite dimensional smooth operator that we plan to consider, we say that ψ : V −→ GD[a,b](
ρR̃, ρR̃) is

smooth if ψ∨ := ψ(−)(−) ∈ ρGC∞(V × ρR̃, ρR̃), where V ⊆ ρR̃v is a sharply open set. We then say

that T : GD[a,b](
ρR̃, ρR̃) −→ ρR̃ is smooth if for all smooth ϕ : V −→ GD[a,b](

ρR̃, ρR̃), the composition

T ◦ ϕ ∈ ρGC∞(V, ρR̃). This corresponds to the definition of smooth function in a diffeological space, see

[Gio10a, Gio10b, Gio11a, Gio11b, GiWu16] and references therein. The idea to recover the density f from

the generalized smooth functional T is hence to consider f(x) := T (δx), where δx is the Dirac delta centred

at x ∈ ρR̃.

Risks: Introducing a meaningful definition is a very hard task in mathematics. Even though we believe

that our first idea, mentioned above, is promising, it may happen that the results we want to achieve will

force us to change the definition of GSO.

Solutions: The only possible method to face this risk is to focus the study on some important non trivial

theorems and some meaningful examples, and to fine-tune the definition of GSO so as to derive these

results and to include these desired cases. We are mainly thinking of Picard-Lindelöf contractions, integral

functionals Tf defined by a GSF, the hyperfinite Fourier transform FK and eA(f)(x) :=
∑

n∈Ñ
An(f)(x)

n! ,

where A is an operator acting on GSF f , and where x ∈ ρR̃ is such that A(f)(x) ∈ ρR̃c.
Subjective assessment of feasibility: The foreseen risks are typical of research in mathematics. We also

believe that the above mentioned definition of GSO is logically well structured and concretely grounded on

the corresponding ε representatives. For this reason, we evaluate as high the feasibility of this part of the

proposal.
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3.4 General existence theorems for singular PDE

Cauchy-Kowalevski theorem

An important preliminary step in the analysis of the Cauchy problem
∂kt y = F

(
t, x,

(
∂jt ∂

α
x y
)

j<k
|α|+j≤k

)
∂jt y(0, x) = fj(x) 0 ≤ j < k

(6)

is to determine the gauge ρ (which will depend on F and all fj) so that given smooth functions F and fj

could be embedded in ρGC∞(U, ρR̃) for some non trivial sharply open set U ⊆ ρR̃n. We want to start by

proving that given a finite number F1, . . . , Fn ∈ C∞(R,R) of smooth functions and two nets (aε), (bε) ∈ RI

such that aε < bε, there always exists an infinitesimal net (ρε) ↓ 0 (a gauge) such that the embeddings

ι(Fj) ∈ ρGC∞([a, b], ρR̃), where a = [aε] ∈ ρR̃ and b = [bε] ∈ ρR̃. This result will give strong indications on

how to get a general result in several dimensions. Note that the case of a countable family (Fn)n∈N implies

(ρε) ≡ 0 and hence the Schmieden-Laugwitz-Egorov model, see [GiKuSt16]. After this result, we will simply

assume that F , fj are arbitrary GSF with respect to a fixed gauge ρ.

We think it is highly promising to pursue an extension of the classical proof of the Cauchy-Kowalevski

theorem (i.e. recursive calculation of coefficients of the power series of a given solution and the method of

majorants) in the framework of GSF and hyperfinite series. In fact, this would greatly validate this notion

of series and, moreover, it would represent a derivation method easily acceptable outside the community of

CGF. Note also that the classical Kowalevski counterexample is still valid for hyperfinite power series and

it hence implies the necessary limitations on the orders of derivatives in (6).

A subsequent important and related problem is to fathom the scope of the notion of analytic generalized

smooth functions defined by a hyperfinite power series (i.e. a hyperanalytic GSF). As we mentioned above,

the classical example f(x) = e1/x if x ∈ R>0 and f(x) = 0 otherwise results in a hyperanalytic GSF in all

the sharp balls Bdρa(0) for any a ∈ R>0. Another important example could be ϕ(x) =
∑∞

1
cos(n!x)

(n!)n , which

is not real analytic for each rational x ∈ Q.

