The Picard-Lindelöf theorem for smooth PDE

Paolo Giordano

joint work with: L. Luperi Baglini (Milan)

University of Vienna

ISAAC 2021

Ghent University

Lewy yields: no PLT for smooth PDE

Lewy (1957) and Mizohata (1962) showed that a general Picard-Lindelöf theorem (PLT) for normal PDE

$$\begin{cases} \partial_t^d y(t,x) = F\left[t, x, (\partial_x^\alpha y)_{|\alpha| \le L}, (\partial_t^\gamma y)_{|\gamma| < d}\right], \\ \partial_t^j y(t_0, x) = y_0^j(x) \ j = 0, \dots, d - 1, \end{cases}$$
 (CP)

is not possible.

Lewy yields: no PLT for smooth PDE

Lewy (1957) and Mizohata (1962) showed that a general Picard-Lindelöf theorem (PLT) for normal PDE

$$\begin{cases} \partial_t^d y(t,x) = F\left[t, x, (\partial_x^\alpha y)_{|\alpha| \le L}, (\partial_t^\gamma y)_{|\gamma| < d}\right], \\ \partial_t^j y(t_0, x) = y_0^j(x) \ j = 0, \dots, d - 1, \end{cases}$$
 (CP)

is not possible.

E.g. Mizohata proved the existence of smooth $F \in \mathcal{C}^{\infty}(\mathbb{R}^2, \mathbb{C})$ such that $\partial_t y + it\partial_x y = F(t,x)$ has no solution $y \in \mathcal{C}^{\infty}(V,\mathbb{C})$ in any open $V \subseteq \mathbb{R}^2$.

Lewy yields: no PLT for smooth PDE

Lewy (1957) and Mizohata (1962) showed that a general Picard-Lindelöf theorem (PLT) for normal PDE

$$\begin{cases} \partial_t^d y(t,x) = F\left[t, x, (\partial_x^\alpha y)_{|\alpha| \le L}, (\partial_t^\gamma y)_{|\gamma| < d}\right], \\ \partial_t^j y(t_0, x) = y_0^j(x) \ j = 0, \dots, d - 1, \end{cases}$$
 (CP)

is *not* possible.

E.g. Mizohata proved the existence of smooth $F \in \mathcal{C}^{\infty}(\mathbb{R}^2, \mathbb{C})$ such that $\partial_t y + it\partial_x y = F(t,x)$ has no solution $y \in \mathcal{C}^{\infty}(V,\mathbb{C})$ in any open $V \subseteq \mathbb{R}^2$.

Do we have a contraction with PDE? E.g. for $\partial_t y = c \cdot \partial_x y$, we have:

$$\begin{split} \left\| \int_0^t c \cdot \partial_x u \, \mathrm{d}s - \int_0^t c \cdot \partial_x v \, \mathrm{d}s \right\|_i &= \left\| \int_0^t c \cdot \partial_x (u - v) \, \mathrm{d}s \right\|_i \leq \\ &\leq \alpha \cdot \|c\|_i \cdot \|\partial_x (u - v)\|_i \leq \alpha \cdot \|c\|_i \cdot \|u - v\|_{i+1} \end{split}$$

Loss of derivatives (in the Ekeland sense)

Graded Fréchet space: $(\mathcal{F}, (\|-\|_i)_{i\in\mathbb{N}})$ Hausdorff, complete TVS, topology defined by seminorms $\|-\|_i \leq \|-\|_{i+1} \ \forall i \in \mathbb{N}$

Loss of derivatives (in the Ekeland sense)

Graded Fréchet space: $(\mathcal{F}, (\|-\|_i)_{i\in\mathbb{N}})$ Hausdorff, complete TVS, topology defined by seminorms $\|-\|_i \leq \|-\|_{i+1} \ \forall i \in \mathbb{N}$

Definition

Let $(\mathcal{F}, (\|-\|_i)_{i\in\mathbb{N}})$ Fréchet space, X a closed subset of \mathcal{F} , $y_0 \in X$, $L \in \mathbb{N}$. We say that $P: X \longrightarrow X$ is a contraction with L loss of derivatives (LOD) starting from y_0 if P is continuous and

1 For all $i, n \in \mathbb{N}$ there exist $\alpha_{i,n} \in \mathbb{R}_{>0}$ such that

$$\|P^{n+1}(y_0) - P^n(y_0)\|_i \le \alpha_{i,n} \|P(y_0) - y_0\|_{i+nL}$$

② For all $i \in \mathbb{N}$ the following *Weissinger* condition holds:

$$\sum_{i=1}^{+\infty} \alpha_{i,n} \| P(y_0) - y_0 \|_{i+nL} < +\infty.$$
 (W)

