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Preface

This course is chronologically a direct follow-up of my course [Hoe23] on advanced functional
analysis, although the larger part of its content could be successfully studied already with
basic knowledge from bachelor level courses1 on functional analysis and topology. Overall
however, the ideal prerequisites would probably be to be familiar with the key concepts of
Chapters I-VII in [Con10].

I am very thankful to the students following the lecture course and to the readers of these
notes whose questions and comments are a considerable help in catching flaws and improving
the presentation.

Günther Hörmann

1Sources on such [in German] are, e.g., http://www.mat.univie.ac.at/˜gue/lehre/21fa/Funktionalanalysis.pdf
and http://www.mat.univie.ac.at/˜gue/lehre/2021gbtop/GBTopologie.pdf
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Basic notation

A, B . . . complex Banach algebras or C∗-algebras

A, B, C . . . elements of a complex Banach algebra or of a C∗-algebra

B(H) . . . bounded linear operators on the complex Hilbert space H

E# . . . dual space of the normed vector space E (bounded linear functionals on E)

H . . . a complex Hilbert space with inner product 〈.|.〉, conjugate-linear in the first slot

M′ = {B ∈ B | ∀M ∈M : BM = MB} . . . the commutant of M in the complex algebra B

N = {1, 2, 3, . . .}, N0 = {0, 1, 2, 3, . . .}

res(A) . . . resolvent set of A (relative a unital algebra A, res(A) = {λ ∈ C | ∃(A− λ)−1 ∈ A})

spanZ . . . linear span (or hull) of the subset Z in a vector space

sp(A) . . . spectrum of A (relative a unital algebra A, sp(A) = C \ res(A))
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0. Review of Banach algebras

3 Our main sources for this chapter are [Con10, KRI, Mur90]; see [All11, PI] for more background material.

The default scalar field throughout this course will be C. We will typically speak simply
of vector spaces or algebras or linear maps with the understanding that these are complex
(linear). If in a particular circumstance the scalar field should be considered to be R instead,
then we will say so.

0.1. Algebraic notions: Recall that a (complex) algebra is a C-vector space A with a
multiplication map A×A→ A, (A,B) 7→ AB that is associative and bilinear. A subalgebra of
A is a vector subspace B of A such that AB ∈ B for all A,B ∈ B. In this case, multiplication
may be restricted to B and turns B itself into an algebra.

An algebra A is said to be commutative or abelian, if AB = BA holds for all A,B ∈ A.
Certainly in general, an algebra A is not abelian and the following concept is nontrivial: If M
is a subset of A, we denote by

M′ := {A ∈ A | ∀M ∈M : AM = MA}

the commutant of M within A and observe that M′ is a subalgebra of A. We may define
the double commutant of M by M′′ := (M′)′, and similarly, M′′′ := (M′′)′. We clearly have
M ⊆ M′′ and it is easily seen that M ⊆ N ⊆ A always implies N′ ⊆ M′. Hence we obtain
M′′′ = M′, since M′ ⊆ (M′)′′ = M′′′ and M ⊆M′′ implies also M′′′ ⊆M′.

A left ideal in an algebra A is a vector subspace J ⊆ A such that A ∈ A and B ∈ J implies
AB ∈ J. The notion of right ideal is defined similarly by requiring BA ∈ J in the same
situation. If J is simultaneously a left and a right ideal in A, then we call J an ideal (or
two-sided ideal).

A unit of A is an element I ∈ A, I 6= 0, such that AI = IA = A holds for all A ∈ A. Such
element, if it exists, is unique and A is then said to be a unital algebra. Note that by our
convention, A 6= {0} for a unital algebra and we always have the one-dimensional subalgebra
CI := {λI | λ ∈ C} with maximal commutant (CI)′ = A. If a left or right ideal J in A

contains the unit I of A, then necessarily J = A.

A homomorphism between complex algebras A and B is a C-linear map ϕ : A→ B that is also
multiplicative, i.e., ϕ(AB) = ϕ(A)ϕ(B) for all A,B ∈ A. Its kernel kerϕ = {A ∈ A | ϕ(A) =
0} is an ideal in A and its image ranϕ = ϕ(A) is a subalgebra of B. A bijective homomorphism
is called an isomorphism. A homomorphism ϕ : A→ B between unital algebras A and B is
called unital, if1 ϕ(I) = I.

1We follow the conventional abuse of notation by having the same symbol I for the units in both algebras.
Note that the relation ϕ(I) = I is not implied by the general properties of a homomorphism.
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If A is a unital algebra, then we have a natural injective unital homomorphism C→ A, λ 7→ λI,
whose range is CI. In particular, as algebras C and CI are isomorphic.

0.2. Banach algebras: An algebra A that is also a normed vector space with the norm ‖.‖
satisfying submultiplicativity, i.e.,

∀A,B ∈ A : ‖AB‖ ≤ ‖A‖‖B‖,

is called a normed algebra. If, in addition, A is complete with respect to this norm, then A is
said to be a Banach algebra. In case A is a unital algebra, we will also require ‖I‖ = 1 to call
it a unital normed or Banach algebra.

Remark: (i) Note that ‖I‖ ≥ 1 would follow from submultiplicativity in any case for a normed algebra A with
unit (thus A 6= {0}) from the existence of some A ∈ A with ‖A‖ > 0, since ‖A‖ = ‖IA‖ ≤ ‖I‖‖A‖. It is shown
in [KRI, Section 3.1] that in any case A is isomorphic and homeomorphic to a normed unital algebra where the
unit has norm 1. (See also [PI, Proposition 1.1.9].)
(ii) As discussed in [KRI, Section 3.1], the above conditions for the norm in a unital Banach algebra are always
satisfied by some equivalent norm upon requiring only that multiplication is separately continuous on the
Banach space A. (See also [PI, Proposition 1.1.9].)

We immediately obtain that multiplication in a normed algebra is jointly continuous, since the
condition ‖A−A0‖ ≤ 1 already implies

‖AB −A0B0‖ = ‖A(B −B0) + (A−A0)B0‖ ≤ ‖A‖‖B −B0‖+ ‖A−A0‖‖B0‖
≤ (‖A0‖+ 1)‖B −B0‖+ ‖B0‖‖A−A0‖.

We proceed now by assuming that A is a unital Banach algebra, so that it does make sense to
investigate invertibility and related concepts. Recall first that, for any A ∈ A with ‖A‖ < 1,
the partial sums ∑n

k=0A
k of the Neumann series converge2 as n→∞ and the limit gives the

inverse of I −A, i.e.
∞∑
k=0

Ak = (I −A)−1.

In fact, we may deduce that the set G of invertible elements in A is open and the map B 7→ B−1

is continuous on G: Suppose A0 ∈ G and A ∈ A satisfies ‖A − A0‖ < 1/(2‖A−1
0 ‖), then

‖I−A−1
0 A‖ = ‖A−1

0 (A0−A)‖ ≤ ‖A−1
0 ‖‖A0−A‖ < 1/2 holds, so that I− (I−A−1

0 A) = A−1
0 A

is invertible by the above, hence A is invertible; moreover, we may now estimate

‖A−1 −A−1
0 ‖ = ‖(A−1A0 − I)A−1

0 ‖ ≤ ‖A
−1A0 − I‖‖A−1

0 ‖ = ‖(A−1
0 A)−1 − I‖‖A−1

0 ‖

≤
( ∞∑
k=1
‖I −A−1

0 A‖k
)
‖A−1

0 ‖ = ‖I −A−1
0 A‖

( ∞∑
l=0
‖I −A−1

0 A‖l
)
‖A−1

0 ‖

= ‖I −A
−1
0 A‖‖A−1

0 ‖
1− ‖I −A−1

0 A‖
≤ 2‖I−A−1

0 A‖‖A−1
0 ‖ ≤ 2‖A−1

0 ‖‖A0−A‖‖A−1
0 ‖ = 2‖A−1

0 ‖
2‖A−A0‖.

2Based on the geometric series
∑∞

k=0 ‖A‖
k and the completeness of A.
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0.3. Examples: 1) For any complex or real Banach space E 6= {0}, the set B(E) of bounded
linear maps E→ E equipped with the operator norm and multiplication defined by composition
is a complex or real Banach algebra with the identity map I := idE as unit. In the finite
dimensional special case E = Cn or E = Rn and upon choosing a basis in E, we may identify
B(E) with the algebra M(n,C) or M(n,R) of complex or real (n×n)-matrices. These algebras
are non-commutative unless dimE = 1.

2) Any norm closed subalgebra of B(E) as in 1) is a Banach algebra (possibly without unit).
If E is infinite dimensional, then the set C(E) of compact operators on E is a nontrivial closed
ideal in B(E), hence also a closed subalgebra, i.e., C(E) is a Banach algebra without unit in
that case.

3) Let X be a locally compact Hausdorff space and equip the space of continuous functions
vanishing at infinity,

C0(X) = {f : X → C continuous | ∀ε > 0 ∃K ⊆ X compact : |f(x)| < ε for x ∈ X \K},

with the supremum norm ‖.‖∞. Consider the usual pointwise multiplication of functions
in C0(X), then we obtain a commutative Banach algebra. In case X is compact we have
C0(X) = C(X) and the Banach algebra has a unit, namely the constant function 1.

