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Abstract. In this article, we consider a generalisation of the Skorokhod embedding problem
(SEP) with a delayed starting time. In the delayed SEP, we look for stopping times which
embed a given measure in a stochastic process, which occur after a given delay time. Our first
contribution is to show that the switching identities introduced in a recent paper of Backhoff,
Cox, Grass and Huesmann extend to the case with a delay.

We then show that the delayed switching identities can be used to establish an optimal
stopping representation of Root and Rost solutions to the multi-marginal Skorokhod embed-
ding problem. We achieve this by rephrasing the multi-period problem into a one-period
framework with delay. This not only recovers the known multi-marginal representation of
Root, but also establishes a previously unknown optimal stopping representation associated
to the multi-marginal Rost solution. The Rost case is more complex than the Root case since
it naturally requires randomisation for general initial measures, and we develop the necessary
tools to develop these solutions. Our work also provides a comprehensive and complete treat-
ment of discrete Root and Rost solutions, embedding discrete measures into simple symmetric
random walks.

Key words. Skorokhod embedding problem; Root barrier; Rost barrier; optimal stopping;
switching identities.
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1. Introduction

We consider the Skorokhod embedding problem, that is given a Brownian motion (Wt)t≥0

started according to an initial distribution W0 ∼ λ, and a probability distribution µ on R, the
question is to find a stopping time τ such that

Wτ ∼ µ and (Wt∧τ )t≥0 is uniformly integrable. (SEP)

While this problem was originally posed and solved by Skorokhod [38, 37] in the early 60s, it
remains an active field of research to the present day. The 2004 survey paper [32] features more
than 20 distinct solution to (SEP) and more recent contributions include [12, 16, 15, 19, 20, 25,
31, 4, 6, 23, 14, 2, 22, 3, 21, 8, 13] among others.

Of primary interest in this article will be an extension of the classical (SEP) to multiple
marginals. Given a sequence of measures µ1, . . . , µn on the real line, the multi-marginal Skorokhod
embedding problem is to find an increasing sequence of stopping times τ1 ≤ · · · ≤ τn such that

Wτk ∼ µk, k = 1, . . . , n and (Wt∧τn)t≥0 is uniformly integrable. (MMSEP)

It is an application of Strassen’s Theorem [39] and a well know fact that (MMSEP) will admit a
solution if and only if the measures are in increasing convex order, that is λ ≤c µ1 ≤c · · · ≤c µn.
Throughout the paper we will assume this condition satisfied.
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(a) Root (left) and Rost (right) bar-
riers solving (SEP) for λ = δ0 and
µ = U[−2, 2].

(b) Root (left) and Rost (right) bar-
riers solving (MMSEP) for λ = δ0,
µ1 = 1

2
(δ−1 + δ1) and µ2 = U[−2, 2].

Figure 1. Single-marginal (a) and multi-marginal (b) Root and Rost
solutions embedding the measure U[−2, 2], one of the examples specif-
ically mentioned [34] for its previously unknown barrier structure.

This extension to (MMSEP) is particularly motivated by applications in robust mathematical
finance given the connections between the (SEP) and robust option pricing first proposed in
Hobson’s paper [26]; see also [27] for an extensive survey. These connections enable the compu-
tation of robust bounds on option prices while considering a market-given marginal distribution
at the time of expiration. Extending this theory to multiple marginals would allow the incorpo-
ration of additional market data into the robust pricing problem. We develop this approach in
a companion paper, [11].

The focal point of this paper are two fundamental and influential solutions to (SEP) known
as Root [34] and Rost [36] barrier solutions. These stopping times can be represented as hitting
times of subsets R ⊆ R+ × R, which are subject to some type of barrier structure, precisely:q If (t, x) ∈ RRoot then (s, x) ∈ RRoot for all s > t.q If (t, x) ∈ RRost then (s, x) ∈ RRost for all s < t.

(1.1)

See Figure 1 for an illustration.
Our interest in Root and Rost solutions is twofold. First, there is a substantial interest in

the probability literature on these solutions, see for example [29, 36, 16, 15, 19, 20, 7, 18, 14, 21,
33, 2, 9]. Second, such solutions are related to robust bounds on variance options considering
multiple market-given marginal distributions. In [11] we carry out an empirical exploration of
such robust bounds based on the results presented here. See [30, 10, 16, 15, 28] for related work
in the financial context.

While existence results of Root and Rost barriers were shown by their originators and also
an extension to multiple marginals was given in [6], as was noted in Root’s original work [34],
concrete barriers are only known in the most trivial of situations. To actually construct a concrete
barrier R given a probability measure µ or even more so a sequence barriers given a sequence of
probability measures µ1, . . . , µn is a highly non trivial task.

Prior research in [16, 15, 19, 20, 18, 21] established that Root and Rost barriers which solve
the (single-marginal) (SEP) can be recovered via solutions to a respective associated PDE in
variational form. Solutions to such PDEs, in turn, are known to have a representation by means of
an optimal stopping problem. While for a long time this optimal stopping representation of Root
and Rost solutions was exclusively accessible through this detour over PDEs in variational form,
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a direct proof utilizing time-reversal arguments was given in [14], notably for the multi-marginal
Root case. It was furthermore the aim of the article [1] to give a simple probabilistic argument
connecting Root and Rost solutions to their respective optimal stopping representations in the
single marginal case by establishing a specific switching identity. To the best of our knowledge,
an optimal stopping representation associated to the multi-marginal Rost problem remained
unknown to this day.

In order to establish such a multi-marginal representation, a crucial first step is to reduce
the multi-step viewpoint to a single-marginal perspective where the initial marginal is now a
space-time law instead of a spatial law at zero. This approach builds on an approach implicit
in [14], and which we make explicit in our approach. Our solution is computed in terms of
a delay stopping time inducing an initial space-time law after which we embed with a Root or
Rost barrier respectively. Given such a representation it becomes apparent how a multi-marginal
solution can be recovered inductively.

An initial step in our process is to extend the results established in [6] as well as [1] to allow
for such a delay. The implications of this extension are twofold: First, it enables a more concise
and intuitive recovery of the multi-marginal optimal stopping problem given in [14]. Second,
we can provide a novel characterisation of the multi-marginal Rost embedding in terms of the
solution to a given optimal stopping (or multiple stopping) problem. This lays the foundation
for constructing Rost barriers such that their hitting times solve the (MMSEP) computable as
demonstrated in Figure 1.

We briefly review the known results for the single marginal problem and then proceed to state
its multi-marginal extension.

Summary of Single Marginal Results. Simple probabilistic arguments justifying the optimal stop-
ping characterization of the single marginal Root and Rost (SEP) were given in [1]. Let us denote
by µRoot (resp. µRost) the law of the Brownian motion started with distribution λ at the time it
hits RRoot (resp. RRost). By µRootT (resp. µRostT ) we denote the time this Brownian motion hits
the barrier RRoot ∪ ([T,∞)× R) (resp. RRost ∪ ([T,∞)× R)). Recall the potential of a measure
m, denoted by

Um(y) := −
∫

|y − x|m(dx).

The single-marginal relations of interest, as provided in [16, 15, 1, 21] among others are

UµRootT
(y) = Ey

[
UµRoot (Wτ∗)1τ∗<T + Uλ (Wτ∗)1τ∗=T

]
(1.2)

= sup
τ≤T

Ey
[
UµRoot(Wτ )1τ<T + Uλ(Wτ )1τ=T

]
, (1.3)

where the optimizer is τ∗ := inf
{
t ≥ 0 : (T − t,Wt) ∈ RRoot

}
∧ T ,

and

UµRost(y)− UµRostT
(y) = Ey

[(
UµRost − Uλ

)
(Wτ∗)

]
(1.4)

= sup
τ≤T

Ey
[(
UµRost − Uλ

)
(Wτ )

]
, (1.5)

where the optimizer is τ∗ := inf
{
t ≥ 0 : (T − t,Wt) ∈ RRost

}
∧ T .

Multi-Marginal Extensions. We are interested in Equations (1.2) - (1.5) in a multi marginal
setting. While the multi marginal extension of the Root case (1.2) - (1.3) is known due to [14],
the Rost equivalent appears to be novel. The results can be stated as follows.
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Let R1, R2, . . . , Rn denote a sequence of Root (resp. Rost) barriers as defined in (1.1). Then
consider the associated Root (resp. Rost) stopping times

ρ1 := inf {t ≥ 0 : (t,Wt) ∈ R1} ,
ρk := inf {t ≥ ρk−1 : (t,Wt) ∈ Rk} , for k ∈ {2, . . . , n}.

Define the respective laws µi := Lλ(Wρi) and µi,T := Lλ(Wρi∧T ). More precisely, µi will be the
law of the Brownian motion starting with distribution λ at the time it consecutively hit all of
the barrier sets R1, . . . , Ri respectively, and µi,T will be the time it consecutively hit the barrier
sets R1 ∪ ([T,∞)× R) , . . . , Ri ∪ ([T,∞)× R). Then these measures are in convex order, i.e.
µ1 ≤c µ2 ≤c · · · ≤c µn as well as µ1,T ≤c µ2,T ≤c · · · ≤c µn,T . Moreover define the function,

Uµ0,T
(x) := Uµ0

(x) := Uλ(x) for all T ≥ 0. (1.6)

The multi-marginal extension of our relations of interest are given as follows.

Theorem 1.1. If (Rk) denotes a sequence of Root barriers, then

Uµk,T (y) = Ey
[
Uµk−1,T−τ∗

k
(Wτ∗

k
) + (Uµk − Uµk−1

)(Wτ∗
k
)11{τ∗

k<T}
]

(1.7)

= sup
τ≤T

Ey
[
Uµk−1,T−τ (Wτ ) + (Uµk − Uµk−1

)(Wτ )11{τ<T}
]
, (1.8)

where the optimizer is τ∗k := inf {t ≥ 0 : (T − t,Wt) ∈ Rk} ∧ T .
Moreover, given the interpolating potentials Uµk,T (y) for all (T, y) ∈ [0,∞)×R we can recover

the Root barriers R1, . . . , Rn embedding the measures µ1, . . . , µn in the following way

Rk =
{
(T, y) :

(
Uµk,T − Uµk−1,T

)
(y) =

(
Uµk − Uµk−1

)
(y)
}
, k ∈ {1, . . . , n}.

Theorem 1.2. If (R̄k) denotes a sequence of Rost barriers, then

Uµk(y)− Uµk,T (y) = Ey
[
Uµk(Wτ∗

k
)− Uµk−1,T−τ∗

k
(Wτ∗

k
)
]

(1.9)

= sup
τ≤T

Ey
[
Uµk(Wτ )− Uµk−1,T−τ (Wτ )

]
(1.10)

where the optimizer is τ∗k := inf
{
t ≥ 0 : (T − t,Wt) ∈ R̄k

}
∧ T .

Moreover, given the interpolating potentials Uµk,T (y) for all (T, y) ∈ [0,∞)×R we can recover
the Rost barriers R̄1, . . . , R̄n embedding the measures µ1, . . . , µn in the following way

R̄k =
{
(T, y) : Uµk,T (y) = Uµk−1,T

(y)
}
, k ∈ {1, . . . , n}.

Outline of the Paper. In Section 2 we introduce the notion of delayed Skorokhod embeddings,
which contain the multi-marginal Skorokhod embedding as a special case. We will establish a
general existence of such solution following the approach in [6] and present an optimal stopping
representation theorem.

Inspired by the framework proposed in [1], we first provide a analogous statements for simple
symmetric random walks in Section 3. First we show general existence of delayed Root and Rost
solution in this context, subsequently we state and prove the corresponding respective optimal
stopping representation.

Section 4 is dedicated to providing a suitable discretization of the continuous-time framework
and of the respective optimal stopping representations such that the results of Section 3 apply.
We then take a Donsker-type limit back to a Brownian motion, recovering the continuous times
results stated in Section 2.
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2. Delayed Root and Rost Embeddings

For a more convenient and comprehensive treatment of (MMSEP), but also present results
in greater generality we introduce a relatively recent extension of the classical (SEP) known as
delayed embeddings. Although the concept of delayed embeddings has been implicitly explored
in [14], to best of our knowledge the specific name was first mentioned in [9].

We consider a delay stopping time η and require our solution to (SEP) to wait for this delay
before embedding the measure µ.

Formally, given a measure µ, a Brownian motion (Wt)t≥0) started according to an initial
distribution W0 ∼ λ and a (possibly randomized) delay stopping time η the delayed Skorokhod
embedding problem is to find a stopping time τ such that

Wτ ∼ µ where τ ≥ η and (Wτ∧t)t≥0 is uniformly integrable. (dSEP)

We will denote a (dSEP) by the triple (λ, η, µ) and assume throughout the paper that η is an
integrable stopping time and that µ dominates Lλ(Wη) in the convex order. Trivially, the (dSEP)
has no solution if either of these conditions are violated.

2.1. Root and Rost solutions to (dSEP). We are interested in Root and Rost solutions to
(dSEP), that is solutions of the form

ρ := inf {t ≥ η : (t,Wt) ∈ R}
where R is a Root or Rost barrier as defined in (1.1).

In [5] the necessary theory and tools were given to identify specific solutions to (SEP) as
stopping times that are optimisers over appropriate additional optimisation criteria. Such (SEP)
with additional optimisation criteria are denoted by (OptSEP). In [6] this concept was extended
to multiple marginals and denoted by (OptMSEP). Especially multi-marginal Root and Rost
solutions were recovered as solutions to appropriate (OptMSEP).

We can further ask whether we can recover the delayed Root and Rost embeddings as optimis-
ers over an appropriate optimisation criteria. The answer to this is positive, and is a relatively
simple application of the results of [6]. We work in the class of randomised multi-stopping
times introduced in [6], RMST1

2, which we understand to be probability measures on the space
R × C0(R+) × Ξ2, where Ξ2 = {(s1, s2) ∈ R2

+, s1 ≤ s2}, and where the measure projected on
its first two coordinates is equal to the measure λ × W, with W the Brownian path measure
on C0(R+). The Ξ2 variables represent the first and second stopping times respectively. The
measure has further constraints on its structure (see [6], Definition 3.9), which ensure that the
stopping time properties are respected.

We are interested in optimising a functional of the form E[F (Wτ2 , τ2)] over the class of ran-
domised stopping times (τ1, τ2) which satisfy the embedding constraint, Wτ2 ∼ µ, and for which
τ1 = η is the given (randomised) delay stopping time embedding αX = Lλ(Wη).

Note that η can be understood in the sense of randomised multi-stopping times, see Lemma
3.11 of [6].

Moreover, we argue that for the specific form of F (x, t) = h(t) for a convex/concave function
h, then the stopping time recovered as the optimiser is exactly the delayed Root/Rost stopping
time. We can do this using a slight modification of the arguments in [6].

We proceed as follows:
Let RMST1

2(η, µ) denote the subset of RMST1
2 such that the projection onto R×C0(R+)×Ξ

is exactly η. Then:
(1) RMST1

2(η, µ) ⊆ RMST(λ, αX , µ) as defined as in [6, Definition 3.18] which is a compact
set (Proposition 3.19);

(2) RMST1
2(η, µ) is closed, as the projection map is continuous, hence it is also compact;
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(3) The proof of a suitably modified version of Theorem 5.2 now goes through essentially
verbatim to give the following theorem.

Theorem 2.1. Assume that γ : S⊗2 → R is Borel measurable. Assume that (OptMSEP) is well
posed and that ξ ∈ RMST1

2(η, µ) is an optimizer. Then there exists a (γ, ξ)-monotone Borel set
Γ such that r1(ξ)(Γ) = 1.

Here, Γ being (γ, ξ)-monotone is as defined in [6, Definition 5.1] , without the constraint on
the projections of the respective sets. The final conclusion of the Theorem can be applied as in
[6, Theorem 2.7], [6, Theorem 2.10] (or more transparently, the corresponding results in [6]) to
recover the Root/Rost forms of the optimisers.

While Root barrier solutions will always be adapted to the filtration generated by the under-
lying Brownian motion, it is a well known fact that Rost barrier solutions will require some form
of external randomization in the case where the initial and the terminal distribution share some
mass. The story is similar for delayed Root and Rost embeddings and will be summed up in the
following two theorems.

Theorem 2.2. Consider a (dSEP) given by (λ, η, µ). Then there exists a Root barrier R such
that the stopping time ρ ≥ η defined via

ρ = inf {t ≥ η : (t,Wt) ∈ R}
embeds the measure µ.

The proof of this theorem follow analogously to the proof of [6, Theorem 2.7], or similarly of
[5, Theorem 2.1] heeding the modifications given above. Moreover, it is an easy application of
the standard Loynes argument [29] to see that such a Root stopping time ρ must be unique in the
sense that for any other Root stopping time ρ̃ solving the (dSEP) we would have Pλ [ρ = ρ̃] = 1.
More details on how to generalize the Loynes uniqueness argument can be found in [24, Section
4].

We proceed to Rost solutions. In order to give better insights on what will happen in the case
of delayed Rost embeddings, we quickly review the case of an undelayed (SEP) determined by the
initial measure λ and terminal measure µ. It is well known that all mass shared between the two
measures λ and µ must be stopped immediately in the following way. Let ρ̄ be a Rost stopping
time solving (SEP), then Pλ [ρ̄ = 0,W0 ∈ A] = (λ ∧ µ)(A) where the infimum of measures is
defined as

(λ ∧ µ)(A) := inf
B⊆A,B measurable

(
λ(B) + µ(A \B)

)
.

On the set {ρ̄ > 0} the stopping time ρ̄ will be the first hitting time of a Rost barrier R̄.
On a set where (λ ∧ µ)(A) < λ(A) we will have to randomise our initial stopping rule in A

in order stop only sufficiently much mass. If (λ ∧ µ)(A) < µ(A) then at least in some points
in A we need to stop all mass and in fact we will need to extend the Rost barrier beyond 0 at
those points to stop more mass later on. But in this case, all mass will stop immediately in
those points independent of the choice of randomisation rule, as a consequence of the recurrence
of Brownian motion. Thus any randomisation rule will give the same stopping rule although an
obvious “maximal” rule is to stop all paths starting in A due to the randomisation. If (λ∧µ)(A) =
µ(A) = λ(A), the randomisation rule that stops all mass is the only viable stopping rule since
there will be no further barrier in A beyond time 0.

