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Abstract. Through the presentation of several examples, we motivate that

universal properties are the simplest way to solve a given mathematical prob-
lem. To illustrate this point, we present the co-universal property of Schwartz

distributions, as the simplest way to have derivatives of continuous functions.

We also discuss Colombeau algebra as the simplest quotient algebra where
representatives of zero are infinitesimal. Furthermore, we explore generalized

smooth functions as the universal way to associate set-theoretical maps defined

by nets of smooth functions (e.g. regularizations of distributions) and having
arbitrary derivatives. Each of these properties results in a characterization up

to isomorphisms of the corresponding space. The present work requires only

the notions of category, functor, natural transformation and Schwartz distri-
butions, and introduces the notion of universal solution using a simple and

non-abstract language.

1. Introduction

Mathematicians endeavor to solve problems in the most optimal possible way.
For instance, they may explore a geometrically intrinsic solution, the most efficient
computational algorithm, or the most general solution. Frequently motivated by the
pursuit of aesthetic perfection, [30], mathematicians may require that the solution
must be the “simplest” one, i.e. it has to utilize the minimal amount of conven-
tional constructions and data other than the given ones from which the problem
must depend on. A preliminary examination suggests that a potential mathemati-
cal formalization of the concept of a simplest solution might encompass information
theory (see, for instance, [50] and references therein) or mathematical logic. In this
study, we employ a minimal amount of category theory to interpret the universal
solution as the simplest method for solving a given problem. It is widely recog-
nized that universal constructions are ubiquitous in mathematics, [37], and this
interpretation serves to substantiate their prevalence. To validate this claim, we
present several examples that support this interpretation, particularly for spaces of
generalized functions (GF) within both linear and nonlinear frameworks.

We will see that a universal solution not only presents itself as the simplest
method to solve a given problem, but its universal property is also able to highlight
what are the data of the problem and the conventional choices in any other possible
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construction. Frequently, this paves the way for generalizations, and it always
directly yields an axiomatic characterization of these universal solutions. From
the perspective of numerous mathematicians, universal properties are so important
that they are regarded as an axiomatic starting point, which characterizes the
construction up to isomorphism.

In this article, we consider Schwartz’s distributions as “the simplest way to have
derivatives of continuous functions” (see [52]). In Sec. 3, we show the corresponding
universal property, which is not well known (see also [43]; however, the universal
property in [43] incorrectly lacks condition Thm. 7.(iv)). Building upon Sebastiao
e Silva’s algebraic construction of distributions (see [53]), we see how to obtain a
similar universal construction for distributions on Hilbert spaces. Any alternative
solution to this problem will, in all likelihood, satisfy the same minimal and mean-
ingful universal property, and thus will be isomorphic to our solution, see Sec. 3.1.

In the field of nonlinear settings for GF extending Schwartz’s distributions, Co-
lombeau’s special algebra (see, for instance, [8, 9, 10, 29]) is often regarded as the
simplest one. In Sec. 4, we prove that it is actually the most simple quotient algebra.
In addition, the recent generalized smooth functions (GSF, see [22, 44, 23] and refer-
ences therein) is considered. Indeed, they are even more general than Colombeau’s
algebras, exhibiting several improved properties such as more general domains (not

necessarily of the type Ω̃c like e.g. in [29], but as general as in [59]), the closure with
respect to composition (like in [2, 59]), a good integration theory and Hadamard’s
well-posedness for every PDE (in infinitesimal neighborhoods), see Sec. 5. GSF are
included into the Discontinuous Generalized Differential Calculus of [2, 5], but have
better classical properties, such as the intermediate value theorem or the existence
and uniqueness of primitives, see [23]. An alternative algebraic characterization of
Colombeau algebra, unrelated to universal properties, can be found in [47, 46]. As
a secondary result, an axiomatic description up to isomorphisms of Colombeau’s
special algebra and of generalized smooth functions is obtained. In particular, the
ring of Colombeau’s generalized numbers is shown to be the simplest quotient ring
M/ ∼ containing the infinite numbers [ε−q]∼, q ∈ N, and where every zero-net
[xε]∼ = 0 is generated by an infinitesimal function: limε→0+ xε = 0 (see Sec. 4.2.1.
For a different axiomatic description within the framework of nonstandard analysis
in which the latter property is not satisfied, refer to [57]).

In the following, we will employ the conventions:

• universal = terminal = limit = projective: the unique arrow arrives to the
universal object.

• co-universal = initial = co-limit = injective: the unique arrow starts from
the universal object.

The work is self-contained, in the sense that it requires only the notions of category,
functor, natural transformation and Schwartz’s distributions.
We start by introducing the notion of universal solution using a simple and non-
abstract language.

2. General definition of (co-) universal property

We start by defining in general terms what a universal property is. We will use
only basic notions of category theory, and will give a definition near to the common
use of universal properties, see e.g. [39, 7].
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Definition 1. Let C be a category. Let P(C) and Q(f,A,B) be two properties of
A, B, C and f , where A, B, C are objects of C and f is an arrow of C. Assume
that:

Q(f,A,B), Q(g,B,C) ⇒ Q(g ◦ f,A,C), (2.1)

Q(1A, A,A). (2.2)

Then we say that C is a universal solution of P with respect to Q if

(i) P(C), i.e. the object C solves the problem P(−).
(ii) ∀D ∈ C : P(D) ⇒ ∃!φ : D −→ C : Q(φ,D,C), i.e. for any other

solutionD of the same problem P(−), we can find one and only one morphism
φ : D −→ C that satisfies the property Q.

Similarly, we say that C is a co-universal solution of P with respect to Q if

(iii) P(C),
(iv) ∀D ∈ C : P(D) ⇒ ∃!φ : C −→ D : Q(φ,C,D).

The proof of the following theorem trivially generalizes the classical proofs con-
cerning the uniqueness of universal objects up to isomorphisms:

Theorem 2. Suppose that C1 and C2 are two (co-)universal solutions of P with
respect to Q. Then C1 is isomorphic to C2 in C.

Proof. Since C1 is a universal solution of P with respect to Q, using (ii) of Def. 1 for
D = C2, there exists a unique φ1 : C2 −→ C1 such that the property Q(φ1, C2, C1)
holds. In a similar way, there exists a unique φ2 such that φ2 : C1 −→ C2 so we
have Q(φ2, C1, C2). By assumption (2.1) on Q, the property Q(φ2 ◦ φ1, C2, C2)
holds. Using again Def. 1(ii) with D = C2, we get that only one arrow φ satisfies
Q(φ,C2, C2). Since Q(1C2 , C2, C2) also holds by (2.2), then φ2 ◦ φ1 = 1C2 . In a
similar way, we have φ1 ◦ φ2 = 1C1 , which proves the theorem. □

Starting from the properties P and Q, we can define a new category C(P,Q).
Its objects are the objects of the category C that satisfy the property P (i.e. all the
solutions of our problem P(−)), and its arrows are the arrows φ of the category C
such that Q(f, C,D) holds (so that the property Q links all these solutions), i.e.:

• C ∈ C(P,Q) : ⇐⇒ P(C),

• D
φ−→ C in C(P,Q): ⇐⇒ Q(φ,D,C), D

φ−→ C in C,
• θ = ψ ◦ φ in C(P,Q) : ⇐⇒ θ = ψ ◦ φ in C.

Then, we have that C is a universal solution of P with respect to Q if and only if
C is terminal in C(P,Q) (i.e. for all D ∈ C(P,Q) there exists one and only one
φ : D −→ C in C(P,Q)), and C is a co-universal solution of P with respect to Q
if and only if C is initial in C(P,Q) (i.e. for all D ∈ C(P,Q) there exists one and
only one φ : C −→ D in C(P,Q)).

As previously stated, a (co-)universal solution of P is regarded as the (co-
)simplest or (co-)most natural solution of the given problem. This interpretation
can be substantiated even with the aid of the following elementary examples:

Example 3.

(i) Let’s consider the problem to specify a topology on a set X ∈ Set. The
category C in this example is the category of all the topologies on X viewed
as a poset, i.e. “⊆” is the unique arrow of C, and we write τ ⊆ σ if the
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topology τ is coarser than the topology σ. The properties P and Q are
defined as follow.

P(τ) : ⇐⇒ τ is a topology on X,

Q(i, τ, σ) : ⇐⇒ i =⊆, τ ⊆ σ.

The trivial topology ({∅} , X) is the co-universal solution of the property P
with respect to the property Q and the discrete topology is the universal
solution. It is evident that these solutions are perceived as trivial; conversely,
it is noteworthy that these constitute the simplest and non-conventional so-
lutions, commencing from the unique data X ∈ Set and with respect to the
problem “set a topology on X”: Any alternative solution would inherently
introduce (in the case of the trivial topology) or eliminate (in the case of
the discrete topology) elements that are unrelated to the problem or the data
itself. This example also shows that the notion of simplest solution can be im-
plemented in two distinct ways: from “below” (co-universal) or from “above”
(universal).