4) Let (Ω, µ) be a measure space and consider the Banach space L∞(Ω, µ) of (classes of)
essentially bounded µ-measurable complex functions on Ω equipped with the essential supre-
mum norm ‖.‖∞. Again with the pointwise defined multiplication of functions we obtain a
commutative Banach algebra with unit 1.

5) As a special case of 4) consider Ω = N with the counting measure, then we obtain the
space l∞ of bounded complex sequences. The subspace c of convergent sequences is a closed
subalgebra and is a Banach algebra with unit 1, while the subspace c0 of sequences converging
to 0 is a closed ideal in l∞, hence c0 is another example of a Banach algebra without unit.

6) Consider the Banachspace l1(Z) (as a special case of L1(Ω, µ) with Ω = Z and µ the counting measure)
with the convolution f ∗ g as multiplication of elements f, g ∈ l1(Z). Recall that we have

∀m ∈ Z : (f ∗ g)(m) :=
∑
k∈Z

f(k)g(m− k) and ‖f ∗ g‖1 ≤ ‖f‖1‖g‖1.

Furthermore, convolution is associative and g ∗ f = f ∗ g holds. We obtain a commutative
Banach algebra that possesses the function e0(m) := δ0,m as a unit.

7) We also have the convolution algebra L1(R), where

(f ∗ g)(s) :=
∫
R

f(t)g(s− t) dt (f, g ∈ L1(R), s ∈ R)

defines an associative and commutative multiplication such that ‖f ∗ g‖1 ≤ ‖f‖1‖g‖1. Thus
we obtain a commutative Banach algebra. It does not have a unit. (Observe that e ∗ g = g implies∫
e(t)g(t) dt = g(0) for every test function g, which is known to be impossible with e ∈ L1

loc(R).)

0.4. Adjoining a unit: In case a normed algebra A does not possess a unit, one can embed
it as a closed subalgebra into a unital normed algebra A1. Indeed, equip the vector space
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A1 := A × C with the norm ‖(A, λ)‖1 := ‖A‖ + |λ|. We define a multiplication on A1 by
(A, λ) · (B,µ) := (AB+λB+µA, λµ) and observe that I := (0, 1) is a unit. It is easily checked
that we thereby obtain a normed algebra, which is complete if A is. If A is commutative, so is
A1. The map A 7→ (A, 0) gives an injective and isometric homomorphism A→ A1.

One main purpose of the construction is to allow the extension of the notion of spectrum even
to non-unital Banach algebras. However, on the one hand, adjoining a unit might occasionally
be somewhat unnatural (e.g., in the case of group algebras such as L1(R), or L1(G) for any
locally compact abelian group G) and one may instead work with so-called approximate units;
on the other hand, the relevant C∗-algebras in quantum physics are unital from the outset;
therefore we will not make a lot of use of the above general construction.

0.5. The spectrum: Let A be a unital Banach algebra. For a scalar λ ∈ C we will often
write λ as an abbreviation for λI, in particular, in terms like A− λI for any A ∈ A, which
will then read A− λ.

Let A ∈ A, then the spectrum of A (in A) is defined by

sp(A) := {λ ∈ C | A− λ is not invertible in A}

and its complement in C,

res(A) := C \ sp(A) = {λ ∈ C | ∃(A− λ)−1 ∈ A},

is called the resolvent set of A (in A).

The spectrum of an element A ∈ A is a non-empty compact subset of the closed disk in C
around 0 with radius ‖A‖: First, we observe that for λ ∈ C with |λ| > ‖A‖ (hence λ 6= 0), we
obtain invertibility of A − λ = λ( 1

λA − I) from the Neumann series since ‖ 1
λA‖ < 1; hence

λ 6∈ sp(A).
Second, denote by G ⊂ A the open subset of invertible elements; from continuity of λ 7→ A− λ
and res(A) = {λ ∈ C | A − λ ∈ G} we directly obtain that res(A) is open, hence sp(A) is
closed, thus compact due to the first observation.
Third, the proof of non-emptiness of sp(A) can be based on the weak holomorphy of the
resolvent map R : res(A)→ A, R(λ) := (A− λ)−1, which is easily seen to satisfy

R(λ)R(µ) = R(µ)R(λ) and R(µ)−R(λ) = (µ− λ)R(µ)R(λ) (λ, µ ∈ res(A));

let ρ be a continuous linear functional on A, i.e., ρ belongs to the dual space A# of A (as a
Banach space), then ρ ◦R is holomorphic on res(A), since we may take the limit µ→ λ in the
expression

ρ(R(µ))− ρ(R(λ))
µ− λ

= ρ(R(µ)−R(λ))
µ− λ

= (µ− λ)ρ(R(µ)R(λ))
µ− λ

= ρ(R(µ)R(λ))→ ρ(R(λ)2);

the function ρ ◦R is also bounded, since |λ| → ∞ yields (λ−1A− I)−1 → −I by continuity of
the inverse and this then implies

ρ(R(λ)) = λ−1ρ((λ−1A− I)−1)→ 0;
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if sp(A) were empty, hence res(A) = C, the function ρ ◦ R would be entire and bounded,
hence constant by Liouville’s theorem and therefore equal to 0 by the above limit result; in
particular, we had 0 ∈ res(A) and 0 = ρ(R(0)) = ρ(A−1); since ρ ∈ A# was arbitrary, the
Hahn-Banach theorem would imply A−1 = 0, which is absurd.

We can now directly deduce the following Corollary (Gelfand-Mazur theorem): A complex
unital Banach division algebra (meaning that every nonzero element is invertible) is isomorphic to C.

Proof: If A is a complex Banach division algebra and A ∈ A, then sp(A) 6= ∅, hence there is
some λ ∈ sp(A); hence A− λ is not invertible and must therefore be 0, i.e., A = λI.

Many more properties of the spectrum in the context of general unital Banach algebras can
be derived (see, e.g. [Con10, KRI, Mur90]). For example, upon observing that for A,B ∈ A,
AB − I is invertible if and only if3 BA− I is invertible, it is elementary to show that

sp(AB) \ {0} = sp(BA) \ {0}.

Furthermore, defining p(A) := a0I + a1A + . . . + amA
m for a complex polynomial p(z) =

a0 + a1z + . . .+ amz
m and A ∈ A, it is easily seen that

sp(p(A)) = p(sp(A)).

The second property is the so-called spectral mapping theorem and can be extended to the case
where p is any holomorphic function defined on some open neighborhood of sp(A). Invertibility
of A implies that of A−1, hence none of these have 0 as a spectral value and the relation
(A− λ)−1 = 1

λA
−1( 1

λ −A
−1)−1 proves

sp(A−1) =
{ 1
λ
| λ ∈ sp(A)

}
.

Analytically more involved is a detailed investigation of the spectral radius

r(A) := sup{|λ| | λ ∈ sp(A)}.

We certainly learned above that r(A) ≤ ‖A‖, but it can be shown that, more precisely,

(0.1) r(A) = inf{‖An‖1/n | n ∈ N} = lim
n→∞

‖An‖1/n.

(A sketch of the proof is as follows: If µ ∈ C with |µ| > ‖A‖ ≥ r(A), then we certainly have with z := 1/µ that
(µ−A)−1 = z

∑∞
k=0 A

kzk and this power series can easily be shown to have radius of convergence R = 1/r(A);
therefore, r(A) = 1/R = lim sup ‖Ak‖1/k; if λ ∈ sp(A) then λk ∈ sp(Ak), which implies |λ|k = |λk| ≤ ‖A‖k,
i.e., |λ| ≤ ‖Ak‖1/k for all k ∈ N; we conclude that r(A) ≤ inf{‖Ak‖1/k | k ∈ N} ≤ lim inf ‖Ak‖1/k ≤
lim sup ‖Ak‖1/k = r(A), hence we have equality throughout and r(A) = lim ‖Ak‖1/k.)

0.6. Commutative Banach algebras and the Gelfand transform: We assume here
throughout that A is a unital commutative Banach algebra.

A multiplicative linear functional ρ on A is a homomorphism from A to C. Note that ρ is
non-zero if and only if ρ(I) = 1. (Multiplicativity implies ρ(I) = ρ(I)2 in C, hence we must have either
ρ(I) = 0 or ρ(I) = 1; certainly ρ(I) = 0 implies ρ = 0.)

3Note that (BA− I)−1 = B(AB − I)−1A− I.
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Recall that the weak* topology on the dual E# of a Banach space E is the locally convex
vector space topology defined by the seminorms px (x ∈ E) with px(ψ) = |ψ(x)| for every
ψ ∈ E#. A typical basis of 0-neighborhoods is given by the following family of subsets (with
ε > 0, m ∈ N, and x1, . . . , xm ∈ E):

Uε;x1,...,xm := {ψ ∈ E# | j = 1, . . . ,m : pxj (ψ) < ε}.

