Blatt 1

Für die erste Übungseinheit sind Aufgaben 1-4 vorbereiten (noch ohne Kreuzelliste).

Betrachte in Aufgaben 1 und 2 die Menge $M(n,\mathbb{R})$ der reellen $n \times n$ -Matrizen:

- 1. Gib für jedes $n \geq 2$ ein konkretes Beispiel dafür an, dass die Matrixmultiplikation auf $M(n,\mathbb{R})$ nicht kommutativ ist. Zeige, dass sie auf der Menge der Diagonalmatrizen kommutativ ist.
- 2. Es sei $n \geq 2$. Definiert $A * B := A \cdot B B \cdot A$ eine Verknüpfung auf $M(n, \mathbb{R})$? Ist die Verknüpfung kommutativ? Ist $(M(n, \mathbb{R}), *)$ eine Halbgruppe?
 - In Aufgaben 3 und 4 wiederholen wir Eigenschaften von $\mathbb{Z}_m = \{\overline{0}, \overline{1}, \dots, \overline{m-1}\}$, der Menge der ganzzahligen Restklassen modulo m, aus der VO Zahlentheorie:
- 3. Wiederhole kurz und bündig Kongruenzen modulo m und ihre Rechenregeln; gib an, wie daraus Restklassen sowie deren Addition und Multiplikation definiert werden, also der Restklassenring $\mathbb{Z}_m = \mathbb{Z}/m\mathbb{Z}$ entsteht.
- 4. Wie wurde in der von Ihnen absolvierten Zahlentheorie-VO bewiesen, dass $\mathbb{Z}_p \setminus \{\overline{0}\}$ bzgl. Multiplikation eine Gruppe ist, falls p eine Primzahl ist? Warum bildet $\mathbb{Z}_m \setminus \{\overline{0}\}$ keine multiplikative Gruppe, wenn m nicht prim ist?
- 5. Zeige: Ist G eine endliche abelsche Gruppe mit n Elementen, dann gilt $a^n = e$ für jedes $a \in G$. Folgere daraus mit Hilfe von Aufgabe 4 den kleinen Satz von Fermat: Ist p eine Primzahl und $x \in \mathbb{Z} \setminus p\mathbb{Z}$, so folgt $x^{p-1} \equiv 1 \pmod{p}$.
- 6. Zeige: Sind H_1 und H_2 Untergruppen von G, dann gilt auch $H_1 \cap H_2 < G$. Ist auch $H_1 \cup H_2$ eine Untergruppe?
- 7. Zeige: Ist H eine Untergruppe von \mathbb{Z} , dann gibt es ein $m \in \mathbb{N}$ mit $H = m\mathbb{Z}$.
- 8. Zeige: Die *n*-dimensionale ortogonale Gruppe $O(n) := \{A \in GL(n, \mathbb{R}) \mid A^t \cdot A = I_n\}$ ist eine Untergruppe der $GL(n, \mathbb{R})$.
- 9. Es sei $n \in \mathbb{N}$, $n \ge 1$, und $\zeta_n := e^{2\pi i/n}$. Zeige, dass die Menge der n-ten Einheitswurzeln $C_n := \{\zeta_n^k \mid k \in \mathbb{Z}\}$ eine endliche Untergruppe der multiplikativen Gruppe $S^1 := \{z \in \mathbb{C} \mid |z| = 1\}$ ist. Skizziere die Menge C_n .