In the delayed framework something similar needs to happen while it is apparent that things
are complicated by the fact that not all mass will be released at time 0 at once, but rather over
time, according to the measure Lλ(η). It is, however, clear that such external randomization
in only feasible in the atoms of the measure Lλ(η), of which there can only be countably many
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{t0, t1, . . . }. A delayed, randomized Rost solution will therefore consist of both a Rost barrier R̄
and some description of this randomization in the atoms of the delay stopping time. Hence, we
choose to represent such a solution as follows.

Definition 2.3. A delay stopping time η which distribution has atoms in {t0, t1, . . . }, a Rost
barrier R̄ and a family of probability densities {φ0, φ1, . . . } determine a delayed, randomized
Rost stopping time ρ̄φ in the following way.

ρ̄φ := inf
{
t ≥ η : (t,Wt) ∈ R̄

}
∧ Z

where

Z = min
k∈N

Zk for Zk :=

{
tk with probability Pλ

[
Zk = tk

∣∣Wη, η = tk
]
= φk (Wη)

∞ otherwise.

Let
α := Lλ((η,Wη)) ∈ P([0,∞)× R)

denote the space-time distribution induced by the delay stopping time η. Then we abbreviate
by

αt := α ({t} × ·)
its spatial marginal at time t.

A crucial fact to note about Rost solutions is that at any time point t ≥ 0 we are able to
tell exactly how much mass was already embedded in a given measurable set A ⊆ R but more
importantly we are furthermore able to decide that no more mass will be embedded in this set
going forward in time. These properties allow us to define Rost solutions in an iterative fashion
and for this purpose, given a Rost solution ρ̄ we define the following quantity

νt := µ− Pλ [Wρ̄ ∈ ·, ρ̄ < t] ,

the ‘mass not embedded before time t’
Let tk denote an atom of the measure Lλ(η), then note that the quantity αtk is given while

the quantity νtk is fully determined by the Rost barrier before time tk, i.e. R̄ ∩ ([0, tk)×R) and
the randomization densities {φl}tl<tk .

We consider
ψk(x) :=

d (αtk ∧ νtk)
d (αtk)

(x), (2.1)

the Radon-Nikodym density of αtk ∧ νtk with respect to αtk and state the following theorem.

Theorem 2.4. Consider (dSEP) given by (λ, η, µ). Let {t0, t1, . . . } denote the set of (at most
countably many) atoms of Lλ(η). Then there exists a Rost barrier R̄ such that the stopping time
ρ ≥ η defined via

ρ = inf
{
t ≥ η : (t,Wt) ∈ R̄

}
∧ Z

where

Z = min
k∈N

Zk for Zk :=

{
tk with probability Pλ

[
Zk = tk

∣∣Wη, η = tk
]
= ψk (Wη)

∞ otherwise

is a solution to (dSEP).

As in the Root case, the existence of a Rost barrier will follow analogously to the proof of [6,
Theorem 2.10] or similarly of [5, Theorem 2.4] heeding the modifications given above.

Outside of the atoms of the delay distribution, more precisely conditional on the event {η ̸∈
{t0, t1, . . . }}, two Rost stopping times ρ̄ and ρ̃ solving the same (dSEP) are given as hitting times
of two Rost barriers, hence the same Loynes argument as mentioned in the Root case will provide
a.s. equality.
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The density of the random variables Zk does not necessarily need to be unique. There is,
however, a sort of maximality about the chosen densities ψ0, ψ1, . . . in Theorem 2.4 which will
be clarified with the following lemma.

Lemma 2.5. Consider a (dSEP) given by (λ, η, µ). Let R̄ be a Rost barrier and {φ0, φ1, . . . }
be a family of densities such that the delayed, randomized Rost stopping time ρ̄φ given as in
Definition 2.3 solves the (dSEP). Then for any k ∈ N we can replace φk by ψk given by (2.1) to
obtain the stopping time ρ̄ψ for which we will have Pλ

[
ρ̄φ = ρ̄ψ

]
= 1.

Proof. Let us consider an arbitrary atom tk of the delay distribution Lλ(η). First of all we clarify
that in order for φk to be feasible we must have φk ≤ ψk, as for all measurable sets A ⊆ R we
have

Pλ [Wρ̄φ ∈ A, ρ̄φ = tk, η = tk] ≤
{
Pλ [Wtk ∈ A, η = tk] = αtk(A),

Pλ [Wρ̄φ ∈ A, ρ̄φ = tk] ≤ Pλ [Wρ̄φ ∈ A, ρ̄φ ≥ tk] = νtk(A).

Denote by Ak :=
⋂
ε>0{x : (tk + ε, x) ∈ R̄} all spatial points in the barrier R̄ at time tk. Then

clearly we have

Pλ
[
ρ̄φ = tk

∣∣η = tk,Wtk ∈ Atk
]
= 1 = Pλ

[
ρ̄ψ = tk

∣∣η = tk,Wtk ∈ Atk
]

since both stopping times are hitting times of the barrier R̄. Hence, the specific values of φ and
ψ are irrelevant and we might replace φ(x) with ψ(x) for all x ∈ Ak.

Due to the Rost barrier structure, on the set Ack, no mass will be embedded at a later time
point,

Pλ
[
Wρ̄φ ∈ Actk , ρ̄

φ > tk
]
= 0 = Pλ

[
Wρ̄ψ ∈ Actk , ρ̄

ψ > tk
]
. (2.2)

Consider now the set Bk := {x : φk(x) < ψk(x)} ∩ Ack. Let us assume that αtk(Bk) > 0 as
otherwise both φk(x) and ψk(x) must be 0 for all x ∈ Bk anyway. Our claim is then proven if
we are able to establish

∫
Bk
φ(x)dx =

∫
Bk
ψ(x)dx.

It is a consequence of (2.2) that

µ(Bk) = Pλ [Wρ̄φ ∈ Bk, ρ̄
φ < tk] + Pλ [Wρ̄φ ∈ Bk, ρ̄

φ = tk] ,

or equivalently that

νtk(Bk) = Pλ [Wρ̄φ ∈ Bk, ρ̄
φ = tk]

= Pλ [Wρ̄φ ∈ Bk, ρ̄
φ = tk, η = tk] .

Here the second equality follows from the specific structure of Rost solutions, as all mass that is
already released before time tk and stopped in Bk will have done so before time tk almost surely.
Then

νtk(Bk) = Pλ [Wρ̄φ ∈ Bk, ρ̄
φ = tk, η = tk] = Pλ [Wtk ∈ Bk, ρ̄

φ = tk, η = tk]

= αtk(Bk)

∫
Bk

φ(x)dx

≤ αtk(Bk)

∫
Bk

ψ(x)dx = (αtk ∧ νtk)(Bk)

In particular, this implies that

(αtk ∧ νtk)(Bk) = νtk(Bk),

hence we must have
∫
Bk
φ(x)dx =

∫
Bk
ψ(x)dx. □
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Here we observe that if the set of atoms t0, t1, . . . is either finite or infinite but can be ordered
we can assume t0 ≤ t1 ≤ · · · and construct the densities ψk consecutively. When this is not
the case, meaning t0, t1, . . . is infinite and cannot be ordered, while our result will still hold, we
cannot expect to derive an explicit formula for the functions ψk in this scenario.

An explicit Root solution to (MMSEP) is clear given Theorem 2.2 while an explicit Rost
solution can be recovered from Theorem 2.4 in the following way.

Corollary 2.6. Consider a starting measure λ and a sequence of measures µ1, . . . , µn such that
λ ≤c µ1 ≤c · · · ≤c µn. Then there exists a sequence or Rost barriers R1, . . . , Rn such that the
stopping times ρ1 ≤ ρ2 ≤ · · · ≤ ρn defined in the following way are a solution to (MMSEP).

ρ0 := 0 and ρk := inf {t ≥ ρk−1 : (t,Wt) ∈ Rk} ∧ Zk for k ≥ 1

where

Zk :=

0 with probability Pλ
[
Zk = 0

∣∣W0, ρk−1 = 0
]
=

d(µ0
k−1∧µk)
dµ0
k−1

(W0)

∞ otherwise

for µ0
k := Pλ [ρk−1 = 0,W0 ∈ ·].

Proof. Note that for k = 1 this exact structure of the Rost solution ρ1 has already been estab-
lished in [35]. Observing that ρ1 ≤ · · · ≤ ρn are hitting times of inverse barriers, we can establish
that Lλ(ρ1) and consequently any Lλ(ρk), k ≥ 2, do not possess atoms beyond time 0.

Inductively recovering the multi-marginal Rost solutions from Theorem 2.4 becomes feasible
by considering the single atom t0 = 0. Thus, for k ≥ 2, set η = ρk−1 and µ = µk, with ν0 = µk
and α̃0 = µ0

k. Subsequently, invoking Theorem 2.4, we establish the existence of a Rost barrier
R := Rk, ensuring that ρk ≥ ρk−1 is of the desired structure with Zk := Z0. □

2.2. Optimal Stopping Representation of (dSE) and (MMSEP). We will derive the multi
marginal Root optimal stopping problem (1.7) - (1.8) resp. the multi marginal Rost optimal
stopping problem (1.9) - (1.10) as a special case of a delayed Root resp. Rost representation.

For this purpose we consider a starting distribution λ for a Brownian motion and an integrable
delay stopping time η. Recall the space time distribution induced by the delay

α := Lλ((η,Wη)) ∈ P([0,∞)× R).

We denote the Pλ-potential of Wη∧T by

V αT (x) = −Eλ [|Wη∧T − x|]
and the spatial marginal of α by

αX(A) := α([0,∞)×A) = Lλ(Wη)(A) for A ⊆ R measurable.

Let now R ⊆ [0,∞) × R denote a Root (resp. Rost) barrier, then we can define the (delayed)
Root (resp. Rost) stopping time

ρη := inf {t ≥ η : (t,Wt) ∈ R} .
These stopping times induce the following measures

βα := Lλ (Wρη ) as well as βαT := Lλ (Wρη∧T ) for T ≥ 0

and the (stopped) potential
UβαT (x) = −Eλ [|Wρη∧T − x|] .

The extension of the Root optimal stopping problem (1.2)-(1.3) will then be given in the following
theorem.
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Theorem 2.7. Let R denote a Root barrier inducing the potentials Uβα and UβαT . Then for
every (T, x) ∈ [0,∞)× R we have the representation

UβαT (x) = Ex
[
V αT−τ∗(Wτ∗) + (Uβα − UαX )(Wτ∗)11τ∗<T

]
(2.3)

= sup
τ≤T

Ey
[
V αT−τ (Wτ ) + (Uβα − UαX )(Wτ )11τ<T

]
. (2.4)

where the optimizer is given by τ∗ := inf{t ≥ 0 : (T − t,Wt) ∈ R} ∧ T .
Moreover, given the interpolating potentials UβαT (x) for all (T, x) ∈ [0,∞)×R we can recover

the Root barrier R embedding the measure βα in the following way

R =
{
(T, x) :

(
UβαT − V αT

)
(x) = (Uβα − UαX ) (x)

}
.

Analogously we can give an optimal stopping representation for delayed Rost embeddings
extending (1.4)-(1.5) in the following way.

Theorem 2.8. If R̄ denotes a Rost barrier inducing the potentials Uβα and UβαT . Then for every
(T, x) ∈ [0,∞)× R we have the representation

Uβα(x)− UβαT (x) = Ex
[
Uβα(Wσ∗)− V αT−σ∗

(Wσ∗)
]

(2.5)

= sup
σ≤T

Ex
[
Uβα(Wσ)− V αT−σ(Wσ)

]
, (2.6)

where the optimizer is given by σ∗ := inf{t ≥ 0 : (T − t,Wt) ∈ D̄} ∧ T .
Moreover, given the interpolating potentials UβαT (x) for all (T, x) ∈ [0,∞)×R we can recover

the Rost barrier R̄ embedding the measure βα in the following way

R̄ =
{
(T, x) : UβαT (x) = V αT (x)

}
.

First we want to observe that for the choice of η = 0 the single marginal identities can easily
be recovered. Indeed,q βα = µ and βαT = µT as in Section 1q α = δ0 × λ thus αX = λq V αT (y) = −Eλ [|W0 − y|] = Uλ(y) for any T ≥ 0

hence

Ey
[
V αT−τ (Wτ ) + (Uµ − UαX )(Wτ )11τ<T

]
= Ey [Uλ(Wτ ) + (Uµ − Uλ)(Wτ )11τ<T ]

= Ey [Uµ(Wτ )11τ<T + Uλ(Wτ )11τ=T ] .

in the Root case, and

Ex
[
Uβα(Wσ)− V αT−σ(Wσ)

]
= Ex [Uµ(Wσ)− Uλ(Wσ)]

in the Rost case respectively.
Furthermore, the multi-marginal extensions now follow as an corollary as they can be deduced

inductively from the delayed optimal stopping problem (2.3)-(2.4) (resp. (2.5)-(2.6)) in the
following way.

Corollary 2.9. Let R1, R2, . . . , Rn denote a sequence of Root (resp. Rost) barriers inducing the
potentials Uµ1

, . . . , Uµn as well as Uµ1,T , . . . , Uµn,T . Then the optimal stopping representations
(1.7)-(1.8) (resp. (1.9)-(1.10)) hold.

Proof. For the first marginal induced by R1 the optimal stopping representation is simply the
single marginal representation (1.2)-(1.3) (resp. (1.4)-(1.5)) already known resp. recovered above.
Let now k ∈ {2, . . . , n} and consider η = ρk and R = Rk+1. Thenq α = Lλ(ρk,Wρk), thus αX = µk and UαX (y) = Uµk(y),q βα = µk+1, thus Uβα(y) = Uµk+1

(y) and UβαT (y) = Uµk+1,T
(y),
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q V αT (y) = −Eλ [|Wρk∧T − y|] = Uµk,T (y).
Hence we recover the multi marginal Root (resp. Rost) optimal stopping problems (1.7)-(1.8)
(resp. (1.9)-(1.10)). □

3. A Discrete (dSEP) and its Optimal Stopping Representation

We take on the idea of [1] to cast our problem in a discrete setting in order to use arguments
for SSRWs to derive a discrete version of the desired result and then recover the continuous result
through a Donsker type limiting argument. In this section we define a discrete version of (dSEP).
We furthermore define discrete Root and Rost solutions and give an explicit construction.

Let X denote a SSRWs on some probability space (Ω,P), started at some possibly random
initial position. Given x ∈ Z we write Px for the conditional distribution when X0 = x. Hence
we can consider a probability measure λ on Z a “starting” distribution for X by setting Pλ :=∑
x∈Z Pxλ({x}).

3.1. A Discrete (dSEP). Consider a SSRW (Xt)t∈N started in X0 ∼ λ. Given a discrete
measure µ the discrete Skorokhod embedding problem is to find a (discrete) stopping time ρ such
that

Xρ ∼ µ and Xt∧ρ is uniformly integrable. (3.1)

Given a delay stopping time η the delayed discrete Skorokhod embedding problem (or delayed
(dSEP)) is to find a (discrete) stopping time ρ ≥ η such that (3.1) is satisfied.

Just as in the continuous case we are interested in the existence of barrier type solutions to the
discrete (dSEP). These barriers can be defined analogously to the continuous setting as subsets
R ⊆ N× Z satisfying the following respective property.q R will denote a (discrete) Root barrier if for (t, x) ∈ R and s > t we also have (s, x) ∈ R.q R will denote a (discrete) Rost barrier if for (t, x) ∈ R and s < t we also have (s, x) ∈ R.

While in the continuous setting it is known that no external randomization is needed in order
to give a Root solution to the (SEP) and external randomization is needed only in t = 0 for the
Rost solution (and only if the initial measure λ and the terminal measure µ share mass) this is
no longer the case in the discrete setting. We will see that in order to give a discrete Root (resp.
Rost) solution external randomization will be necessary in both cases also beyond time t = 0,
however only at the boundary of the respective barrier.

Example 3.1. Consider the simple example

λ = δ0

µ =
1

3
δ−2 +

1

3
δ0 +

1

3
δ2.

First note that all paths of a SSRW X that reach ±2 at any point in time will be absorbed there.
As all paths originate from (0, 0), the probability of being in site x = 0 at time t = 2 is given
by 1

2 >
1
3 = µ({0}). Consequently, we cannot stop all paths in (2, 0) as this would embed too

much mass in {0}. However, if we allow all paths to proceed from (2, 0), then the probability of
being in site x = 0 at time t = 4 without having hit ±2 before is given by 1

4 <
1
3 = µ({0}). In

other words, this would result in an insufficient mass being embedded in 0. Hence, it becomes
necessary to stop some paths in (2, 0), but not all of them. Precisely, we will need to stop 1

3 of
paths in (2, 0) while allowing the remainder to reach either of {−2, 0, 2} at time t = 4 in order to
correctly embed the distribution µ. Refer to Figure 2 for an illustration on possible realizations
of such paths.
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Figure 2. Possible realizations of paths hitting a Root barrier that
solves the discrete (SEP) given by λ = δ0 and µ = 1

3δ−2 +
1
3δ0 +

1
3δ2.

We will formalize this concept of randomized stopping in the following way.
If ρ denotes a stopping time for the process X then we can for each point (t, x) ∈ N × Z

consider the probability of ρ stopping in site x at time t after η by

rt(x) := Pλ [ρ = t| (ρ ∧ t,Xρ∧t) = (t, x), η ≤ t] . (3.2)

If now R denotes a barrier and ρ its hitting time then in the classic (deterministic) case we
should have rt(x) ∈ {0, 1} and rt(x) = 1 if and only if (t, x) ∈ R, i.e. we stop in the barrier
immediately after arrival. However, if we allow for rt(x) ∈ (0, 1) but agree on the convention
that (t, x) ∈ R when rt(x) > 0, then this can be understood as stopping inside of the barrier only
with probability rt(x). We can now give an equivalent definition of discrete Root (resp. Rost)
barriers on the basis of these stopping probabilities. A field of stopping probabilities denoted as
(rt(x))(t,x)∈N×Z represents aq Root barrier if for all (t, x) ∈ N× Z such that rt(x) > 0 we have rt+s(x) = 1∀s ≥ 1, (3.3)q Rost barrier if for all (t, x) ∈ N× Z such that rt(x) > 0 we have rt−s(x) = 1∀s = 1, . . . , t.