Loss of derivatives (in the Ekeland sense)

Graded Fréchet space: $(\mathcal{F}, (\|-\|_i)_{i\in\mathbb{N}})$ Hausdorff, complete TVS, topology defined by seminorms $\|-\|_i \leq \|-\|_{i+1} \ \forall i \in \mathbb{N}$

Definition

Let $(\mathcal{F}, (\|-\|_i)_{i\in\mathbb{N}})$ Fréchet space, X a closed subset of \mathcal{F} , $y_0 \in X$, $L \in \mathbb{N}$. We say that $P: X \longrightarrow X$ is a contraction with L loss of derivatives (LOD) starting from y_0 if P is continuous and

① For all i, $n \in \mathbb{N}$ there exist $\alpha_{i,n} \in \mathbb{R}_{>0}$ such that

$$\|P^{n+1}(y_0) - P^n(y_0)\|_i \le \alpha_{i,n} \|P(y_0) - y_0\|_{i+nL}$$

2 For all $i \in \mathbb{N}$ the following *Weissinger* condition holds:

$$\sum_{n=0}^{+\infty} \alpha_{i,n} \| P(y_0) - y_0 \|_{i+nL} < +\infty.$$
 (W)

Suff. cond. for (1): $\|P^{n}(u) - P^{n}(v)\|_{i} \leq \alpha_{i,n} \|u - v\|_{i+nL} \quad \forall i, n \in \mathbb{N} \ \forall u, v \in X$

Banach with loss of derivatives

Theorem

If P is a contraction with L LOD from y_0 , then $(P^n(y_0))_{n\in\mathbb{N}}$ is a Cauchy sequence, hence $\overline{y}:=\lim_{n\to+\infty}P^n(y_0)$ is a fixed point of P. Moreover, for all i, $n\in\mathbb{N}$ we have that

$$\|\overline{y} - P^{n}(y_{0})\|_{i} \leq \sum_{j=n}^{+\infty} \alpha_{i,j} \|P(y_{0}) - y_{0}\|_{i+jL}.$$

Banach with loss of derivatives

Theorem

If P is a contraction with L LOD from y_0 , then $(P^n(y_0))_{n\in\mathbb{N}}$ is a Cauchy sequence, hence $\overline{y}:=\lim_{n\to+\infty}P^n(y_0)$ is a fixed point of P. Moreover, for all i, $n\in\mathbb{N}$ we have that

$$\|\overline{y} - P^{n}(y_{0})\|_{i} \leq \sum_{j=n}^{+\infty} \alpha_{i,j} \|P(y_{0}) - y_{0}\|_{i+jL}.$$

The proof is essentially "the usual one". Thereby, the key ideas are:

lacktriangledown for PDE having a fixed point depends on the initial condition y_0 and on the LOD L

Banach with loss of derivatives

Theorem

If P is a contraction with L LOD from y_0 , then $(P^n(y_0))_{n\in\mathbb{N}}$ is a Cauchy sequence, hence $\overline{y}:=\lim_{n\to+\infty}P^n(y_0)$ is a fixed point of P. Moreover, for all i, $n\in\mathbb{N}$ we have that

$$\|\overline{y} - P^{n}(y_{0})\|_{i} \leq \sum_{j=n}^{+\infty} \alpha_{i,j} \|P(y_{0}) - y_{0}\|_{i+jL}.$$

The proof is essentially "the usual one". Thereby, the key ideas are:

- lacktriangledown for PDE having a fixed point depends on the initial condition y_0 and on the LOD L
- We must have a suff. cond. for the convergence of Picard iterations

A (left) inverse function theorem

Theorem

Let $(\mathcal{F}, (\|-\|_m)_{m \in \mathbb{N}})$ be a graded Fréchet space, $f : \mathcal{F} \to \mathcal{F}$ be continuous, $y_0 \in \mathcal{F}$, $r_i \in \mathbb{R}_{>0}$ and $L \in \mathbb{N}$. Set F(x) := x - f(x) and $B(y_0, (r_i)_i) := \{y \in \mathcal{F} \mid \|y - y_0\|_i < r_i \ \forall i \in \mathbb{N} \}$. Assume that for all $i, n \in \mathbb{N}$:

$$\exists \alpha_{in} \in \mathbb{R}_{>0} : \ \left\| F^{n+1}(y_0) - F^n(y_0) \right\|_i \le \alpha_{in} \left\| F(y_0) - y_0 \right\|_{i+nL} \tag{1}$$

$$\sum_{n=0}^{+\infty} \alpha_{in} \cdot \|F(y_0)\|_{i+nL} < +\infty \tag{2}$$

Then

$$\exists x \in B(y_0,(r_i)_i): \ f(x) = y_0.$$

In particular, if at $x_0 \in \mathcal{F}$ instead of (1), we assume the stronger

$$\exists a \in [0,1) \, \forall u,v \in B\left(x_0,(r_i)_i\right) \, \forall i \in \mathbb{N} \, \exists \alpha_i < a : \, \left\|F(u) - F(v)\right\|_i \leq \alpha_i \left\|u - v\right\|_{i+L},$$

then for $s_i := r_{i+L} (1 - \alpha_i)$, we have

$$\forall y \in B(f(x_0), (s_i)_i) \exists x \in B(x_0, (r_i)_i) : f(x) = y$$

Norms of integral functions: problem

If
$$\|y\|_i = \max_{\substack{|\beta| \leq i, \ 1 \leq h \leq d \\ \beta \in \mathbb{N}^{1+s}}} \max_{1 \leq h \leq d} \max_{(t,x) \in [0,\alpha] \times S} \left| \partial^\beta y^h(t,x) \right|$$
, the inequality $\left\| \int_0^t f(s,-) \, \mathrm{d}s \right\|_i \leq \alpha \cdot \|f\|_i$ doesn't hold, but we need it...

Norms of integral functions: problem

If
$$\|y\|_i = \max_{\substack{|\beta| \leq i, \ 1 \leq h \leq d \\ \beta \in \mathbb{N}^{1+s}}} \max_{(t,x) \in [0,\alpha] \times S} \left| \partial^\beta y^h(t,x) \right|$$
, the inequality

$$\left\|\int_0^t f(s,-) \, \mathrm{d}s \right\|_i \le \alpha \cdot \|f\|_i$$
 doesn't hold, but we need it...

Reduction to 1st order: $y^1:=y$, $y^{j+1}:=\partial_t y^j$, $j=1,\ldots,d-1$, our normal problem is equivalent to

$$\begin{cases} \partial_t Y(t,x) = \bar{F}\left[t,x,Y^2,\ldots,Y^d,\left(\partial_x^\alpha Y^1\right)_{|\alpha| \leq L}\right], \\ Y(t_0,x) = Y_0(x), \end{cases}$$

where
$$Y(t,x) := (y^1(t,x), \dots, y^d(t,x)), \ Y_0(x) := (y^0_0(x), \dots, y^{d-1}_0(x))$$
 and $\bar{F}_j := y^{j+1}$ for $j = 1, \dots, d-1$, $\bar{F}^d := F\left[t, x, y^2, \dots, y^d, (\partial_x^\alpha y^1)_{|\alpha| \le L}\right]$

Spaces of separately regular functions

Definition

Let $T \times S \subseteq \mathbb{R}^{1+s}$. The space $C^{0,\infty}\left(T \times S, \mathbb{R}^d\right)$ contains functions y which are called *separately* $C^{0,\infty}$ *regular* i.e.:

This space is endowed with the norms $\|-\|_i$, $i \in \mathbb{N}$, defined by

$$\|y\|_i := \max_{\substack{1 \le h \le d \\ |\beta| \le i \\ \beta \in \mathbb{N}^{1+s}}} \max_{(t,x) \in T \times S} \left| \partial^\beta y^h(t,x) \right|, \ \mathbb{N}_0^{1+s} := \left\{ \beta \in \mathbb{N}^{1+s} \mid \beta_1 = 0 \right\}.$$

Spaces of separately regular functions

Definition

Let $T \times S \subseteq \mathbb{R}^{1+s}$. The space $\mathcal{C}^{0,\infty}\left(T \times S, \mathbb{R}^d\right)$ contains functions y which are called *separately* $\mathcal{C}^{0,\infty}$ *regular* i.e.:

This space is endowed with the norms $\|-\|_i$, $i \in \mathbb{N}$, defined by

$$\|y\|_i := \max_{\substack{1 \leq h \leq d \\ |\beta| \leq i \\ \beta \in \mathbb{N}_0^{1+s}}} \max_{(t,x) \in T \times S} \left| \partial^\beta y^h(t,x) \right|, \ \mathbb{N}_0^{1+s} := \left\{ \beta \in \mathbb{N}^{1+s} \mid \beta_1 = 0 \right\}.$$

