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We have a system whose state is described by a vector y ∈ M ⊆ Rn. The
systems has to be thought as a complex adaptive system that changes its state so
as to decrease a suitable cost function C : M −→ R>0 and, at the same time, to
increase a corresponding information entropy

H(y) = −
d∑
j=1

pj(y) · log2 pj(y) > 0 ∀y ∈M.

More precisely, the system adapts (e.g. it evolves) so as to minimize the ratio C
H at

the interior point x ∈M :

∀y ∈M : 0 <
C(x)

H(x)
≤ C(y)

H(y)
.

By assumption, the probability always enter into the state of the system

pj(y) = yj ∀j = 1, . . . , d,

where 0 < d ≤ n. This implies that by changing these probability, we are describing
a different system having a different state.
The cost function C must satisfies the inequality

∂kC(x) ≤ α(x) · log2 k ∀k = 2, . . . , d (0.1)

for some α : M −→ R>0. Note that (0.1) is not required to hold for k = 1.
Examples of cost functions that satisfy (0.1) are given by the average value C(y) =∑d
j=1 ck(y) · pk(y), where the k-th component of the cost ck can be any one of the

following examples:

(i) ck(y) = a
pk(y)s

log2 k = a
ysk

log2 k, where a ∈ R>0 and s ∈ R≥1. This example

represents costs that are decreasing with an increasing of the probabilities
yk and they are increasing with an increasing of the number of bits log2 k
which are necessary to transmit the rank k. In this case we have ∂kC(x) =
∂kck(x) · xk + ck(x) ≤ a

xs
k

(1− s) ≤ 0. Therefore, it suffices to take α(x) ≡ 1

(or lower, depending on the next assumption (0.3), see below).
(ii) ck(y) ≤ a · logb(k + k0) + j0, where a, j0 ∈ R>0, b > 2 and k0 ≤ b− 2. This

example (with the equality sign) is essentially considered in [1]. Usually, b
is the number of letters in an alphabet we are considering. In this case, the
costs ck do not depend on the probabilities yk and hence ∂kC(x) = ck(x).
We have logb(k + k0) ≤ log2 k if and only if

k + k0 ≤ blog2 k =
(
blogb k

) 1
logb 2 = klog2 b. (0.2)

Since b > 2, we have log2 b > 1 and the function klog2 b − k is increasing in
k. Therefore if k0 ≤ 2log2 b − 2 = b − 2 the inequality (0.2) always holds,
and hence ck(x) ≤ a log2 k + j0. If we take α ≡ a + j0, we get α log2 k =

1
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a log2 k+ j0 log2 k ≥ a log2 k+ j0 ≥ a · logb(k+ k0) + j0 ≥ ck(x) = ∂kC(x) for
k ≥ 2.

(iii) We can choose a better estimate of α if ck(y) ≤ j0 + a · logb k, i.e. if k0 = 0
in the previous example. This case is considered in [2]. In fact, for k ≥ 2 we
have

∂kC(x) = ck(x) ≤ j0 + a logb k = j0 log2 2 + a logb 2 · log2 k ≤
≤ j0 log2 k + a logb 2 · log2 k = (a logb 2 + j0) · log2 k.

We can hence set α ≡ a logb 2 + j0.
(iv) ck(y) = γk > 0. This is the case of constant costs depending only on the rank

k (e.g. we can have that γk is proportional to the length of the words of rank
k). We therefore have to take α so that α(x) ≥ γk

log2 k
.

Note that in the first example (i) it is not reasonable to assume that this formula
holds also for k = 1 because this would yield a null cost c1(y) = 0. This, and the
calculations we realized in the second example, motivate that (0.1) holds only for
k ≥ 2.

Finally, we assume that

d∑
k=1

k−α(x)·
H(x)
C(x) =: N(x) ≥ 1

p1(x)
≥ e. (0.3)

Note that this implies p1(x) ≤ e−1 ' 0.368. This is another restriction on the value
α(x): whereas condition (0.1) states that we can take α(x) as large as we want, the
inequality (0.3) yields that the larger is α(x), the more difficult will be to arrive at
a value N(x) ≥ e.

We have the following

Theorem 1. Let x ∈ M ⊆ Rn be an open set and let pj ∈ C1(M,R≥0), for all
j = 1, . . . , d ≤ n, be such that

∀y ∈M : (pj(y))j=1,...,d is a probability.

Set

H(y) := −
d∑
j=1

pj(y) · log2 j ∀y ∈M.

Let C ∈ C1(M,R>0) be such that

∀y ∈M : 0 <
C(x)

H(x)
≤ C(y)

H(y)
. (0.4)

Finally assume that

pj(y) = yj ∀j = 1, . . . , d ∀y ∈M
∂kC(x) ≤ α(x) · log2 k ∀k = 2, . . . , d (0.5)

d∑
k=1

k−α(x)·
H(x)
C(x) =: N(x) ≥ 1

p1(x)
≥ e,

where α : M −→ R>0. Then we have

(i) pk(x) = p1(x) · k−α(x)·
H(x)
C(x) for all k = 1, . . . , d.

(ii) p1(x) = 1
N(x) .
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Proof. Since M is an open set, x ∈ M and C, H ∈ C1(M,R>0), by (0.4) we get
∂k
(
C
H

)
(x) = 0. For simplicity, all the functions that will appear in the following

are evaluated at the point x. We have

∂kC ·H + C ·
∑
j

(
∂kpj · log2 pj + pj

1

pj
log2 e · ∂kpj

)
= 0

But ∂kpj(x) = ∂kxj = δkj , so

H · ∂kC + C (log2 pk + log2 e) = 0.

By (0.5), for k ≥ 2 we obtain

log2 pk = −H
C
∂kC − log2 e ≥ −

H

C
α log2 k − log2 e,

and hence
pk ≥ 2(−H

C α log2 k−log2 e) = k−α
H
C e−1.

We assumed that N ≥ e, so

pk ≥
1

N
· k−αH

C ∀k = 1, . . . , d.

Note that this inequality holds also for k = 1 because we assumed that pk(x) ≥
1

N(x) .

Finally, we note that we cannot have ph > 1
N · h

−αH
C for some h = 1, . . . , d

because otherwise we would have
d∑
j=1

pj = 1 >

d∑
j=1

1

N
k−α

H
C = 1.

Therefore, we must have pk = 1
N k

−αH
C for all k = 1, . . . , d. Finally, for k = 1 we

get p1 = 1
N which proves both our conclusions. �
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