(3.4)

This definition guarantees the respective barrier structure and furthermore assures that random-
ization only happens at the boundary points of the respective barriers. We will also refer to
(rt(x))(t,x)∈N×Z as Root and Rost field of stopping probabilities, respectively.

Let u = (u0, u1, . . . ) denote a sequence of iid uniform random variable, i.e. ui ∼ U [0, 1]. Then
our Root (resp. Rost) stopping times subject to external randomization at the endpoints can be
represented as follows

ρ = ρu = inf {t ≥ η : rt(Xt) > ut} . (3.5)

We could think of at every time point t flipping a coin with success probability rt(Xt). Was
the coin flip successful the process stops, if not it moves onto the next point. Note that if
rt(x) ∈ {0, 1} for all (t, x) ∈ N × Z, then this definition will coincide with the usual non-
randomized definition

ρ = inf {t ≥ η : (t,Xt) ∈ R} . (3.6)

Our stopping time ρ is now a randomized stopping time taking the two arguments ω and
u, thus ρ : Ω × [0, 1]N → N. While this is a slightly unconventional definition of an external
randomization used for its more intuitive explanation in this context, we can also cast this
randomized stopping time into the more conventional framework of using only a single variable
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of external randomization in the following way. For each ω ∈ Ω we consider the sequence
(ζω(t))t∈N of the probability of the process Xρ∧t(ω) being ‘alive’ at time t given via

ζω(0) := (1− r0(X0(ω))) ∨ 11η(ω)=0 and
ζω(t) := ζω(t− 1) · (1− rt(Xt(ω))) ∨ 11t<η(ω).

Note that (ζω(t))t∈N is a decreasing sequence and ξω({0, . . . , t}) := 1 − ζω(t) will define a mea-
sure on N. Given a uniformly distributed random variable u ∼ U [0, 1] independent of X the
(randomized) stopping time

ρ̃(ω, u) := inf{t ≥ 0 : ξω({0, . . . , t}) ≥ u}
now gives a more traditional representation of our randomized Root (resp. Rost) stopping time.

In the following two subsections we will give an explicit construction of the stopping probabilities
(rt(x))(t,x)∈N×Z solving the discrete (dSEP) both in the Root and Rost case. To guarantee uniform

integrability of all solutions constructed we will henceforth always assume µ to denote a finite
sum of atoms. Let x∗ and x∗ denote the smallest and largest site respectively at which we have
an atom. Then in both the Root and the Rost case our solution should be bounded from above
by the (delayed) hitting time

Hx∗,x∗ := inf{t ≥ η : Xt ∈ {x∗, x∗}}.
Since η is a stopping time with finite expectation then so is Hx∗,x∗ , which in turn implies uniform
integrability of (Xt∧ρ)t≥0.

3.1.1. Existence of Discrete Delayed Root Solutions. An explicit Root solution to the discrete
(dSEP) can be established with the help of expected local times. For a SSRW random walk X
the local time at site x up to time t is defined via

Lxt (X) = #{s : 0 ≤ s < t,Xs = x} =

t−1∑
s=0

11Xs=x.

We note the following discrete version of Tanaka’s Formula for local times.

Theorem 3.2. Consider a random walk X defined by Xt = X0 +
∑t
s=1 ξs where ξs are iid

Rademacher random variables. Then for x ∈ Z we can represent the local time Lxt (X) of X until
time t as

Lxt (X) = |Xt − x| − |X0 − x| −
t−1∑
s=0

sgn(Xs − x)ξs+1. (3.7)

We refer to [17] for a proof.
Let

Lxs,t(X) = #{u : s ≤ u < t and Xu = x} =

t−1∑
u=s

11Xu=x = Lxt (X)− Lxs (X)

denote the local time of the process X at site x between time s and t (for s ≤ t).
For our delay stopping time η write αX = Lλ(Xη). Consider now X0 ∼ λ and let ρ ≥ η be a

stopping time for the random walk X such that Xρ ∼ µ. Then due to (3.7) we have the following
representation of the expected local time between η and ρ

Eλ
[
Lxη,ρ(X)

]
= UαX (x)− Uµ(x) =: L(x). (3.8)

Conversely, for any solution ρ ≥ η to (dSEP) Equation (3.8) must be satisfied.

Let (rt(x))(t,x)∈N×Z denote a field of stopping probabilities and ρ its corresponding stopping
time delayed by the stopping time η.
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Then we define
α̃t(x) := Pλ [Xt = x, η ≤ t, ρ ≥ t] ,

the free mass available in site x at time t.
Define α(t, x) := Pλ [Xη = x, η = t], then we can compute α̃t inductively using only informa-

tion up to time t− 1 in the following way

α̃t(x) =
1

2
((1− rt−1(x+ 1))α̃t−1(x+ 1) + (1− rt−1(x− 1))α̃t−1(x− 1)) + α(t, x).

Precisely, paths can only end up in (t, x) from the neighboring points (t−1, x+1) and (t−1, x+1).
They will with probability 1− rt−1(x+1) resp. 1− rt−1(x−1) leave the respective site and then
with probability 1

2 end up in (t, x). Moreover, we only consider mass after the stopping time η,
this is represented by α(t, x), the probability of particles appearing in site x at time t. Note that
at time 0 we thus only have α̃0(x) = α(0, x).

With the help of the quantities α̃t(x) the expected number of visits in site x up until time t
of the process X can then be written as

lxt :=

t−1∑
s=0

(1− rs(x))α̃s(x). (3.9)

In particular we will have lx0 = 0 for all x ∈ Z.
We recall L(x) := UαX (x)− Uµ(x) and define

L̃t(x) := L(x)− lxt ,

the ‘missing local time’ after time t. Note that L̃t(x) (resp. lxt ) can be computed only using
information up to time t− 1.

We are now equipped to give a precise construction of a Root solution to the discrete (dSEP).

Theorem 3.3. Consider a field of stopping probabilities (rt(x))(t,x)∈N×Z inductively defined via
the formula

rt(x) := 1− L(x)− lt(x)

α̃t(x)
∧ 1 = 1−

(
L̃t ∧ α̃t

)
(x)

α̃t(x)
when α̃t(x) > 0

and chosen to comply with (3.3) otherwise.
Then this field represents a Root field of stopping probabilities and the associated stopping time

ρ = inf {t ≥ η : rt(Xt) > ut} .
will be a Root solution to the discrete (dSEP).

Proof. Note the followingq As both L̃t and α̃t only use information that is either given or acquired up to time t− 1,
it is clear that rt can be computed inductively to give a stopping time.q When α̃t(x) = 0 the point (t, x) cannot be reached by the stopped random walk after
time η. The specific value of rt(x) is hence irrelevant for all the respective quantities and
can be chosen to comply with the definition of a Root field of stopping probabilities.q rt(x) = 1 ⇔ lxt = L(x). In other words, we must have already accrued enough local time
at site x. Moreover we will then have lxt+s = lxt and rt+s(x) = 1 for all s ≥ 0, hence the
Root structure of our barrier is guaranteed.q rt(x) = 0 ⇔ L̃t(x) = L(x)− lxt ≥ α̃t(x). So no mass will be stopped in (t, x) since we still
need to accrue more local time and adding all available mass to lxt will make us remain
in our local time budget, i.e. lxt+1 = lxt + α̃t(x) ≤ L(x).
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q rt(x) ∈ (0, 1) ⇔ 0 <
L(x)−lxt
α̃t(x)

< 1. As letting all mass run would add too much to our ex-

pected local time only a fraction should be added and we have lxt+1 = lxt +
L(x)−lxt
α̃t(x)

α̃t(x) =

L(x). This will imply rt+s = 1 for all s ≥ 1 again showing that we will recover the desired
Root barrier structure.

Thus for each time point t this construction will reveal a new layer of stopping probabilities
(rt(x))x∈Z which will be of Root structure. Let ρ∞ denote the stopping time corresponding to
the field of stopping probabilities (rt(x))(t,x)∈N×Z constructed as above. It remains to show that
Lλ(Xρ∞) = µ. As lxt is increasing and bounded from above by L(x) the limit lx∞ := limt→∞ lxt
exists and equals the expected local time of Xρ∞ after the stopping time η, Eλ

[
Lxη,ρ∞(X)

]
= lt∞.

Let Uµ∞ denote the potential of Lλ (Xρ∞), then due to Tanaka’s formula we have

Uµ∞(x) = Uαx − lt∞,

hence our stopping time will embed the right measure if and only if lt∞ = L(x). Consider the set

I := {x ∈ Z : lx∞ < L(x)} = {x ∈ Z : Uµ∞(x) > Uµ(x)}.
To conclude the proof of the theorem we must show that I is empty. A first step is to show that
for every x ∈ I we have

Pλ [Xρ∞ = x] = 0. (3.10)
Note that this is equivalent to α̃t(x)∧ rt(x) = 0 for all t ∈ N. However, we cannot have α̃(x) = 0
for all t ∈ N as this would imply that site x is never reached by the process X with positive
probability after time η, furthermore implying L(x) = 0, which is a contradiction. Thus there
must exist at least one T ∈ N such that α̃T (x) > 0. Assume now that also rT (x) > 0. Then
lx∞ ≥ lxT+1 = lxT +

(
L(x)−lxT
α̃T (x)

)
α̃T (x) = L(x) which is, again, a contradiction, allowing us to

conclude (3.10).
Now we proceed to show that I must be empty. Consider a maximal interval J ⊆ I, i.e. either

J = {. . . , x+ − 1, x+} and x+ + 1 ̸∈ I, J = {x−, x− + 1, . . . } and x− − 1 ̸∈ I or J = {x−, x− +
1, . . . , x+ − 1, x+} and both x− − 1, x+ + 1 ̸∈ I. Then we must have Uµ∞(x− − 1) = Uµ(x− − 1)
resp. Uµ∞(x++1) = Uµ(x++1). Note that Uµ∞ is bounded from above by the concave function
UαX and bounded from below by the concave function Uµ. Hence we cannot have that Uµ∞ |J is
a linear function and there must exists x ∈ J such that

Uµ∞(x− 1)− Uµ∞(x) < Uµ∞(x)− Uµ∞(x+ 1).

However, this is equivalent to

Pλ [Xρ∞ = x] = −1

2
(Uµ∞(x− 1) + Uµ∞(x+ 1)) + Uµ∞(x) > 0

which contradicts Equation (3.10). Hence J = ∅, thus also I = ∅ and our claim is proven. □

3.1.2. Existence of Discrete Delayed Rost Solutions. Given a delayed stopping time ρ correspond-
ing to a field of stopping probabilities (rt(x))(t,x)∈N×Z we consider the quantity

µ̃t(x) := Pλ [Xρ = x, ρ ≤ t] ,

the ‘mass embedded until time t’. Then

µ̃t(x) =

t∑
s=0

α̃s(x)rs(x)

for α̃t as defined in the previous section. Furthermore consider

νt(x) := µ ({x})− µ̃t−1(x),
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the ‘mass not yet embedded’ and note that it can be computed inductively using information
only up to time t− 1. We can then also write

µ̃t(x) = µ ({x})− νt(x) + α̃t(x)rt(x).

Note that if the field of stopping probabilities embeds the measure µ, then

lim
t→∞

µ̃t(x) = µ ({x}) resp. lim
t→∞

νt(x) = 0.

With the help of these quantities we can give an explicit construction of Rost solution to the
discrete (dSEP).

Theorem 3.4. Consider a field of stopping probabilities (rt(x))(t,x)∈N×Z inductively defined via
the formula

rt(x) =
νt(x)

α̃t(x)
∧ 1 =

(α̃t ∧ νt) (x)
α̃t (x)

when α̃t(x) > 0

and chosen to comply with (3.3) otherwise.
Then this field represents a Rost field of stopping probabilities and the associated stopping time

ρ = inf {t ≥ η : rt(Xt) > ut} .
will be a Rost solution to the discrete (dSEP).

Proof. As both νt and α̃t only use information that is either given or acquired up to time t− 1,
it is clear that rt can be computed iteratively through time, thus in each time step t we identify
the t-layer rt(x)x∈Z of the probability field. Let us justify that (rt(x))(t,x)∈N×Z defined this way
both embeds the right measure µ and is of Rost structure.

Firstly, if µ({x}) = 0 then rt(x) = 0 for all t ∈ N, thus consider only those x such that
µ({x}) > 0. Then consider the following cases.
t = 0 : Only consider those x such that α̃0(x) = α(0, x) > 0 as otherwise the point x cannot be

reached by the process X at time 0 after time η.q If α̃0(x) ≤ µ({x}), then all mass available in (0, x) should be stopped, hence r0(x) =
1 and µ̃0({x}) = α̃0(x) ≤ µ({x}).q If α̃0(x) > µ({x}), then some mass needs to be stopped in (0, x), precisely r0(x) =
µ({x})
α̃t(x)

as then we have µ̃0({x}) = µ({x}).
t > 0 : Only consider those x such that α̃t(x) > 0 as otherwise the point x cannot be reached

by the process X at time t after time η.q If νt(x) = 0 then all necessary mass has already been embedded before time t, hence
rt(x) = 0.q If 0 < α̃t(x) ≤ νt(x) then the available mass in site x at time t does not exceed the
mass still needed at site x, hence rt(x) = 1 as all mass can be added.q If 0 < νt(x) < α̃t(x) then we have mass missing in site x but the available mass at
time t exceeds the necessary mass, hence we should only add the fraction rt(x) =
νt(x)
α̃t(x)

as then we have µ̃t({x}) = µ({x})− νt(x) + α̃t(x)
νt(x)
α̃t(x)

= µ({x}).
It is crucial to note that the quantity νt(x) is decreasing and remains at 0 once it has reached
there, hence clearly the field of stopping probabilities (rt(x))(t,x)∈N×Z defined as above is of Rost
structure.

We are left to formally show that the stopping time

ρ∞ := inf {t ≥ η : rt(Xt) > ut}
embeds the right measure into the SSRW, i.e. Pλ[Xρ∞ = x] = µ({x}) for all x ∈ Z.
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We consider the measure

µ∞({x}) := Pλ[Xρ∞ = x] = lim
t→∞

µ̃t(x) =

∞∑
s=0

α̃s(x)ps(x).

Fist assume µ∞({x}) > µ({x}). As this would be equivalent to limt→∞ νt(x) < 0 there would
need to exist a first T ∈ N such that νT (x) < 0. However this contradicts the construction of
rt(x) as described above.
Hence we must have µ∞({x}) ≤ µ({x}) for all x ∈ Z.

Consider the set I := {x ∈ Z : µ∞({x}) < µ({x})}. If we assume that I is not empty then

0 ≤
∑
x∈Z

µ∞({x}) <
∑
x∈Z

µ({x}) = 1.

Note that µ∞({x}) = limt→∞ µ̃t(x) < µ({x}) is equivalent to νt(x) > 0 for every t ∈ N, which
in turn implies rt(x) = 1 for all t ∈ N by the construction above. In particular, this implies
ρ∞ ≤ Hη

x := inf{t ≥ η : Xt = x} which is a finite stopping time, hence also Pλ[ρ∞ < ∞] = 1.
So Xρ is a well defined random variable and we must have

∑
x∈Z µ∞({x}) = 1 which is a

contradiction. This implies I = ∅ and µ∞({x}) = µ({x}), hence our constructed field of stopping
probabilities and consequently the associated stopping time ρ∞ embeds the right measure. □

3.2. A Discrete Optimal Stopping Representation. In this section we will consider a sec-
ond simple symmetric second random walk Y on the probability space (Ω,P), mutually inde-
pendent of the SSRW X introduced in previous section. For given x, y ∈ Z we recall Px as the
conditional distribution given X0 = x and analogously define Py as the conditional distribution
given Y0 = y. Similarly, conditioning on both events simultaneously is denoted by Pxy . We recall
the starting distribution λ for the process X and introduce a corresponding starting distribution
ν for Y analogously, leading to Pν as well as Pλν .

From this point onward we envision the process X evolving “rightwards” from some lattice
point (0, x) (where possibly x = X0 ∼ λ) and the process Y evolving “leftwards” from the lattice
point (T, y) at time zero. In this context a (stopping) time τ for the “backward” process Y will
be measured as T − τ for the “forward” process X.

Let us define the discrete time equivalents of the objects introduced in Section 2. We consider
a discrete delay stopping time η ∈ N = {0, 1, . . . } for the process X. Then analogous to the
continuous case we define the space time measure

α := Lλ((η,Xη)) ∈ P(N× Z),

its spatial marginal

αX(A) := α(N×A) = Lλ(Xη)(A) for A ⊆ Z measurable

and the Pλ-potential of Xη∧T by

V αT (y) := −Eλ [|Xη∧T − y|] .
For a Root (resp. Rost) Barrier R ⊆ Z × Z consider the discrete, delayed Root (resp. Rost)
stopping time

ρη := inf {t ≥ η : (t,Xt) ∈ R} .
Similarly for a Root (resp. Rost) field of stopping probabilities (rt(x))(t,x)∈N×Z and a vector
U = (u0, u1, . . . ) of iid U [0, 1]-distributed random variables we consider the discrete, delayed
Root (resp. Rost) stopping time

ρη := inf {t ≥ η : rt(Xt) > ut} .
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We will throughout this paper assume that (Xρη∧t)t∈N is uniformly integrable. The stopping
time ρη induces the measures

βα := Lλ
(
Xρη

)
as well as βαT := Lλ

(
Xρη∧T

)
for T ∈ N

as well as the (stopped) potential

UβαT (y) = −Eλ
[∣∣Xρη∧T − y

∣∣] .
Moreover, given a field (rt(x))(t,x)∈N×Z of Root (resp. Rost) stopping probabilities we denote by
Rr the set of all fields of Root (resp. Rost) stopping probabilities that agree with r everywhere
except on the boundary, precisely

Rr :=

{
(st(x))(t,x)∈N×Z :

(st(x))(t,x)∈N×Z is a Root (resp. Rost) field of stopping
probabilities s.t. st(x) = rt(x) given rt(x) ∈ {0, 1}.