In particular, convergence of nets in the weak* topology of E# corresponds exactly to the
pointwise convergence of the linear functionals on E. The Hausdorff separation property for
the weak* topology follows directly from the elementary fact that for any non-zero ψ ∈ E# we
can certainly find some x ∈ E such that px(ψ) = |ψ(x)| 6= 0. By the Banach-Alaoglu theorem,
the (norm) closed unit ball C := {ψ ∈ E# | ‖ψ‖ ≤ 1} in E# is weak* compact.

Proposition: Let X be the set of all non-zero multiplicative linear functionals on the unital
commutative Banach algebra A. Then we have

∀A ∈ A : sp(A) = {ρ(A) | ρ ∈ X}.

Furthermore, X is a subset of the unit sphere in A# and is a weak* compact Hausdorff space.

Sketch of proof: We first note that {ρ(A) | ρ ∈ X} ⊆ sp(A), since A − ρ(A) belongs to the
kernel of ρ, which would contradict the invertibility of A− ρ(A) due to multiplicativity. This
already implies that |ρ(A)| ≤ ‖A‖, which shows that ‖ρ‖ ≤ 1. In addition with ρ(I) = 1
(since ρ 6= 0) we obtain ‖ρ‖ = 1, hence X is a subset of the unit sphere in E#, thus X is also
contained in the weak* compact closed unit ball C of E#.

Since weak* convergence means pointwise convergence, it is clear that a weak* limit of
multiplicative linear functionals is also multiplicative. Therefore, X is a weak* closed subset
of C, hence itself compact. (The Hausdorff property is certainly inherited from the weak* topology.)

It remains to show sp(A) ⊆ {ρ(A) | ρ ∈ X}. Let λ ∈ sp(A), then B := A− λ is not invertible
in A. It suffices to show that for any non-invertible element B ∈ A one can find some ρ ∈ X
such that ρ(B) = 0, because then we would deduce from ρ(A− λ) = 0 that λ = ρ(A) belongs
to the right-hand side of the claimed inclusion relation.

Here, we will quickly borrow some results from basic algebra upon noting that A is a
commutative ring with unit. Recall that an ideal J 6= A in A is called maximal, if J and A are
the only ideals containing J; any ideal I 6= A is contained in some maximal ideal J ⊇ I. If J is
a maximal ideal then the quotient ring A/J is a field. Since in our context of a Banach algebra,
the maximal ideal J is closed ([KRI, Proposition 3.1.8] or [Mur90, Theorem 1.3.1]) and the
quotient A/J is a Banach algebra ([KRI, Proposition 3.1.8] or [Mur90, Theorem 1.1.1]), the
field A/J can only be C due to the Gelfand-Mazur theorem (see the corollary in 0.5).

We finally show: For any non-invertible element B ∈ A there is some ρ ∈ X such that
ρ(B) = 0.

The set I := {BC | C ∈ A} is an ideal in A with I 6∈ I. Let J be a maximal ideal containing
I, then A/J ∼= C. The canonical surjection π : A→ A/J is a ring homomorphism and linear,
hence induces a non-zero multiplicative linear functional ρ on A with ker ρ = J, in particular,
ρ(B) = 0.
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We recall that A is canonically embedded into the bidual A## by assigning to A ∈ A the linear
functional ι(A) : A# → C, ψ 7→ ψ(A), which is obviously weak* continuous. We may thus
define Â as the restriction of ι(A) to X ⊆ A# and obtain a continuous function Â : X → C on
the compact Hausdorff space X. We have thus established the Gelfand transform

(0.2) A→ C(X), A 7→ Â with Â(ρ) = ρ(A) (ρ ∈ X).

Theorem: The Gelfand transform is a continuous unital homomorphism of Banach algebras
with the following properties:

∀A ∈ A : ‖Â‖∞ = r(A) ≤ ‖A‖ and sp(A) = Â(X) = sp(Â).

Proof: Linearity of the Gelfand transform is clear and the multiplicativity follows immediately
from the relation ÂB(ρ) = ρ(AB) = ρ(A)ρ(B) = Â(ρ)B̂(ρ); furthermore, Î(ρ) = ρ(I) = 1. By
the above proposition, sp(A) = Â(X) and therefore also ‖Â‖∞ = r(A) ≤ ‖A‖. The equality
Â(X) = sp(Â) follows from the elementary fact that sp(f) = f(X) for any f ∈ C(X).

Remark: (i) Let Y be a compact Hausdorff space and A = C(Y ). For any y ∈ Y we have the
multiplicative linear functional ρy on A, given by ρy(f) := f(y) for all f ∈ C(Y ). (We see that ρy
corresponds to the Dirac measure concentrated at y.) It can be shown (see, e.g., [Con10, Chapter VII,
Theorem 8.7] or [KRI, Section 3.4]) that these comprise all elements in X, the set of non-zero
multiplicative linear functionals on C(Y ), and that y 7→ ρy gives a homeomorphism Y → X.
In summary, we have in this special case f̂(ρy) = ρy(f) = f(y) for all y ∈ Y , f ∈ C(Y ) and
C(Y ) ∼= C(X).

(ii) One can show ([KRI, Theorem 3.4.3]) that for compact Hausdorff spaces X and Y , the
existence of an algebraic isomorphism between C(X) and C(Y ) is equivalent to the condition
that X and Y are homeomorphic.

A C∗-algebraic variant of the following corollary to the above theorem will re-occur later.
It can be viewed as the abstract background for the continuous functional calculus for a
self-adjoint bounded operator on a Hilbert space.

Corollary: Suppose that A is generated from an element A ∈ A in the sense that the
subalgebra {p(A) | p a polynomial} is dense in A. Then X is homeomorphic to sp(A). In
particular, we may interpret the Gelfand transform as a homomorphism A→ C(sp(A)).

Proof: Let the map h : X → sp(A) be defined by h(ρ) := ρ(A). Then h is weak* continuous
on X and by the above theorem, h(X) = Â(X) = sp(A), hence h is surjective. We claim
that h is also injective: h(ρ1) = h(ρ2) means ρ1(A) = ρ2(A) and multiplicativity and linearity
then yields that ρ1(p(A)) = ρ2(p(A)) for every polynomial p. The continuity of ρ1 and ρ2
then implies ρ1 = ρ2. We obtained that h is a continuous bijective map between the compact
Hausdorff spaces X and sp(A). Therefore, h is a homeomorphism.

As we will show later in the course, for a unital commutative C∗-algebra A the Gelfand
transform is always an isometric isomorphism onto C(X). This is not true in general for
unital commutative Banach algebras. For example, let D denote the closed unit disk in C and
A(D) be the closed subalgebra of C(D) consisting of all functions that are holomorphic in the
interior of D. Then this unital commutative disk algebra A(D) is generated by the function
idD. It can be shown (e.g., [Mur90, Section 1.3]) that in this case, the Gelfand transform
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is (modulo the homeomorphism X → sp(idD)) the identity map A(D) → C(D), hence is
injective but not surjective. An example with a non-injective Gelfand transform can be found
in [Con10, Chapter VII, Example 8.12]. As we can see in the theorem above, the kernel of the
Gelfand transform consists of the elements in A with vanishing spectral radius.

A remark on the non-unital case: If A is a Banach algebra without unit, then we may
still define a notion of spectrum by referring to the Banach algebra A1 constructed in 0.4 by
adjoining a unit. Let γ : A→ A1 denote the isometric embedding A 7→ (A, 0), then we define

sp(A) := sp(γ(A)) = {λ ∈ C | γ(A)− λ is not invertible in A1}.

We automatically have 0 ∈ sp(A), since γ(A)·(B,µ) = (A, 0)·(B,µ) = (AB+µA, 0) 6= (0, 1) = I
for all B ∈ A and µ ∈ C.

The set X of non-zero multiplicative linear functionals on A is then a locally compact Hausdorff
space with respect to the weak* topology as a subset of A# ([Mur90, Theorem 1.3.5]) and

sp(A) = Â(X) ∪ {0}

holds ([Mur90, Theorem 1.3.4]). If X 6= ∅, then the Gelfand transform is a continuous
homomorphism A→ C0(X) satisfying ‖Â‖∞ = r(A) ≤ ‖A‖ for all A ∈ A ([Mur90, Theorem
1.3.6]).
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1. Basic theory of C∗-algebras

3 Our main sources for this chapter are [KRI, Con00, Mur90, BR1]; see [TakI, PII] for more on the background.

1.1. Involution and ∗-homomorphisms: An involution (or sometimes called ∗-structure)
on a complex algebra A is a map A 7→ A∗ from A into A such that for all A,B ∈ A and
α, β ∈ C the following hold:

(i) (αA+ βB)∗ = αA∗ + βB∗ (i.e., A 7→ A∗ is conjugate linear),

(ii) (AB)∗ = B∗A∗,

(iii) (A∗)∗ = A.

An algebra A with an involution is called a ∗-algebra. A subalgebra B ⊆ A that is invariant
under the involution, i.e., B∗ ⊆ B, is said to be a ∗-subalgebra.

