Blatt 7

- [37] Wir nehmen an, dass h auf dem beschränkten Gebiet $\Omega \subseteq \mathbb{R}^n$ eine Eigenfunktion von $-\Delta$ zum Eigenwert $\lambda > 0$ mit Randwert 0 ist. Rechnen Sie nach:
- (a) Die Funktion $u(x,t) := e^{-\lambda t} h(x)$ löst das Anfangsrandwertproblem für $\partial_t u \Delta u = 0$ mit u = 0 auf $\partial\Omega \times [0, \infty[$ und u(x,0) = h(x) $(x \in \Omega)$.
- (b) Für beliebiges $f \in C([0,\infty[)$ löst $v(x,t) := (\int_0^t f(s)e^{-\lambda(t-s)}\,ds)h(x)$ das Anfangsrandwertproblem für $\partial_t v(x,t) \Delta v(x,t) = h(x)f(t)$ mit v=0 auf $\partial\Omega \times [0,\infty[$ und v(x,0)=0. (Bemerkung: In der VO wurde die Lösung des allgemeinen Anfangsrandwertproblems durch Superposition mittels eines vollständigen Systems von Eigenfunktionen für $-\Delta$ diskutiert.)
- [38] (a) Überlegen Sie zunächst: Für den d'Alembert-Operator auf \mathbb{R}^2 gilt die Faktorisierung $\square = \partial_t^2 c^2 \partial_x^2 = (\partial_t + c \, \partial_x)(\partial_t c \, \partial_x) = (\partial_t c \, \partial_x)(\partial_t + c \, \partial_x)$ auch bei der Anwendung auf Distributionen $U \in \mathcal{D}'(\mathbb{R}^2)$.
- (b) Für gegebene $F, G \in L^1_{loc}(\mathbb{R})$ setzen wir v(x,t) := F(x+ct) und w(x,t) := G(x-ct) und erhalten Funktionen $v, w \in L^1_{loc}(\mathbb{R}^2)$, die wir als Distributionen auf \mathbb{R}^2 auffassen können. Rechnen Sie nach, dass in diesem Sinne $\partial_t v c \, \partial_x v = 0$ und $\partial_t w + c \, \partial_x w = 0$ gilt.
- (c) Folgern Sie, dass u := v + w eine distributionelle Lösung der homogenen Wellengleichung auf \mathbb{R}^2 ist. (Bemerkung: Als lokal integrable Funktion ist u(x,t) = F(x+ct) + G(x-ct). Mit ein wenig mehr Distributionentheorie kann dies sogar auf den Fall $F, G \in \mathcal{D}'(\mathbb{R})$ ausgedehnt werden.)
- **39** Einflussbereich bei der homogenen Wellengleichung $\partial_t^2 u c^2 \partial_x^2 u = 0$ auf $\mathbb{R} \times]0, \infty[$: Angenommen u ist eine klassische Lösung mit den Anfangsbedingungen $u(x,0) = u_0(x)$, $\partial_t u(x,0) = u_1(x)$ und u_0, u_1 verschwinden außerhalb des Intervalls $[a,b] \subseteq \mathbb{R}$ mit a < b. In welchem Bereich $B \subseteq \mathbb{R} \times [0,\infty[$ kann dann u überhaupt Werte ungleich 0 haben? Was ergibt sich formal als Bereich für den Grenzfall $b \to a+$? Skizzieren Sie die Bereiche auch.
- 40 Einflussbereich bei der homogenen Wellengleichung $\partial_t^2 u c^2 \Delta u = 0$ auf $\mathbb{R}^3 \times]0, \infty[$: Ähnlich wie oben betrachten wir eine klassische Lösung u mit den Anfangsbedingungen $u(x,0) = u_0(x), \, \partial_t u(x,0) = u_1(x)$. In welchem Bereich $B \subseteq \mathbb{R}^3 \times [0,\infty[$ kann dann u überhaupt Werte ungleich 0 haben, falls u_0, u_1 außerhalb der Kugel $K_R(0) \subseteq \mathbb{R}^3$ verschwinden? Was ergibt sich formal als Bereich für den Grenzfall $R \to 0+$?
- 41 Wenden Sie Aufgabe 38 auf den Fall $F = G = \theta/2$ an (θ die Heaviside-Funktion) und berechnen Sie die resultierende Lösung u der Wellengleichung für Zeiten $t \geq 0$ explizit (mit geeigneten Fallunterscheidungen für Teilbereiche in $\mathbb{R} \times [0, \infty[)$). Wo ist u stetig bzw. unstetig? Begründen Sie außerdem, dass zumindest formal die Anfangsbedingungen $u(x, 0) = \theta(x)$ und $\partial_t u(x, 0) = 0$ erfüllt sind.
- **42** Wir betrachten die homogene Wellengleichung $(\partial_t^2 c^2 \Delta)u = 0$ auf $\mathbb{R}^3 \times]0, \infty[$ mit radialsymmetrischen Anfangsdaten u(x,0) = 0 und $\partial_t u(x,0) = U_1(||x||)$, wobei wir U_1 als gerade Funktion $\mathbb{R} \to \mathbb{R}$ annehmen dürfen. Rechnen Sie nach, dass wir in diesem Fall folgende Darstellung für die Lösung erhalten: $u(0,t) = t U_1(ct)$ und für ||x|| = r > 0 ist

$$u(x,t) = \frac{1}{2cr} \int_{r-ct}^{r+ct} s U_1(s) ds.$$

Sie dürfen hier zur Vereinfachung annehmen, dass auch $x \mapsto u(x,t)$ radialsymmetrisch ist (Invarianz von \square unter räumlichen Drehungen), und somit im Fall r > 0 z.B. $x = re_3$ ansetzen.