}
.

We will sometimes use the shorthand notation s ∈ Rr for s = (st(x))(t,x)∈N×Z when the context
makes it obvious. Furthermore, we define the set of all associated stopping times in the following
way

Tr :=
{
inf {t ≥ 0 : sT−t(Yt) > vt} :

(st(x))(t,x)∈N×Z ∈ Rr and V = (v0, . . . , vT ) denotes
a vector of iid U [0, 1]-distributed random variables.

}
.

Then we can then give the following discrete time analogue of (2.3)-(2.4),

Theorem 3.5. Let (rt(x))(t,x)∈N×Z denote a Root field of stopping probabilities, then we have
the representation

UβαT (y) = Ey
[
V αT−τ∗(Yτ∗) + (Uβα − UαX )(Yτ∗)11τ∗<T

]
(3.11)

= sup
τ≤T

Ey
[
V αT−τ (Yτ ) + (Uβα − UαX )(Yτ )11τ<T

]
, (3.12)

where all optimizers will be of the form τ∗ := τ ∧ T for τ ∈ Tr.
When ρη corresponds to a discrete delayed Rost stopping the discrete version of (2.5)-(2.6)

reads the following.

Theorem 3.6. Let (rt(x))(t,x)∈N×Z denote a Rost field of stopping probabilities, then we have
the representation

Uβα(x)− UβαT (x) = Ex
[
Uβα(Xσ∗)− V αT−σ∗

(Xσ∗)
]

(3.13)

= sup
σ≤T

Ex
[
Uβα(Xσ)− V αT−σ(Xσ)

]
, (3.14)

where all optimizers will be of the form σ∗ := σ ∧ T for σ ∈ Tr.
It will become clear in Section 3.4 why the processes X and Y appear differently in the Root

and Rost optimal stopping problem.

3.2.1. The Core Argument. We present the core argument repeatedly used in [1] and crucial for
further results, an equality in expectation for differences of independent random walks.

Exy [|XT−s − Ys|] = Exy
[
|XT−(s−1) − Ys−1|

]
. (3.15)

The following two remarks break down the key ingredients needed for proving the core argument.

Remark 3.7. Let Z be a Rademacher random variable. Then for any a ∈ Z we have

E [|a+ Z|] = |a|+ 11a=0.
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Figure 3. Illustrating the appearance of the indicator function in the core argu-
ment.

Remark 3.8. For a sigma algebra H let A be a H-measurable random variable taking values in
Z and let Z be a Rademacher random variable independent of H. Then by Remark 3.7 and the
Independence Lemma we can conclude

E
[
|A+ Z|

∣∣H] = |A|+ 11A=0.

We can now prove the core argument (3.15). On the one hand we have

Exy [|XT−s − Ys|] = Exy
[
Exy
[
|XT−s − Ys|

∣∣XT−s, Ys−1

]]
= Exy

[
Exy
[
|(XT−s − Ys−1)− (Ys − Ys−1)|

∣∣XT−s, Ys−1

]]
= Exy

[
|XT−s − Ys−1|+ 1XT−s=Ys−1

]
where we applied Remark 3.8 for the sigma algebra H := σ(XT−s, Ys−1), the G-measurable
random variables A := XT−s−Ys−1 and the Rademacher random variable Z := Ys−Ys−1 which
is independent of H. Analogously, we can show

Exy
[
|XT−(s−1) − Ys−1|

]
= Exy

[
Exy
[
|XT−s+1 − Ys−1|

∣∣XT−s, Ys−1

]]
= Exy

[
Exy
[
|(XT−s − Ys−1) + (XT−s+1 −XT−s)|

∣∣XT−s, Ys−1

]]
= Exy

[
|XT−s − Ys−1|+ 1XT−s=Ys−1

]
,

so altogether we have (3.15). See also Figure 3 for an illustration of the appearance of the
indicator function. In particular, Equation (3.15) implies an independence of s, more precisely

Exy [|XT−s − Ys|] = Exy [|XT − Y0|] = Exy [|X0 − YT |] .
Note that we can replace s by a Y stopping time τ < T to receive

Exy [|XT−τ − Yτ |] = Exy [|XT − Y0|] .
Analogously, for an X stopping time σ < T we have

Exy [|Xσ − YT−σ|] = Exy [|X0 − YT |] ,
collectively this leads to the identity

Exy [|XT−τ − Yτ |] = Exy [|Xσ − YT−σ|] (3.16)

which will serve as a key identity for subsequent arguments.
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3.2.2. The Interpolation Function. In [1] it was crucial to define an interpolating function F (s)
which connects between the LHS of Equation (1.2) and the RHS of Equations (1.2) and (1.3).
With only slight modification of the proofs in [1] we can define a more general interpolation
function and state the following lemma.

Lemma 3.9. Let λ be a starting measure for the process X and ν be a starting measure for
the process Y . For an X stopping time σ, a Y stopping time τ and any T ≥ 0 we consider the
following interpolation function

Fλ,νσ,τ (s) := Eλν
[∣∣Xσ∧(T−τ∧s) − Yτ∧s

∣∣] . (3.17)

Then we have the following:
(i) The function Fλ,νσ,τ (s) is increasing in s, more precisely

Fλ,νσ,τ (s) = Eλν
[∣∣Xσ∧(T−τ∧s) − Yτ∧(s−1)

∣∣+ 11Xσ∧(T−s)=Ys−1,τ≥s
]

(3.18)

≥ Eλν
[∣∣Xσ∧(T−τ∧s) − Yτ∧(s−1)

∣∣+ 11Xσ∧(T−s)=Ys−1,τ≥s,σ>T−s
]
= Fλ,νσ,τ (s− 1). (3.19)

(ii) If σ is a (possibly randomized, possibly delayed) forward Root stopping time for the process
X and τ is a (possibly randomized) backwards Root stopping time for the process Y then
Fλ,νσ,τ (s) is constant in s.

Proof. The essence of the proof of (i) is an appropriate application of the Core Argument pre-
sented above, and (i) follows in complete analogy to the proofs of [1, Lemma 3.3, Lemma 3.4].
For (ii) we have to make some modifications.

Let (rt(x))(t,x)∈N×Z denote a Root field of stopping probabilities, then for (st(x))(t,x)∈N×Z ∈
Rr consider the stopping times

ρη := inf {t ≥ η : rt(Xt) > ut} , and
τ∗ := inf {t ≥ 0 : sT−t(Yt) > vt} ∧ T.

In order to show equality in (i) for these stopping times, it suffices to show equality of the
indicator functions appearing in (3.18) and (3.19), equivalently{

ρη > T − s} ⊇ {Xρη∧(T−s) = Ys−1, τ
∗ ≥ s

}
up to nullsets. Indeed, on {τ∗ ≥ s} we deduce τ∗ > s−1. Hence we must have sT−(s−1) (Ys−1) <
1 as otherwise τ∗ = s− 1 almost surely. By the definition of the Root stopping probabilities we
thus have su (Ys−1) = ru (Ys−1) = 0 for all u < T − (s− 1). Moreover, on the set {Xρη∧(T−s) =
Ys−1} we have ru

(
Xρη∧(T−s)

)
= 0 for all u < T − (s − 1). In particular, since ρη ∧ (T − s) <

T −(s−1), on the set {Xρη∧(T−s) = Ys−1} we have rρη∧(T−s)
(
Xρη∧(T−s)

)
= 0. Hence ρη > T −s

needs to be satisfied as otherwise the Root properties of the stopping probabilities would be
violated. See Figure 4 for an illustration of these arguments. □

3.3. The Root Optimal Stopping Representation. Let us introduce some frequently used
notations. For the choice of ν = δy we simplify the notation of the interpolation function between
the forward and backward Root stopping times to

Fα(s) := Fλ,yρη,τ∗(s).

Here α denotes the space-time law induced by the delay stopping time η and βα is the corre-
sponding delayed Root law as defined in Section 3.2. For a given stopping time τ consider the
function

uατ (T, y) := Ey
[
V αT−τ (Yτ ) + (Uβα − UαX )(Yτ )11τ<T

]
. (3.20)

We also introduce
uα(T, y) := uατ∗(T, y)

20



x
Xη Xρη

Xρη∧(T−s)

y

Yτ∗

Ys−1

T -τ ∗ TT -s
T -(s-1)

(a) Here τ∗ ≥ s and Xρη∧(T−s) = Ys−1. We
see that in this case ρη∧(T−s) = T−s must
hold as otherwise Yτ∗ would have stopped
earlier.
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(b) Here ρη ∧ (T − s) = ρη. We see how
Xρη∧(T−s) = Ys−1 implies that we must
have τ∗ ≤ s − 1 due to the Root barrier
structure.

Figure 4. An illustration of some different cases that appear when investigating
equality of the interpolation function for forward and backward Root stopping times.

for a backward Root stopping time τ∗ = inf {t ≥ 0 : sT−t(Yt) > vt}∧T . Considering this refined
notation Equations (3.11)-(3.12) can be written in the following way

UβαT (y) = uα(T, y) (3.21)
= sup
τ≤T

uατ (T, y). (3.22)

Furthermore, it will be of importance that the function uατ has the following alternative repre-
sentation

uατ (T, y) = Ey
[
V αT−τ (Yτ ) + (Uβα − UαX )(Yτ )11τ<T

]
(3.23)

= −Eλy
[∣∣Xη∧(T−τ) − Yτ

∣∣+ (∣∣Xρη − Yτ
∣∣− |Xη − Yτ |

)
11τ<T

]
. (3.24)

To further simplify and rewrite these expressions we observe the following lemma.

Lemma 3.10. Let η and θ be delay stopping times for the processes X and Y respectively.
By (rt(x))(t,x)∈N×Z we denote a Root field of stopping probabilities. For mutually independent
U [0, 1]-distributed random variables u0, u1, . . . , v0, v1, . . . we consider the forward Root stopping
time ρ := inf {t ≥ η : rt(Xt) > ut} and for s ∈ Rr the backward Root stopping time τ :=
inf {t ≥ 0 : sT−t(Yt) > vt} ∈ Tr.

Furthermore we introduce the filtration Gt := σ ((Xs)0≤s≤t, (Ys)0≤s≤T , u1, . . . , ut, v1, . . . , vT ).
Then for all A ∈ H := Gρ∧(η∨(T−τ)) with {τ < T} ⊆ A we have

Eλν [|Xρ − Yτ | 11A] = Eλν
[∣∣Xρ∧(η∨(T−τ)) − Yτ

∣∣ 11A] . (3.25)

Proof. As X is independent of Y , we have that X is a (Gt) martingale and furthermore η, ρ as
well as σ̃ := η ∨ (T − τ) are (Gt) stopping times. Hence, by the optional sampling theorem we
can conclude that for every A ∈ H = Gρ∧σ̃ the following holds

Eλν [Xρ11A] = Eλν [Xρ∧σ̃11A] . (3.26)

By definition of the Root stopping probabilities and the definition of τ , on the set {τ < T} we
have sT−τ (Yτ ) > 0. Furthermore sT−τ+u (Yτ ) = rT−τ+u (Yτ ) = 1 for all u ≥ 1. Moreover, on
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the set {ρ > σ̃,Xσ̃ < Yτ} we must have that Xρ ≤ Yτ as otherwise the Root property of the
stopping probabilities would be violated. We can argue analogously that on {ρ > σ̃,Xσ̃ ≥ Yτ}
we must have Xρ ≥ Yτ . Then

Eλν [|Xρ − Yτ | 11A]
= Eλν [|Xρ − Yτ | 11A,ρ≤σ̃ + |Xρ − Yτ | 11A,ρ>σ̃]
= Eλν [|Xρ − Yτ | 11A,ρ≤σ̃ + |Xρ − Yτ | 11A,ρ>σ̃,Xσ̃<Yτ + |Xρ − Yτ | 11A,ρ>σ̃,Xσ̃≥Yτ ]
= Eλν [|Xρ − Yτ | 11A,ρ≤σ̃ − (Xρ − Yτ ) 11A,ρ>σ̃,Xσ̃<Yτ + (Xρ − Yτ ) 11A,ρ>σ̃,Xσ̃≥Yτ ]

= Eλν [|Xρ − Yτ | 11A,ρ≤σ̃ − (Xρ∧σ̃ − Yτ ) 11A,ρ>σ̃,Xσ̃<Yτ + (Xρ∧σ̃ − Yτ ) 11A,ρ>σ̃,Xσ̃≥Yτ ]

= Eλν [|Xρ∧σ̃ − Yτ | 11A] .
where we use Equation (3.26) and the fact that {ρ > σ̃,Xσ̃ < Yτ}, {ρ > σ̃,Xσ̃ ≥ Yτ} ∈ H. □

Choosing ν = δy, ρ = ρη and θ = 0 in the lemma above enables us to prove the following.

Lemma 3.11. The RHS of Equation (3.11) equals the terminal value of the interpolation func-
tion, that is

−uα(T, y) = Fα(T ). (3.27)

Proof. Recall the representation (3.24) and consider the following decomposition

−uα(T, y) =Eλy
[∣∣Xη∧(T−τ∗) − Yτ∗

∣∣+ (∣∣Xρη − Yτ∗
∣∣− |Xη − Yτ∗ |

)
11τ∗<T

]
=Eλy

[∣∣Xη∧(T−τ∗) − Yτ∗
∣∣ 11η>T +

(∣∣Xρη − Yτ∗
∣∣− |Xη − Yτ∗ |

)
11τ∗<T,η>T

]
(3.28)

+Eλy
[∣∣Xη∧(T−τ∗) − Yτ∗

∣∣ 11η≤T +
(∣∣Xρη − Yτ∗

∣∣− |Xη − Yτ∗ |
)
11τ∗<T,η≤T

]
. (3.29)

We will investigate the two lines (3.28) and (3.29) separately.
Let us first consider (3.28). As ρη ≥ η, we observe that on the event {η > T} we have

η ∧ (T − τ∗) = T − τ∗ = ρη ∧ (T − τ∗), hence for the first term of (3.28) we can conclude

Eλy
[∣∣Xη∧(T−τ∗) − Yτ∗

∣∣ 11η>T ] = Eλy
[∣∣Xρη∧(T−τ∗) − Yτ∗

∣∣ 11η>T ] . (3.30)

Furthermore, note the following:q On the event {τ∗ < T} the stopping time τ∗ equals a backward Root stopping time.q On the event {η > T} we have η ∨ (T − τ∗) = η = ρη ∧ (η ∨ (T − τ∗)).q We have {τ∗ < T, η > T} ∈ H (for H defined in Lemma 3.10).
Therefore we can apply Lemma 3.10 to the second term of (3.28) to arrive at

Eλy
[(∣∣Xρη − Yτ∗

∣∣− |Xη − Yτ∗ |
)
11τ∗<T,η>T

]
=Eλy

[(∣∣Xρη − Yτ∗
∣∣− ∣∣Xρη∧(η∨(T−τ∗)) − Yτ∗

∣∣) 11τ∗<T,η>T

]
= 0. (3.31)

To summarize, line (3.28) reduces to

Eλy
[∣∣Xρη∧(T−τ∗) − Yτ∗

∣∣ 11η>T ] . (3.32)

Next we consider (3.29). Let us start by examining the first term of (3.29) which can be decom-
posed further into

Eλy
[∣∣Xη∧(T−τ) − Yτ∗

∣∣ 11η≤T ]
=Eλy

[∣∣Xη∧(T−τ) − Yτ∗
∣∣ 11η≤T,T−η≤τ∗

]
+ Eλy

[∣∣Xη∧(T−τ) − Yτ∗
∣∣ 11η≤T,τ∗<T−η

]
=Eλy

[∣∣Xρη∧(T−τ) − Yτ∗
∣∣ 11η≤T,T−η≤τ∗

]
+ Eλy [|Xη − Yτ∗ | 11η≤T,τ∗<T−η] . (3.33)
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Similarly, the second term of (3.29) decomposes into

Eλy
[(∣∣Xρη − Yτ∗

∣∣− |Xη − Yτ∗ |
)
11τ∗<T,η≤T

]
=Eλy

[(∣∣Xρη − Yτ∗
∣∣− |Xη − Yτ∗ |

)
11τ∗<T,η≤T,T−η≤τ∗

]
(3.34)

+Eλy
[(∣∣Xρη − Yτ∗

∣∣− |Xη − Yτ∗ |
)
11η≤T,τ∗<T−η

]
. (3.35)

Importantly, the second term of (3.33) cancels out the second term of (3.35).
We will proceed to conclude that the terms depicted in (3.34) will equate to 0. For this

purpose observe that:q On the event {τ∗ < T} the stopping time τ∗ equals a backward Root stopping time.q On the event {T − η ≤ τ∗} we have η ∨ (T − τ∗) = η = ρη ∧ (η ∨ (T − τ∗)).q We have {τ∗ < T, η ≤ T, T − η ≤ τ∗} ∈ H.
Hence, we can apply Lemma 3.10 to deduce

Eλy
[(∣∣Xρη − Yτ∗

∣∣− |Xη − Yτ∗ |
)
11τ∗<T,η≤T,T−η≤τ∗

]
=Eλy

[(∣∣Xρη − Yτ∗
∣∣− ∣∣Xρη∧(η∨(T−τ∗)) − Yτ∗

∣∣) 11τ∗<T,η≤T,T−η≤τ∗
]

=0. (3.36)

The final term left to consideration is the first term in (3.35). For this purpose, note thatq on the event {τ∗ < T − η} we have η ∨ (T − τ∗) = (T − τ∗), andq {η ≤ T, τ∗ < T − η} ∈ H.
Hence, application of Lemma 3.10 to the first term of (3.35) yields

Eλy
[∣∣Xρη − Yτ∗

∣∣ 11η≤T,τ∗<T−η
]
= Eλy

[∣∣Xρη∧(T−τ∗) − Yτ∗
∣∣ 11η≤T,τ∗<T−η

]
. (3.37)

To summarize, (3.29) reduces to

Eλy
[∣∣Xρη∧(T−τ∗) − Yτ∗

∣∣ 11η≤T ] . (3.38)

Combining the observations (3.32) and (3.38) the desired identity now becomes easy to see:

−uα(T, y) = Eλy
[∣∣Xρη∧(T−τ∗) − Yτ∗

∣∣] = Fα(T ).