In case a ∗-algebra A has a unit I, then I∗A = (I∗A)∗∗ = (A∗I)∗ = (A∗)∗ = A and similarly
AI∗ = A; hence by the uniqueness of the unit we conclude that

I∗ = I.

It follows that for any α ∈ C, writing again α to mean αI, we have α∗ = (αI)∗ = αI = α.

A ∗-homomorphism between ∗-algebras A and B is an algebra homomorphism ϕ : A→ B with
the additional property ϕ(A∗) = ϕ(A)∗ for all A ∈ A.

1.2. Definition: A C∗-algebra is a complex Banach algebra A with an involution such that

∀A ∈ A : ‖A∗A‖ = ‖A‖2.

A C∗-subalgebra of A is a closed ∗-subalgebra and is itself a C∗-algebra.

As a first implication of the above C∗-property we observe in the following statement that the
involution preserves norm, hence is a continuous conjugate linear map.

1.3. Lemma: If A is a C∗-algebra, then the involution is an isometry,

∀A ∈ A : ‖A∗‖ = ‖A‖.

Furthermore, also ‖AA∗‖ = ‖A‖2 holds in general.

Proof: It suffices to consider A 6= 0. Then A∗ 6= 0, for otherwise ‖A‖2 = ‖A∗A‖ = ‖0‖ = 0.
We have ‖A‖2 = ‖A∗A‖ ≤ ‖A∗‖‖A‖, hence ‖A‖ ≤ ‖A∗‖; using A∗∗ = A, we also have
‖A∗‖2 = ‖A∗∗A∗‖ = ‖AA∗‖ ≤ ‖A‖‖A∗‖, hence also ‖A∗‖ ≤ ‖A‖. In summary, ‖A∗‖ = ‖A‖.

Finally, ‖AA∗‖ = ‖A∗∗A∗‖ = ‖A∗‖2 = ‖A‖2.
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1.4. Examples: 1) Let H 6= {0} be a complex Hilbert space, then B(H) is a Banach algebra
as a special case of Example 0.3, 1). The standard involution on B(H) is given by the definition
of the adjoint operator, where we recall that the C∗-property with respect to the operator
norm can be verified in the following way: For any x ∈ H,

‖Ax‖2 = 〈Ax|Ax〉 = 〈A∗Ax|x〉 ≤ ‖A∗A‖‖x‖2,

which implies ‖A‖2 ≤ ‖A∗A‖ ≤ ‖A∗‖‖A‖ and ‖A‖ ≤ ‖A∗‖. Replacing A by A∗ and using
A∗∗ = A we obtain also ‖A∗‖ ≤ ‖A‖. This now yields ‖A∗‖ = ‖A‖ and then ‖A‖2 ≤ ‖A∗A‖ ≤
‖A∗‖‖A‖ = ‖A‖2, so that also ‖A‖2 = ‖A∗A‖ follows.

We conclude that B(H) is a unital C∗-algebra. Since the adjoint of a compact operator is
compact, we obtain C(H) as a (non-unital) C∗-subalgebra of B(H).

2) For any compact Hausdorff space X, we have the unital Banach algebra C(X) with the
supremum norm ‖.‖∞ from Example 0.3, 3). In this case, pointwise complex conjugation,
f̄(x) := f(x) (f ∈ C(X), x ∈ X), defines an involution f 7→ f̄ on C(X) and we obtain an
example of a unital commutative C∗-algebra.

3) Similarly, L∞(Ω, µ) from 0.3, 4), and l∞ from 0.3, 5), become unital commutative C∗-
algebras.

4) The commutative convolution Banach algebras L1(R) and l1(Z) in the Examples 0.3,
6) and 7), are not C∗-algebras, although f∗(s) := f(−s) defines an involution in both
cases that even satisfies ‖f∗‖1 = ‖f‖1. Banach algebras with an isometric involution are
sometimes called Banach ∗-algebras. (For a concrete example violating the C∗-property in l1(Z) consider
f(m) := δ−1,m + δ0,m − δ1,m; then ‖f‖1 = 3 and ‖f∗ ∗ f‖1 = 5. For a general reason why L1(G), G a locally
compact abelian group, is almost never a C∗-algebra see [Dix82, 13.3.6].)

1.5. Remark (adjoining a unit to a C∗-algebra): If A is a C∗-algebra without unit, we
may algebraically adjoin a unit exactly as in 0.4 by considering A1 := A× C and extend the
involution by (A, λ)∗ := (A∗, λ). Although the norm given in 0.4 provides us then with the
structure of a Banach ∗-algebra, it fails to produce a C∗-algebra. The remedy is to use instead
the norm

‖(A, λ)‖0 := sup{‖λB +AB‖ | B ∈ A, ‖B‖ = 1},

which can be shown to have all the required properties ([BR1, Proposition 2.1.5]). This norm
is derived from the operator norm of λI + LA ∈ B(A), where LA denotes left multiplication
by A, i.e., LAB := AB, and is the unique C∗-norm on A1 extending the norm on A ([Mur90,
Theorem 2.1.6]).

Starting from here we will be using the following two “default specifications”:
1) A C∗-algebra A has a unit I,
2) a ∗-homomorphism ϕ : A→ B between C∗-algebras A and B is unital, i.e., ϕ(I) = I.
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We will now extend a few well-known notions from the special case A = B(H) of bounded
operators on a Hilbert space to the abstract C∗-algebra setting.

1.6. Definition: Let A be a C∗-algebra and A ∈ A. We refer to A∗ ∈ A as the adjoint of A.

(i) A is self-adjoint (or hermitian), if A∗ = A.

(ii) A is normal, if A commutes with A∗, i.e., A∗A = AA∗.

(iii) A is unitary, if A∗ is the inverse of A, i.e., A∗A = AA∗ = I.

Clearly, a self-adjoint or unitary element is normal. The unit is unitary and self-adjoint.

The unitary elements of A form a multiplicative group. The set of self-adjoint elements in A

is a real vector space. A subset B of A is said to be self-adjoint, if it is invariant under the
involution. Thus, a self-adjoint subalgebra is a ∗-subalgebra. By continuity of the involution,
the closure of a ∗-subalgebra is a ∗-subalgebra, hence a C∗-subalgebra.

Every element A ∈ A has a unique representation in the form A = H1 + iH2 with self-adjoint
elements H1, H2 ∈ A, namely

A = 1
2(A+A∗) + i

1
2i(A−A

∗).

Thus, we may call H1 = (A+A∗)/2 the real part of A and H2 = (A−A∗)/2i the imaginary
part of A. We see that A is normal if and only if H1 and H2 commute.

An element A is invertible if and only if A∗ is invertible; in this case, (A∗)−1 = (A−1)∗. Noting
that (A− λ)∗ = A∗ − λ we obtain

sp(A∗) = {λ | λ ∈ sp(A)} and r(A∗) = r(A).

1.7. Proposition: Let A be a C∗-algebra and U,A ∈ A.

(i) If U is unitary, then ‖U‖ = 1 and sp(U) ⊆ S1 := {µ ∈ C | |µ| = 1}.

(ii) If A is self-adjoint, then r(A) = ‖A‖ and we have sp(A) ⊆ R. In particular, −‖A‖ or ‖A‖
belongs to sp(A).

(iii) If A is normal, then r(A) = ‖A‖.

Proof: (i) From the C∗-property, ‖U‖2 = ‖U∗U‖ = ‖I‖ = 1, hence ‖U‖ = 1 and therefore
r(U) ≤ 1. Note that 0 6∈ sp(U), since U is invertible.

Let µ ∈ sp(U). Recall that µ ∈ sp(U∗) = sp(U−1), hence also 1
µ ∈ sp(U) (thanks to what we

observed in 0.5) and therefore,

|µ| ≤ r(U) ≤ 1 and 1
|µ|
≤ r(U) ≤ 1,

which can only hold if |µ| = 1.
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(ii) Let n ∈ N, then ‖A2n‖ = ‖(An)∗An‖ = ‖An‖2 and inductively, ‖A2m‖ = ‖A‖2m for every
m ∈ N, so that (0.1) yields

r(A) = lim
k→∞

‖Ak‖1/k = lim
m→∞

‖A2m‖1/2m = ‖A‖.

Since sp(A) is compact it hence follows from the definition of the spectral radius that there is
some λ ∈ sp(A) with |λ| = r(A) = ‖A‖. It remains to show that the spectrum is real.

Define U := exp(iA) := ∑∞
k=0(iA)k/k! (using the absolute convergence of the series) and note1

that U∗ = exp(−iA) = U−1, hence U is unitary. Let λ ∈ C, then direct calculation shows
U − eiλ = eiλ(A − λ)∑∞n=1 i

n(A − λ)n−1/n!, where all factors commute. If λ ∈ sp(A), the
non-invertibility of A− λ thus implies that of U − eiλ and we obtain eiλ ∈ S1 from (i), which
forces λ ∈ R.

(iii) We have ‖A2‖2 = ‖(A2)∗(A2)‖ = ‖A∗A∗AA‖ = ‖A∗AA∗A‖ = ‖(A∗A)2‖ = ‖A∗A‖2 =
(‖A‖2)2, where in the next to last equality we used that A∗A is self-adjoint. Hence ‖A2‖ = ‖A‖2
and we may proceed exactly as in the first part of the proof of (ii), since An is normal.