On the other hand, the classical construction of a Colombeau mollifier (i.e. a Schwartz function with all

moments vanishing, see [GrKuObSt01]) starts by considering the inverse Fourier transform of a compactly

supported function which is identically equal to 1 in a neighbourhood of the origin. By the Schwartz-Paley-

Wiener theorem, this mollifier is hence an entire function. Therefore, there are strong reasons to explore

whether the convolution of this mollifier with a compactly supported distribution yields a hyperanalytic

GSF. We plan to perform the same study also using a compactly supported mollifier, see [NePiSc98, Del05,

GiKuSt16].

Hyperfinite Picard-Lindelöf contractions for normal PDE6

As in the case of ODE, also the aforementioned existence theorem for Cauchy problems with normal PDE,

see Sec. 2.2, usually yields an infinitesimal semi-amplitude α ∈ ρR̃>0 for the solution in the time interval

[t0 − α, t0 + α]. For example, this happens when all the Lipschitz constants Λi are bounded by an infinite

generalized number R ≥ Λi. As we already mentioned above, this is the most general obtainable result,

even for ODE. To obtain sufficient conditions that guarantee an existence result on a classical finite inter-

val, i.e. with semi-amplitude α ∈ R>0, we need to generalize this Picard-Lindelöf theorem to hyperfinite

6This part is completely new.
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contractions, i.e. we have to consider P 〈N〉(y0) =
[
PNεε (y0,ε)(−,−)

]
∈ ρGC∞(T × S, ρR̃d) for N ∈ ρÑ. The

same step has already been accomplished for ODE, see [LuGi16a].

The hard problem of uniqueness of solutions for a Cauchy problem in PDE can be tackled using the

method of characteristics for GSF that we want to develop in a previous part of this project. In fact, we can

start with a solution given by this Picard-Lindelöf theorem for PDE and search for a sufficient condition on

the PDE that allows to use the uniqueness of solutions of the characteristics ODE.

Moreover, a study of the relations between classical distributional solutions of linear PDE and solution

given by GSF is mandatory. This can be realized using the characterization of distributions among GSF, as

we already did in [LuGi16a] for the case of ODE. From this point of view, it is very important to fully clarify

why the classical Lewy counterexample [Lew57, Horm63] cannot be reproduced in the setting of GSF.

Finally, the notion of morphism of gauges f : ρ1 −→ ρ2 introduced in [LuGi16b] is the key notion to study

PDE that can be solved in a space ρ1GC∞(T1×S1,
ρ1R̃) but not in another ρ2GC∞(T2×S2,

ρ2R̃). Particularly

interesting is the common case where (ρi(ε))ε ↓ 0 (e.g. ρ1(ε) = ε and ρ2(ε) = e−1/ε), because in that case
ρ1GC∞(T1 × S1,

ρ1R̃) ' ρ2GC∞(T2 × S2,
ρ2R̃) and the unsolvable PDE is isomorphically transformed into a

solvable PDE. See [LuGi16b] for details about the functorial properties of Colombeau’s construction.

Risks: There is the possibility that the classical proof of the Cauchy-Kowalevski theorem cannot be extended

to our context because of the existence of zero divisors in the ring of generalized numbers. Moreover, it

could be difficult to find suitable conditions that guarantee P 〈N〉(y0) is still a GSF for all N ∈ ρÑ.

Solutions: The usage of a classical ε-wise proof, see e.g. [Col85], is a secure alternative option to prove

the Cauchy-Kowalevski theorem. Concerning the search for sufficient conditions, we plan to generalize to

several variables the ideas we have already sketched above for the previous part of this proposal.

Subjective assessment of feasibility: We can consider as acceptable the risks we foresee for this part

of the research proposal. The proposed solutions are solid and achievable, so that we can evaluate as

medium-high the feasibility of this part of the proposal.