(ii) Let R be a ring and let x ̸∈ R. What would be the smallest/simplest ring
containing both x and R? Any ring that contains x and R must contain
also sums of terms of the form r · xn for any integer n and any element
r ∈ R. Intuitively, the simplest solution is therefore the ring of polynomials
R[x]. The co-universal property can be highlighted as follow: Let S ∈ Ring
be a ring, then we can consider the property P(S, s) whenever x ∈ S and
s : R −→ S is a ring homomorphism, and the property Q(f, (S, s) , (L, l)) if

S
f−→ L in Ring (i.e. it is a morphism of rings) and f ◦ s = l. The ring of

polynomials R[x] is the co-universal solution of P with respect to Q, i.e. the
simplest way to extend the ring R by adding a new element x /∈ R. Clearly,
we have P(R[x], i), where i : R −→ R[x] is the inclusion. Let S ∈ Ring, and
let s : R −→ S be a ring homomorphism, i.e. P(S, s) holds, then the unique
φ : R[x] −→ S of Def. 1.(ii) is given by φ

(∑
i rix

i
)
=

∑
i s(ri)x

i.
(iii) Let (X, d) be a metric space and (X∗, d∗) be its completion as the usual quo-

tient of Cauchy sequences: (xn)n ∼ (yn)n if and only if limn→∞ d(xn, yn) = 0.
Define an isometry φ : X −→ X∗ by setting φ(x) := [x]∼, where [x]∼ is the
equivalent class generated by the constant sequence xn = x ∈ X; we have
that φ(X) is dense in X∗ (see e.g. [56]). The triple (X∗, d∗, φ) is co-universal
among all the triples (Y, δ, ψ), where (Y, δ) is a complete metric space and
ψ : X −→ Y is an isometry such that ψ(X) is dense in Y . There is therefore
a unique map ι : X∗ −→ Y such that ι ◦ φ = ψ, which is defined as follows:
Let x∗ ∈ X∗. Since φ(X) is dense in X∗, there exists a sequence (xn)n of
X such that (φ(xn))n converges to x∗. The sequence (φ(xn))n is a Cauchy
sequence and since φ and ψ are isometries, the sequence (ψ(xn))n is also a
Cauchy sequence in Y which converges because Y is Cauchy complete. We
can thus set ι(x∗) := limn→∞(ψ(xn)) which is well defined because φ and ψ
are isometries.

(iv) Let U , V ∈ Vect be vector spaces. The simplest way to obtain a bilinear map

U ×V
b−−−→ T into another vector space T is the tensor product T = U ⊗V ,

with b(u, v) = u⊗ v. This construction is indeed co-universal with respect to
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the properties:

P(b, T ) :⇐⇒ T ∈ Vect, U × V
b−−−→ T is bilinear

Q(φ, (b, T ), (w,W )) :⇐⇒ φ : T −→W in Vect.

It is well-known that there are several ways to define the tensor product U⊗V ,
even if they all satisfy this co-universal property (and hence, by Thm. 2, they
are all isomorphic as vector spaces). Note that the category C of Def. 1 is
the category of all the pairs (b, T ) satisfying P(b, T ).

We emphasize that in all these universal solutions (as well as in products, sums,
quotients, etc. of spaces) there are no conventional choices and they are the most
natural solutions: Any other (non-isomorphic) solution would appear as less natu-
ral, e.g. by adding (from the co-universal solution) or subtracting (to the universal
solution) anything that does not strictly depend on the data of the problem.

2.1. Preliminary notions: presheaf and sheaf. For the sake of completeness,
and also to specify all our notations, in this section we briefly recall the notions
of presheaf and sheaf, because they are used in our universal characterization of
spaces of GF.

In the following, we denote by Set the category of sets and functions, by ModR
the category of modules over the ring R, so thatVectK := ModK is the category of
vector spaces over a given field K, OR∞ is the category having as objects open sets
U ⊆ Ru of any dimension u ∈ N = {0, 1, 2, . . .}, and smooth functions as arrows,
and finally Ring is the category of rings and ring-homomorphisms. If T = (|T|, τ) is
a topological space, we use the same symbol to also denote the category induced by
its open sets as a preorder, i.e. the category of open sets A ∈ τ of the given topology

and only one arrow “⊆”, i.e. we write A
⊆−−−→ B in T if A ⊆ B. We finally denote

by Cop the opposite of any category C; for example, we write f ∈ (OR∞)op(A,B)
if f ∈ C∞(B,A) is a smooth function from B ⊆ Rb into A ⊆ Ra, and Top(A,B) is
non empty if and only if B ⊆ A.

Definition 4.

(i) Let R be a ring. A presheaf P of ModR is a functor P : Top −→ModR. We
denote by P (U) ∈ ModR its evaluation at U ∈ Top and by PU,V := P (U ≤
V ) : P (U) −→ P (V ) its evaluation on the arrow U ⊇ V . The map PU,V is
called restriction from U to V .

(ii) If (Uj)j∈J is a covering in T of U ∈ Top, then we say that (fj)j∈J is a P -
compatible family if and only if
(i) ∀j ∈ J : fj ∈ P (Uj).
(ii) ∀j, h ∈ J : PUj ,Uj∩Uh

(fj) = PUh,Uh∩Uj (fh).
(iii) Moreover, we say that P : Top −→ ModR is a sheaf if it is a presheaf

satisfying the following conditions; for any U ∈ Top, for any covering (Uj)j∈J
of U in T and for any P -compatible family (fj)j∈J :
(i) If f , g ∈ P (U) and PU,Uj

(f) = PU,Uj
(g) for all j ∈ J , then f =

g (locality condition); if P satisfies only this condition, it is called a
separated presheaf or a monopresheaf.

(ii) ∃f ∈ P (U)∀j ∈ J : PU,Uj
(f) = fj (gluing condition).

(iv) Finally, if P , Q : Top −→ ModR are sheaves, we say that φ : P −→ Q is
a sheaf morphism if φ is a natural transformation from P to Q, i.e. it is a
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family (φU )U∈T such that QU,V ◦φU = φV ◦PU,V in ModR for all U , V ∈ T
such that U ⊇ V .

Clearly, conditions (i), (ii) imply ∃!f ∈ P (U) ∀j ∈ J : PUUj
(f) = fj ; we set

PU

[
(fj)j∈J

]
:= f and call it the P -gluing of the family (fj)j∈J . For example, it is

not hard to prove (see e.g. [40]) that

PUV

(
PU

[
(fj)j∈J

])
= PV

[(
PUj ,V ∩Uj

(fj)
)
j∈J

]
, (2.3)

ψU

(
PU

[
(fj)j∈J

])
= QU

[(
ψUj

(fj)
)
j∈J

]
if ψ : P −→ Q is a sheaf morphism.

(2.4)

3. Co-universal property of Schwartz distributions

In this section, we aim to show a co-universal property of the space of Schwartz
distributions. In essence, as articulated in [52], this section formalizes the idea that
the sheaf D′ of Schwartz distributions is the simplest sheaf where we can take deriva-
tives of continuous functions while preserving partial derivatives ∂kf of functions f
which are continuously differentiable in the k-th variable. A similar statement can
be found in [31]: “In differential calculus one encounters immediately the unpleas-
ant fact that not every function is differentiable. The purpose of distribution theory
is to remedy this flaw; indeed, the space of distributions is essentially the smallest
extension of the space of continuous functions where differentiability is always well
defined”. Co-universal properties correspond to this informal notion of “smallest
extension”. This formalization also elucidates the significance of the preservation of
partial derivatives of sufficiently regular functions, a concept that was not explicitly
addressed in the previous statement. Consequently, we proceed to define

Definition 5. Let U ⊆ Rn be an open set, α ∈ Nn be a multi-index, and k =
1, . . . , n, then:

(i) For all x ∈ U , we set Uk(x) := {t ∈ R | (x1, . . . , xk−1, t, xk+1, . . . , xn) ∈ U}.
We hence have a map jk : t ∈ Uk(x) 7→ (x1, . . . , xk−1, t, xk+1, . . . , xn) ∈ U .

(ii) Let α = (0, k−1. . . . . . , 0, 1, 0, . . . , 0) =: ek, and f ∈ C0(U). Then, we write
f ∈ Cα(U) if f is of class 1 in the k-th variable, i.e.

∀x ∈ U : f ◦ jk ∈ C1 (Uk(x)) ,

and ∂kf := (f ◦ jk)′ ∈ C0(U). The space Cek(U) is also denoted by C1
k(U).

(iii) If α ∈ Nn, the set of all the functions of class αk in the k-th variable (k =
1, . . . , n) is

Cα(U) :=
{
f ∈ C0(U) | ∀k = 1, . . . , n : αk ̸= 0 ⇒ f ∈ Cek (U) , ∂kf ∈ Cα−ek(U)

}
.

In the usual way, it is possible to prove that Cα is a sheaf. In case α = jek,
the space Cα(U) is also denoted by Cjk(U). Note that if f ∈ Cα(U) and k, j
are such that αk, αj ̸= 0, then by Schwarz’s theorem we have ∂k∂jf = ∂j∂kf
on U .

(iv) We say that U is an n-dimensional interval if U = (c1−r, c1+r)× n. . . . . . ×(cn−
r, cn + r) for some c ∈ Rn and r ∈ R>0.
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In what follows, the notations C1
k

� � ιk //
∂k

// C0 , are used to denote the inclusion and

the partial derivatives of C1
k-functions (thought of as sheaves morphisms, e.g. we

think ιkU : C1
k(U) ↪→ C0(U) as a natural transformation).

Remark 6. Schwartz’s solution leads to the following objects:

(i) D′ : (Rn)op −→ VectR is the sheaf of real valued distributions on Rn.

(ii) C0 λ−−−→ D′ is the inclusion of the space of continuous functions into the
space of distributions. The map λ is a sheaf morphism, i.e. it is a natural
transformation: λU : C0(U) −→ D′(U) for all open sets U , V ⊆ Rn with
V ⊆ U , such that the following diagram commutes

C0(U)

C0
U,V

��

λU // D′(U)

D′
U,V

��

C0(V )
λV

// D′(V )

Therefore, C0
U,V (f) := f |V and D′

U,V (T ) := T |V are the corresponding re-
strictions.

(iii) D′ Dk−−−−→ D′, for k = 1, . . . , n, are the partial derivatives of distributions.
Once again, each Dk is a sheaf morphism because DkU : D′(U) −→ D′(U)
for all open sets U ⊆ Rn, and they commute with restrictions of distribu-
tions: DkV (D′

UV (T )) = Dk(T |V ) = D′
UV (DkU (T )) = Dk(T )|V if V ⊆ Rn is

open and V ⊆ U . Moreover, DkU is compatible with partial derivatives of C1
k

functions, i.e. λ(∂kf) = Dk(λ(f)) or, specifying all the domains and inclu-
sions λU (∂kUf) = DkU (λU (ιkU (f))). In the following, we use the notations

Dj
kU := DkU ◦ j. . . . . . ◦DkU and Dα

U := Dα1

1U ◦ . . . ◦Dαn

nU for any multi-index
α ∈ Nn and any open set U ⊆ Rn. Note explicitly thatDα

U (λU (f)) = λU (∂
αf)

if f ∈ Cα(U).
(iv) If α ∈ Nn, f , g ∈ C0(U) and U is an n-dimensional interval, thenDα

U (λU (f)) =
Dα
U (λU (g)) holds if and only if we can write f − g = θ1+ . . .+ θn, where each

θk is a polynomial in xk of degree < αk whose coefficients are continuous
functions on U independent by xk.