1.8. Positive elements and partial ordering: We define an element A of the C∗-algebra
to be positive and write A ≥ 0, if there is some self-adjoint C ∈ A such that A = C2. Note
that a positive element is automatically self-adjoint. We define a relation on the real vector
subspace of self-adjoint elements in A by writing A ≤ B, if B −A ≥ 0, i.e., B −A is positive.
It will follow from the results we will establish in 2.11 that this is a partial ordering.

Examples: 1) Let A = B(H) and A be positive in the above sense. There is some self-adjoint
C ∈ B(H) such that A = C2. Let x ∈ H be arbitrary, then

〈x|Ax〉 = 〈x|C2x〉 = 〈Cx|Cx〉 = ‖Cx‖2 ≥ 0

and therefore, A is positive in the sense of operators. Using the construction of a square root
as given in [Hoe23, Corollary 1.4 and Example 1.20] (and being independent of the C∗-algebraic
arguments to follow below), it is easy to see that positivity in the operator sense implies positivity
according to the C∗-algebraic definition (cf. also [KRI, Theorem 4.2.6(iv)]).

2) Let A = C(X), where X is a compact Hausdorff space. Note that self-adjointness of
f ∈ C(X) means that f is real-valued. Suppose f = g2 with some real-valued g ∈ C(X), then
f(x) = g(x)2 ≥ 0 for every x ∈ X. Conversely, if f is non-negative in the pointwise sense
of continuous functions, then we may define g(x) :=

√
f(x) (x ∈ X) to obtain a continuous

real-valued function on X satisfying f = g2. We conclude that in C(X) positivity in the
C∗-algebraic sense means pointwise non-negativity as a function.

From Proposition 1.7(ii) and the elementary spectral mapping theorem in 0.5 for the polynomial
p(z) = z2, we obtain that the spectrum of a positive element A is contained in the non-negative
real numbers: Let C be self-adjoint such that A = C2, then

sp(A) = sp(C2) = {λ2 | λ ∈ sp(C)} ⊆ {λ2 | −‖C‖ ≤ λ ≤ ‖C‖2} ⊆ [0, ‖C‖2].
1reasoning like U∗ = (limm→∞

∑m

k=0(iA)k/k!)∗ = limm→∞(
∑m

k=0(iA)k/k!)∗ = limm→∞
∑m

k=0((iA)∗)k/k!
and exp(iA) exp(−iA) = . . . =

∑∞
n=0

1
n!
∑n

l=0

(
n
l

)
(iA)l(−iA)n−l =

∑∞
n=0

1
n! (iA− iA)n = I etc
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This observation suggests condition (ii) in the following theorem (and shows (i) ⇒ (ii)), while (iii)
is a trivial consequence of (i). A complete proof will be given in the next chapter (see 2.11)
once the continuous functional calculus is available.

Theorem: If A is self-adjoint2 in the C∗-algebra A, then following conditions are equivalent:

(i) A ≥ 0, i.e., there is some self-adjoint C ∈ A such that A = C2,

(ii) sp(A) ⊆ [0,∞[,

(iii) there is some C ∈ A such that A = C∗C.

Corollary: Let A,B ∈ A be self-adjoint and C ∈ A be arbitrary.

(i) A ≤ B implies C∗AC ≤ C∗BC,

(ii) −‖A‖ ≤ A ≤ ‖A‖,

(iii) 0 ≤ C∗C ≤ ‖C‖2,

(iv) if A is invertible and positive, then A−1 is positive.

Proof: (i) Suppose B − A = D∗D with D ∈ A, then C∗BC − C∗AC = C∗(B − A)C =
C∗D∗DC = (DC)∗(DC), so that (iii) in the above theorem shows that C∗BC − C∗AC is
positive.

(ii) Considering the polynomials p±(z) = ‖A‖±z and recalling sp(A) ⊆ [−‖A‖, ‖A‖] we obtain
sp(‖A‖ ±A) = {‖A‖ ± λ | λ ∈ sp(A)} ⊆ [0,∞[ and may appeal to (ii) in the above theorem.

(iii) By the above theorem, C∗C ≥ 0. Since C∗C is self-adjoint, we deduce from (ii) also that
C∗C ≤ ‖C∗C‖ = ‖C‖2.

(iv) Clearly, A−1 is self-adjoint and sp(A−1) = {1/λ | λ ∈ sp(A)} ⊆ ]0,∞[, so the claim follows
again by (ii) in the above theorem.

Remark: While it is clear that the positive multiple of a positive element in an abstract
C∗-algebra is positive, two other statements about positivity are less obvious and will be
proved only later in 2.11: First, for positive A,B we always have that A + B is positive.
Second, −C∗C positive implies C = 0. Both are deceivingly easy to show in case A,B,C are
operators on a Hilbert space H, since

〈x|(A+B)x〉 = 〈x|Ax〉+ 〈x|Bx〉 ≥ 0 and 0 ≤ −〈x|C∗Cx〉 = −〈Cx|Cx〉 = −‖Cx‖2.

We will now show automatic continuity of ∗-homomorphims between C∗-algebras.

1.9. Theorem: Let ϕ : A→ B be a ∗-homomorphism of C∗-algebras, then sp(ϕ(A)) ⊆ sp(A)
and ‖ϕ(A)‖ ≤ ‖A‖ for every A ∈ A. If ϕ is a ∗-isomorphism3, then ϕ is isometric and
sp(ϕ(A)) = sp(A).

2Without the assumption self-adjointness, (ii) is weaker than (i) or (iii): Consider A = ( 0 1
0 0 ) ∈M(2,C), then

sp(A) = {0} ⊆ [0,∞[ and 〈x|Ax〉 = −1 < 0 for x = (1,−1).
3Unfortunately, in some of the literature (e.g., [KRI, KRII]), the term ∗-isomorphism requires only injectivity
and does not refer to bijections in general.
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Proof: If λ ∈ C and A−λ is invertible (in A) then clearly ϕ(A)−λ = ϕ(A−λ) is invertible (in
B), hence sp(ϕ(A)) ⊆ sp(A). Since A∗A (and therefore also ϕ(A∗A)) is self-adjoint, we have
from Proposition 1.7(ii), ‖ϕ(A)‖2 = ‖ϕ(A)∗ϕ(A)‖ = ‖ϕ(A∗A)‖ = r(ϕ(A∗A)) ≤ r(A∗A) =
‖A∗A‖ = ‖A‖2.

In case ϕ is a ∗-isomorphism, then ϕ−1 is one too, hence also ‖A‖ = ‖ϕ−1(ϕ(A))‖ ≤ ‖ϕ(A)‖
and sp(A) = sp(ϕ−1(ϕ(A))) ⊆ sp(ϕ(A)).

1.10. Positive linear functionals: Let A be a C∗-algebra. A linear functional ρ on A is
said to be hermitian if ρ(A∗) = ρ(A) holds for every A ∈ A. Upon writing A = H1 + iH2 with
real part H1 and imaginary part H2 we see that ρ is hermitian if and only if ρ(A) is real for
each self-adjoint A ∈ A.

Lemma: If ρ is a bounded hermitian linear functional on A, then

‖ρ‖ = sup{ρ(H) | H ∈ A self-adjoint and ‖H‖ ≤ 1}.

Proof: It is evident that the right-hand side is a lower bound for ‖ρ‖, thus it remains to
show that for every ε > 0 we can find some self-adjoint H0 ∈ A with ‖H0‖ ≤ 1 such that
ρ(H0) > ‖ρ‖ − ε.

There is some A ∈ A with ‖A‖ ≤ 1 such that |ρ(A)| > ‖ρ‖ − ε. Choose α ∈ C, |α| = 1, such
that |ρ(A)| = αρ(A) = ρ(αA) and let H0 be the real part of αA, i.e., H0 = (αA+ (αA)∗)/2.
We have ‖H0‖ ≤ ‖αA‖ = ‖A‖ ≤ 1 and

ρ(H0) = 1
2(ρ(αA) + ρ((αA)∗)) = 1

2(ρ(αA) + ρ(αA)) = |ρ(A)| > ‖ρ‖ − ε.

We saw that for a bounded hermitian linear functional, the norm is the same as that for the
restriction to the real vector subspace of self-adjoint elements.

Definition: A linear functional ρ on A is said to be positive if ρ(A) ≥ 0 for all positive
elements A ∈ A. If, in addition, ρ(I) = 1, then ρ is called a state.

A positive linear functional is hermitian: Let A be self-adjoint, then ‖A‖ ± A ≥ 0 so that
ρ(‖A‖±A) ≥ 0 and further ρ(A) = (ρ(‖A‖+A−(‖A‖−A)))/2 = (ρ(‖A‖+A)−ρ(‖A‖−A))/2 ∈
R.

Clearly, for a positive linear functional ρ and A ≤ B we always have ρ(A) ≤ ρ(B).

