Blatt 9

- 49 (a) Berechnen Sie die Kurvenintegrale $\int_{\alpha_j} v \cdot ds$ (j = 1, 2) für das Vektorfeld $v(x, y) = (x^2, xy)$ auf \mathbb{R}^2 , wobei α_1 die Strecke von (0, 0) nach (1, 1) bezeichnet und α_2 der Streckenzug von (0, 0) über (1, 0) nach (1, 1) ist.
- (b) Berechnen Sie für das Vektorfeld $v(x, y, z) = \frac{1}{x^2 + y^2}(-y, x, 0)$ auf $\mathbb{R}^3 \setminus \{(0, 0, z) \mid z \in \mathbb{R}\}$ das Kurvenintegral über einen Kreis in der (x, y)-Ebene vom Radius r > 0 um den Ursprung. (Qualitativ ist v das Magnetfeld eines konstanten Stromflusses entlang der z-Achse.)
- 50 Sektorformel von Leibniz: Sei $0 \le \varphi_1 < \varphi_2 \le 2\pi$ und $r: [\varphi_1, \varphi_2] \to]0, \infty[$ stetig differenzierbar. Machen Sie (am einfachsten zunächst für $\varphi_2 \le \pi/2$) eine qualitative Skizze des Bildes der Kurve $\alpha: [\varphi_1, \varphi_2] \to \mathbb{R}^2$ mit $\alpha(t) = r(\varphi)(\cos \varphi, \sin \varphi)$ im \mathbb{R}^2 . Betrachten Sie nun das Flächenstück K, das durch die beiden Strecken jeweils vom Ursprung zu den Punkten $\alpha(\varphi_1)$ und $\alpha(\varphi_2)$ sowie durch das Kurvenbild begrenzt wird.
- (a) Berechnen Sie den Flächeninhalt von K mittels Polarkoordinaten.
- (b) Berechnen Sie das Kurvenintegral von v(x,y) = (-y,x) längs α .
- 51 Sind die in Aufgabe 49 behandelten Vektorfelder konservativ? Erfüllen sie die Integrabilitätsbedingungen? Besitzen diese Vektorfelder auf gewissen Teilgebieten ein Potential?
- 52 Ist das Vektorfeld $v(x, y, z) = (2xy, x^2 + 2yz, y^2 + 1)$ auf \mathbb{R}^3 konservativ? Besitzt es ein Potential und wie sieht gegebenfalls so eines explizit aus? Berechnen Sie das Kurvenintegral von v entlang einer stückweise glatten Kurve α vom Ursprung zum Punkt (1, 1, 1).
- **53** Exakte Differentialgleichungen: Seien $f, g: \Omega \to \mathbb{R}$ zwei C^1 -Funktionen auf einem Gebiet $\Omega \subseteq \mathbb{R}^2$, wobei $g(x,y) \neq 0$ für alle $(x,y) \in \Omega$ gelte. Zeigen Sie: Wenn das Vektorfeld v := (f,g) ein Potential U besitzt, dann ist für jedes $(x_0,y_0) \in \Omega$ das Anfangswertproblem

$$f(x,y) + g(x,y)y' = 0, \quad y(x_0) = y_0$$

lokal eindeutig lösbar und y ist implizit gegeben durch die Gleichung $U(x,y) = U(x_0,y_0)$.

54 Kann das Resultat der vorigen Aufgabe auf das folgende Anfangswertproblem angewendet werden? Wenn ja, dann versuchen Sie die Lösung mit dieser Methode zu bestimmen:

$$12xy + 3 + 6x^2y' = 0, \quad y(1) = 1.$$