(v) Dh ◦Dk = Dk ◦Dh for all h, k = 1, . . . , n.

Theorem 7. (D′, λ, (Dk)k) is a co-universal solution of the problem P(H, j, (δk)k)
given by:

(i) H : (Rn)op −→ VectR is a sheaf of real vector spaces.
(ii) j : C0 −→ H is a sheaf morphism.
(iii) δk : H −→ H, k = 1, . . . , n, are compatible with partial derivatives of C1

k

functions: δk ◦j ◦ ιk = j ◦∂k, i.e. the following diagram of sheaves morphisms
commutes for all k = 1, . . . , n:

C1
k
� � ιk //

∂k ��

C0
j // H

δk

��
C0

j // H
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(iv) Let α ∈ Nn, f ∈ C0(U) and U be an n-dimensional interval. Assume that
f = θ1 + . . . + θn, where each θk is a polynomial in xk of degree < αk
whose coefficients are continuous functions on U independent by xk, then
δαU (jU (f)) = 0.

(v) δh ◦ δk = δk ◦ δh for all h, k = 1, . . . , n.

The problem is solvable with respect to the property Q(ψ,H, j, (δk)k, H, ȷ, (δk)k) to
preserve embeddings and derivatives given by

ψ : H −→ H, ψ ◦ j = ȷ, ψ ◦ δk = δk ◦ ψ ∀k = 1, . . . , n,

i.e. when the following diagrams of sheaves morphisms commute

H

ψ

��

δk // H

ψ

��

H
δk

// H

C0
j //

ȷ

��

H

ψ

��

H

Therefore, if (H, j, (δk)k) is any solution of (i)-(iii), then

∃!ψ : D′ −→ H : j = ψ ◦ λ, ψ ◦Dk = δk ◦ ψ ∀k = 1, . . . , n. (3.1)

Proof. We only have to prove (3.1), because it is clear from [52] that (D′, λ, (Dk)k)
is a solution of (i)-(iii).

Let U ⊆ Rn and let T ∈ D′(U). The key idea to define ψU (T ) is to use the local
structure of distributions to define ψC(T |C) for any C ⊆ U with C ⋐ U , and then
to use the gluing property to define ψU (T ) as the gluing of the compatible family
(ψC(T |C))C .

The local structure theorem of distributions (see [52]) yields

T |C = Dα
C(λC(f)) (3.2)

for some multi-index α ∈ Nn and some continuous function f ∈ C0(C). We neces-
sarily have to define

ψC(T |C) := δαC (jC(f)) ∈ H(C), (3.3)

but we clearly have to prove that this definition does not depend on α and f in
(3.2). Assume that

T |C = Dα′

C (λC(g)) , (3.4)

for another α′ ∈ Nn and another g ∈ C0(C). We claim that

δαC (jC(f)) = δα
′

C (jC(g)) . (3.5)

Indeed, since δα◦j is a sheaf of morphisms, and since the set of all the n-dimensional
intervals included in C is a covering of C, it is sufficient to show that (3.5) holds for
any n-dimensional interval C = (c1 − r, c1 + r)× n. . . . . . ×(cn − r, cn + r) of center
c ∈ Rn and sides 2r ∈ R>0. We first prove that we can change the functions f and
g so that to have the same multi-index α = α′. Assume e.g. that α′

k > αk, set
ak := α′

k − αk, and integrate f in the variable xk for ak times:

f̄(x) :=

ˆ xk

ck

...

ˆ t2

ck

ˆ t1

ck

f(x1, . . . , xk−1, t0, xk+1, . . . , xn) dt0 dt1...dtak−1 ∀x ∈ C.

(3.6)
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The function f is well-defined because C is an n-dimensional interval of center c
and we have f̄ ∈ Cakk (C) and ∂akk f̄ = f . Therefore, using the compatibility of Dk

and ∂k, we get

Dα
C(λC(f)) = Dα

C(λC(∂
ak
k f̄)) = Dα

C(D
ak
kC(λC f̄)) = Dα+akek

C (λC(f̄)), (3.7)

and

α+ akek = (α1, . . . , αk−1, α
′
k, αk+1, . . . , αk).

If α′
k < αk, we can proceed similarly using (3.4) instead of (3.2). Therefore, for

ᾱk := max(αk, α
′
k), α

f
k := max(α′

k − αk, 0), α
g
k := max(αk − α′

k, 0) and for suitable

f̄ ∈ Cαf

(C), ḡ ∈ Cαg

(C), we have

T |C = Dᾱ
C

(
λC(f̄)

)
= Dᾱ

C (λC(ḡ)) ,

i.e. Dᾱ
C

(
λC(f̄ − ḡ)

)
= 0. Therefore, Rem. 6.(iv) (the necessary condition part)

yields that f̄ − ḡ can be written (on C) as f̄ − ḡ = θ1 + . . . + θn, where each θk
is a polynomial in xk of degree < ᾱk whose coefficients are continuous functions
on C independent by xk. Property (iv) for (H, j, (δk)k) (note explicitly that this
condition only states the sufficient part of Rem. 6.(iv)) implies δᾱC(jC(f̄ − ḡ)) = 0,
and hence δᾱC(jC(f̄)) = δᾱC(jC(ḡ)) because we are considering sheaves of vector
spaces. Exactly as we increased αk by ak (if α′

k > αk) in (3.7), we can now proceed
backward to return to the old multi-index: since f̄ ∈ Cakk (C)

δᾱC(jC(f̄)) = δᾱ−akekC (δakkC(jC f̄)) = δᾱ−akekC (jC(∂
ak
k f̄)),

and by induction we get δᾱC(jC(f̄)) = δαC(jC(∂
α−αf)) = δαC(jC(f)). This proves

that δαC (jC(f)) = δα
′

C (jC(g)), and hence our claim is proved.
We denote by B(U) the set of all the relatively compact sets of U , which is, by

the local structure of distributions, a covering of U . The family (ψC(T |C))C∈B(U)

is a compatible one. In fact HC′,C′∩C (ψC′(T |C′)) = HC′,C′∩C (δαC′(jC′(f))) =
δαC′∩C (jC′∩C(f)) = HC,C∩C′ (ψC(T |C)), and we can hence set

ψU (T ) := HU

[
(ψC(T |C))C∈B(U)

]
∀T ∈ D′(U).

We claim that if T := Dα
U (λU (f)) for some α ∈ Nn and for some f ∈ C0(U), then

ψU (T ) = δαU (jU (f)). Indeed, for any V ∈ B(U) we have

HU,V (ψU (T )) = HU,V

(
HU

[
(δαC(jC(f)))C∈B(U)

])
= HV

[
(δαC∩V (jC∩V (f)))C∈B(U))

]
= δαV (jV (f)) = HU,V (δ

α
U (jU (f))).

where we used (2.3) in the second equality. Thus, by the locally condition of H (see
Def. 4.(iii).((i))), our claim is proved. It follows in particular that ψU (λU (f)) =
δ0U (jU (f)) = jU (f) for all f ∈ C0(U).

If C, C ′ ∈ B(U) are such that C ′ ⊆ C then for any T ∈ D′(U)

HC,C′ (ψC(T |C)) = HC,C′ (δαC(jC(f))) = δαC′ (jC′(f)) = ψC′ (Dα
C′ (λC′(f))) (3.8)

= ψC′(T |C′) (3.9)
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because δα ◦ j is sheaf morphism. Thus, for any V ⊆ U , (3.8) together with (2.3)
imply that

HU,V (ψU (T )) = HU,V

(
HU

[
(ψC(T |C))C∈B(U)

])
= HV

[
(HC,V ∩C(ψC(T |C)))C∈B(U)

]
= HV

[
(ψV ∩C(T |V ∩C))C∈B(U)

]
= HV

[
(ψD(T |D))D∈B(V )

]
.

where the latter equality follows from the fact that H is sheaf morphism, and the
fact that the families (ψC∩V (T |C∩V ))C∈B(U), (ψD(T |D))D∈B(V ) are compatible and

locally equal. Therefore ψ : D′ −→ H is a sheaf morphism. To prove the equality
ψ ◦Dk = δk ◦ ψ, we have

ψU (DkU (T )) = HU

[
(ψC(DkUT )|C)C∈B(U)

]
= HU

[
(ψC(DkC(T |C)))C∈B(U)

]
= HU

[
(δkC(ψC(T |C))C∈B(U)

]
= δkU (ψU (T )),

where we used the equality

ψC(DkC(T |C) = ψC(D
ek+α
C (λC(f))) = δkCδ

α
C(jC(f)) = δkCψC(T |C)

for some continuous function f ∈ C(U) and multi-index α ∈ Nn. Note explicitly
that in the step δα+ekC = δkC ◦ δαC above we need the commutativity property (v).

It remains to prove the uniqueness. Assume that also ψ̄ satisfies (3.1); let C ∈
B(U) and let f and α be such that T |C = Dα

C(λC(f)), then

ψ̄C(T |C) = ψ̄C(D
α
C(λC(f))) = δαC(ψ̄C(λC(f))) = δαC(jC(f)) = ψC(T |C).

Therefore, property (2.4) yields

ψ̄U (T ) = ψ̄U

(
D′
U

[
(T |C)C∈B(U)

])
= HU

[(
ψ̄C(T |C)

)
C∈B(U)

]
=

HU

[
(ψC(T |C))C∈B(U)

]
= ψU (T ).