Theorem

 $(\mathcal{C}^{0,\infty}\left(T\times\mathcal{S},\mathbb{R}^d\right),(\|-\|_i)_{i\in\mathbb{N}})$ is a graded Fréchet space

Norms of integral functions: solution

Lemma

Let $a, b \in \mathbb{R}_{>0}$, $K := [t_0 - a, t_0 + b] \times S =: T \times S \in \mathbb{R}^{1+s}$, $f \in \mathcal{C}^{0,\infty}(K,\mathbb{R}^d)$, and assume that for every $i \in \mathbb{N}$, we have $M_i \in \mathcal{C}^0(K,\mathbb{R})$ such that

$$\forall \beta \in \mathbb{N}_0^{1+s} \, \forall h = 1, \ldots, d \, \forall (t,x) \in \mathcal{K} : \ |\beta| \leq i \ \Rightarrow \ \left| \partial^\beta f^h(t,x) \right| \leq M_i(t,x).$$

Set

$$ar{M}_i(t,x) := \left| \int_{t_0}^t M_i(s,x) \, \mathrm{d}s \right| \quad \forall (t,x) \in K.$$

Then, we have

$$\| \int_{t_0}^{(-)} f(s, -) \, \mathrm{d} s \|_i \le \max(a, b) \cdot \|f\|_i.$$

Lipschitz maps with LOD

Introduce the useful notation

$$G(t,x,y) := F\left[t,x,y^2(t,x),\ldots,y^d(t,x),\left(\partial_x^\alpha y^1(t,x)\right)_{|\alpha| \le L}\right] \in \mathbb{R}^d, \qquad (G)$$

for all $(t,x) \in T \times S$ and all $y \in \mathcal{C}^{0,\infty}(T \times S,\mathbb{R}^d)$.

Lipschitz maps with LOD

Introduce the useful notation

$$G(t,x,y) := F\left[t,x,y^2(t,x),\ldots,y^d(t,x),\left(\partial_x^\alpha y^1(t,x)\right)_{|\alpha| \le L}\right] \in \mathbb{R}^d, \tag{G}$$

for all $(t,x) \in T \times S$ and all $y \in \mathcal{C}^{0,\infty}(T \times S,\mathbb{R}^d)$.

Definition

Let $K:=T\times S\Subset\mathbb{R}^{1+s}$, $L\in\mathbb{N}$, $Y\subseteq\mathcal{C}^{0,\infty}\left(T\times S,\mathbb{R}^d\right)$. We say that $G:K\times Y\to\mathbb{R}^d$ is Lipschitz on Y with loss of derivatives (LOD) L and Lipschitz factors $(\Lambda_i)_{i\in\mathbb{N}}$ if

$$\left|\partial^{\beta}G^{h}(t,x,u)-\partial^{\beta}G^{h}(t,x,v)\right|\leq \Lambda_{i}(t,x)\cdot\max_{\substack{k=1,\dots,d\\|\alpha|\leq i+L}}\left|\partial_{x}^{\alpha}(u^{k}-v^{k})(t,x)\right|$$

Smooth normal PDE are always Lipschitz

Theorem

Let $\emptyset \neq K := T \times S \in \mathbb{R}^{1+s}$, $L \in \mathbb{N}$, $\hat{L} := Card\{a \in \mathbb{N}^s \mid |a| \leq L\}$, $F \in \mathcal{C}^{\infty}\left(K \times \mathbb{R}^{d \cdot (d-1)} \times \mathbb{R}^{d \cdot \hat{L}}, \mathbb{R}^d\right)$, $y_0 \in \mathcal{C}^{\infty}\left(S, \mathbb{R}^s\right)$, $r_i \in \mathbb{R}_{>0}$ for all $i \in \mathbb{N}$. Set

$$Y := \left\{ y \in \mathcal{C}^{0,\infty}(K,\mathbb{R}^d) \mid \|y - y_0\|_i \le r_i \ \forall i \in \mathbb{N} \right\}$$
 (Y)

Then

- **1** Y is closed in $\left(\mathcal{C}^{0,\infty}\left(T\times\mathcal{S},\mathbb{R}^d\right),\left(\|-\|_i\right)_{i\in\mathbb{N}}\right)$;
- **2** The function G is Lipschitz in Y with loss of derivatives L for some constant $(\Lambda_i)_{i\in\mathbb{N}}$.