Examples: (i) Let A be a C∗-subalgebra of B(H) and x ∈ H. The linear functional
ωx(A) := 〈x|Ax〉 (A ∈ A) is positive and ωx(I) = ‖x‖2. Therefore, ωx is a state if and only if
‖x‖ = 1. The states given in this way on a C∗-algebra of operators by unit vectors in H are
called vector states.

(ii) Let A = C(X) with X a compact Hausdorff space, then any (positive) regular Borel
measure µ on X defines a positive linear functional by f 7→

∫
X f dµ. In fact, according to the

Riesz representation theorem, every positive linear functional on C(X) arises in this way. The
states on C(X) correspond to the probability measures on X.

14



Proposition (Cauchy-Schwarz-inequality for a positive linear functional): If ρ is a
positive linear functional on a C∗-algebra A, then we have for any A,B ∈ A,

|ρ(A∗B)|2 ≤ ρ(A∗A)ρ(B∗B).

Proof: The map γ : A×A→ C, (A,B) 7→ ρ(A∗B) is a hermitian sesquilinear form (conjugate-
linear in the first slot) and positive-semidefinite, since γ(A,A) = ρ(A∗A) ≥ 0. Thus, the standard
Cauchy-Schwarz inequality for γ ([Con10, Chapter I, 1.4] or [KRI, Proposition 2.1.1]) implies

|ρ(A∗B)|2 = |γ(A,B)|2 ≤ γ(A,A)γ(B,B) = ρ(A∗A)ρ(B∗B).

Corollary: Let A be a C∗-algebra.

(i) A linear functional ρ on A is positive if and only if ρ is bounded and ‖ρ‖ = ρ(I).

(ii) The set S(A) of states on A is a convex weak* compact subset of the (norm closed) unit
ball of the dual space A#.

Proof: (i) If ρ is positive and A ∈ A, then recalling 0 ≤ A∗A ≤ ‖A‖2 from Corollary 1.8(iii)
the Cauchy-Schwarz inequality gives

|ρ(A)|2 = |ρ(I∗A)|2 ≤ ρ(I)ρ(A∗A) ≤ ρ(I)‖A‖2ρ(I).

Therefore |ρ(A)| ≤ ρ(I)‖A‖, i.e., ρ is bounded and ‖ρ‖ ≤ ρ(I). Since ρ(I) ≤ ‖ρ‖ is obvious,
we have in summary ‖ρ‖ = ρ(I).

Conversely, suppose ρ is a bounded linear functional with ‖ρ‖ = ρ(I). Since the assertion is
trivial for ρ = 0, we may focus on the case ‖ρ‖ 6= 0 and suppose, upon scaling by a positive
number, that ‖ρ‖ = ρ(I) = 1.

Let A ∈ A be positive and ρ(A) = a+ ib with a, b ∈ R. We will show that a ≥ 0 and b = 0.

Since sp(A) ⊆ [0,∞[, there is some ε > 0 such that for all 0 < s < ε we have

sp(I − sA) = {1− sλ | λ ∈ sp(A)} ⊆ [0, 1].

By self-adjointness of I − sA, ‖I − sA‖ = r(I − sA) ≤ 1 and therefore,

1− sa ≤ |1− s(a+ ib)| = |ρ(I − sA)| ≤ ‖ρ‖‖I − sA‖ ≤ 1,

which already implies a ≥ 0. Let At := A− a+ itb (t > 0), then

‖At‖2 = ‖A∗tAt‖ = ‖(A− a− itb)(A− a+ itb)‖ = ‖(A− a)2 + t2b2‖ ≤ ‖(A− a)2‖+ t2b2

and ρ(At) = ρ(A)− a+ itb = a+ ib− a+ itb = i(t+ 1)b. Combining these we find

∀t > 0: (t+ 1)2b2 = |ρ(At)|2 ≤ ‖ρ‖2‖At‖2 ≤ ‖(A− a)2‖+ t2b2,

thus (2t+ 1)b2 ≤ ‖(A− a)2‖, which can only hold for all t > 0, if b = 0.

(ii) We have from (i) that

S(A) = {ρ ∈ A# | ρ(I) = 1 and ρ(A) ≥ 0 for all positive A ∈ A} ⊆ {µ ∈ A# | ‖µ‖ ≤ 1}.
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From this representation of S(A) convexity is obvious. Furthermore, S(A) is weak* closed,
because we recall that weak* convergence means pointwise convergence which preserves both
conditions in the set specification. Since S(A) is a weak* closed subset of the weak* compact
closed unit ball of A# (Banach-Alaoglu theorem), we obtain also weak* compactness of S(A).

Recall that the weak* topology is always Hausdorff, hence we obtain the state space S(A) as a
compact Hausdorff space in a natural way.

1.11. Proposition: Let A be a C∗-algebra, A ∈ A and a ∈ sp(A). Then there is a state
ρ ∈ S(A) such that ρ(A) = a. If A is normal, there is a state ρ ∈ S(A) such that |ρ(A)| = ‖A‖.

Proof: Consider first the case A 6∈ CI. We define a linear functional ρ0 on the subspace
M := span{A, I} by ρ0(αA+ βI) := aα+ β. We have sp(αA+ βI) = {αλ+ β | λ ∈ sp(A)},
hence ρ0(αA+ β) = aα+ β ∈ sp(αA+ βI) implies |ρ0(αA+ β)| ≤ ‖αA+ β‖. Since ρ0(I) = 1
we obtain ‖ρ0‖ = 1. By the Hahn-Banach theorem, there is an extension ρ ∈ A# of ρ0
with ‖ρ‖ = ‖ρ0‖ = 1 = ρ0(I) = ρ(I). By Corollary 1.10, ρ is positive, hence a state with
ρ(A) = ρ0(A) = a. In case A ∈ CI, note that sp(βI) = {β}, define the linear functional
ρ0 : CI → C by ρ0(βI) := β, and use the same kind of extension argument to obtain ρ.

If A is normal, then Proposition 1.7(iii) guarantees that there is some a ∈ sp(A) such that
|a| = ‖A‖. The above construction yields a state ρ with |ρ(A)| = |a| = ‖A‖.

1.12. Pure states: We have seen above that the state space S(A) of a C∗-algebra A is a
convex and weak* compact subset of the dual space A#. Since A 6= {0} (for unital A) we
certainly have that S(A) 6= ∅, hence the Krein-Milman theorem ([Con10, 7.4 in Chapter V] or
[KRI, Theorem 1.4.3] or [Hoe23, 5.11]) asserts that S(A) is the closed convex hull co (P(A))
of the (non-empty) subset P(A) := ex S(A) of extreme points in S(A).

The elements of P(A) are called the pure states onA. Recall that ρ ∈ P(A), if any representation
ρ = cρ1 + (1− c)ρ2 with ρ1, ρ2 ∈ S(A) and 0 < c < 1 forces ρ1 = ρ2 = ρ.

Lemma: Let ρ be a state on the C∗-algebra A. Then ρ is a pure state, i.e., ρ ∈ P(A), if and
only if for every positive linear functional µ on A with µ ≤ ρ, meaning µ(A) ≤ ρ(A) whenever
A ≥ 0, there is some number t ∈ [0, 1] such that µ = tρ.

Proof: : Let ρ be pure and 0 ≤ µ ≤ ρ. We have 0 ≤ µ(I) ≤ ρ(I) = 1.

If µ(I) = 0, then µ = 0 (hence t := 0 works) since for every self-adjoint A ∈ A, −‖A‖ ≤ A ≤
‖A‖ implies 0 = −‖A‖µ(I) ≤ µ(A) ≤ ‖A‖µ(I) = 0, hence µ(A) = 0 and µ(B) = 0 for any
B ∈ A follows upon decomposition into real and imaginary parts.

If µ(I) = 1, then similarly, ρ− µ = 0 and we may put t := 1.

Suppose then that 0 < µ(I) < 1. Put t := µ(I) and define states ρ1 := (ρ− µ)/(1− t) and
ρ2 := µ/t. Then (1− t)ρ1 + tρ2 = ρ. Since ρ is pure, we must have ρ2 = ρ, i.e., µ = tρ.

Conversely, suppose ρ satisfies the second condition in the hypothesis and let 0 < c < 1 and
ρ1, ρ2 ∈ S(A) be such that ρ = cρ1 + (1− c)ρ2. We have cρ1 ≤ ρ, so that cρ1 = tρ for some
t ∈ [0, 1]. Since ρ1(I) = 1 = ρ(I), we must have c = t and thus ρ1 = ρ. In the same way we
obtain ρ2 = ρ. Therefore, ρ is pure.
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Examples: 1) On A = C(X), X a compact Hausdorff space, every Dirac measure δx0 (x0 ∈ X)
defines a pure state ρx0 with ρx0(f) := f(x0) (f ∈ C(X)). Indeed, suppose µ is a regular
positive Borel measure on X such that

∫
f dµ ≤ ρx0(f) = f(x0) holds for every f ∈ C(X)

with f ≥ 0. Then µ must be concentrated on the singleton set {x0}, since it follows that∫
f dµ = 0 whenever f(x0) = 0. Therefore,

∫
f dµ = f(x0)µ({x0}) = µ({x0})ρx0(f), i.e., the

positive functional corresponding to µ equals tρx0 with t := µ({x0}). The previous lemma
implies that ρx0 is pure.