□

Using a categorical language, the universal property Thm. 7 (and the general
Thm. 2) corresponds to the axiomatic characterization of distributions as outlined
by Sebastiao e Silva in [53, 54]. However, note that Thm. 7 yields a characterization
up to isomorphisms of the entire sheaf of distributions, not only those defined locally
as in [53, 54]. Moreover, it should be noted that the universal property allows one
to avoid both the axiom of local structure of distributions [54, Axiom 3], and the
necessary condition of Rem. 6.(iv) (see [54, Axiom 4]). In fact, we have the following

Corollary 8. If (H, j, (δk)k) is a co-universal solution of the problem stated in
Thm. 7, then

(i) If U ⊆ Rn and C is a relatively compact set of U , then ∀w ∈ H(U)∃α ∈
Nn ∃f ∈ C0(C) : w|C = δαC(jC(f)).

(ii) If α ∈ Nn, f , g ∈ C0(U), U is an n-dimensional interval, and δαU (jU (f)) =
δαU (jU (g)) then we can write f − g = θ1 + . . . + θn, where each θk is a
polynomial in xk of degree < αk whose coefficients are continuous functions
on U independent by xk.
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Proof. In fact, Thm. 2 yields an isomorphism ψ : D′ −→ H which preserves
derivatives ψ ◦ Dk = δk ◦ ψ and embeddings j = ψ ◦ λ. Therefore, the equali-
ties ψ−1(w|C) = Dα

C(λC(f)) and δαU (jU (f)) = δαU (jU (g)) are equivalent to w|C =
δαC(jC(f)) and Dα

U (λU (f)) = Dα
U (λU (g)). The claims then follow from similar

properties of (D′, λ, (Dk)k). □

3.1. Application: Sebastiao e Silva algebraic definition of distributions.
In the study of universal properties, it frequently occurs that this characterization
(up to isomorphisms) suggests possible generalizations. For distributions, these
ideas are actually already embedded in the proof of Thm. 7, yet we prefer to eluci-
date them through the thoughts of Sebastiao e Silva as presented in [53, 54]. Assume
that the open set I is an n-dimensional interval I = (c1 − r, c1 + r)× n. . . . . . ×(cn−
r, cn + r). For each continuous function f ∈ C0(I) and each k = 1, . . . , n, we can
consider any primitive of f with respect to the variable xk, e.g. setting

Ikf(x) :=

ˆ xk

ck

f(x1, . . . , xk−1, t, xk+1, . . . , xn) dt, (3.10)

and, more generally, Iα := Iα1
1 ◦ . . . ◦ Iαn

n for α ∈ Nn, so that ∂βJαf = Iα−βf if
α ≥ β and f ∈ C0(I). Assume that f , g ∈ C0(I), r, s ∈ Nn, and Drf = Dsg (in the
sense of distributions; for simplicity, here we omit the dependence on the open set I
and we identify λI(f) with f). Set m := max(r, s), then the compatibility property
Thm. 7.(iii) yields Drf = Dr(∂m−r(Im−rf)) = Dm(Im−rf) = Dm(Im−sg) = Dsg.
Therefore, Cor. 8.(ii) yields Im−rf − Im−sg = θ1 + . . . + θn, where each θk is a
polynomial in xk of degree < mk whose coefficients are continuous functions on
I independent by xk. Denote by Pm the set of all the functions θ of this form
θ = θ1 + . . .+ θn. Therefore, we proved that

Drf = Dsg ⇐⇒ Im−rf − Im−sg ∈ Pm, where m := max(r, s). (3.11)

The main idea of [53, 54] is that a condition such as the right hand side of (3.11) can
be stated for pair of continuous functions without recourse to methods of functional
analysis, but only using a formal algebraic approach: We can say that the derivative
Drf of a continuous function f ∈ C0(I) is simply a formal operation corresponding
to the pair (r, f), and two pairs are equivalent if the right hand side of (3.11)
holds. Therefore, if I is an n-dimensional interval, we can define: (r, f) ∼ (s, g)
if r, s ∈ Nn, f , g ∈ C0(I) and Im−rf − Im−sg ∈ Pm, where m := max(r, s);
D′

f(I) := (Nn × C0(I))/ ∼; λI(f) := [(0, f)]∼; Dk([(r, f)]∼) := [(r + ek, f)]∼, so
that Drf = [(r, f)]∼ ∈ D′

f(I); finally, the vector space operations are defined as
Drf +Dsg := Dm(Im−rf + Im−sg) (m := max(r, s)) and µ ·Drf := Dr(µf) for
all µ ∈ R; the restriction to another n-dimensional interval J ⊆ I is defined by
(Drf) |J := Dr(f |J). With these definitions we obtain a functor

D′
f : I(Rn)op −→ VectR, (3.12)

where I(U) is the poset of all the n-dimensional intervals contained in the open
set U ⊆ Rn. Clearly, I(Rn) is not a topological space, but it is a base for the
Euclidean topology of Rn, and this suffices to apply a general co-universal method
(called sheafification, see [6, 32]) to associate a sheaf D′ : (Rn)op −→ VectR to D′

f:
this corresponds to the intuitive idea that any distribution is obtained by gluing a
compatible family, where each element of the family is the (distributional) derivative
of a continuous function. We initially employ distribution theory as an illustrative
example to motivate sheafification in this particular instance. Subsequently, we
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introduce this construction in general terms as another example to solve a problem
in the simplest way.

For an arbitrary T ∈ D′(U), U ⊆ Rn being an open set, we can consider all the
possible intervals I ∈ I(U) such that T |I is in D′

f(I):

B(T ) := {I ∈ I(U) | T |I ∈ D′
f(I)} . (3.13)

By the local structure of distributions, and the fact that I(U) is a base, we have
that B(T ) is a covering of U . Intuitively, among all the possible coverings of U made
of intervals, B(T ) is the largest one (e.g. it surely contains all the I ∈ I(U) such
that Ī ⊆ U where the local structure theorem applies). We start by understanding
how to formalize this idea that B(T ) is “the largest one” because this would allow
us to use only the separateness of D′

f(−) and an arbitrary B(T )-indexed compatible
family such as (T |I)I∈B(T ).

Remark 9. Separateness and being a compatible family can clearly be formulated
also for a functor of the type (3.12):

(i) We say that D′
f is separated if T , S ∈ D′

f(I), I ∈ I(Rn), and (Ij)j∈J is a
covering of I made of intervals such that T |Ij = S|Ij for all j ∈ J , then
T = S.

(ii) For all I ∈ B(T ), we have T |I ∈ D′
f(I); moreover, (T |I) |K = (T |J) |K for all

I, J ∈ B(T ) and all K ∈ I(Rn) such that K ⊆ I ∩ J , i.e. (T |I)I∈B(T ) is a

compatible family.

Now, let S ∈ D′
f(J), J ∈ I(U); assume that S is locally equal to (T |I)I∈B(T ),

i.e. it satisfies

∀I ∈ B(T ) ∀K ∈ I(Rn) : K ⊆ I ∩ J ⇒ S|K = T |K , (3.14)

then by the sheaf property of D′, we have S = T |J and hence J ∈ B(T ): in these
general sheaf-theoretical terms the covering B(T ) is the largest one. It clearly also
holds the opposite implication: if J ∈ B(T ), then S := T |J satisfy (3.14). We write
S =J (T |I)I∈B(T ) if (3.14) holds, so that

B(T ) =
{
J ∈ I(U) | ∃S ∈ D′

f(J) : S =J (T |I)I∈B(T )

}
.

Intuitively, we can say that the distribution T can be identified with the family
(T |I)I∈B(T ) defined on the largest possible domain (in this sense, we expect it is

co-universal).
All this motivates the following general

Definition 10. Let I be a base for the topological space T, P : Iop −→ VectR

a functor, U ∈ T, B ⊆ I be a covering of U , J ∈ I, S ∈ P (J), and (TI)I∈B a
P -compatible family. Then, we write S =J (TI)I∈B and we say S locally equals
(TI)I∈B on J if and only if

∀I ∈ B ∀K ∈ I : K ⊆ I ∩ J ⇒ PJ,K(S) = PI,K(TI).

Moreover, we say that (TI)I∈B is a maximal family on U if and only if

(i) (TI)I∈B is a compatible family
(ii) ∀J ∈ I ∀S ∈ P (J) : S =J (TI)I∈B ⇒ J ∈ B, S = TJ .

The separateness of P is used in the following result, that allows us to consider
the maximal family generated by a given compatible family. The idea is to consider
all the section S ∈ P (J) of the presheaf that locally equals the given family.
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Theorem 11. Let I be a base for the topological space T, P : Iop −→ VectR a
separated functor, B ⊆ I be a covering of U ∈ T and let (TI)I∈B be a compatible
family. Set

B̄ := {J ∈ I | ∃S ∈ P (J) : S =J (TI)I∈B} (3.15)

then, we have

(i) ∀J ∈ B̄ ∃! T̄ ∈ P (J) : T̄ =J (TI)I∈B. We denote by T̄J this unique T .
(ii) ∀I ∈ B : I ∈ B̄ and T̄I = TI .
(iii) (T̄I)I∈B̄ is a maximal family on U .

Proof. To prove (i) simply use (3.15) and the separateness of P . To prove (ii) use
the assumption that (TI)I∈B is a compatible family. To prove (iii) use (3.15) and
Def. 10. □

We use the notation max[(TI)I∈B] := (T̄I)I∈B̄, and we can now define the sheaf P
on objects:

Definition 12. If U ∈ T, set (TI)I∈B ∈ P (U) if and only if

(i) B ⊆ I is a covering of U ;
(ii) (TI)I∈B is a maximal family on U .

To eventually get an R module (which is the case of real-valued distributions), we
also have to define module operations:

Definition 13. Let U ∈ T, r ∈ R and let (TI)I∈B, (SJ)J∈C ∈ P (U). Then

(i) (TI)I∈B + (SJ)J∈C := max[(TA + SA)A∈B∩C ], where B ∩ C := {I ∩ J | I ⊆
B, J ⊆ C} which is clearly a covering of U ; clearly the family (TA+SA)A∈B∩C
is a compatible one.