Theorem (PLT, assumptions)

Let $T = [t_0 - a, t_0 + b]$, $S \in \mathbb{R}^s$, $y_0 \in \mathcal{C}^{\infty}(S, \mathbb{R}^s)$, M_i , $\Lambda_i \in \mathcal{C}^0(T \times S)$, $r_i \in \mathbb{R}_{>0}$ for all $i \in \mathbb{N}$.

Theorem (PLT, assumptions)

Let $T = [t_0 - a, t_0 + b]$, $S \in \mathbb{R}^s$, $y_0 \in \mathcal{C}^{\infty}(S, \mathbb{R}^s)$, M_i , $\Lambda_i \in \mathcal{C}^0(T \times S)$, $r_i \in \mathbb{R}_{>0}$ for all $i \in \mathbb{N}$. Define Y as in (Y), G as in (G),

Theorem (PLT, assumptions)

Let $T = [t_0 - a, t_0 + b]$, $S \in \mathbb{R}^s$, $y_0 \in \mathcal{C}^{\infty}(S, \mathbb{R}^s)$, M_i , $\Lambda_i \in \mathcal{C}^0(T \times S)$, $r_i \in \mathbb{R}_{>0}$ for all $i \in \mathbb{N}$. Define Y as in (Y), G as in (G), and $P: Y \to \mathcal{C}^{0,\infty}\left(T \times S, \mathbb{R}^d\right)$ by $P(y) := y_0 + \int_{t_0}^t G(s, x, y) ds$.

Theorem (PLT, assumptions)

Let $T = [t_0 - a, t_0 + b]$, $S \in \mathbb{R}^s$, $y_0 \in \mathcal{C}^{\infty}(S, \mathbb{R}^s)$, M_i , $\Lambda_i \in \mathcal{C}^0(T \times S)$, $r_i \in \mathbb{R}_{>0}$ for all $i \in \mathbb{N}$. Define Y as in (Y), G as in (G), and $P : Y \to \mathcal{C}^{0,\infty}(T \times S, \mathbb{R}^d)$ by $P(y) := y_0 + \int_{t_0}^t G(s, x, y) \, \mathrm{d}s$. Assume G is Lipschitz on Y with LOD L and Lipschitz factors $(\Lambda_i)_{i \in \mathbb{N}}$.

Theorem (PLT, assumptions)

Let $T=[t_0-a,t_0+b],\ S\in\mathbb{R}^s,\ y_0\in\mathcal{C}^\infty\left(S,\mathbb{R}^s\right),\ M_i,\ \Lambda_i\in\mathcal{C}^0(T\times S),\ r_i\in\mathbb{R}_{>0}$ for all $i\in\mathbb{N}$. Define Y as in (Y), G as in (G), and $P:Y\to\mathcal{C}^{0,\infty}\left(T\times S,\mathbb{R}^d\right)$ by $P(y):=y_0+\int_{t_0}^tG(s,x,y)\,\mathrm{d} s.$ Assume G is Lipschitz on Y with LOD L and Lipschitz factors $(\Lambda_i)_{i\in\mathbb{N}}$. Define

$$\Lambda_{i,0} := 1, \qquad \Lambda_{i,n+1}(t,x) := \int_{t_0}^t \Lambda_i(s,x) \cdot \Lambda_{i+L,n}(s,x) \, \mathrm{d}s$$

$$ar{\Lambda}_{i,n} := \max_{x \in \mathcal{S}} \Lambda_{i,n}(t_0 + \max(a,b),x) \qquad ar{M}_i(t,x) := \int_{t_0}^t M_i(s,x) \, \mathrm{d}s.$$

Finally, assume:

3
$$\sum_{n=0}^{+\infty} \bar{\Lambda}_{i,n} \cdot \|P(y_0) - y_0\|_{i+nL} < +\infty$$

Theorem (PLT, conclusions)

Then, there exists a smooth solution $y \in Y \cap \mathcal{C}^{\infty}(T \times S, \mathbb{R}^d)$ of the problem

$$\begin{cases} \partial_t y(t,x) = F\left[t,x,y^2,\ldots,y^d,\left(\partial_x^\alpha y^1\right)_{|\alpha| \leq L}\right], \\ y(t_0,x) = y_0(x), \end{cases}$$

given by $y=\lim_{n\to+\infty}P^{n}\left(y_{0}\right)$ in $\left(\mathcal{C}^{0,\infty}\left(T imes\mathcal{S},\mathbb{R}^{d}\right),\left(\|-\|_{i}\right)_{i\in\mathbb{N}}\right)$, which satisfies

$$\forall i, m \in \mathbb{N}: \|y - P^{m}(y_{0})\|_{i} \leq \sum_{n=m}^{+\infty} \bar{\Lambda}_{i,n} \cdot \|P(y_{0}) - y_{0}\|_{i+nL}.$$