□

We are ready to prove Theorem 3.5, the optimal stopping representation of Root solutions to
(dSEP).

Proof of Theorem 3.5. We begin by proving (3.11) through consideration of the interpolation
function

Fα(s) = Fλ,yρη,τ∗(s) = Eλy
[∣∣Xρη∧(T−τ∗∧s) − Yτ∗∧s

∣∣] .
Then −Fα(0) = Eλy

[∣∣Xρη∧T − Y0
∣∣] = UβαT (y) which equals the LHS of (3.11), equivalently of

(3.21). It was the purpose of Lemma 3.11 to show that −Fα(T ) equals the RHS of (3.11),
equivalently of (3.21). The equality in (3.11) now follows by Lemma 3.9 (ii), which states that
the interpolation function Fα(T ) is constant given our consideration of Root stopping times.

Let us proceed to establish the optimal stopping problem (3.12). We keep the Root stopping
time ρη but allow for an arbitrary Y stopping time τ ≤ T . It still remains true that Fλ,yρη,τ (0) =

−Uβα(y), and due to Lemma 3.9 (i) we have the inequality −Uβα(y) ≤ Fλ,yρη,τ (T ). Therefore, we
are left to show that

Fλ,yρη,τ (T ) ≤ uατ (T, y) = −Ey
[
V αT−τ (Yτ ) + (Uβα − UαX )(Yτ )11τ<T

]
,

or equivalently

Eλy
[∣∣Xρη∧(T−τ) − Yτ

∣∣] ≤ Eλy
[∣∣Xη∧(T−τ) − Yτ

∣∣+ (∣∣Xρη − Yτ
∣∣− |Xη − Yτ |

)
11τ<T

]
. (3.39)
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We will consider a decomposition into the events {η > T − τ} and {η ≤ T − τ}.
Due to Jensen’s inequality and optional sampling we have the following

Eλy
[(∣∣Xρη − Yτ

∣∣− |Xη − Yτ |
)
11τ<T,η>T−τ

]
≥ 0

and can conclude

Eλy
[∣∣Xρη∧(T−τ) − Yτ

∣∣ 11η>T−τ
]

= Eλy
[∣∣Xη∧(T−τ) − Yτ

∣∣ 11η>T−τ
]

≤ Eλy
[∣∣Xη∧(T−τ) − Yτ

∣∣ 11η>T−τ +
(∣∣Xρη − Yτ

∣∣− |Xη − Yτ |
)
11τ<T,η>T−τ

]
.

On the other hand we have

Eλy
[∣∣Xρη∧(T−τ) − Yτ

∣∣ 11η≤T−τ
]

= Eλy
[∣∣Xρη∧(T−τ) − Yτ

∣∣ 11η≤T−τ,τ<T + |X0 − Yτ | 11η≤T−τ,τ=T
]

≤ Eλy
[∣∣Xρη − Yτ

∣∣ 11η≤T−τ,τ<T + |Xη − Yτ | 11η≤T−τ,τ=T
]

= Eλy
[
|Xη − Yτ | 11η≤T−τ +

(∣∣Xρη − Yτ
∣∣− |Xη − Yτ |

)
11η≤T−τ,τ<T

]
= Eλy

[∣∣Xη∧(T−τ) − Yτ
∣∣ 11η≤T−τ +

(∣∣Xρη − Yτ
∣∣− |Xη − Yτ |

)
11η≤T−τ,τ<T

]
where the inequality again follows by Jensen’s inequality and optional sampling. Together this
proves (3.39). Thus we have shown that

Uβα(y) ≥ uατ (T, y)

which concludes the proof of (3.12). □

3.4. The Root-Rost-Symmetry. To establish the optimal stopping representation of Rost
solution to (dSEP) we could simply repeat the appropriate analogues of the arguments in the
section above. Instead however we will derive the Rost representation from the Root one by
observing a symmetry between the two similar to the approach in [1].

We will first give a brief summary of the results in [1] which were stated in non-randomized
terms.

Recall the definition of a discrete Rost barrier R̄ ⊆ N× Z, that isq If (t,m) ∈ R̄ then for all s < t also (s,m) ∈ R̄.
Now observe that for any T ∈ N we can transform this Rost barrier into a Root Barrier RT in
the following way

RT := {(T − t, x) : (t, x) ∈ R} . (3.40)

To more conveniently apply results from the sections above we will reverse the roles of X and Y
for Rost stopping times.

Consider a non-delayed (forward) Rost stopping time ρ̄ = inf
{
t ≥ 0 : (t, Yt) ∈ R̄

}
. We can

now observe as illustrated in Figure 5 that the (forward) Rost stopping time ρ̄ can be represented
as a backward Root stopping time τ := inf {t ≥ 0 : (T − t, Yt) ∈ RT }, and that the backwards
Rost stopping time σ := inf

{
t ≥ 0 : (T − t,Xt) ∈ R̄

}
can be represented as a (non-delayed,

forward) Root stopping time ρ := ρ0 = inf {t ≥ 0 : (t,Xt) ∈ RT }, to summarize

ρ̄ = inf
{
t ≥ 0 : (t, Yt) ∈ R̄

}
= inf {t ≥ 0 : (T − t, Yt) ∈ RT } = τ

σ = inf
{
t ≥ 0 : (T − t,Xt) ∈ R̄

}
= inf {t ≥ 0 : (t,Xt) ∈ RT } = ρ.

(3.41)

Using this symmetry, in [1] the Rost optimal stopping problem was then derived with the
methods established for the Root optimal stopping problem using the following proposition.
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Figure 5. An illustration of the connection between R̄ and RT , resp. between ρ̄
and τ as well as σ and ρ without delay.

Proposition 3.12 ([1, Proposition 3.7]). For each x, y, T , any Y -stopping time τ such that
Ey[|Yτ |] <∞, and every {0, . . . , T}-valued X-stopping time σ, we have

Ey [|x− Yτ | − |x− Yτ∧T |] ≤ Exy [|Xσ − Yτ | − |Xσ − y|] . (3.42)

Suppose furthermore that
τ = inf{t ∈ N : (T − t, Yt) ∈ R}, (3.43)

for a Root barrier R and that σ = ρRoot ∧ T . Then there is equality in (3.42).

The proof given in [1] relied heavily on the interpolation function Fσ,τ (s) = F x,yσ,τ (s) =

Exy
[∣∣Xσ∧(T−τ∧s) − Yτ∧s

∣∣] in the following way. To see inequality we observe

Ey [|x− Yτ | − |x− Yτ∧T |] ≤ Exy [|Xσ − Yτ |]− Fσ,τ (T )

≤ Exy [|Xσ − Yτ |]− Fσ,τ (0)

= Exy [|Xσ − Yτ | − |Xσ − y|] .
Equality for Root forward and backward stopping times follows from Lemma 3.9 (ii). In the
delayed regimes however, these arguments cannot be repeated verbatim as Lemma 3.9 (ii) does
not hold for delayed backwards Root stopping times.

We will observe an analogous symmetry to (3.41) in the delayed regime and give the appro-
priate generalization of the symmetries (3.41) as well as Proposition 3.12.

A delayed randomized Root-Rost-Symmetry. Let (r̄t(x))(t,x)∈N×Z denote a field of Rost stopping
probabilities. Then for any T ∈ N we can transform these Rost stopping probabilities into a field
(rTt (x))(t,x)∈Z×Z of Root stopping probabilities in the following way

rTt (x) := r̄T−t(x). (3.44)

Note that the definitions of Root and Rost fields of stopping probabilities naturally extend to
(t, x) ∈ Z× Z. Consider a delayed (forward) Rost stopping time

ρ̄θ = inf {t ≥ θ : r̄t(Yt) > vt} .
We can now observe as illustrated in Figure 5 that the (forward) Rost stopping time ρ̄ can be
represented as a delayed backward Root stopping time

τθ := inf
{
t ≥ θ : rTT−t(Yt) > vt

}
,
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(a) An illustration of the connection between R̄ and RT in the delayed regime for θ < T .
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(b) An illustration of the connection between R̄ and RT in the delayed regime for θ ≥ T .

Figure 6

and that the (undelayed) backwards Rost stopping time

σ := inf {t ≥ 0 : r̄T−t(Xt) > ut}
can be represented as a (undelayed, forward) Root stopping time

ρ := ρ0 = inf
{
t ≥ 0 : rTt (Xt) > ut

}
,

in sum

ρ̄θ := inf {t ≥ θ : r̄t(Yt) > vt} = inf
{
t ≥ θ : rTT−t(Yt) > vt

}
=: τθ (3.45)

σ := inf {t ≥ 0 : r̄T−t(Xt) > ut} = inf
{
t ≥ 0 : rTt (Xt) > ut

}
=: ρ. (3.46)

See also Figure 6 for an illustration of these stopping times.
We see that Proposition 3.12 is valid for any stopping times σ and τ , hence also for the

choices σ = ρ0 and τ = τθ. However, in this case is was already observed in Section 3.2.2 that
the interpolation function Fρ0,τθ (s) will in general no longer be constant when τ is subject to a
non-zero delay θ. Thus we will no longer recover an equality in Equation (3.42) for a delayed
backward Root stopping time. Moreover the RHS of Equation (3.42) will in general also not
equal the RHS of Equation (3.13), thus cannot be applied to prove our desired generalization of
the delayed Rost optimal stopping representation.

The following generalization of Proposition 3.12 is needed.
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Proposition 3.13. Let σ ≤ T be a stopping time for X and let τ be a stopping time for Y such
that Eν [|Yτ |]. Then

(i)
Eν [|x− Yτ | − |x− Yτ∧T |] ≤ Exν

[
|Xσ − Yτ | −

∣∣Xσ − Yτ∧(T−σ)
∣∣] . (3.47)

(ii) For any Y -stopping time θ such that θ ≤ τ we have

Eν [|x− Yτ | − |x− Yτ∧T |] ≤ Exν
[
|Xσ − Yτ | −

∣∣Xσ − Yθ∧(T−σ)
∣∣] . (3.48)

(iii) Furthermore, let (rt(x))(t,x)∈Z×Z denotes a field of Root stopping probabilities, consider
(st(x))(t,x)∈Z×Z ∈ Rr and let θ denote a delay stopping time for Y . Then there is equality
in (3.47) and (3.48) when considering the stopping times

σ = inf {t ≥ 0 : rt(Xt) > ut} and
τ = inf {t ≥ θ : sT−t(Yt) > vt} ∧ T.

Proof. As observed in the proof of [1, Proposition 3.7] we can conclude the following with the
help of Jensen’s inequality and optional sampling

Eν [|x− Yτ | − |x− Yτ∧T |] ≤ Exν
[
|Xσ − Yτ | −

∣∣Xσ∧(T−τ∧T ) − Yτ∧T
∣∣] .

It is also a straightforward application of the Core Argument (3.15) together with optional
sampling to obtain

Exν
[∣∣Xσ∧(T−τ∧T ) − Yτ∧T

∣∣] = Exν
[∣∣Xσ − Yτ∧(T−σ)

∣∣]
which concludes the proof of (i).

Note that (ii) easily follows from (i) via Jensen’s inequality and optional sampling by observing
that when θ ≤ τ we clearly also have θ ∧ (T − σ) ≤ τ ∧ (T − σ).

It now remains to show (iii), the equality in the Root case. We will apply Lemma 3.10 for
the choices λ = δx, ρ = σ and η = 0. We will consider a decomposition into the events {τ < T}
and {τ ≥ T}. First note that on {τ < T} we have η ∨ (T − τ) = T − τ , hence by Lemma 3.10
we obtain

Exν [|Xσ − Yτ | 11τ<T ] = Exν
[∣∣Xσ∧(T−τ) − Yτ

∣∣ 11τ<T ] ,
thus

Eν [(|x− Yτ | − |x− Yτ∧T |) 11τ<T ] = 0 = Exν
[(
|Xσ − Yτ | −

∣∣Xσ∧(T−τ) − Yτ
∣∣) 11τ<T ]

= Exν
[(
|Xσ − Yτ | −

∣∣Xσ∧(T−τ∧T ) − Yτ∧T
∣∣) 11τ<T ] .

On the other hand, on {τ ≥ T} we have η ∨ (T − τ) = 0, hence by Lemma 3.10

Exν [|Xσ − Yτ | 11τ≥T ] = Exν [|Xσ∧0 − Yτ | 11τ≥T ] = Exν [|X0 − Yτ | 11τ≥T ] = Eν [|x− Yτ | 11τ≥T ]
which gives

Eν [(|x− Yτ | − |x− Yτ∧T |) 11τ≥T ] = Exν [(|Xσ − Yτ | − |X0 − Yτ∧T |) 11τ≥T ]
= Exν

[(
|Xσ − Yτ | −

∣∣Xσ∧(T−τ∧T ) − Yτ∧T
∣∣) 11τ≥T ] .

Altogether equality in (3.47) follows. Note that η = 0 was essential here in order to gain this
equality.

It now remains to establish equality in (3.48), that is we need to show

Exν
[∣∣Xσ − Yτ∧(T−σ)

∣∣] = Exν
[∣∣Xσ − Yθ∧(T−σ)

∣∣] .
On the one hand we trivially have

Exν
[∣∣Xσ − Yτ∧(T−σ)

∣∣ 11σ=T ] = Exν [|Xσ − Y0| 11σ=T ] = Exν
[∣∣Xσ − Yθ∧(T−σ)

∣∣ 11σ=T ] ,
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whereas

Exν
[∣∣Xσ − Yτ∧(T−σ)

∣∣ 11σ<T ] = Exν
[∣∣Xσ − Yθ∧(T−σ)

∣∣ 11σ<T ]
can be argued verbatim as in Lemma 3.10, switching the roles of the two stopping times therein.

□

Remark 3.14. Note that Proposition 3.12 can easily be recovered from Proposition 3.13 (ii) via
the choices ν = δy and θ = 0.

Equipped with this proposition and the (delayed) Root-Rost symmetries (3.45) and (3.46) we
can now give a proof of Theorem 3.6, the optimal stopping representation of Rost solutions to
(dSEP)

Proof of Theorem 3.6. We want to apply Proposition 3.13. Consider τ = τθ and note that for
the LHS of (3.47) respectively (3.48) with the help of the Root-Rost symmetry (3.45) we have

Eν [|x− Yτ | − |x− Yτ∧T |] = Uβα(x)− UβαT (x).

Furthermore for any X-stopping time σ we have

Exν
[
|Xσ − Yτ | −

∣∣Xσ − Yθ∧(T−σ)
∣∣] = Ex

[
Uβα(Xσ)− V αT−σ(Xσ)

]
. (3.49)

It now becomes obvious that Equation (3.13) follows by Proposition 3.13 (iii) by considering
σ = σ∗ and the Root-Rost symmetry (3.46), while Equation (3.14) follows from Proposition 3.13
(ii) considering general X- stopping times σ ≤ T . □

4. Recovering the Continuous Optimal Stopping Representation as a Limit of
the Discrete Optimal Stopping Representation

The aim of this section is to recover Theorem 2.7 (resp. Theorem 2.8) from its discrete
counterpart, Theorem 3.5 (resp. Theorem 3.6) through taking limits of appropriately scaled
SSRWs.

This passage to continuous time essentially relies on the application of Donsker-type results,
similar to the limiting procedure carried out in [1, Section 5] which in turn heavily built on
arguments established in [13]. For this purpose it is important to point out that the results and
arguments presented in Section 3 remain invariant under appropriate scaling of the space-time
grid.

In Section 4.1 we recall the appropriate space-time grid and an associated discretization of
a Brownian motion into a scaled SSRW as proposed in [13]. We proceed to introducing a
discretization of a continuous (dSEP) to a scaled discrete delayed problem in Section 4.2 and
furthermore explain how our results of Section 3 apply in this case.

It is subject of Section 4.3 to recover continuous Root and Rost solutions to (dSEP) as limits
of solutions to a appropriately scaled and discretized (dSEP). This will give us convergence of
the LHS of 3.11 to the LHS of 2.3 (resp. convergence of the LHS of 3.13 to the LHS of 2.5).

In Section 4.4 these limiting results are furthermore applied to the recovery of the optimal
stopping problem and its value, namely establishing convergences of the RHS of 3.11 to the LHS
of 3.11 as well as 3.12 to 3.12 (analogously for Rost).

4.1. Discretization of a Brownian motion and its stopping times. We begin by recalling
the discretization of a Brownian motion (Wt)t≥0 into a scaled SSRW as proposed in [13]. For a
given N ∈ N consider a discrete set of spatial points XN := {xN1 , . . . , xNLN } such thatq |xNk+1 − xNk | = 1√

N
for j = 1, . . . , LN − 1.q LN ∼

√
N .
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We define a random walk (Y Nk )k∈N in the following way. Let Y Nk := WτNk
where the τNk are

given as those times when a Brownian Motion hits a new grid point in XN . More precisely, let
(Wt)t≥0 be a Brownian motion started in W0 ∼ λ. Then we defineq τN0 = inf{t ≥ 0 :Wt ∈ XN}, andq given WτNk

= xNj we define τNk+1 := inf{t ≥ τNk :Wt ∈ {xNj−1, x
N
j+1}}.

Note, this definition implies that the random walk (Y Nk )k∈N is started according to a discretiza-
tion λN of the starting law λ given by

λN := L(Y N0 ) = Lλ(WτN0
).

Now let τ be a stopping time for the Brownian Motion Wt. Then we can define a stopping rule
σ̃N for the discretized process Y Nk via

σ̃N := inf{t ∈ N : τNt−1 < τ ≤ τNt }.
For such a discretized stopping time we have the following convergence results.

Lemma 4.1 (Cf.[13, Lemma 5.2]). Let σ̃N be the discretization of a stopping time τ of a Brow-
nian motion Wt as defined above. Then

Y Nσ̃N →Wτ almost surely, and (4.1)

σ̃N

N
→ τ in probability, as N → ∞. (4.2)

In particular, this implies that for µN := L(Y Nσ̃N ) and for µ := Lλ(Wτ ) we have that µN → µ.
Moreover, for every T ≥ 0 we have

Y Nσ̃N∧NT →Wτ∧T almost surely, and

σ̃N ∧NT
N

→ τ ∧ T in probability, as N → ∞.