(ii) r · (TI)I∈B := max[(r · TI)I∈B].

Using these operations, it is possible to prove that (P (U),+, ·) ∈ ModR. We still
use the symbol P (U) to denote this R-module. We finally define P on arrows.

Definition 14. Let U , V ∈ T, V ⊆ U . Then

(i) C⊆V := {J ⊆ V | J ∈ C} where C ⊆ I is a covering of U .

(ii) PUV : (TI)I∈C ∈ P (U) 7−→ (PIJ(TI))J∈C⊆V
∈ P (V ), where I ∈ C is any open

set such that I ⊇ J (two different of these I yield the same value of PIJ(TI)
by the compatibility property of (TI)I∈C ∈ P̄ (U)). It is not hard to prove
that the family (PIJ(TI))J∈C⊆V

is already a maximal one.

The link between P and P is given by the following natural transformation

ηI : T ∈ P (I) 7→ max
[
(PIJ(T ))J∈I⊆I

]
∈ P (I). (3.16)

With these definitions, we have the following universal property, whose proof easily
follows from our definitions and from Thm. 11:

Theorem 15. If P : Iop −→ ModR is separated then

(i) P : Top −→ ModR is a sheaf
(ii) (3.16) defines a natural transformation

(iii) (P , η) is co-universal among all (P , η) that satisfy (i), (ii), i.e. if (P̃ , µ) also
satisfies (i), (ii), then there exists one and only one natural transformation
ψ such that ψI ◦ ηI = µI for all I ∈ I.
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The general construction of sheafification of a presheaf can be found, for example,
in [32, 40]. All this formalizes the intuitive idea that distributions on an arbitrary
open set U are obtained by gluing together in the simplest way distributions on
relatively compact n-dimensional intervals of U .

3.2. Generalization: distributions on Hilbert spaces. The preceding con-
struction naturally gives rise to a number of potential generalizations, which are
outlined below:

(i) We can consider vector spaces over the complex field C. It is important to
note that even in Cn, the standard construction of distributions as continuous
functionals on compactly supported smooth functions cannot be generalized
to holomorphic maps due to the identity theorem.

(ii) The integrals (3.10) represent a way to construct a primitive in the direction
ek and can hence be generalized to suitable infinite dimensional spaces.

(iii) Definition (3.10) leads us to consider an at most countable orthonormal family
(ek)k∈Λ, Λ ⊆ N, in a Hilbert space, so that orthogonal complement H =
span(ek)⊕ span(ek)

⊥ always exists.
(iv) Multidimensional intervals are used above as a base of the Euclidean topology,

but in more abstract normed spaces, the employment of balls can be more
expedient.

On the other hand, defining a non-trivial space of generalized functions of a com-
plex variable that allows one to consider derivatives of continuous functions is a
non-obvious task. Indeed, if one seeks to have these generalized functions embed
ordinary continuous maps while also satisfying the Cauchy theorem, then it follows
that the continuous functions must also be path-independent. Furthermore, as per
Morera’s theorem, these continuous functions are, in fact, holomorphic. See, for ex-
ample, [60]. Conversely, if the objective is to ensure that these generalized functions
satisfy the Cauchy-Riemann equations (even with respect to distributional deriva-
tives), then it follows that the embedded continuous functions must be ordinary
holomorphic functions, as asserted in [28]. In the terminology of this article, the
co-universal solution to the problem of having derivatives of continuous functions
of a complex variable that are path-independent or satisfy the Cauchy-Riemann
equation is the sheaf of holomorphic functions, and it is not possible to have a
larger space.
In the following, we therefore consider a Hilbert space H with inner product (x, y).
The field of scalars is denoted by F ∈ {R,C}. In this space, we fix an orthonormal
Schauder basis (ek)k∈Λ, Λ ⊆ N of H. An interesting example is the space C0(K,Rd)
of all the Rd valued continuous functions on a compact set.

For simplicity, we deal with the case F = R, and the case F = C can be treated
in a very similar way. Let x, c ∈ H, k ∈ Λ, J ⊆ Λ a finite subset. Under our
assumptions, x = xk + x⊥k , where xk = (x, ek)ek =: x̂kek ∈ span(ek) and x⊥k ∈
span(ek)

⊥; more generally, x = xJ + x⊥J , where xJ :=
∑
j∈J xj ∈ span({ej}j∈J),

and x⊥J ∈ span({ej}j∈J)⊥. We set [̂c, x]j := [min(ĉj , x̂j),max(ĉj , x̂j)] ⊆ R, and

[c, x]J = {
∑
j∈J tjej | tj ∈ [̂c, x]j ∀j ∈ J}.
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Let f ∈ C0(Br(c), H) a continuous function defined in the ball Br(c) ⊆ H of
radius r > 0 and center c ∈ H. We have that

∀x ∈ Br(c) : f(x) =
∑
k∈Λ

f̂k(x)ek.

Using the orthogonality property and the continuity of f , one can see that each

f̂k is also continuous. Hence, for any x ∈ Br(c), for any j, k ∈ Λ, the function

[̂c, x]j −→ R, t 7→ f̂k(x
⊥
j + tej) is continuous. Therefore, the integral

ˆ x̂j

ĉj

f̂k(x
⊥
j + tej) dt

is well defined. We assume that the following assumption holds

∀x ∈ Br(c)∀J ⊆ Λfinite :
∑
k∈Λ

sup
y∈[c,x]J

|f̂k(x⊥J + y)|2 <∞. (3.17)

The sheaf of continuous functions f ∈ C0(Br(c), H) satisfying (3.17) is denoted by
C0
p(Br(c), H). Then, we clearly have∥∥∥∥∥∑

k∈Λ

ˆ x̂j

ĉj

f̂k(x
⊥
j + tej) dt · ek

∥∥∥∥∥
2

≤ |x̂j − ĉj |2
∑
k∈Λ

sup
y∈[c,x]j

|f̂k(x⊥j + y)|2 <∞.

Therefore, we can set

Ij(f)(x) :=

ˆ x̂j

ĉj

f(x) dej :=
∑
k∈Λ

ˆ x̂j

ĉj

f̂k(x
⊥
j + tej) dt · ek (3.18)

and is called the primitive of f in the direction ej . Indeed, (3.18) is a generalization
of (3.10). Moreover, we have

∀x ∈ Br(c)∀J ⊆ Λfinite∀y ∈ [c, x]J : Îj(f)k(x
⊥
J +y) :=

ˆ x̂j

ĉj

f̂k((x
⊥
J +y)

⊥
j +tej) dt.

We can easily see that

(x⊥J + y)⊥j :=

{
x⊥J + y⊥j j ∈ J
x⊥J∪{j} + y j ̸∈ J

In former situation we have

sup
y∈[c,x]J

∣∣∣Îj(f)k(x⊥J + y)
∣∣∣ ≤ |x̂j − ĉj | sup

z∈[c,x]J\{j}

sup
t∈[̂c,x]j

∣∣∣f̂k(x⊥J + z + tej)
∣∣∣

= |x̂j − ĉj | sup
y∈[c,x]J

∣∣∣f̂k(x⊥J + y)
∣∣∣ ,

and in the latter situation we have

sup
y∈[c,x]J

∣∣∣Îj(f)k(x⊥J + y)
∣∣∣ ≤ |x̂j − ĉj | sup

y∈[c,x]J

sup
t∈[̂c,x]j

∣∣∣f̂k(x⊥J∪{j} + y + tej)
∣∣∣

|x̂j − ĉj | sup
z∈[c,x]J∪{j}

∣∣∣f̂k(x⊥J∪{j} + z)
∣∣∣ .

Thus, Ij(f) also satisfies assumption (3.17). Therefore, for any continuous function
f ∈ C0(Br(c), H) satisfying (3.17), and for any finite family (j1, ..., jm) ∈ Λm, we
can consider the function Ijm ◦ . . . ◦ Ij1(f).
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One can ask now whether the equality

∀j, l ∈ Λ : Il ◦ Ij(f) = Ij ◦ Il(f) (3.19)

holds or not. Indeed, using Fubini’s theorem (to the continuous function [̂c, x]j ×
[̂c, x]l ⊆ R2 −→ R, (t, s) 7→ gx,k(s, t) := f̂k(x

⊥
{l}∪{j} + tej + sel)) we obtain

ˆ x̂l

ĉl

Îj(f)k(x
⊥
l + sel)ds =

ˆ x̂l

ĉl

ˆ x̂j

ĉj

f̂k(x
⊥
{l}∪{j} + tej + sel)dtds.

=

ˆ x̂j

ĉj

ˆ x̂l

ĉl

f̂k(x
⊥
{l}∪{j} + tej + sel)dsdt

=

ˆ x̂j

ĉj

Îl(f)k(x
⊥
j + tej)dt

which shows that (3.19) holds.
Furthermore, for any j, k ∈ Λ, x ∈ H, we have that the function (−ε, ε) −→ R,

(ε > 0 is sufficiently small) t 7→ Îj(f)k(x+ tej) is derivable and

∀ k ∈ Λ ∀x ∈ Br(c) : lim
t→0

Îj(f)k(x+ tej)− Îj(f)k(x)

t
= fk(x),

which implies that

∂Ijf

∂ej
(x) := lim

t→0

Ijf(x+ tej)− Ijf(x)

t
= f(x) ∀j ∈ Λ ∀x ∈ Br(c)

where the limit is with respect to the weak topology.

Remark 16.

(i) A possible generalization is to consider continuous functions with values in
another Hilbert space B having an orthogonal Schauder basis.

(ii) The case where F = C can be treated in a very similar way, and one can
consider the primitive and the derivative with respect to the real part and
the imaginary part of ek. Of course, in this way we do not get complex
differentiability but a trivial isomorphic construction of D′(R2).

(iii) In the finite dimensional case D′(Rn), both continuity and differentiability of
a function f : U −→ Rn can be equivalently formulated considering only the
projections fk : U −→ R, as we did e.g. in Thm. 7.