3.5 Hyperfinite methods for generalized smooth functions in nonstandard analysis7

Unfortunately, it is not feasible to include in the present proposal a complete reformulation of all the

previous goals into the framework of NSA. In fact, even if some elementary results on hyperfinite sequences

and series have already been studied, see e.g. [Lind88, CapCut95], the basic results of GSF, [GiKuVe15,

GiKu16, GiKuSt16, GioKun16a, GioLup17, LuGi16a], have not been reformulated in a nonstandard setting.

The work plan of this part of the project is therefore the following:

(i) Generalization of basic results on GSF (e.g. up to the Fermat-Reyes theorem) using the field ρR;

(ii) Basic elementary results on hyperfinite sequences, series, power series, Euler method, definite integrals,

etc. using the field ρR;

(iii) Careful evaluation of the capabilities of our research group in a further development of this topic for

a future FWF research proposal.

For this part of the project we plan to start a collaboration with Prof. M. Oberguggenberger of the University

of Innsbruck, who is a renowned expert in NSA and its applications to generalized functions.

Risks: Thanks to the powerful tools of NSA to deal with hyperfinite sets, we do not foresee important

risks for this part of the project. The only important concern we have to always consider is a careful time

planning.

7This proposal is a resubmission. This part is completely new and elaborated in accordance with reviewers’ indications.
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Solutions: This part of the project is really feasible only if we plan to start a reformulation of GSF theory

in a nonstandard setting, and we use this experience to evaluate the feasibility of a future research project.

No more than 4 months are planned for this part of the project.

Subjective assessment of feasibility: For the reasons we have listed above, we assess as very high the

feasibility of this part.

4 Scientific relevance, originality and expected benefits for potential users

The present research proposal takes place in the following international research frameworks:

• It fits well in the current threads of Austrian research, in particular those of the DIANA group of Prof.

M. Kunzinger at the University of Vienna, who is also one of the main developers of the theory of GSF.

Thanks to works like [GiKu16, GioKun16a, GiKuVe15, GrKuObSt01, SteVic06, Kun04, Hor99], the

host institute is probably one of the best places where to perform this important further advancement

of the theory of GSF. Moreover, the present research project would represent a solid way to continue

the collaboration between the main applicant (P. Giordano) and other collaborators, such as L. Luperi

Baglini.

• It also fits well into the research interests of the international community of Colombeau generalized

functions. The main ideas of this research proposal have been presented and discussed during the

recent workshop WING, June 29 – July 3 2016, at the University of Innsbruck, where they have

sparked a sound interest and stimulated interesting and fruitful discussion.

Originality, innovations and benefits of the present proposal can be listed as follows:

• Our existence result for Cauchy problems with normal PDE would be of great interest for the study

of PDE because it shows that PDE can essentially be treated using the usual well-known methods for

ODE.

• The strengthening and the vast range of applicability of the planned extension of the Cauchy-Kowalevski

theorem would be of considerable interest for the scientific community of research in PDE.

• Our notion of hyperfinite Fourier transform can be applied to any GSF and hence has a potentially

huge range of applications in mathematics, physics and engineering. We also expect that our approach

can suggest similar ideas in the study of oscillatory integrals. Although the latter is probably beyond

what can be achieved within this proposal, we feel that it could lead to substantial contributions to

microlocal analysis in algebras of generalized functions. We view it as a long-term project that we

would like to pursue jointly with G. Hörmann, E. Nigsch, and M. Oberguggenberger.

• The fourth section of the project could stimulate the development of a functional analysis of general-

ized smooth operators, which could expand into new approaches to unbounded operators, monotone

operators, compact operators, ρR̃-Banach or Hilbert spaces, fixed point theory, etc.

• The whole research project underlines the importance to consider a non-Archimedean ring of scalar as

a basis for important parts of analysis and geometry. Therefore, we believe that it will be of particular

interest for researcher in non-Archimedean mathematics.