Corollary of PLT

Corollary

Set $M_i := ||F||_i$, where the norm is taken in $C_i := \bigcup_{|\alpha| \le i+L} \overline{B_{r_i+L}(\partial_x^{\alpha} y_0(T \times S))}$. Finally, assume that the following conditions are fulfilled:

$$0<\max(a,b)\leq\inf_{i\in\mathbb{N}}\frac{r_i}{M_i}$$

$$\sum_{n=0}^{+\infty} \bar{\Lambda}_{i,n} \cdot \|P(y_0) - y_0\|_{i+nL} < +\infty$$

Then, there exists a smooth solution $y \in Y \cap C^{\infty}([t_0 - a, t_0 + b] \times S, \mathbb{R}^d)$.

1 Every smooth PDE is always Lipschitz w.r.t. constants $(\Gamma_i)_{i\in\mathbb{N}}$ (Thm. Lip.)

- **1** Every smooth PDE is always Lipschitz w.r.t. constants $(\Gamma_i)_{i\in\mathbb{N}}$ (Thm. Lip.)
- Condition (W) for the reduced problem is equivalent to

$$\sum_{n=0}^{+\infty} \prod_{k=0}^{n-1} \Gamma_{i+kL} \cdot \frac{\alpha^n}{(nd)!} \cdot \|P(i_c) - i_c\|_{i+nL} < +\infty$$

where $\alpha := \max(a, b)$ and $i_c(t, x) := \sum_{j=0}^{d-1} \frac{y_0'(x)}{j!} (t - t_0)^j$, for the initial problem (CP).

- **1** Every smooth PDE is always Lipschitz w.r.t. constants $(\Gamma_i)_{i\in\mathbb{N}}$ (Thm. Lip.)
- Condition (W) for the reduced problem is equivalent to

$$\sum_{n=0}^{+\infty} \prod_{k=0}^{n-1} \Gamma_{i+kL} \cdot \frac{\alpha^n}{(nd)!} \cdot \|P(i_c) - i_c\|_{i+nL} < +\infty$$

where $\alpha := \max(a, b)$ and $i_c(t, x) := \sum_{j=0}^{d-1} \frac{y_0'(x)}{j!} (t - t_0)^j$, for the initial problem (CP). Lewy, Mizohata do not satisfy this condition

- **1** Every smooth PDE is always Lipschitz w.r.t. constants $(\Gamma_i)_{i\in\mathbb{N}}$ (Thm. Lip.)
- Condition (W) for the reduced problem is equivalent to

$$\sum_{n=0}^{+\infty} \prod_{k=0}^{n-1} \Gamma_{i+kL} \cdot \frac{\alpha^n}{(nd)!} \cdot \|P(i_c) - i_c\|_{i+nL} < +\infty$$

where $\alpha := \max(a, b)$ and $i_c(t, x) := \sum_{j=0}^{d-1} \frac{y_0'(x)}{j!} (t - t_0)^j$, for the initial problem (CP). Lewy, Mizohata do not satisfy this condition

③ If both F and y_0 are analytical, then $\prod_{k=0}^{n-1} \Gamma_{i+kL} \cdot \|P(i_c) - i_c\|_{i+nL} \le C_i^{i+nL} \cdot (i+nL)!$ and we can prove that (W) always holds.

- **1** Every smooth PDE is always Lipschitz w.r.t. constants $(\Gamma_i)_{i\in\mathbb{N}}$ (Thm. Lip.)
- Condition (W) for the reduced problem is equivalent to

$$\sum_{n=0}^{+\infty} \prod_{k=0}^{n-1} \Gamma_{i+kL} \cdot \frac{\alpha^n}{(nd)!} \cdot \|P(i_c) - i_c\|_{i+nL} < +\infty$$

where $\alpha := \max(a, b)$ and $i_c(t, x) := \sum_{j=0}^{d-1} \frac{y_0'(x)}{j!} (t - t_0)^j$, for the initial problem (CP). Lewy, Mizohata do not satisfy this condition