Note that while in [13] this lemma was stated for stopping times τ that are optimizers of
a given (OptSEP), this characterization is not essential to the proof given, thus we state the
lemma in more generality. Given the convergence of σ̃N

N → τ in probability, the convergence
of σ̃N∧NT

N → τ ∧ T in probability is clear. Regarding the convergence of the processes, it is
important to observe that by construction of the discretization we have τNNT → T a.s. by the
strong law of large numbers. Note furthermore that Y Nσ̃N∧NT = WτN

σ̃N
∧τNNT , hence the almost

sure convergence Y Nσ̃N∧NT →Wτ∧T is clear.

4.2. A Suitable Discretization of Root and Rost solutions to (dSEP). Consider a con-
tinuous (dSEP) given by the triple (λ, η, µ). Theorem 2.2 (resp. Theorem 2.4) gives us existence
of a Root (resp. Rost) barrier R in [0,∞)× R such that

ρ = ρR := inf{t ≥ η : (t,Wt) ∈ R}
is a stopping time embedding the given measure µ. We propose the following discretization
(λN , η̃N , µN ) of (λ, η, µ).

λN := L(Y N0 ),

η̃N := inf{t ∈ N : τNt−1 < η ≤ τNt } and

µN := LλN (Y Nσ̃N ) where

σ̃N := inf{t ∈ N : τNt−1 < ρ ≤ τNt }.

29



(Note that since ρ ≥ η, it is clear that we also have σ̃N ≥ η̃N .) If the measure µ is supported
also beyond the grid XN given at the discretization step N we make the boundaries of the grid,
xN1 resp. xNLN absorbing barriers for the Brownian motion to ensure that the random walk only
moves on the given grid.

The following convergences are now clear by the definitions in Section 4.1 and Lemma 4.1

λN ⇒ λ

η(N) :=
η̃N

N

p−→ η

µN ⇒ µ.

Moreover, it is important to observe that the conditions λN ≤c Lλ
N
(
Y Nη̃N

)
≤c µN and E

[
η̃N
]
<

∞ are satisfied. Therefore, by Theorem 3.3 (resp. Theorem 3.4) and rescaling there exists a field
of Root (resp. Rost) stopping probabilities (rNt (x))(t,x)∈N×XN where XN ⊆ 1√

N
Z such that

ρ̃N := inf
{
t ≥ η̃N : rNt (Y Nt ) > ut

}
defines a discrete Root (resp. Rost) stopping time embedding the measure µN into the SSRW
Y N , solving the discrete (and rescaled) (dSEP) given by (λN , η̃N , µN ).

By
(
W

(N)
t

)
t≥0

we denote the rescaled continuous version of the random walk Y N defined via

W
(N)
t := Y N⌊Nt⌋ + (Nt− ⌊Nt⌋)

(
Y N⌊Nt⌋+1 − Y N⌊Nt⌋

)
.

Note that we have
(
η̃N

N , Y Nη̃N
)
=
(
η(N),W

(N)

η(N)

)
almost surely.

We now want to define Root and Rost stopping times for
(
W

(N)
t

)
t≥0

. By definition of the

discretization we have W (N)
t ∈ XN if and only if Nt ∈ N. Hence we can extend a Root field of

stopping probabilities (rNt (x))(t,x)∈N×XN to [0,∞)× R by setting

rNt (x) :=

{
rN⌊t⌋(x) for x ∈ XN ,

0 for all t when x ∈ R \ XN .

Then we define
ρ(N) := inf

{
t ≥ η(N) : rN⌊Nt⌋

(
W

(N)
t

)
> u⌊Nt⌋

}
(4.3)

in order to have (
ρ̃N , Y Nρ̃N

)
=
(
ρ(N),W

(N)

ρ(N)

)
almost surely.

Furthermore (rNt (x))(t,x)∈N×XN induce a Root barrier R̃N ⊆ N× 1√
N
Z via

R̃N :=
{
(t, x) : rNt (x) > 0

}
,

and a corresponding Root barrier in [0,∞)× R can be defined in the following way

R(N) :=
{
(t, x) ∈ [0,∞)× R : (⌊Nt⌋, x) ∈ R̃N

}
. (4.4)

We will sometimes use the notation R̃N =: R̃N+ (resp. R(N) =: R
(N)
+ ) and analogously define R̃N−

(resp. R(N)
− ) via

R̃N− :=
{
(t, x) : rNt (x) = 1

}
.

Note that R̃N− ⊆ R̃N+ and R(N)
− ⊆ R

(N)
+ . We make the same definitions for Rost fields of stopping

probabilities replacing the floor function by a ceiling function.
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4.3. Taking Limits. The main objective of this section is to show the following convergence of
the discrete time objects defined above to their continuous conterparts. This will be carried out
individually for Root and Rost respectively.

We follow [34] for the definition of a metric on the space of barriers. Let R denote the space
of all Root and Rost barriers in [0,∞] × [−∞,∞]. Then a complete metric on this space can
be defined in the following way. Consider the map f : [0,∞] × [−∞,∞] → [0, 1] × [−1, 1],
f(t, x) :=

(
t

1+t ,
x

1+|x|

)
. Let d denote the ordinary Euclidean metric on R. Then for two barriers

R,S ⊆ [0,∞]× [−∞,∞] Root’s metric dR on the space of all barriers R is defined as follows

dR(R,S) := max

{
sup

(t,x)∈R
d (f(t, x), f(S)) , sup

(s,y)∈S
d (f(R), f(s, y))

}
.

4.3.1. A Limit of Root Stopping Times.

Lemma 4.2. Let
(
ρ(N)

)
n∈N be a sequence of discrete Root stopping times as defined in (4.3).

Then there exists a Root barrier R ⊆ [0,∞)× R such that we have the following convergence(
ρ(N),W

(N)

ρ(N)

)
d−→ (ρ,Wρ) (4.5)

where
ρ := inf {t ≥ η : (t,Wt) ∈ R} .

Proof. The Root barriers (R(N))N∈N converge (possibly along a subsequence) to a Root barrier
R in Root’s metric, details can be found in [34].

We define the following auxiliary hitting time

ρN := inf
{
t ≥ η : (t,Wt) ∈ R(N)

}
and show convergence in two steps.

(i) We have ρN p−→ ρ. This is basically a consequence of a delayed version of Root’s original
convergence lemma, [34, Lemma 2.4], which we provide in Lemma 4.3.

(ii) We furthermore have ∣∣∣(ρ(N),W
(N)

ρ(N)

)
−
(
ρN ,WρN

)∣∣∣ p−→ 0,

which is a delayed version of [13, Lemma 5.6] which we give in Lemma 4.5.
□

We formulate a delayed version of Root’s convergence lemma, [34, Lemma 2.4]

Lemma 4.3. Let η be a delay stopping time and R be a Root barrier such that for the corre-
sponding delayed hitting time

τ = inf {t ≥ η : (t,Wt) ∈ R}
we have E[τ ] <∞.

Then for any ε > 0 there exist δ, δ̃ > 0 such that if for another Root barrier R̄ we have
dR(R, R̄) < δ and for another delay stopping time η̄ we have P[|η − η̄| > δ̃] < δ̃, then for the
corresponding delayed hitting time τ̄ defined as

τ̄ = inf
{
t ≥ η̄ : (t,Wt) ∈ R̄

}
,

it holds that
P[τ̄ > τ + ε] < ε.

Proof. Similar to [34] we make the following choices for ε > 0.
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q Choose ε̃ > 0 such that ε̃ < ε
4 and

P
[
sup
ε̃<t<ε

Wt > ε̃ and inf
ε̃<t<ε

Wt < −ε̃
]
> 1− ε

4
.

q Choose T > 3E[τ ]
ε , then P[τ ≥ T ] < ε

4 (due to Markov’s inequality).q Choose M and δ > 0 such that if (t, x) ∈ R, t ≤ T , |x| ≤ M and dR(R, R̄) < δ, then
d((t, x), R̄) ≤ ε̃.q Choose δ̃ = ε̃, then P[|η − η̄| > ε̃] < ε̃.

Then we consider the set

A := {ω ∈ Ω : (i) sup
τ(ω)+ε̃<t<τ(ω)+ε

(Wt(ω)−Wτ (ω)) > ε̃ and

inf
τ(ω)+ε̃<t<τ(ω)+ε

(Wt(ω)−Wτ (ω)) < −ε̃,

(ii) τ(ω) < T,

(iii) |Wτ (ω)| < M,

(vi) η̃ < η + ε̃.}

We then see from the definitions made above that for ω ∈ A follows τ̄(ω) < τ(ω) + ε. Moreover,
these choices and the strong Markov property give us P[A] > 1− ε. □

In order to complete step (ii) in the proof of Lemma 4.2, we need to provide the following
auxiliary convergence result, which is basically a delayed version of [13, Lemma 5.7].

Lemma 4.4. Consider the stopping times

ρ(M,N) := inf
{
t ≥ η(N) :

(
t,W

(N)
t

)
∈ R(M)

}
,

ρM := inf
{
t ≥ η : (t,Wt) ∈ R(M)

}
,

where η(N) → η in probability. Then we have the following convergence(
W

(N)

ρ(M,N) , ρ
(M,N)

)
d−−−−→

N→∞

(
WρM , ρ

M
)
. (4.6)

Proof. We aim to apply Donsker’s theorem to the continuous scaled symmetric random walk(
W

(N)
t

)
t∈[η(N),T ]

. Let (Bt)t∈[η,T ] denote a Brownian motion, then for each ω ∈ Ω we have(
W

(N)
t

)
t∈[η(N),T ]

, (Bt)t∈[η,T ] ∈ DT where DT :=
⋃
a≤T C([a, T ]).

We define an appropriate metric on DT . More generally, consider the function space D :=⋃
a≤b C([a, b]). Thus for each f ∈ D there exist lf , rf ∈ R, lf ≤ rf such that f ∈ C([lf , rf ]).

For f ∈ D and t ≥ 0 we consider f(t) := f(lf ∨ (t ∧ rf )) ∈ C([0,∞)) and define the following
distance on D.

dD(f, g) :=

(
sup

t∈[0,∞)

|f(t)− g(t)|
)

∨ |lf − lg| ∨ |rf − rg|.

Considering this, metric we can apply Donsker’s theorem to get(
W

(N)
t

)
t∈[η(N),T ]

⇒ (Bt)t∈[η,T ]
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and we are able to use the Portmanteau Theorem in the following way

lim
N→∞

P
[(
W

(N)
t

)
t∈[η(N),T ]

∈ K
]
= P

[
(Bt)t∈[η,T ] ∈ K

]
for all K ⊆ D Borel with Pλ

[
(Bt)t∈[η,T ] ∈ ∂K

]
= 0.

It is now left to consider cleverly chosen sets K ∈ B(D) to support our convergence claim (4.6).
For M fixed consider W (N)

ρ(M,N) and BρM as well as the spatial grid X := {xM1 , . . . , xMLM }.
Choose an arbitrary point xMi ∈ X , t ∈ (0, T ] such that (t, xMi ) lies somewhere in the interior

of R(M) and some γ <
(
t− inf

{
s :
(
s, xMi

)
∈ R(M)

})
∧ (T − t) to consider the set

R̄(γ) := [t− γ, t+ γ]×
{
xMi
}
⊆ R(M).

Since the barrier R(M) will be a subset of [0,∞)×X we can identify a smallest z ∈ X such that
z > xMi and ([t− γ, t+ γ]× {z}) ⊆ R(M). Analogously, we identify a largest y ∈ X , y < xMi .

Moreover, let y < w1 < · · · < wn < z, wi ∈ X \
{
xMi
}

denote all those points at which a piece
of the barrier R(M) sticks into our area of interest, precisely ([t− γ, t+ γ]× {wi})∩R(M) ̸= ∅. It
is clear that there can only be finitely may such points. Consider R̄wi := ([t− γ, t+ γ]× {wi})∩
R(M) for i = 1, . . . , n.

We proceed to define the following subsets of DT .

K̂ :=
⋃
γ̂>0
γ̂∈Q

{
f ∈ DT : ∥(s, f(s))−R(M)∥ > γ̂ ∀ s ∈ [lf , (t− γ) ∨ lf ]

}

K̂w :=
⋂

i=1,...,n

⋃
γ̂>0
γ̂∈Q

{
f ∈ DT : ∥(s, f(s))− R̄wi∥ > γ̂ ∀ s ∈ [(t− γ) ∨ lf , t+ γ]

}
K̂z := {f ∈ K̂ ∩ K̂w : f((t− γ) ∨ lf ) ∈ (xMi , z)}
Kεq := {f ∈ DT : f(s) < z − ε ∀ s ∈ [(t− γ) ∨ lf , q] ∩Q}

Kε,δq := {f ∈ DT : f(q) < xMi − δ} ∩ Kεq
Kε,δ :=

⋃
q∈[t−γ,t+γ]

q∈Q

Kε,δq

Kz :=
⋂
δ>0
δ∈Q

⋃
ε>0
ε∈Q

Kε,δ ∩ K̂z

Then
K̂ is the set of all paths which stay away from the barrier R(M) at any time point before

(t− γ) ∨ lf . Since R(M) is a finite barrier, K̂ is a Borel set.
K̂w is the set of all paths which stay away from the barrier pieces R̄w1

, . . . , R̄wn before time
t+ γ.

K̂z is the set of all paths in K̂ ∩ K̂w that are between xMi and z at time (t− γ) ∨ lf .
Kεq is the set of all paths that stay below z − ε after time (t− γ) ∨ lf and before time q.

Kε,δq is the set of all paths that are below xMi − δ at time q and stay below z − ε after time
(t− γ) ∨ lf and before time q.

Kε,δ is the set of all paths that such that there exist a q ∈ [t − γ, t + γ] ∩ Q fulfilling the
properties of set Kε,δq .

Kz is the set of all paths such that for all δ > 0 there exists an ε > 0 such that the properties
of set Kε,δ are fulfilled.
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Analogously, we define Ky with the opposite inequalities.
Note that Kz will be a Borel set consisting of all those paths that start somewhere away from

the barrier R(M) but hit the barrier for the first time in R̄(γ) coming from above, while Ky will
be a Borel set of those paths that hit the barrier R(M) for the first time in R̄(γ) coming from
below. Altogether, K := Ky ∪ Kz will be a Borel set consisting of exactly those paths that hit
the barrier R(M) for the first time in R̄(γ) after starting in some initial time lf away from the
barrier R(M).

We need to identify ∂K and to argue that Pλ
[
(Bt)t∈[η,T ] ∈ ∂K

]
= 0. The set ∂K will consist

of exactly those paths that start somewhere away from the boundary and eitherq hit R̄(γ) exactly at time t± γ, orq hit R̄(γ) elsewhere, but also touch the barrier R(M) before, without passing through the
barrier.q are born somewhere inside the barrier R(M) but immediately leave it without ever touch-
ing the barrier again.q are born somewhere inside the barrier and remain flat.

By standard properties of a Brownian motion it is clear that these events must have zero prob-
ability.

With appropriate choices of xNi , t and γ it now becomes clear that we can cover the whole
barrier R(M) with such sets R̄(γ).

We are left to consider the possibility of appearing exactly on the barrier. As a combination
of the convergence of ηN to η and Donsker’s theorem gives (should give?)(

η(N),W
(N)

η(N)

)
d−−−−→

N→∞
(η,Bη) .

Now note that similarly to the arguments given in the proof of Lemma 4.3, a Brownian motion
that is very close to a Root barrier will proceed to hit this barrier almost immediately. It is then
a consequence of this regularity of Root barriers which gives us

Pλ
N
[(
η(N),W

(N)

η(N)

)
∈ R(M)

]
−−−−→
N→∞

Pλ
[
(η,Bη) ∈ R(M)

]
,

concluding the proof of the convergence (4.6). □

We are now ready to finish step (ii) in the proof of Lemma 4.2.

Lemma 4.5 (Cf.[13, Lemma 5.6]). We have the following convergence∣∣∣(ρ(N),W
(N)

ρ(N)

)
−
(
ρN ,WρN

)∣∣∣ p−→ 0 for N → ∞.

Proof. Define the following hitting times for the scaled continuous random walk W (N)

τ (M,N) := inf
{
t ≥ η(N) :

(
t,W

(N)
t

)
∈ R(M)

}
, and

τ (N) := inf
{
t ≥ η(N) :

(
t,W

(N)
t

)
∈ R(N)

}
.

Then analogous to the proof of [13, Lemma 5.6], but replacing Root’s original convergence lemma
with its delayed version Lemma 4.3, we can deduce the convergence∣∣∣(τ (M,N),W

(N)

τ(M,N)

)
−
(
τ (N),W

(N)

τ(N)

)∣∣∣ p−−−−−−→
M,N→∞

0.

It is a consequence of Lemma 4.4 that(
τ (M,N),W

(N)

τ(M,N)

)
d−−−−→

N→∞

(
ρM ,WρM

)
.

34



Thus it remains to show that∣∣∣(ρ(N),W
(N)

ρ(N)

)
−
(
τ (N),W

(N)

τ(N)

)∣∣∣ p−−−−→
N→∞

0. (4.7)

For this purpose recall the Root barriers R(N)
+ and R(N)

− defined above and consider

τ
(N)
+ := inf

{
t ≥ η :

(
t,W

(N)
t

)
∈ R

(N)
+

}
= τ (N),

τ
(N)
− := inf

{
t ≥ η :

(
t,W

(N)
t

)
∈ R

(N)
−
}
.

Note that by Root’s barrier structure and the definition of the discretization we have

dR

(
R

(N)
+ , R

(N)
−
)
≤ 1

N
→ 0 for N → ∞,

hence both R
(N)
+ and R

(N)
− converge to the same Root barrier R in Root’s metric. Moreover, it

is a consequence of Lemma 4.3 together with Donsker’s Theorem that∣∣∣τ (N)
+ − τ

(N)
−

∣∣∣ p−−−−→
N→∞

0.