We note that ρx0 is a ∗-homomorphism C(X)→ C, since ρx0(fg) = f(x0)g(x0) = ρx0(f)ρx0(g)
and ρx0(f̄) = f(x0) = ρx0(f) for all f, g ∈ C(X).

It is true that every pure state on C(X) is given by some Dirac measure concentrated on a
point x0 ∈ X. This can be shown along the standard paths upon proving that the pure states
are exactly the non-zero multiplicative linear functionals (as we will do in Proposition 2.4),
identifying the kernels of the latter with the maximal ideals in C(X), and characterizing the
closed ideals in C(X) by the zero sets of families of functions (combine Corollary 3.4.2 and
Theorem 3.4.7 in [KRI]). But there is also a more direct measure theoretic argument that we
may sketch here: First note that one can show that a regular Borel probability measure µ on
X that takes on only the values 0 and 1 is of the form δx0 with some x0 ∈ X. (A proof of this [in
German] can be found in [Wer18, Beispiel (f) in VIII.4].) Let µ be a probability measure on X that is
different from every δx0 (x0 ∈ X). We may choose a Borel set D ⊆ X such that 0 < µ(D) < 1
and put c := µ(D). Then µ1(E) := µ(E∩D)/c and µ2(E) := µ(E∩(X \D))/(1−c) define two
probability measures with µ1 6= µ2 and µ = cµ1 + (1− c)µ2 is a nontrivial convex combination.
Hence µ is not pure.

2) We will show that every vector state ωx (x ∈ H, ‖x‖ = 1) on A = B(H) is a pure state.
Recall that ωx(A) = 〈x|Ax〉 for all A ∈ B(H). Denote by P the (orthogonal) projection onto
the one-dimensional subspace defined by x, i.e., Py = 〈x|y〉x for all y ∈ H. Note that as
(orthogonal) projections both P as well as I − P are positive idempotent operators and that
ωx(P ) = 1 while ωx(I−P ) = 0. Furthermore, a direct calculation shows that PBP = 〈x|Bx〉P
holds for all B ∈ B(H).

We will again apply the above lemma to show that ωx is pure, so let us suppose that µ is
a positive linear functional on B(H) with µ ≤ ωx. Then 0 ≤ µ(I − P ) ≤ ωx(I − P ) = 0,
hence µ(I − P ) = 0, or µ(P ) = µ(I). In case µ(I) = 0 we immediately see that µ = 0 (by the
same reasoning as in the beginning of the proof of the above lemma), so it suffices to consider the case
µ(I) > 0.

We put µ1 := µ/µ(I) and obtain µ1(P ) = 1 and µ1(I − P ) = 0. Hence the Cauchy-Schwarz
inequality gives for any C ∈ B(H) that |µ1(C(P − I))|2 ≤ µ1(C∗C)µ1(I − P ) = 0, i.e.,
µ1(C(P − I)) = 0, and similarly, µ1((P − I)C) = 0. Therefore, for arbitrary B ∈ B(H),

µ1(B) = µ1(B) + µ1(B(P − I))︸ ︷︷ ︸
0

+µ1((P − I)BP )︸ ︷︷ ︸
0

= µ1(PBP ) = 〈x|Bx〉µ1(P )︸ ︷︷ ︸
1

= ωx(B),

which implies µ = µ(I)ωx with 0 < µ(I) ≤ 1.

Remark: In the context of this example, let us report that in case H is not finite-dimensional,
there are pure states on B(H) that cannot be vector states. In fact, one can show that
there exist pure states ρ on B(H) that vanish on the subspace of compact operators ([KRII,
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Corollary 10.4.4 and Remark 10.4.5]), which clearly cannot be true if ρ(A) = 〈x|Ax〉 with
‖x‖ = 1. (The projection P onto span{x} is a compact operator, since its range is one-dimensional, and we
would then obtain the obvious contradiction 1 = 〈x|x〉 = 〈x|Px〉 = ρ(P ) = 0.)

1.13. Theorem: Let A be a C∗-algebra. If A ∈ A is normal, then there is a pure state
ρ0 ∈ P(A) such that |ρ0(A)| = ‖A‖.

Proof: By Proposition 1.11, there is a state τ ∈ S(A) such that |τ(A)| = ‖A‖. Choose α ∈ C
with |α| = 1 such that τ(αA) = |τ(A)| = ‖A‖. Recall that S(A) is a non-empty, convex, and
weak* compact subset of A# and that P(A) is the set of extreme points of S(A). The linear
functional θ : A# → C, given by θ(µ) := µ(αA), is weak* continuous. It is corollary of the
Krein-Milman theorem (see, e.g., [KRI, Corollary 1.4.4] or [Hoe23, Corollary 5.11]) that there
is some extreme point ρ0 ∈ P(A) of S(A) such that Re θ(ρ) ≤ Re θ(ρ0) for all ρ ∈ S(A). We
obtain

‖A‖ = τ(αA) = Re τ(αA) = Re θ(τ) ≤ sup{Re θ(µ) | µ ∈ S(A)}
≤ Re θ(ρ0) ≤ |θ(ρ0)| = |ρ0(αA)| = |ρ0(A)| ≤ ‖A‖,

therefore, ‖A‖ = |ρ0(A)|.

1.14. Corollary: Let A be a C∗-algebra and A ∈ A with A 6= 0, then there is a pure state
ρ ∈ P(A) such that ρ(A) 6= 0.

Proof: For self-adjoint A the assertion holds by Theorem 1.13. Otherwise we write A = H1+iH2
with self-adjoint elements H1, H2 ∈ A. If ρ(A) = 0 for every pure state ρ, then also ρ(Hj) = 0
(j = 1, 2) for every pure state ρ, which implies H1 = H2 = 0 and thus A = 0.
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2. Commutative C∗-algebras and functional
calculus

3 Our main sources for this chapter are [KRI, Con00, Mur90].

The first and fundamental result in this chapter will be an improvement of facts from 0.6 in
case of commutative (unital) C∗-algebras, in particular, about the Gelfand transform (0.2).
Let A be a unital commutative C∗-algebra. Recall that we had considered the set

X := {ρ : A→ C | ρ is a unital homomorphism},

i.e., the non-zero multiplicative linear functionals on A, and shown that X is contained in the
unit sphere of A# and is a weak* compact Hausdorff space. Moreover,

sp(A) = {ρ(A) | ρ ∈ X} = Â(X),

where Â ∈ C(X) is the Gelfand transform of A, given by Â(ρ) = ρ(A) for every ρ ∈ X. We
had established further that the Gelfand transform is a continuous unital homomorphism
A→ C(X) with (operator) norm 1, since ‖Â‖∞ = r(A) ≤ ‖A‖. (Note that Î = 1, thus ‖1̂‖∞ = 1.)

2.1. Theorem: If A is a commutative (unital) C∗-algebra, then the Gelfand transform
A→ C(X) is an isometric ∗-isomorphism.

Proof: Since every element A in a commutative C∗-algebra is normal, we may apply Proposition
1.7(iii) and obtain

‖Â‖∞ = r(A) = ‖A‖,
which shows that the Gelfand transform is isometric and hence its image Â = {Â | A ∈ A} is
closed in C(X).

We claim that Â∗ = Â holds for every A ∈ A, which then proves that the Gelfand transform
is also involutive, hence a ∗-homomorphism. Upon writing A = H1 + iH2 with the self-adjoint
real and imaginary parts H1 and H2 of A, it suffices to show that Â is a real-valued function
whenever A is self-adjoint. From Proposition 1.7(ii) we know that in this case sp(A) ⊆ R, thus
the fact Â(X) = sp(A) settles this question.

It remains to show that Â = C(X), which follows from the Stone-Weierstraß theorem ([Con10,
Chapter V, 8.1]), since Â is a subalgebra of C(X), 1 = Î ∈ Â, f̄ = Â = Â∗ ∈ Â whenever
f = Â ∈ Â, and Â is (point) separating, because for ρ1, ρ2 ∈ X with ρ1 6= ρ2 we can find
clearly some A ∈ A such that Â(ρ1) = ρ1(A) 6= ρ2(A) = Â(ρ2).

2.2. Remark: A corresponding result holds for the non-unital case ([Mur90, Theorem 2.1.10]),
namely, if A 6= {0} is a commutative C∗-algebra, then the Gelfand transform is an isometric
∗-isomorphism A→ C0(X).
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We proceed by considering unital C∗-algebras as the default situation.

2.3. Lemma: Let A be a C∗-algebra.

(i) If A is a self-adjoint element of A, then there exist positive elements A+, A− ∈ A with
A+A− = A−A+ = 0 such that A = A+ −A−.

(ii) Each element in A can be written as a linear combination of at most four positive elements.

