Blatt 6

- **41** Ein konkretes " ε - δ -Spiel": Wir betrachten die stetige Funktion $f: [0,1] \to \mathbb{R}, x \mapsto 1/x$.
- (a) Geben Sie für beliebige "Daten" $x_0 \in]0,1]$ und $\varepsilon > 0$ explizite Bedingungen für ein $\delta > 0$ an, sodass für $x \in]0,1]$ mit $|x x_0| < \delta$ die Abschätzung $|f(x) f(x_0)| < \varepsilon$ garantiert ist.
- (b) Sie werden in (a) beobachtet haben, dass die Wahl von δ auf wesentliche Art sowohl von ε als auch von x_0 abhängt. Zeigen Sie nun, dass im Falle der Funktion f sogar die Abhängigkeit von x_0 bei festem $\varepsilon := 1/2$ grundsätzlich nicht "abgeschüttelt" werden kann: Konstruieren Sie zwei Nullfolgen (x_n) , (y_n) in]0,1] mit den Eigenschaften $0 < y_n x_n < 1/n$ und $|f(x_n) f(y_n)| \ge 1$. (Die Funktion f ist also nicht g stetig.)
- 42 Untersuchen Sie die Stetigkeit der beiden Funktionen $x \mapsto [x]$ und $x \mapsto [x] + \sqrt{x [x]}$ auf dem Intervall]0, 2[.
- $\boxed{43}$ (a) Begründen Sie, warum eine Polynomfunktion ungeraden Grades mindestens eine Nullstelle in $\mathbb R$ besitzen muss.
- (b) Ist die rationale Funktion $r: \mathbb{R} \setminus \{2\} \to \mathbb{R}, x \mapsto \frac{x^2-4}{x-2}$ stetig fortsetzbar auf ganz \mathbb{R} ?
- 44 Analysieren Sie die Funktion $f: [1,2] \to \mathbb{R}, x \mapsto \frac{x+2}{x+1}$ bezüglich Monotonie (ohne Differentialrechnung zu verwenden!) und Stetigkeit. Bestimmen Sie die Bildmenge f([1,2]) und erörtern Sie die Möglichkeit einer Umkehrfunktion $g: f([1,2]) \to [1,2]$?
- **45** Zeigen Sie: Eine stetige Funktion $f:[a,b] \to [a,b]$ besitzt (mindestens) einen Fixpunkt $x_0 \in [a,b]$, d.h. $f(x_0) = x_0$. Geben Sie eine Funktion $g:[-1,1] \to [-1,1]$ an, die keinen Fixpunkt hat.
- **46** (a) Begründen Sie möglichst kurz und prägnant, warum $x \mapsto \sin(\frac{1}{x})$ eine stetige Funktion $\mathbb{R} \setminus \{0\} \to \mathbb{R}$ defniert.
- (b) Ist die Funktion $f:]0, \infty[\to \mathbb{R}, x \mapsto \sqrt{x} \cdot \sin(\frac{1}{x})$ stetig fortsetzbar auf $[0, \infty[?]]$
- 47 Untersuchen und vergleichen Sie folgende Funktionen bezüglich Stetigkeit und Differenzierbarkeit: $f_1: \mathbb{R} \to \mathbb{R}$ mit $f_1(x) := |x|, f_2: [0, \infty[\to \mathbb{R} \text{ mit } f_2(x) := |x|, f_3:] \infty, 0] \to \mathbb{R}$ mit $f_3(x) := |x|$ und $f_4: [0, \infty[\to \mathbb{R} \text{ mit } f_4(x) := \sqrt{x}.$
- [48] Bestimmen Sie jeweils die Geradengleichung der Tangente an den Funktionsgraphen im angegebenen Punkt:
- (a) $f:]0, \infty[\to \mathbb{R}, x \mapsto \frac{1}{x} \text{ in } (2, f(2)),$
- (b) $g: \mathbb{R} \to \mathbb{R}$, $x \mapsto \sin x$ in $(\pi, f(\pi))$.