We can now proceed as in the classical case:

Definition 17.

(i) I0f := f and Ir := Ir1 ◦ . . . ◦ Irn for all r ∈ Λn, n ∈ N;
(ii) If B is a ball in H and m ∈ Λn, then we define θ ∈ Pm(B) if θ ∈ C0(B,H)

with θ̂k :=
∑
j∈Λ,mj ̸=0 θ̂kj where θ̂kj is a polynomial function in x̂j of order

< mj whose coefficients are continuous functions on B independent by x̂j .

We can now proceed by following Sebastiao e Silva’s idea: in each ball B in H we
define (r, f) ∼ (s, g) if there exists n ∈ N such that r, s ∈ Λn, f , g ∈ C0

p(B) and

Im−rf −Im−sg ∈ Pm(B), where m := max(r, s); D′
f(B) := (

⋃
n∈N Λn×C0

p(B))/ ∼;
λB(f) := [(0, f)]∼; Dk([(r, f)]∼) := [(r + ek, f)]∼, so that Drf = [(r, f)]∼ ∈ D′

f(B);
finally, the vector space operations are defined asDrf+Dsg := Dm(Im−rf+Im−sg)
(m := max(r, s)) and µ · Drf := Dr(µf) for all µ ∈ R; the restriction to another
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ball B′ ⊆ B is defined by (Drf) |B′ := Dr(f |B′). With these definitions we obtain
a separated functor

D′
f : B(H)op −→ VectF, (3.20)

where B(U) is the poset of all the balls contained in the open set U ⊆ H. Using
sheafification of this functor, as explained above in general terms, we obtain a
co-universal solution of this problem.

4. Co-Universal properties of Colombeau algebras

A quotient space A/∼ is the simplest way to obtain a new space (in the same
category) and a morphism p : A −→ A/∼ such that the new notion of equality
a1 ∼ a2, for elements ak ∈ A, implies the standard one: p(a1) = p(a2). The corre-
sponding well-known universal property formalizes exactly this idea. Consequently,
whenever we have a quotient space, this general property can be employed to obtain
a preliminary and straightforward characterization of A/∼ starting from the data A
and ∼. The limitation of this general approach is that it fails to provide a justifica-
tion for the choice of A or the equivalence relation ∼ as the simplest solution of an
explicitly stated problem. In this section, we initially introduce Colombeau special
algebra using the universal property of a quotient, but subsequently, using another
universal property, we clarify why we are using that space and that equivalence
relation.

4.1. Co-universal property as quotient of moderate nets. In this section, we
want to formulate the co-universal property of Colombeau algebras by formulating
the classical co-universal property of a quotient at a “higher level”, i.e. talking of
functors of R-algebras and natural transformations instead of algebras and their
morphisms. In the following, we set I := (0, 1], functions f ∈ XI are simply called
nets and denoted as f = (fε), any net ρ = (ρε) ∈ RI>0 such that ρε → 0 as
ε → 0+ will be called a gauge, and the set AG(ρ−1) := {(ρ−aε ) ∈ RI | a ∈ R>0}
will be called the asymptotic gauge generated by ρ. If P{ε} is any property of
ε ∈ I, we write ∀0ε : P{ε} if the property holds for all ε sufficiently small,
i.e. ∃ε0 ∈ I ∀ε ∈ (0, ε0] : P{ε}.

Definition 18. Let Ω ⊆ Rd be an open set. The Colombeau algebras is defined by
the quotient ρGs(Ω) := ρEM(Ω)/ρN (Ω), where

ρEM(Ω) :=

{
(uε) ∈ C∞(Ω)I | ∀K ⋐ Ω ∀α ∃N ∈ N : sup

x∈K
|∂αuε(x)| = O

(
ρ−Nε

)}
ρN (Ω) :=

{
(uε) ∈ C∞(Ω)I | ∀K ⋐ Ω ∀α ∀n ∈ N : sup

x∈K
|∂αuε(x)| = O (ρnε )

}
are resp. called moderate and negligible nets (O(−) is the Landau symbol for ε →
0+). The equivalence class defined by the net (uε) ∈ ρEM(Ω) is denoted by [uε]ρ or
simply by [uε] when we are considering only one gauge.

It is easy to prove that ρGs(Ω) is a quotient R-algebra with pointwise operations
[uε] + [vε] = [uε + vε] and [uε] · [vε] = [uε · vε]. Let OR∞ be the category hav-
ing as objects open sets U ⊆ Ru of any dimension u ∈ N = {0, 1, 2, . . .}, and
smooth functions as arrows. If we extend ρGs(−) on the arrows of (OR∞)

op
by

ρGs(f)([uε]) := [uε ◦ f ], we get a functor ρGs(−) : (OR∞)
op −→ ALGR, where

ALGR denotes the category of R-algebras.
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Definition 19. We denote by Col the category of Colombeau algebras and we write
(G, π) ∈ Col if

(i) G : (OR∞)
op −→ ALGR is a functor;

(ii) π : ρEM(−) −→ G is a natural transformation such that ρN (Ω) ⊆ Ker(πΩ)
for all Ω ∈ OR∞. We simply write πΩ(uε) := πΩ((uε)) for all (uε) ∈ ρEM(Ω).

Moreover, we write (G, π)
τ−→ (F, α) in Col if and only if the following diagram

(of natural transformations) commutes

ρEM(−)
α //

π

��

F

G

τ

<<

Theorem 20. For every (G, π) ∈ Col, there exist a unique τ : (ρGs(−), [−]) −→
(G, π) in Col, i.e. (ρGs(−), [−]) is co-universal in Col, i.e. is the simplest way to
associate an algebra to any open set Ω ⊆ Rd and saying that two moderate nets
(uε), (vε) ∈ ρEM(Ω) are equal if they differ by a negligible net: (uε − vε) ∈ ρN (Ω).

Proof. We should find τ such that the following diagram commutes

ρEM(−)
π //

[−]

��

G

ρGs(−)

τ

<<

The only way τ can be defined is by setting τΩ([uε]) := πΩ(uε) for all Ω ∈ OR∞.
In order to prove that τΩ is well defined, take two moderate nets (uε) and (vε)
such that [uε] = [vε], then we have τΩ([uε]) = πΩ(uε) = πΩ(vε + (uε − vε)) =
πΩ(vε) + πΩ(uε − vε) because for every Ω, πΩ is an algebra-homomorphism. Since
ρN (Ω) ⊆ Ker(πΩ), it follows that τΩ([uε]) = πΩ(uε) = πΩ(vε) = τΩ([vε]). □

Even this elementary co-universal property reveals potential generalizations: in-
stead of the category OR∞ we could take any category equipped with a notion of
smooth function with respect to a ring of scalars. For example, we can consider as
scalars the field of hyperreals of nonstandard analysis, see e.g. [11, 57] and references
therein, or the ring of Fermat reals, see [16, 17, 18, 27], or the Levi-Civita field,
see e.g. [55], etc. It is important to note that the use of supremum in Def. 18 can
be circumvented by employing an upper bound inequality, a technique that proves
advantageous when the ring of scalars is not Dedekind complete. Instead of the
sheaf of smooth functions C∞(−), we can consider any sheaf of smooth functions
in more general spaces, such as diffeological or Frölicher or convenient spaces, see
e.g. [19] and its associated references. Instead of the asymptotic gauge AG(ρ−1),
we can consider more general structures, as proved in [41, 24, 26].

4.2. Co-universal properties as the simplest quotient algebras. In this sec-
tion, we aim to demonstrate an additional co-universal property of Colombeau
algebra by completing the idea that a Colombeau algebra is a quotient of a sub-
algebra of C∞(−)I , and moderate and negligible nets are the simplest choices in
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order to have non trivial representatives of zero. We first define in general what is
a quotient subalgebra of C∞(−)I as an object of the category QAlg(C∞I):

Definition 21. We say that (G, π) is a quotient subalgebra of C∞(−)I , and we
write (G, π) ∈ QAlg(C∞I), if:

(i) G : (OR∞)
op −→ ALGR is a functor;

(ii) π : M −→ G is a natural transformation such that M(Ω) is a subalgebra of
C∞(Ω)I and πΩ : M(Ω) −→ G(Ω) is an epimorphism of R-algebras for all
Ω ∈ OR∞.

Let us justify why this is related to quotient algebras. Since for every Ω ∈ OR∞,
πΩ is an algebra homomorphism, for any (uε), (vε) ∈M(Ω) ⊆ C∞(Ω)I and for any
r ∈ R we have

1) πΩ(uε) + πΩ(vε) = πΩ(uε + vε)
2) πΩ(uε) · πΩ(vε) = πΩ(uε · vε)
3) r · πΩ(uε) = πΩ(r · uε).
Moreover, the epimorphism condition Def. 21.(ii) means that for every g ∈ G(Ω),
there exists (uε) ∈M(Ω) such that πΩ(uε) = g. This implies

G(Ω) ≃M(Ω)/Ker(πΩ) in ALGR. (4.1)

Why are moderate nets ρEM(Ω) the simplest subalgebra in order to have nontriv-
ial representatives of zero, and what does this “nontrivial” mean? Let (zε) ∈M(Ω)
be such a representative, i.e. πΩ(zε) = 0 ∈ G(Ω), and assume we can take a constant
net (Jε) ∈M(Ω) ∩ RI such that limε−→0+ |Jε| = +∞. Then, we have

πΩ(zε) · πΩ(Jε) = 0 · πΩ(Jε) = πΩ(zε · Jε), (4.2)

and hence also (zε · Jε) is another representative of zero, and this holds for all
possible infinite constant nets (Jε). On the other hand, we would like to have that
“representatives of zero” are, in some sense, “small”. This intuitive idea of being
small is formalized in the following condition:

Definition 22. We say that every representative of zero in (G, π) is infinitesimal
if for all representatives of zero, i.e. (zε) ∈M(Ω) ⊆ C∞(Ω)I such that πΩ(zε) = 0 ∈
G(Ω), each compact set K ⋐ Ω and each multi-index α ∈ Nd, we have

sup
x∈K

|∂αzε(x)| := pK,α(zε) → 0 as ε→ 0+. (4.3)

For example, this property does not hold in nonstandard analysis, see [11]. If this
condition holds, equation (4.2) implies that for each K ⋐ Ω and each multi-index
α ∈ Nd, we have pK,α(zε ·Jε) = pK,α(zε)·|Jε| −→ 0, which implies pK,α(zε) ≤ |Jε|−1

for ε sufficiently small.
For R ⊆ RI , let

∞(R) :=

{
(Jε) ∈ R | lim

ε−→0+
|Jε| = +∞

}
(4.4)

be the set of all the infinite nets in R. We then have two possibilities, which link
property (4.3) with the intuitive idea of trivial representatives of zero:
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(i) ∞(M(Ω) ∩ RI) contains all the infinite nets. This implies that for all K and
for all α, pK,α(zε) = 0 for all ε small (proceed by contradiction by taking

Jε := r · |pK,α(zε)|−1
for all ε such that pK,α(zε) ̸= 0 and where r ∈ R>0). In

this case, the quotient must be trivial and this situation corresponds to the
Schmieden-Laugwitz-Egorov model, see [51, 13].