Now since τ (N)
+ ≤ ρ(N) ≤ τ

(N)
− the convergence (4.7) follows, concluding the proof. □

4.3.2. A Limit of Rost Stopping Times. We are left to show convergence of discrete Rost solutions
of (dSEP) to continuous ones. For a measurable set A and t ≥ 0 recall the following measures
defined in Section 2

νt(A) = µ(A)− Pλ [Wρ ∈ A, ρ < t] and

αt(A) = α ({t} ×A) = Pλ [Wt ∈ A, η = t] .

Lemma 4.6. Let
(
ρ(N)

)
n∈N be a sequence of discrete Rost stopping times. Then there exists a

Rost barrier R̄ ⊆ [0,∞)× R such that we have the following convergence(
ρ(N),W

(N)

ρ(N)

)
d−→ (ρ,Wρ) (4.8)

where
ρ := inf

{
t ≥ η : (t,Wt) ∈ R̄

}
∧ Z

for

Z = min
k∈N

Zk, Zk :=

tk with probability Pλ
[
Z = tk

∣∣Wη, η = tk
]
=

d(αtk∧νtk)
d(αtk)

(Wη)

∞ else.

(Here {t0, t1, . . . } denote the set of (at most countably many) atoms of Lλ(η).)

Proof. Let R̄(N) denote the Rost barrier associated to ρ(N) via Definition (4.4). The the sequence
(R̄(N))N∈N of these Rost barriers converges (possibly along a subsequence) to a Rost barrier R̄
in Root’s metric.

Consider the following decomposition∣∣∣(ρ(N),W
(N)

ρ(N)

)
− (ρ,Wρ)

∣∣∣ ≤ ∣∣∣(ρ(N),W
(N)

ρ(N)

)
11ρ(N)>η(N)+ε − (ρ,Wρ) 11ρ>η

∣∣∣
+
∣∣∣(ρ(N),W

(N)

ρ(N)

)
11ρ(N)≤η(N)+ε − (ρ,Wρ) 11ρ=η

∣∣∣ ,
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hence (4.8) is equivalent to both∣∣∣(ρ(N),W
(N)

ρ(N)

)
11ρ(N)>η(N)+ε − (ρ,Wρ) 11ρ>η

∣∣∣ p−−−−−−−→
ε↘0,N→∞

0 and (4.9)∣∣∣(ρ(N),W
(N)

ρ(N)

)
11ρ(N)≤η(N)+ε − (ρ,Wρ) 11ρ=η

∣∣∣ p−−−−−−−→
ε↘0,N→∞

0. (4.10)

Let us first consider (4.9). Define the hitting time

τ := inf {t ≥ η : (t,Wt) ∈ R} ,
thus ρ = τ ∧ Z and on {ρ > η} we have ρ = τ . Furthermore, for R̄(N) consider the following
(auxiliary) hitting times

τN := inf
{
t ≥ η : (t,Wt) ∈ R̄(N)

}
and

τ (N) := inf
{
t ≥ η(N) : (t,W

(N)
t ) ∈ R̄(N)

}
.

We will then show convergence in three steps.

(i) τN p−→ τ , see Lemma 4.7.
(ii) Convergence for non-randomized hitting times, precisely∣∣∣(τ (N),W

(N)

τ(N)

)
−
(
τN ,WτN

)∣∣∣ d−→ 0,

see Lemma 4.8.
(iii) Convergence for randomized Rost stopping times after η(N), precisely∣∣∣(ρ(N),W

(N)

ρ(N)

)
11ρ(N)>η(N)+ε −

(
τN ,WτN

)
11τN>η

∣∣∣ p−−−−−−−→
ε↘0,N→∞

0,

see Lemma 4.9.
It remains to show (4.10). For ε > 0 define

µ̂Nε := LλN
(
W

(N)

ρ(N) ; ρ
(N) > η(N) + ε

)
µNε := µN − µ̂Nε

as well as

µ̂ := Lλ (Wρ; ρ > η) and
µ := µ− µ̂.

Then by (4.9) we have

µ̂Nε = LλN
(
W

(N)

ρ(N) ; ρ
(N) > η(N) + ε

)
⇒ µ̂ for N → ∞, then ε↘ 0.

Thus recall µN ⇒ µ for N → ∞ to conclude that we must have

µNε ⇒ µ := µ− µ̂ for N → ∞, then ε↘ 0

where µ corresponds to the mass that is acquired by stopping instantly. In other words

LλN
(
W

(N)

ρ(N) ; ρ
(N) ≤ η(N) + ε

)
⇒ Lλ (Wρ; ρ = η) for N → ∞, then ε↘ 0. (4.11)

The convergence (4.11) is equivalent to

Pλ
N
[
W

(N)

ρ(N) ∈ A, ρ(N) ≤ η(N) + ε
]
−−−−−−−→
ε↘0,N→∞

Pλ [Wρ ∈ A, ρ = η] (4.12)
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for all measurable A such that Pλ [Wρ ∈ ∂A, ρ = η] = 0. As we have the convergence η(N) → η
in probability we can furthermore conclude

Pλ
N
[
W

(N)

ρ(N) ∈ A, ρ(N) ≤ η(N) + ε, |η(N) − t| < ε
]
−−−−−−−→
ε↘0,N→∞

Pλ [Wρ ∈ A, ρ = η, η = t] (4.13)

for all measurable A such that Pλ [Wρ ∈ ∂A, ρ = η, η = t] = 0.
That ρ must now share the desired representation on {ρ = η} is a consequence of Lemma 2.5

and concludes the proof. □

In order to conclude the proof above we show a delayed Version of [13, Lemma 5.5].

Lemma 4.7. The Rost barriers R̄(N) converge (possibly along a subsequence) to another Rost
barrier R̄∞ and

ρN := inf
{
t ≥ η : (t,Wt) ∈ R̄(N)

}
p−→ inf

{
t ≥ η : (t,Wt) ∈ R̄∞} =: ρ∞

Proof. Note that both stopping times are subject to the same delay η, hence we can repeat the
proof of Lemma 5.5 in [13] with minimal adaptations. The arguments used therein rely on the
existence of boundary functions b : (0,∞) → R∪ {∞} and c : (0,∞) → R∪ {−∞} such that the
Rost hitting time can be represented as the first time the Brownian motions (Wt) either rises
above b(t) or falls below c(t).

While in [13, Lemma 5.5] the Brownian motion was assumed to start in (0,W0) it was possible
to give this description using only a single upper boundary function b and lower boundary
function c. Due to the possibly delayed starting in (η,Wη) however, the processes might see
different parts of the barrier that remain unseen for other starting positions. Hence we will
no longer be able to describe the Rost hitting time with a single boundary function but as at
most countably many such areas of the boundary can exists we can instead consider a family
of boundary function {bn : (0,∞) → R ∪ {∞}, n ∈ N} and {cn : (0,∞) → R ∪ {−∞}, n ∈ N}.
Then for each starting position (η,Wη) we can identify the closest boundary functions bη and
cη. Precisely, for each realization of η we can define bη as the boundary function bn such that
Wη ≤ bn(η) and |(η,Wη)− (η, bn(η))| is minimal. There might be several boundary functions
fulfilling these properties, however as they all have to coincide for t ≥ η the specific choice is
irrelevant. Analogously we define cη to conclude the proof. □

We now give a delayed Version of [13, Lemma 5.6].

Lemma 4.8 (Cf.[13, Lemma 5.6]). For N ∈ N consider a Rost barrier R̄(N) ⊆ [0,∞) × 1√
N
Z

and let η(N) ∈ 1
NN and η ∈ [0,∞) be delay stopping times such that η(N) p−→ η. Then for the

stopping times

τ (N) := inf
{
t ≥ η(N) : (t,W

(N)
t ) ∈ R̄(N)

}
and

τN := inf
{
t ≥ η : (t,Wt) ∈ R̄(N)

}
we have the following convergence∣∣∣(τ (N),W

(N)

τ(N)

)
−
(
τN ,WτN

)∣∣∣ p−→ 0 for N → ∞.

Proof. First we give a slight refinement of the proof in [13, Lemma 5.6] for η = 0.
As in [13, Lemma 5.6] consider the Brownian motions W±ε = Wt ± εt with drift. Then we

define the following stopping times

ρ+,N,±ε := inf
{
t ≥ 0 :Wt ≥W0,

(
t,W±ε

t

)
∈ R̄(N)

}
,

ρ−,N,±ε := inf
{
t ≥ 0 :Wt ≤W0,

(
t,W±ε

t

)
∈ R̄(N)

}
,
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and

ρ+,N := inf
{
t ≥ 0 :Wt ≥W0, (t,Wt) ∈ R̄(N)

}
,

ρ−,N := inf
{
t ≥ 0 :Wt ≤W0, (t,Wt) ∈ R̄(N)

}
,

as well as

ρ+,(N) := inf
{
t ≥ 0 :W

(N)
t ≥W

(N)
0 ,

(
t,W

(N)
t

)
∈ R̄(N)

}
,

ρ−,(N) := inf
{
t ≥ 0 :W

(N)
t ≤W

(N)
0 ,

(
t,W

(N)
t

)
∈ R̄(N)

}
.

Furthermore for T > 0 and ε > 0 consider the set

AN,ε =

{
ω ∈ Ω : sup

0≤t≤T

∣∣∣Wt −W
(N)
t

∣∣∣ ≤ ε

}
and note that by Donsker’s Theorem the probability of

(
AN,ε

)c goes to zero for N → ∞.
We have the following properties of the stopping times defined above.q On the set AN,ε we have that |ρ+,(N) − ρ+,N | ≤ |ρ+,N,+ε − ρ+,N,−ε| as well as |ρ−,(N) −

ρ−,N | ≤ |ρ−,N,+ε − ρ−,N,−ε|.q As demonstrated in the proof of [13, Lemma 5.6] it follows from Girsanov’s Theorem
that |ρ+,N,+ε − ρ+,N,−ε| p−→ 0 and |ρ−,N,+ε − ρ−,N,−ε| p−→ 0 for ε↘ 0.q Now note that ρ(N) = ρ+,(N) ∧ ρ−,(N) and ρN = ρ+,N ∧ ρ−,N , thus on the set AN,ε we
have

|ρ(N) − ρN | = |ρ+,N ∧ ρ−,N − ρ+,(N) ∧ ρ−,(N)|
≤ |ρ+,N − ρ+,(N)|+ |ρ−,N − ρ−,(N)|
≤ |ρ+,N,+ε − ρ+,N,−ε|+ |ρ−,N,+ε − ρ−,N,−ε|

q Combining all these ingredients we can conclude that |ρ(N) − ρN | p−→ 0 just as in [13,
Lemma 5.6].

We now add a delay.
Since η(N) p−→ η we can for ever ε, δ > 0 find an N0 ∈ N such that for

BN,ε :=
{∣∣∣η(N) − η

∣∣∣ ≤ ε
}

we have P
[(
BN,ε

)c] ≤ δ for all N ≥ N0. Define the set CN,ε := AN,ε ∩ BN,ε for AN,ε defined
above, then similarly P

[(
CN,ε

)c] ≤ δ̃ for any δ̃ > 0 in N is chosen big enough.
Define the following stopping times.

ρ+,N,±ε := inf
{
t ≥ η :Wt ≥W0,

(
t,W±ε

t

)
∈ R̄(N)

}
,

ρ−,N,±ε := inf
{
t ≥ η :Wt ≤W0,

(
t,W±ε

t

)
∈ R̄(N)

}
,

and

ρ+,N := inf
{
t ≥ η :Wt ≥W0, (t,Wt) ∈ R̄(N)

}
,

ρ−,N := inf
{
t ≥ η :Wt ≤W0, (t,Wt) ∈ R̄(N)

}
,
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as well as

ρ+,(N) := inf
{
t ≥ η(N) :W

(N)
t ≥W

(N)
0 ,

(
t,W

(N)
t

)
∈ R̄(N)

}
,

ρ−,(N) := inf
{
t ≥ η(N) :W

(N)
t ≤W

(N)
0 ,

(
t,W

(N)
t

)
∈ R̄(N)

}
.

Replacing the stopping times as well as AN,ε with CN,ε in the arguments above resp. in [13,
Lemma 5.6] we can conclude the desired convergence. □

We show the final convergence via a sandwiching argument.
For a given field of stopping probabilities (rNt (x))(t,x)∈N× 1√

N
Z define

R̃N+ :=
{
(t, x) : rNt (x) > 0

}
,

R̃N− :=
{
(t, x) : rNt (x) = 1

}
=: R̃N

and let R̄(N)
+ and R̄

(N)
− respectively denote their (Rost) continuifications as defined in (4.4).

Note that R̄(N) = R̄
(N)
− ⊆ R̄

(N)
+ and the two barriers coincide on all points (t, x) such that

rNt (x) ∈ {0, 1}. Furthermore define S̄(N)
+ := R̄

(N)
+ \ ({0} × R) as well as S̄(N)

− := R̄
(N)
− \ ({0} × R)

and recall dR, Roots metric on barriers. While R̄(N)
+ and R̄

(N)
− might differ substantially on

{0} × R, for S̄(N)
+ and S̄

(N)
− by Rost’s barrier structure and definition of the discretization we

have
dR

(
S̄
(N)
+ , S̄

(N)
−
)
≤ 1

N
→ 0 for N → ∞. (4.14)

Hence both S̄(N)
+ and S̄(N)

− converge to the same object S̄ in Roots metric.
Define the hitting times

τ
(N)
+ := inf

{
t ≥ η(N) :

(
t,W

(N)
t

)
∈ R̄

(N)
+

}
,

τ
(N)
− := inf

{
t ≥ η(N) :

(
t,W

(N)
t

)
∈ R̄

(N)
−
}
.

Then both τ (N)
+ and τ (N)

− are non-randomized hitting times and we will almost surely have

τ
(N)
+ ≤ ρ(N) ≤ τ

(N)
− .

We will also consider the hitting times

τN+ := inf
{
t ≥ η : (t,Wt) ∈ R̄

(N)
+

}
,

τN− := inf
{
t ≥ η : (t,Wt) ∈ R̄

(N)
−
}
.

These auxiliary stopping times will help us prove the following lemma.

Lemma 4.9. We have the convergence∣∣∣(ρ(N),W
(N)

ρ(N)

)
11ρ(N)>η(N)+ε −

(
τN ,WτN

)
11τN>η

∣∣∣ p−−−−−−−→
ε↘0,N→∞

0. (4.15)

Proof. Since τ (N)
+ ≤ ρ(N) ≤ τ

(N)
− almost surely it suffices to show the two convergences∣∣∣∣(τ (N)

+ ,W
(N)

τ
(N)
+

)
11ρ(N)>η(N)+ε −

(
τN ,WτN

)
11τN>η

∣∣∣∣ p−−−−−−−→
ε↘0,N→∞

0 and (4.16)∣∣∣∣(τ (N)
− ,W

(N)

τ
(N)
−

)
11ρ(N)>η(N)+ε −

(
τN ,WτN

)
11τN>η

∣∣∣∣ p−−−−−−−→
ε↘0,N→∞

0. (4.17)
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Lemma 4.8 gives us the following convergence∣∣∣∣(τ (N)
+ ,W

(N)

τ
(N)
+

)
−
(
τN+ ,WτN+

)∣∣∣∣ d−−−−→
N→∞

0 (4.18)

as well as ∣∣∣∣(τ (N)
− ,W

(N)

τ
(N)
−

)
−
(
τN− ,WτN−

)∣∣∣∣ d−−−−→
N→∞

0. (4.19)

Note that (4.18) already implies (4.16) as τN = τN+ .
To see the convergence (4.17), observe that on {ρ(N) > η(N) + ε} we will also have τ (N)

− >

η(N) + ε. Furthermore, since τN = τN+ ≤ τN− on {τN > η} we thus also have τN− > η. Hence it
is a consequence of (4.14) and Lemma 4.7 that∣∣τN+ 11τN>η − τN− 11τN>η

∣∣ p−→ 0.

This together with (4.19) implies convergence (4.17), concluding the proof. □

Lemma 4.2 (resp. 4.6) now enables the first step of recovering the continuous optimal stopping
representation of Theorem 2.7 (resp. 2.8) from the discrete counterpart Theorem 3.5 (resp. 3.6).

Corollary 4.10. Let (λN , η̃N , µN ) denote a (rescaled) discrete (dSEP) approximating the con-
tinuous (dSEP) given by (λ, η, µ) as defined in Section 4.2. Let ρ(N) denote a Root (resp. Rost)
solution to (λN , η̃N , µN ) while ρ denotes a Root (resp. Rost) solution to (λ, η, µ). Then for every
T ∈ [0,∞) we have the convergence

µNT = LλN
(
W

(N)

ρ(N)∧T

)
⇒ Lλ (Wρ∧T ) = µT . (4.20)

Moreoever this gives convergence of the LHS of 3.11 (resp. 3.13) to the LHS of 2.3 (resp. 2.5).

4.4. A Discretization of the Optimal Stopping Problem and its Convergence. It re-
mains to show convergence of the discrete optimal stopping problem to the continuous one.

Les us consider a continous (dSEP) determined by (λ, η, µ). We will first prove convergence
of the Root case, the Rost case can then be argued analogously.

To avoid heavy usage of floor functions, we will assume from now on for the cutoff time T ∈
I :=

{
m
2n : m,n ∈ N

}
. Then taking limits along the subsequence

(
Y 2n

)
n∈N (resp.

(
W (2n)

)
n∈N)

ensures that there exists an N0 ∈ N such that T will always be a multiple of the step size 1
2n for

all n ≥ N0. For arbitrary T > 0 the results can be recovered via density arguments.
With the help of the function

GT (x, t) := V αT−t(x) + (Uµ(x)− UαX (x)) 11t<T

we can recall the continuous identities of interest

UµT (x) = Ex [GT (Wτ∗ , τ∗)] (2.3)
= sup
τ≤T

Ex [GT (Wτ , τ)] (2.4)

where the optimizer is given by

τ∗ := τT ∧ T for τT := inf{t ≥ 0 : (T − t,Wt) ̸∈ R}
for a Root barrier R.