- **③** If both F and y_0 are analytical, then $\prod_{k=0}^{n-1} \Gamma_{i+kL} \cdot \|P(i_c) i_c\|_{i+nL} \le C_i^{i+nL} \cdot (i+nL)!$ and we can prove that (W) always holds.
- More generally if $\prod_{k=0}^{n-1} \Gamma_{i+kL} \cdot \|P(i_c) i_c\|_{i+nL} \le Cn^{i+nL}$ for n → +∞, then (W) holds

- **1** Every smooth PDE is always Lipschitz w.r.t. constants $(\Gamma_i)_{i\in\mathbb{N}}$ (Thm. Lip.)
- Condition (W) for the reduced problem is equivalent to

$$\sum_{n=0}^{+\infty} \prod_{k=0}^{n-1} \Gamma_{i+kL} \cdot \frac{\alpha^n}{(nd)!} \cdot \|P(i_c) - i_c\|_{i+nL} < +\infty$$

where $\alpha := \max(a, b)$ and $i_c(t, x) := \sum_{j=0}^{d-1} \frac{y_0'(x)}{j!} (t - t_0)^j$, for the initial problem (CP). Lewy, Mizohata do not satisfy this condition

- **③** If both F and y_0 are analytical, then $\prod_{k=0}^{n-1} \Gamma_{i+kL} \cdot \|P(i_c) i_c\|_{i+nL} \le C_i^{i+nL} \cdot (i+nL)!$ and we can prove that (W) always holds.
- **4** More generally if $\prod_{k=0}^{n-1} \Gamma_{i+kL} \cdot \|P(i_c) i_c\|_{i+nL} \le Cn^{i+nL}$ for $n \to +\infty$, then (W) holds
- If F and y_0 satisfy $\prod_{k=0}^{n-1} \Gamma_{i+kL} \cdot \|P(i_c) i_c\|_{i+nL} \sim n^{i+nL}$ for $n \to +\infty$ (by Borel's lemma such F, y_0 always exist), then F, y_0 are smooth but not analytic

In the non-Archimedean setting of generalized smooth functions (GSF⊇Colombeau; closure w.r.t. composition, GF defined also on infinitesimal or infinite domains, good integration theory...) we can repeat the proof of the PLT

- In the non-Archimedean setting of generalized smooth functions (GSF⊇Colombeau; closure w.r.t. composition, GF defined also on infinitesimal or infinite domains, good integration theory...) we can repeat the proof of the PLT
- **②** We can consider $S = [-k, k]^s \supseteq \mathbb{R}^s$ if $k \in {}^{\rho}\widetilde{\mathbb{R}}$ is an infinite number (e.g. $\rho_{\varepsilon} = \varepsilon$)

- In the non-Archimedean setting of generalized smooth functions (GSF⊇Colombeau; closure w.r.t. composition, GF defined also on infinitesimal or infinite domains, good integration theory...) we can repeat the proof of the PLT
- We can consider $S = [-k, k]^s \supseteq \mathbb{R}^s$ if $k \in {}^{\rho}\widetilde{\mathbb{R}}$ is an infinite number (e.g. $\rho_{\varepsilon} = \varepsilon$)
- **3** Condition (W) is equivalent to $\lim_{n\to+\infty} \prod_{k=0}^{n-1} \Gamma_{i+kL} \cdot \frac{\alpha^n}{(nd)!} \cdot ||P(i_c) i_c||_{i+nL} = 0.$

- In the non-Archimedean setting of generalized smooth functions (GSF⊇Colombeau; closure w.r.t. composition, GF defined also on infinitesimal or infinite domains, good integration theory...) we can repeat the proof of the PLT
- We can consider $S = [-k, k]^s \supseteq \mathbb{R}^s$ if $k \in {}^{\rho}\widetilde{\mathbb{R}}$ is an infinite number (e.g. $\rho_{\varepsilon} = \varepsilon$)
- **3** Condition (W) is equivalent to $\lim_{n\to+\infty}\prod_{k=0}^{n-1}\Gamma_{i+kL}\cdot\frac{\alpha^n}{(nd)!}\cdot\|P(i_c)-i_c\|_{i+nL}=0$. Therefore, if we assume $(\mathrm{d}\rho=[\rho_{\varepsilon}]\in{}^{\rho}\widetilde{\mathbb{R}})$

$$\exists N \in \mathbb{N} \, \forall n \in \mathbb{N} : \prod_{k=0}^{n-1} \Gamma_{i+kL} \cdot \frac{\alpha^n}{(nd)!} \cdot \|P(i_c) - i_c\|_{i+nL} \le \mathrm{d}\rho^{-N}$$
$$\exists r \in \mathbb{R}_{>0} : \alpha \le \mathrm{d}\rho^r$$

then (W) holds: Every smooth PDE has always a solution in an infinitesimal interval