(ii) ∞(M(Ω) ∩ RI) does not contain all the infinite nets.

We now define morphisms of QAlg(C∞I):

Definition 23. Let (G, π), (H, η) ∈ QAlg(C∞(−)I). A morphism of quotient
algebras i : (G, π) −→ (H, η) is given by an inclusion

i : ∞(πΩ) ↪→ ∞(ηΩ), ∀Ω ∈ OR∞ (4.5)

where ∞(πΩ) := ∞(M(Ω) ∩ RI) for all Ω ∈ OR∞.

We have the following

Lemma 24. Quotient algebras of C∞(−)I and their morphisms form a category
QAlg(C∞I).

Therefore, a co-universal quotient algebra (G, π) (when it exists) has the smallest
class of infinities. We will see that, in consequence, it also has the largest kernel.

In the following theorem, we use the notation [−]Ω : (xε) ∈ ρEM(Ω) 7−→ [xε]Ω ∈
ρGs(Ω) for all Ω ∈ OR∞.

Theorem 25. Assume that:

(i) (G, π) ∈ QAlg(C∞I) is a quotient algebra;
(ii) Every representative of 0 in (G, π) is infinitesimal, i.e. Def. 22 holds;
(iii) If (uε) ∈ M(R) ∩ RI then ∃(vε) ∈ ∞(πR)∀0ε : |uε| ≤ vε (constant nets are

bounded by infinities).

For all open set Ω ⊆ Rn, we also assume that:

(iv) (ρ−1
ε ) ∈M(Ω);

(v) ∀(uε) ∈M(Ω) ∀K ⋐ Ω ∀α ∈ Nn : pKα(uε) ∈M(R) ∩ RI ;
(vi) Let (uε) ∈ C∞(Ω)I . If for any K ⋐ Ω, α ∈ Nn there exists (vε) ∈ ∞(M(Ω)∩

RI) such that ∀0ε : pK,α(uε) ≤ vε, then (uε) ∈ M(Ω) (infinities determine
M(Ω));

(vii) (G, π) is co-universal among all the quotient algebras verifying the previous
conditions.

Then G(Ω) ≃ ρGs(Ω) as R-algebras, i.e. in the category ALGR. Moreover, ∞(πR) =
∞([−]R), Ker(πΩ) = Ker([−]Ω).

Proof. Conditions (iii), (v), (vi) are equivalent to

M(Ω) = EM(∞(πR),Ω)

:=
{
(uε) ∈ C∞(Ω)I | ∀K, α ∃(vε) ∈ ∞(πR)∀0ε : pKα(uε) ≤ vε

}
.

In fact assumptions (iii), (v) yield M(Ω) ⊆ EM(∞(πR),Ω), whereas (vi) gives the
opposite inclusion.

The Colombeau algebra ρGs(Ω) satisfies conditions (i)-(vi). Now, we prove that
it also satisfies condition (vii). Let (G, π) be another quotient algebra satisfying
conditions (i)-(vi), and take (xε) ∈ ∞([−]R), so that (xε) is an infinite but moderate
net:

∃N ∈ N ∀0ε : |xε| ≤ ρ−Nε .
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From assumption (iv), we have that (ρ−1
ε ) ∈M(Ω), and hence (ρ−Nε ) as well, since

M(Ω) is a subalgebra of C∞(Ω)I . Thereby (ρ−Nε ) ∈ ∞(πR). By using condition
(vi) with uε(−) ≡ xε and vε(−) ≡ ρ−Nε , we get that (xε) ∈ ∞(πR). This shows that
∞([−]R) ⊆ ∞(πR), i.e.

ρGs(Ω) is co-universal. Note that this only implies (from
Thm. 2) that G ≃ ρGs in QAlg(C∞I), which is not our final claim. Moreover, we
never used condition (ii) so far.

We now prove that Ker(πΩ) ⊆ Ker([−]Ω): Let πΩ(zε) = 0. We have already seen
that this and (ii) imply

∀Jε ∈ ∞(πR)∀K,α ∀0ε : pKα(zε) ≤ J−1
ε . (4.6)

Since we have already proved that ∞([−]R) ⊆ ∞(πR), (4.6) yields [zε]R = 0. There-
fore, if (G, π) is also a co-universal solution, formula (4.1) gives

G(Ω) ≃M(Ω)/Ker(πΩ) = EM(∞(πR),Ω)/Ker(πΩ)

= EM([−]R,Ω)/Ker([−]Ω) =
ρGs(Ω).

□

4.2.1. A particular case: co-universal property of Robinson-Colombeau generalized
numbers. Proceeding as in Sec. 4.2, we obtain a co-universal property of the ring
of Robinson-Colombeau generalized numbers, i.e. the ring of scalars of Colombeau
theory with an arbitrary gauge ρ.

Definition 26.

(i) Rρ :=
{
(xε) ∈ RI | ∃N ∈ N : xε = O(ρ−Nε ) as ε→ 0+

}
is called the set of

ρ-moderate nets of numbers.
(ii) Let (xε), (yε) ∈ Rρ. We write (xε) ∼ρ (yε) if ∀n ∈ N : xε − yε =

O(ρ−nε ) as ε→ 0+. It is easy to prove that ∼ρ is a congruence relation on
the ring Rρ of moderate nets with respect to pointwise operations.

(iii) The Robinson-Colombeau ring of generalized numbers is defined as ρR̃ := Rρ/
∼ρ. The equivalence class defined by (xε) ∈ Rρ is simply denoted as [xε] ∈ ρR̃.
See also [41, 24] and references therein for a more general notion of scale for
Colombeau-like algebras.

Clearly, the ring of Robinson-Colombeau is isomorphic to the subring of Colombeau
generalized functions f ∈ ρGs(R) whose derivative is zero f ′ = [f ′ε] = 0, see e.g. [29].

It is important to emphasize that the designation Robinson-Colombeau ring
serves merely as a tribute to both authors for similar ideas they had in the field of
non-Archimedean analysis, as evidenced by references [45, 8]. This nomenclature
should not be misinterpreted as implying any substantial contribution of A. Robin-
son to Colombeau theory.

Similarly to the category QAlg(C∞I) we can now introduce the category of
quotient subrings of RI :

Definition 27. We say that (G, π) is a quotient subring of RI , and we write
(G, π) ∈ QRing(RI), if

(i) G is a ring;
(ii) π : R −→ G is an epimorphism of rings, where the domain R ⊆ RI is a

subring of RI .
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Let (H, η) ∈ QRing(RI). Then a morphism of quotient rings i : (G, π) −→ (H, η)
is given by an inclusion

i : ∞(π) ↪→ ∞(η), (4.7)

where ∞(π) := ∞(R). Similarly to Def. 22, we say that every representative of
zero in (G, π) is infinitesimal if for all representatives of zero, i.e. (zε) ∈ R such
that π(zε) = 0 ∈ G, we have limε→0+ zε = 0.

The ring ρR̃ of Robinson-Colombeau is, up to isomorphisms of rings, the simplest
quotient ring where every representative of zero is infinitesimal. This implies to have
the smallest class of infinities, and consequently, the largest kernel. The proof is
simply a particular case of the proof of Thm. 25:

Theorem 28. Assume that:

(i) (G, π) is a quotient subring of RI ;
(ii) Every representative of 0 in (G, π) is infinitesimal;
(iii) If (xε) ∈ R, then ∃(vε) ∈ ∞(R)∀0ε : |xε| ≤ vε (nets are bounded by

infinities);
(iv) (ρ−1

ε ) ∈ R;
(v) Let (xε) ∈ RI . If there exist (vε) ∈ ∞(R) such that ∀0ε : |uε| ≤ vε, then

(uε) ∈ R (infinities determine R).
(vi) (G, π) is co-universal among all the quotient rings satisfying the previous

conditions.

Then, G ≃ ρR̃ as rings. Moreover, ∞(R) = ∞(Rρ) is the smallest class of infinities
and Ker(π) = Ker([−]) is the largest kernel.

See [57, 58] for a characterization up to isomorphisms of the field of scalars one has
in the nonstandard approach to Colombeau theory.