• The present proposal confirms that the theory of GSF represents a versatile and powerful framework

to deal with singularities and generalized functions in physics and engineering.
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4.1 Importance for human resources

The articles originating from the present research project, together with past works, would constitute the

basis for a monograph about generalized smooth functions. The work developed here will represent a good

introduction of the post-doc collaborator into the community of Colombeau generalized functions and their

applications, and could pave her/his way to a successful career as a researcher in Mathematics.

4.2 Ethical Issues

There are no ethical, security-related or regulatory aspects of the proposed research project.

5 Dissemination strategy and time planning

Dissemination strategy

Our strategy for the dissemination of the results of this proposal is addressed both to an internal and an

international audience:

• From an internal point of view, we plan mini-workshops with the presentation of new results connected

with the present proposal. These mini-workshops will also have the aim of embedding the new post-doc

collaborator in the host research group.

• More typical internal public seminars addressed to all the interested colleagues are planned for pre-

senting the milestones of this project.

• Contributions for two international conferences per year for the presentation of relevant results are

planned. In particular, we are thinking of conferences in mathematical analysis, generalized functions

and PDE. Of course, several articles for peer reviewed journals and the related dissemination by means

of preprint-servers is planned.

• At the end of this project, we expect to have a sufficient amount of meaningful results to concretely

start the writing of a monograph about GSF.

• 8We would like to disseminate the results of the present project by a fruitful comparison with other

settings for multiplication of distributions. For this reason, we plan to organize a joint workshop with

researchers in fields such as distributions, ultradistributions, hyperfunctions, algebras of generalized

functions and paracontrolled calculus and related applications. This could be realized, e.g., as a special

session in one of the next ISAAC conferences (see http://mathisaac.org/).

Time planning

The research project is designed for three co-workers: two applicants (P. Giordano and M. Kunzinger) and

one post-doc collaborator. The latter and the main applicant will work on this project at full time for three

years. We plan to conclude the international search for the post-doc collaborator within a few months. For

this reason, and for budgetary motivations this collaborator will be employed for 31 months, i.e. starting

from the sixth month.

To estimate the total amount of work to be dedicated into each one of the three parts of this project, we

note that

8This part is completely new and elaborated in accordance with reviewers’ indications.
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• The first part of the proposal (Basic hyperfinite methods in the ring ρR̃ of generalized numbers) could

be considered the most elementary one, and it has been assessed with a very high feasibility. We

therefore plan to accomplish its goals in 6 months.

• The second part (General existence theorems for singular PDE ) is the longest one and it has been

assessed with a medium-high feasibility. For these reason, we prefer to realize this part in 10 months.

• Because of their very high or high estimate of feasibility, we plan to conclude the remaining two parts

of the proposal in 8 + 8 + 4 months.

The entire research project is hence planned to be concluded in 36 months and we can hence represent the

time planning of the four different parts of this project in the following table:

Time (months)
−−−−−−−−−−−−−−−→
I 6

II 10

III 8

IV 8

V 4

6 Scientific environment

The ideal environment for realizing this project is the DIANA research group at Vienna University. This will

enable us to closely collaborate with some of the leading scientists in the field, in particular with Professors

Michael Grosser, Günther Hörmann, and Roland Steinbauer, as well as several PostDocs and PhD students.

Moreover, we will cooperate with Prof. Michael Oberguggenberger from the University of Innsbruck, who is

one of the architects of the field of algebras of generalized functions and an expert in nonstandard analysis.

We also endeavour to initiate a collaboration with the highly active research group of Professors J. Aragona

and F. Juriaans in Sao Paolo, Brazil in the direction of differentiation theories for mappings on generic sets

of generalized points, a field in which they are internationally leading. We believe that an exchange of ideas

will be very fruitful for both research groups.

Personnel costs: In our view, work on the project goals can be pursued most effectively by funding one

senior post-doc position for the main applicant Dr. P. Giordano, and one post-doc position for the duration

of 35 months to a researcher with a strong background in PDE, functional analysis and possibly in NSA.

Of course, we plan to create an international call to find the best candidate for this post-doc position.
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