- In the non-Archimedean setting of generalized smooth functions (GSF⊇Colombeau; closure w.r.t. composition, GF defined also on infinitesimal or infinite domains, good integration theory...) we can repeat the proof of the PLT
- We can consider $S = [-k, k]^s \supseteq \mathbb{R}^s$ if $k \in {}^{\rho}\widetilde{\mathbb{R}}$ is an infinite number (e.g. $\rho_{\varepsilon} = \varepsilon$)
- **3** Condition (W) is equivalent to $\lim_{n\to+\infty}\prod_{k=0}^{n-1}\Gamma_{i+kL}\cdot\frac{\alpha^n}{(nd)!}\cdot\|P(i_c)-i_c\|_{i+nL}=0$. Therefore, if we assume $(\mathrm{d}\rho=[\rho_{\varepsilon}]\in{}^{\rho}\widetilde{\mathbb{R}})$

$$\exists N \in \mathbb{N} \, \forall n \in \mathbb{N} : \prod_{k=0}^{n-1} \Gamma_{i+kL} \cdot \frac{\alpha^n}{(nd)!} \cdot \|P(i_c) - i_c\|_{i+nL} \le d\rho^{-N}$$
$$\exists r \in \mathbb{R}_{>0} : \alpha \le d\rho^r$$

then (W) holds: Every smooth PDE has always a solution in an infinitesimal interval

For GSF, we can also prove uniqueness and continuous dependence on initial condition in an infinitesimal neighborhood

- In the non-Archimedean setting of generalized smooth functions (GSF⊇Colombeau; closure w.r.t. composition, GF defined also on infinitesimal or infinite domains, good integration theory...) we can repeat the proof of the PLT
- We can consider $S = [-k, k]^s \supseteq \mathbb{R}^s$ if $k \in {}^{\rho}\widetilde{\mathbb{R}}$ is an infinite number (e.g. $\rho_{\varepsilon} = \varepsilon$)
- **3** Condition (W) is equivalent to $\lim_{n\to+\infty}\prod_{k=0}^{n-1}\Gamma_{i+kL}\cdot\frac{\alpha^n}{(nd)!}\cdot\|P(i_c)-i_c\|_{i+nL}=0$. Therefore, if we assume $(\mathrm{d}\rho=[\rho_{\varepsilon}]\in{}^{\rho}\widetilde{\mathbb{R}})$

$$\exists N \in \mathbb{N} \, \forall n \in \mathbb{N} : \prod_{k=0}^{n-1} \Gamma_{i+kL} \cdot \frac{\alpha^n}{(nd)!} \cdot \|P(i_c) - i_c\|_{i+nL} \le d\rho^{-N}$$
$$\exists r \in \mathbb{R}_{>0} : \alpha \le d\rho^r$$

then (W) holds: Every smooth PDE has always a solution in an infinitesimal interval

- For GSF, we can also prove uniqueness and continuous dependence on initial condition in an infinitesimal neighborhood
- These results cannot be improved because of Lewy, Mizohata, De Giorgi, Colombini, Spagnolo...

Some differences between ODE and PDE

- **1** PDE are related to contractions with LOD, whereas L = 0 for ODE
- In the PLT for smooth normal PDE, existence depends on the initial condition y₀
- **1** In the proof of the PLT, we simply treated PDE as ODE depending on a parameter $x \in S$
- For GSF, every smooth normal Cauchy problem is well-posed, but in an infinitesimal interval
- In general, the latter result cannot be improved, not even for smooth Cauchy problems

Some differences between ODE and PDE

- **1** PDE are related to contractions with LOD, whereas L = 0 for ODE
- ② In the PLT for smooth normal PDE, existence depends on the initial condition y_0
- **1** In the proof of the PLT, we simply treated PDE as ODE depending on a parameter $x \in S$
- For GSF, every smooth normal Cauchy problem is well-posed, but in an infinitesimal interval
- In general, the latter result cannot be improved, not even for smooth Cauchy problems

This is still a work in progress: comments are welcome!

Contacts and references

References:

www.mat.univie.ac.at/~giordap7/

Contact:

paolo.giordano@univie.ac.at

Thank you for your attention!