5. Universal property of spaces of generalized smooth functions

Generalized smooth functions (GSF) are the simplest way to deal with a very
large class of generalized functions and singular problems, by working directly with
all their ρ-moderate smooth regularizations. GSF are close to the historically orig-
inal conception of generalized function, [12, 35, 33]: in essence, the idea of authors
such as Dirac, Cauchy, Poisson, Kirchhoff, Helmholtz, Kelvin and Heaviside (who
informally worked with “numbers” which also comprise infinitesimals and infinite
scalars) was to view generalized functions as certain types of smooth set-theoretical
maps obtained from ordinary smooth maps by introducing a dependence on suitable
infinitesimal or infinite parameters. For example, the density of a Cauchy-Lorentz
distribution with an infinitesimal scale parameter was used by Cauchy to obtain
classical properties which nowadays are attributed to the Dirac delta, [33]. More
generally, in the GSF approach, generalized functions are seen as set-theoretical
functions defined on, and attaining values in, the non-Archimedean ring of scalars
ρR̃. The calculus of GSF is closely related to classical analysis sharing several prop-
erties of ordinary smooth functions. On the other hand, GSF include all Colombeau
generalized functions and hence also all Schwartz distributions [22, 29, 23]. They
allow nonlinear operations on generalized functions and unrestricted composition
[22, 23]. They enable to prove a number of analogues of theorems of classical
analysis for generalized functions: e.g., mean value theorem, intermediate value
theorem, extreme value theorem, Taylor’s theorems, local and global inverse func-
tion theorems, integrals via primitives, and multidimensional integrals [21, 20, 23].
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With GSF we can develop calculus of variations and optimal control for general-
ized functions, with applications e.g. in collision mechanics, singular optics, quan-
tum mechanics and general relativity, see [36, 15] and [14, 34] for a comparison
with CGF. We have new existence results for nonlinear singular ODE and PDE
(e.g. a Picard-Lindelöf theorem for PDE), [38, 25], and with the notion of hyperfi-
nite Fourier transform we can consider the Fourier transform of any GSF, without
restriction to tempered type, [44]. GSF with their particular sheaf property define
a Grothendieck topos, [23]. GSF are a particular case of the Discontinuous Dif-
ferential Calculus of [2, 5]. However, some properties, like the intermediate value
theorem or the existence and uniqueness of primitives, in general do not hold for
this calculus. See also [29, 59, 42] for the sheaf property of Colombeau algebras,
and [47] for a related algebraic approach.

Definition 29. Let X ⊆ ρR̃n and Y ⊆ ρR̃d. We say that f : X → Y is a GSF
(f ∈ ρGC∞(X,Y )), if

(i) f : X → Y is a set-theoretical function
(ii) There exists a net (fε) ∈ C∞(Rn,Rd) such that for all [xε] ∈ X (i.e. for all

representatives (xε) of any point x = [xε] ∈ X):
(i) f(x) = [fε(xε)] (we say that f is defined by the net (fε))
(ii) ∀α ∈ Nn : (∂αfε(xε)) is ρ-moderate.

Following [59, Def. 3.1] it is possible to give an equivalent definition of GSF
as a quotient set: therefore a co-universal characterization similar to the previous
ones given for CGF (Sec. 4) is possible. However, in the present section we want
to present a universal property of spaces of GSF as the simplest way to have set-
theoretical functions defined on generalized numbers and having arbitrary deriva-
tives. As we will see below, this property is important because it formalizes the
idea that GSF contains all the possible ρ-moderate regularizations, e.g. as obtained

by convolution with a mollifier of the form 1
ρε
µ
(
x
ρε

)
, see e.g. [23].

The ring of scalars ρR̃ is hence the basic building block in the definition of GSF.
Using the results of Sec. 4.2.1, in this section we could use any co-universal solution
of Thm. 28, but that would only result into a useless abstract language, so that we

work directly with ρR̃, as defined in Def. 26.
First of all, derivatives of GSF are well-defined on so-called sharply open sets:

Let x, y ∈ ρR̃, we write x ≤ y if for all representative [xε] = x, there exists

[yε] = y such that ∀0ε : xε ≤ yε; on
ρR̃n, we consider the natural extension of the

Euclidean norm, i.e. |[xε]| := [|xε|] ∈ ρR̃. Even if this generalized norm takes value

in ρR̃, it shares essential properties with classical norms, like the triangle inequality

and absolute homogeneity. It is therefore natural to consider on ρR̃n the topology

generated by balls Br(x) :=
{
y ∈ ρR̃ | |x− y| < r

}
, for r ∈ ρR̃≥0 and invertible,

which is called sharp topology, and its elements sharply open sets. In the context
of Colombeau generalized functions, sharp topology has been defined in [48, 49],
whereas balls with generalized radii where first considered in [4]. See also [1, 3, 29].

Theorem 30. Let U ⊆ ρR̃n be a sharply open set and α ∈ Nn, then the map given
by

∂α : [fε(−)] ∈ ρGC∞(U, ρR̃d) 7→ [∂αfε(−)] ∈ ρGC∞(U, ρR̃d)



24 DJAMELEDDINE KEBICHE AND PAOLO GIORDANO

is well-defined, i.e. it does not depend on the net of smooth functions (fε) that

defines the GSF [fε(−)] : x = [xε] ∈ U 7→ [fε(xε)] ∈ ρR̃d.

For any sharply open set U ⊆ ρR̃n, we set

Md
U :=

{
(fε) ∈ C∞(Rn,Rd)I | ∀[xε] ∈ U ∀α ∈ Nn : (∂αfε(xε)) ∈ Rρ

}
.

We hence have a map [−]f that allows us to construct GSF starting from nets of
smooth functions:

[−]f : (fε) ∈ Md
U 7→ [fε(−)] ∈ ρGC∞(U, ρR̃d).

By Def. 29 of GSF, this map is onto. Thanks to Thm. 30, derivatives ∂α :
ρGC∞(U, ρR̃d) −→ ρGC∞(U, ρR̃d) ⊆ Set(U, ρR̃d) are ε-wise well-defined, i.e. using the

ring epimorphism [−] : Rρ −→ ρR̃, the map πα(fε) : [xε] ∈ U 7→ [∂αfε(xε)] ∈ ρR̃d is
defined for all nets (fε) ∈ Md

U and makes this diagram commute

GC∞(U, ρR̃d)
∂α
// Set(U, ρR̃d)

Md
U

[−]f

OO

πα

88

The space ρGC∞(U, ρR̃d) and the maps ∂α, [−]f are the simplest way to make this
diagram commute, i.e. we have the following

Theorem 31. Let U ⊆ ρR̃n be a sharply open set and d ∈ N. If G ∈ Set, q and

(Dα)α∈Nn are such that D0 : G ↪→ Set(U, ρR̃d) is the inclusion and for all α ∈ Nn:

G
Dα

// Set(U, ρR̃d)

Md
U

q

OO

πα

::

where q is surjective, then there exists one and only one φ : G −→ ρGC∞(U, ρR̃d)
such that

G
φ // GC∞(U, ρR̃d)

Md
U

q

OO

[−]f

::

and which preserves derivatives, i.e. ∂αφ(F ) = DαF for all F ∈ G and all α ∈ Nn.

Proof. Since q is surjective, if F ∈ G, we can find (fε) ∈ Md
U such that F = q(fε).

We necessarily have to define φ(F ) := φ(q(fε)) = [fε]f = [fε(−)]. The map φ is
well-defined: if F = q(f̄ε), then D0(q(f̄ε)) = q(f̄ε) = π0(f̄ε) = [fε]f. It remains
only to prove the preservation of derivatives. We have ∂αφ(F ) = ∂α[fε(−)] =
[∂αfε(−)] = [∂αfε]f, and D

αF = Dα (q(fε)) = πα(fε) = [∂αfε]f. □
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We close this section by noting that trivially Set(U, ρR̃d) is not a universal so-
lution of the same problem because we cannot have a surjection like [−]f. Finally,

the universal solution ρGC∞(U, ρR̃d) is in a certain sense minimal because it is pos-

sible to prove that ρGC∞(Ω̃c,
ρR̃d) ≃ ρGs(Ω), where Ω ⊆ Rn is any open set and

Ω̃c :=
{
[xε] ∈ ρR̃n | ∃K ⋐ Ω ∀0ε : xε ∈ K

}
, see e.g. [23, 22], i.e. up to isomorphism

we get exactly the Colombeau algebra on Ω.

6. Conclusions

The objective of the present study is not to draw comparisons between dif-
ferent spaces of generalized functions, but rather to provide a characterization
of these spaces using suitable universal properties. However, we would like to
briefly conclude the article by clarifying several common misconceptions concern-
ing Colombeau theory and nonlinear operations on distributions.

If our sole interest lies in linear operations, it has been demonstrated in Sec. 3
that the space of Schwartz distributions constitutes the simplest solution, with any
alternative solution being less optimal. The Schwartz impossibility theorem, as
outlined e.g. in [29] and associated references, states that nonlinear operations pose
significant challenges for distributions.

In Sec. 4, Colombeau theory was presented as the simplest solution of this prob-
lem among quotient algebras. A common objection to Colombeau construction
is that distributions are not intrinsically embedded in the corresponding algebra.
However, this assertion is erroneous, as demonstrated in [24] and [29], where it is
shown that employing a different index set instead of I = (0, 1], the desired in-
trinsic embedding can be achieved, essentially employing the same notations and
fundamental concepts. Moreover, it can be contended that had Colombeau algebra
been discovered prior to Schwartz distributions, some researchers might now reject
the latter due to their inability to intrinsically embed into the former. Colombeau
theory, in contrast, is the formalization of the method of regularizations: It provides
a convenient setting that shares several properties with ordinary smooth functions

and contains convolutions with any mollifier of the form 1
ρε
µ
(
x
ρε

)
. The universal

properties of GSF was motivated precisely in this way.
The real technical limitations of classical Colombeau algebras are the lack of

closure with respect to composition (see e.g. [29]), not good properties of Fourier
transform as well as multidimensional integration on infinite sets (see e.g. [44]), and
the lack of general existence results for differential equations, such as the Picard-
Lindelöf or the Nash-Moser theorems. The Discontinuous Differential Calculus of
[2, 5] and GSF solve almost all these problems.

Conversely, a significant unresolved issue in the field of GSF pertains to the
establishment of a definitive association between the natural concept of pointwise
solution for GSF (i.e. regularized) differential equations and the notion of weak
solution in Sobolev spaces.

In the present work, we showed that any alternative proposal to formalize the
method of regularizing a singular problem would necessarily be less simple than
Colombeau algebras or spaces of GSF.
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