Let now (λN , η̃N , µN ) denote a (rescaled) discrete (dSEP) approximating the continuous
(dSEP) as defined in Section 4.2.
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Note that Lemma 4.1 gives us the following additional convergence results

αNX :=LλN (Y Nη̃N ) → αX and (4.21)

LλN (Y Nη̃N∧TN ) → Lλ(Wη∧T ). (4.22)

Thus we are able to define a discrete version of GT in the following way

GNT (x, t) := V NT−t(x) +
(
UµN (x)− UαNX (x)

)
11t<T

where

V NT (x) := Eλ
N
[∣∣∣Y Nη̃N∧NT − x

∣∣∣] .
Here V NT (resp. V αT ) is the potential function with respect to the LHS (resp. RHS) of (4.22),
hence we have uniform convergence of GNT to GT due to the uniform convergence of all the
potential functions involved.

Theorem 3.3 gives existence of a Root field of stopping probabilities (rNt (x))(t,x)∈N×XN such
that the corresponding discrete delayed Root stopping time ρ̃N embeds the measure µN . Let

R̃N :=
{
(t, x) ∈ N×XN : rNt (x) > 0

}
denote a Root barrier induced by the field of stopping probabilities and let R(N) denote its
continuification as defined in (4.4).

The rescaled version of the results in Theorem 3.5 then read

UµNT (x) = Ex
[
GNT

(
Y Nτ̃N∗ ,

τ̃N∗

N

)]
(3.11*)

= sup
τ
N≤T

Ex
[
GNT

(
Y Nτ ,

τ

N

)]
, (3.12*)

and an optimizer is given by

τ̃N∗ := τ̃NT ∧NT for τ̃NT := inf{t ∈ N : (NT − t, Y Nt ) ∈ R̃N}.
To conclude the proof of Theorem 2.7, it remains to establish the following two convergence
results.

Lemma 4.11.
(i) We have convergence of the RHS of (3.11*) to the RHS of 2.3, precisely

Ex
[
GNT

(
Y Nτ̃N∗ ,

τ̃N∗

N

)]
N→∞−−−−→ Ex [GT (Wτ∗ , τ∗)] .

(ii) We furthermore have convergence of the RHS of (3.12*) to the RHS of 2.4, precisely

sup
τ
N≤T

Ex
[
GNT

(
Y Nτ ,

τ

N

)]
N→∞−−−−→ sup

τ≤T
Ex [GT (Wτ , τ)] .

Proof. So see (i), recall the continuous rescaled version W (N) of Y N . Then due to [13], Section
5, alternatively also due to Lemma 4.6 for the trivial delay η(N) = η = 0 and additionally
considering the Root-Rost symmetry we have the following Donsker type convergence(

τ (N)∗,W (N)

τ(N)∗

)
d−→ (τ∗,Wτ∗) as N → ∞, (4.23)

where
τ (N)∗ := inf

{
t ≥ 0 :

(
T − t,W

(N)
t

)
∈ R(N)

}
∧ T

is the backwards Root stopping time of W (N) and

τ∗ := inf {t ≥ 0 : (T − t,Wt) ∈ R} ∧ T
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is the backwards Root stopping time of the Brownian motion. Furthermore, note that by the
definition of the discretization we have(

τ (N)∗,W (N)

τ(N)∗

)
=

(
τ̃N∗

N
,Y Nτ̃N∗

)
.

Since all other crucial properties - that GT is a lower semi-continuous function and that GNT
converges uniformly to GT - are also given here, we can repeat the convergence proof given in
[1], Section 5 verbatim.

It is left to show (ii), convergence of the optimal stopping problems. Trivially, we have

Ex
[
GT (Wτ∗ , τ∗)

]
≤ sup
τ≤T

Ex
[
GT (Wτ , τ)

]
.

Hence it remains to show that

sup
τ≤T

Ex
[
GT (Wτ , τ)

]
≤ Ex

[
GT (Wτ∗ , τ∗)

]
.

Let τ̄ be an optimizer of the continuous optimal stopping problem (2.4). Consider the auxiliary
functions

ḠεT (x, t) := V αT−t(x) + (Uµ(x)− UαX (x)) 11t≤T−ε and

G̃N,εT (x, t) := V NT−t(x) +
(
UµN (x)− UαNX (x)

)
11t≤T−ε.

Then for any δ > 0 we have the following

sup
τ≤T

Ex [GT (Wτ , τ)]− δ < Ex [GT (Wτ̄ , τ̄)] (4.24)

= lim
ε↘0

Ex
[
ḠεT (Wτ̄ , τ̄)

]
(4.25)

≤ lim
ε↘0

lim inf
N→∞

Ex
[
G̃N,εT

(
Y Nσ̃N ,

σ̃N

N

)]
(4.26)

≤ lim
ε↘0

lim inf
N→∞

sup
τ
N≤T

Ex
[
G̃N,εT

(
Y Nτ ,

τ

N

)]
(4.27)

≤ lim
ε↘0

lim inf
N→∞

sup
τ
N≤T−ε

Ex
[
GNT−ε

(
Y Nτ ,

τ

N

)]
(4.28)

= lim
ε↘0

lim inf
N→∞

Ex
[
GNT−ε

(
Y Nτ̃N∗

T−ε
,
τ̃N∗
T−ε
N

)]
(4.29)

= lim
ε↘0

Ex
[
GT−ε

(
Wτ∗

T−ε
, τ∗T−ε

)]
(4.30)

= lim
ε↘0

UµT−ε(x) (4.31)

= UµT (x) = Ex [G (Wτ∗ , τ∗)] . (4.32)

We justify this chain of inequalities and equalities step by step.
The inequality in (4.24) is clear as τ̄ was assumed to be an optimizer. For the difference

between GT and ḠεT we have

|GT (x, t)− ḠεT (x, t)| = |Uµ(x)− UαX (x)|︸ ︷︷ ︸
≤c<∞

1T−ε<t<T ,

hence for a random variable X and stopping time τ we have

Ex
[
|GT (X, τ)− ḠεT (X, τ)|

]
≤ c · P [τ ∈ (T − ε, T )] .
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Now since limε↘0 P [τ ∈ (T − ε, T )] = 0 we can conclude

lim
ε↘0

Ex
[
|GT (Wτ̄ , τ̄)− ḠεT (Wτ̄ , τ̄)|

]
= 0,

which gives (4.25). The inequality in (4.26) follows from uniform convergence of G̃N,εT to ḠεT
and the fact that G̃N,εT is lower semi-continuous. In (4.27) we simply take a supremum. To see
(4.28), let us extend the function V NT (x) to T < 0 in the following way.

V NT (x) :=

{
−EλN

[∣∣∣Y Nη̃N∧NT − x
∣∣∣] for T ≥ 0

UλN (x) for T < 0.
(4.33)

Consider t ≤ u, then T − u ≤ T − t, thus also η̃N ∧ (T − u) ≤ η̃N ∧ (T − t). Due to Jensen and
Optional Sampling we then have

−V NT−u(x) = Eλ
N
[∣∣∣Y Nη̃N∧(T−u) − x

∣∣∣] ≤ Eλ
N
[∣∣∣Y Nη̃N∧(T−t) − x

∣∣∣] = −V NT−t(x),

or equivalently
V NT−t(x) ≤ V NT−u(x).

Especially, we have for ε > 0 that

V NT−t(x) ≤ V NT−ε−t(x),

hence the function v(t, x) := V NT−t(x) is increasing in t and convex in x. Now

sup
τ
N≤T

Ex
[
G̃N,εT

(
Y Nτ ,

τ

N

)]
= sup

τ
N≤T

Ex
[
V NT−τ

(
Y Nτ
)︸ ︷︷ ︸

≤V NT−ε−τ (Y
N
τ )

+
(
UµN − UαNX

) (
Y Nτ
)
11 τ
N≤T−ε︸ ︷︷ ︸

≤
(
UµN−U

αN
X

)
(Y Nτ )11 τ

N
<T−ε

]

≤ sup
τ
N≤T

[
V NT−ε−τ

(
Y Nτ
)
+
(
UµN − UαNX

) (
Y Nτ
)
11 τ
N<T−ε

]
(4.34)

≤ sup
τ
N≤T

Ex
[
G̃N,εT−ε

(
Y Nτ ,

τ

N

)]
(4.35)

It remains to show that no optimizer of (4.34) resp. (4.35) will stop after time T−ε. By definition
(4.33) we have V NT−ε−τ

(
Y Nτ
)
= V NT−ε−τ∧(T−ε)

(
Y Nτ
)

since we cannot do better than V N0
(
Y Nτ
)
=

UλN
(
Y Nτ
)
. Now, let (Zt)t≥0 be a martingale. Then we consider

(
G̃N,εT−ε (Zt, t)

)
t∈[T−ε,T ]

=

(UλN (Zt))t∈[T−ε,T ]. As UλN is a concave function, (UλN (Zt))t∈[T−ε,T ] is a supermartingale and
for any stopping time τ we have

Ex
[
G̃N,εT−ε

(
Zτ∧(T−ε), τ ∧ (T − ε)

)]
≥ Ex

[
G̃N,εT−ε (Zτ∧T , τ ∧ T )

]
.

Hence we see that no optimizer of (4.35) will stop after time T − ε which concludes (4.28). Due
to Theorem 3.5 we know that

τ̃N∗
T−ε := inf{t ∈ N : (N(T − ε)− t, Y Nt ) ∈ R̃N} ∧N(T − ε)

is an optimizer of the optimal stopping problem

sup
τ
N≤T−ε

Ex
[
GNT−ε

(
Y Nτ ,

τ

N

)]
which gives equality in (4.29). The convergence (i) together with Corollary 4.10 gives equality
in (4.30) and (4.31). The convergence (4.32) follows by considering the barrier R such that
the corresponding Root stopping time ρ embeds the measure µ. Then the measure µT will
be embedded by ρT := inf{t ≥ η : (t,Wt) ∈ R ∪ ([T,∞) × R)}. Obviously, we have that
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R∪([T,∞)×R) converges to R∪([T,∞)×R) in Root’s barrier distance for ε↘ 0 and convergence
of the corresponding measures follows from Lemma 4.3. □

This concludes the convergence of the discrete optimal stopping representation to the contin-
uous optimal stopping representation, hence completing the proof of Theorem 2.7.

The convergence in the Rost case now follows analogously, choosing the function GT and GNT
as

GT (x, t) := Uµ(x)− V αT−t(x) and

GNT (x, t) := UµN (x)− V NT−t(x),

concluding the proof of Theorem 2.8.

References

1. J. Backoff, A. M. G. Cox, A. Grass, and M. Huesmann. Switching identities by probabilistic means. Sémi-
naire de Probabilités IX Université de Strasbourg, 2021.

2. E. Bayraktar and T. Bernhardt. On the continuity of the Root barrier. Proc. Amer. Math. Soc., 150(7):3133–
3145, 2022.

3. E. Bayraktar and X. Zhang. Embedding of Walsh Brownian motion. Stochastic Process. Appl., 134:1–28,
2021.

4. M. Beiglböck, A. Cox, and M. Huesmann. Optimal transport and Skorokhod embedding. Invent. Math.,
208(2):327–400, 2017.

5. M. Beiglböck, A. M. G. Cox, and M. Huesmann. Optimal transport and Skorokhod embedding. Invent.
Math., 208(2):327–400, 2017.

6. M. Beiglböck, A. M. G. Cox, and M. Huesmann. The geometry of multi-marginal Skorokhod Embedding.
Probab. Theory Related Fields, 176(3-4):1045–1096, 2020.

7. M. Beiglböck, M. Huesmann, and F. Stebegg. Root to Kellerer. Séminaire de Probabilités XLVIII, pages
1–12, 2016.

8. M. Beiglböck, M. Nutz, and F. Stebegg. Fine properties of the optimal Skorokhod embedding problem. J.
Eur. Math. Soc. (JEMS), 24(4):1389–1429, 2022.

9. M. Brückerhoff and M. Huesmann. Shadows and barriers. ArXiv e-prints, 2021.
10. P. Carr and R. Lee. Hedging variance options on continuous semimartingales. Finance Stoch., 14(2):179–

207, 2010.
11. A. M. G. Cox and A. Grass. Robust option pricing with volatility term structure - an empirical study for

variance options. In preparation, 2023.
12. A. M. G. Cox and D. Hobson. A unifying class of skorokhod embeddings: Connecting the azéma: Yor and

vallois embeddings. Bernoulli, 13(1):114–130, 2007.
13. A. M. G. Cox and S. M. Kinsley. Discretisation and duality of optimal Skorokhod embedding problems.

Stochastic Process. Appl., 129(7):2376–2405, 2019.
14. A. M. G. Cox, J. Obłój, and N. Touzi. The Root solution to the multi-marginal embedding problem: an

optimal stopping and time-reversal approach. Probab. Theory Related Fields, 173(1-2):211–259, 2019.
15. A. M. G. Cox and J. Wang. Optimal robust bounds for variance options. ArXiv e-prints, Aug. 2013.
16. A. M. G. Cox and J. Wang. Root’s barrier: construction, optimality and applications to variance options.

Ann. Appl. Probab., 23(3):859–894, 2013.
17. M. Csörgő and P. Révész. On strong invariance for local time of partial sums. Stochastic Process. Appl.,

20(1):59–84, 1985.
18. T. De Angelis. From optimal stopping boundaries to Rost’s reversed barriers and the Skorokhod embedding.

Ann. Inst. Henri Poincaré Probab. Stat., 54(2):1098–1133, 2018.
19. P. Gassiat, A. Mijatović, and H. Oberhauser. An integral equation for Root’s barrier and the generation of

Brownian increments. Ann. Appl. Probab., 25(4):2039–2065, 2015.
20. P. Gassiat, H. Oberhauser, and G. dos Reis. Root’s barrier, viscosity solutions of obstacle problems and

reflected FBSDEs. Stochastic Processes and their Applications, 125(12):4601–4631, 2015.
21. P. Gassiat, H. Oberhauser, and C. Z. Zou. A free boundary characterisation of the Root barrier for Markov

processes. Probab. Theory Related Fields, 180(1-2):33–69, 2021.
22. N. Ghoussoub, Y.-H. Kim, and T. Lim. Optimal Brownian stopping when the source and target are radially

symmetric distributions. SIAM J. Control Optim., 58(5):2765–2789, 2020.

44



23. N. Ghoussoub, Y.-H. Kim, and A. Z. Palmer. PDE methods for optimal Skorokhod embeddings. Calc. Var.
Partial Differential Equations, 58(3):Paper No. 113, 31, 2019.

24. A. Grass. Perkins embedding for general starting laws. ArXiv e-prints, 2023.
25. P. Henry-Labordère, J. Obłój, P. Spoida, and N. Touzi. The maximum maximum of a martingale with

given n marginals. Ann. Appl. Probab., 26(1):1–44, 2016.
26. D. Hobson. Robust hedging of the lookback option. Finance and Stochastics, 2:329–347, 1998.
27. D. Hobson. The Skorokhod embedding problem and model-independent bounds for option prices. In Paris-

Princeton Lectures on Mathematical Finance 2010, volume 2003 of Lecture Notes in Math., pages 267–318.
Springer, Berlin, 2011.

28. D. Hobson and M. Klimmek. Model independent hedging strategies for variance swaps. ArXiv e-prints,
Apr. 2011.

29. R. M. Loynes. Stopping times on Brownian motion: Some properties of Root’s construction. Z. Wahrschein-
lichkeitstheorie und Verw. Gebiete, 16:211–218, 1970.

30. A. Neuberger. The Log contract. Journal of Portfolio Managment,, 20(2):74–80, 1994.
31. J. Obł ój and P. Spoida. An iterated Azéma-Yor type embedding for finitely many marginals. Ann. Probab.,

45(4):2210–2247, 2017.
32. J. Obłój. The Skorokhod embedding problem and its offspring. Probab. Surv., 1:321–390, 2004.
33. A. Richard, X. Tan, and N. Touzi. On the Root solution to the Skorokhod embedding problem given full

marginals. SIAM J. Control Optim., 58(4):1874–1892, 2020.
34. D. H. Root. The existence of certain stopping times on Brownian motion. Ann. Math. Statist., 40:715–718,

1969.
35. H. Rost. Skorokhod’s theorem for general Markov processes. In Transactions of the Sixth Prague Conference

on Information Theory, Statistical Decision Functions, Random Processes (Tech. Univ. Prague, Prague,
1971; dedicated to the memory of Antonín Špaček), pages 755–764. Academia [Publishing House of the
Czechoslovak Academy of Sciences], Prague, 1973.

36. H. Rost. Skorokhod stopping times of minimal variance. In Séminaire de Probabilités, X (Première partie,
Univ. Strasbourg, Strasbourg, année universitaire 1974/1975), pages 194–208. Lecture Notes in Math., Vol.
511. Springer, Berlin, 1976.

37. A. V. Skorohod. Issledovaniya po teorii sluchainykh protsessov (Stokhasticheskie differentsialnye uravneniya
i predelnye teoremy dlya protsessov Markova). Izdat. Kiev. Univ., Kiev, 1961.

38. A. V. Skorokhod. Studies in the theory of random processes. Translated from the Russian by Scripta
Technica, Inc. Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965.

39. V. Strassen. The existence of probability measures with given marginals. Ann. Math. Statist., 36:423–439,
1965.

Department of Mathematical Sciences, University of Bath
Email address: a.m.g.cox@bath.ac.uk

Faculty of Mathematics, University of Vienna
Email address: annemarie.grass@univie.ac.at

45


	1. Introduction
	2. Delayed Root and Rost Embeddings
	2.1. Root and Rost solutions to (dSEP)
	2.2. Optimal Stopping Representation of (dSE) and (MMSEP)

	3. A Discrete (dSEP) and its Optimal Stopping Representation
	3.1. A Discrete (dSEP)
	3.2. A Discrete Optimal Stopping Representation
	3.3. The Root Optimal Stopping Representation
	3.4. The Root-Rost-Symmetry

	4. Recovering the Continuous Optimal Stopping Representation as a Limit of the Discrete Optimal Stopping Representation
	4.1. Discretization of a Brownian motion and its stopping times
	4.2. A Suitable Discretization of Root and Rost solutions to (dSEP)
	4.3. Taking Limits
	4.4. A Discretization of the Optimal Stopping Problem and its Convergence

	References