Proof: (i) Let C∗(A) denote the closure of the ∗-subalgebra {p(A) | p a polynomial} in A. Then
C∗(A) is a commutative unital C∗-subalgebra and C∗(A) ∼= C(X) via the Gelfand isomorphism.
A ∗-isomorphism respects positivity and self-adjointness, hence the standard way of writing the
continuous real-valued function f := Â as difference f+ − f− of the non-negative continuous
functions f± := max(±f, 0) translates back into A = A+ − A−, where Â± = f±. Moreover,
the relation f+f− = f−f+ = 0 in C(X) yields the corresponding property A+A− = A−A+ = 0
in C∗(A) ⊆ A.

(ii) Follows from (i) upon decomposition into real and imaginary parts.

2.4. Non-zero multiplicative linear functionals are pure states: In the commutative
case, the pure states can be characterized algebraically.

Proposition: If A is a commutative C∗-algebra, then the weak* compact Hausdorff space X
of non-zero multiplicative linear functionals on A coincides with the set of pure states P(A).
As a consequence, we obtain the following variant of Theorem 2.1:

A ∼= C(P(A)).

Proof: We first show P(A) ⊆ X: Let ρ be a pure state on A. Given any positive C ∈ A, we will
prove that ρ(AC) = ρ(A)ρ(C) for all A ∈ A; the claim then follows from linearity and Lemma
2.3(ii). Upon scaling and again by linearity of ρ it suffices to consider 0 ≤ C ≤ I. Define
a linear functional by ρ0(A) := ρ(AC) (A ∈ A). Then ρ0 is positive, since commutativity
implies 0 ≤ AC ≤ A for every A ≥ 0, and clearly ρ0 ≤ ρ holds. Since ρ is pure, Lemma 1.12
says that there exists t ∈ [0, 1] such that ρ0 = tρ. Thus for every A ∈ A,

ρ(AC) = ρ0(A) = tρ(A) = tρ(I)ρ(A) = ρ0(I)ρ(A) = ρ(C)ρ(A).

It remains to show X ⊆ P(A): Let ρ ∈ X. We know that X is a subset of the unit sphere in
A#, hence we know that ρ is bounded and ‖ρ‖ = 1. Moreover, recall that ρ being multiplicative
and non-zero also implies ρ(I) = 1 = ‖ρ‖. Therefore, an application of the Corollary, part (i),
in 1.10 yields that ρ is positive, in fact, a state. We still have to prove that ρ is pure and will
employ Lemma 1.12. Suppose µ is a positive linear functional on A such that µ ≤ ρ. By the
Cauchy-Schwarz inequality, |µ(A)|2 = |µ(I∗A)|2 ≤ µ(A∗A) ≤ ρ(A∗A) = ρ(A∗)ρ(A) = |ρ(A)|2,
hence ker ρ ⊆ kerµ. Since ker ρ is a closed hyperplane, we must have µ = λρ for some scalar
λ. Now 0 ≤ µ(I) = λρ(I) = λ and λ = µ(I) ≤ ρ(I) = 1 imply that λ ∈ [0, 1]. Therefore, we
have shown that ρ is pure.
Remark: Observe that the part in the above proof showing X ⊆ P(A) did not make use of commuta-
tivity, hence a non-zero multiplicative linear functional on a C∗-algebra is a pure state (cf. also the
additional argument given in [KRI, Page 269, following Proposition 4.4.1]).
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A non-commutative C∗-algebra may fail to allow for any multiplicative state and there exist pure states
that are not multiplicative. Examples are easily obtained on A = M(2,C), as can be checked in a few
steps by direct caluclations: 1. Any state ρ on M(2,C) is of the form ρ(A) = trace(AC), where C is a
positive matrix with trace(C) = 1; 2. a state ρ is pure, if and only if C is a one-dimensional projection;
3. a pure state ρ is multiplicative on the subalgebra of diagonal matrices, if and only if C projects to
e1 or e2, i.e., ρ(

(
a b
c d

)
) = a or ρ(

(
a b
c d

)
) = d; 4. it is easy to find matrices showing that the latter two

states are not multiplicative on all of M(2,C).

To have an example of a multiplicative state on a non-commutative C∗-algebra we can consider the
subalgebra A of M(3,C) given by all matrices of the form

(
a b 0
c d 0
0 0 λ

)
and the functional ρ(

(
a b 0
c d 0
0 0 λ

)
) := λ.

2.5. The commutative C∗-subalgebra generated from a normal element: Let A

be a C∗-algebra. If M is a subset of A, then the C∗-algebra generated by M is defined as
the smallest C∗-subalgebra of A containing M. It may be written as the intersection of all
C∗-subalgebras of A containing M. In case M = {A} with a normal element A ∈ A we
write C∗(A) and call this the C∗-algebra generated by the normal element A. Note that
C∗(A) is commutative, since AA∗ = A∗A, and is given as the closure of the ∗-subalgebra
{p(A,A∗) | p polynomial of z and z̄}, where p(A,A∗) = a0,0 +∑m

k=1 ak,0A
k +∑m

l=1 a0,l(A∗)l +∑
1≤k,l≤m ak,lA

k(A∗)l if p(z, z̄) = ∑
0≤k,l≤m ak,lz

kz̄l. (Observe that any [unital] C∗-subalgebra B with
A ∈ B contains I, A, and A∗, and thus also all limits of polynomials in A and A∗.)

2.6. Theorem (functional calculus for a normal element): Let A be a C∗-algebra and
A be a normal element in A. Then there is a unique ∗-homomorphism ϕ : C(sp(A))→ A such
that ϕ(id sp(A)) = A. We have ‖ϕ(f)‖ = ‖f‖∞ for all f ∈ C(sp(A)) and ranϕ = C∗(A).

Proof: Since C∗(A) is commutative we may employ the Gelfand isomorphism ψ : C∗(A) →
C(X), where X = P(C∗(A)). Recall that Â(X) = sp(A).

We will show that Â is a homeomorphism X → sp(A) by reasoning similarly as in the proof
of Corollary 0.6: Clearly, Â is continuous and surjective. If ρ1, ρ2 ∈ X with ρ1(A) = Â(ρ1) =
Â(ρ2) = ρ2(A), then recalling that X consists of positive (hence hermitian) multiplicative
linear functionals we easily obtain that ρ1(p(A,A∗)) = ρ2(p(A,A∗)) holds for every polynomial
p in z and z̄. By continuity of ρ1 and ρ2 and the density of {p(A,A∗)} in C∗(A) we obtain
ρ1 = ρ2, thus Â is injective. As a bijective continuous map between compact Hausdorff spaces
Â is thus a homeomorphism.

The map α : C(sp(A))→ C(X), f 7→ f ◦ Â, is easily seen to be a ∗-isomorphism, hence the
composition ϕ0 := ψ−1 ◦α defines a ∗-isomorphism C(sp(A))→ C∗(A), which we may consider
as a ∗-homomorphism ϕ : C(sp(A))→ A with ranϕ = C∗(A). (Since both α and ψ map 1 to 1, ϕ is
unital.)

C∗(A) C(X)

C(sp(A))

ψ

ϕ0 α

We have ϕ(id sp(A)) = ψ−1(α(id sp(A))) = ψ−1(Â) = A and the isometry of ϕ follows, because
both α and ψ are isometric.
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As for the uniqueness of ϕ we simply have to note that due to the Stone-Weierstraß theorem,
the C∗-algebra C(sp(A)) is generated from the normal element id sp(A).

In the above theorem we have ϕ(q) = q(A), if q is a polynomial. We therefore introduce the
notation

f(A) := ϕ(f) (f ∈ C(sp(A)))

to make the application of the functional calculus more intuitive. Note that the following
properties are immediate, because f 7→ f(A) is a ∗-isomorphism C(sp(A))→ C∗(A) ⊆ A:

• f(A) is normal, since f(A)f(A)∗ = f(A)f̄(A) = (ff̄)(A) = (f̄f)(A) = f(A)∗f(A);

• f(A) is self-adjoint if and only if f is real-valued;

• if f is non-negative (pointwise as a function), then f(A) is positive. (The reverse implication
of this can also be shown easily using the spectral mapping theorem proved in 2.8 below
in combination with the (already proven) part (i) ⇒ (ii) in Theorem 1.8.)

2.7. Proposition: Let β : A → B be a ∗-homomorphism between C∗-algebras, A ∈ A be
normal, and f ∈ C(sp(A)). Then β(A) is normal in B, sp(β(A)) ⊆ sp(A), and f(β(A)) =
β(f(A)).

Proof: That β(A) is normal follows directly from the ∗-homomorphism properties, and the
inclusion relation for the spectra follows from Theorem 1.9. We may therefore use the
restriction of f to sp(β(A)) in the functional calculus for β(A).

It remains to show that f(β(A)) = β(f(A)). We have β(Ak(A∗)l) = β(A)kβ(A∗)l and therefore
β(p(A,A∗)) = p(β(A), β(A)∗) for every polynomial p in z and z̄. Therefore, the continuous
map g 7→ ‖g(β(A))− β(g(A))‖, C(sp(A))→ R, vanishes on a dense subset of C(sp(A)), hence
is the zero map. It follows that f(β(A)) = β(f(A)).

2.8. Spectral mapping theorem: If A is a normal element of the C∗-algebra A and
f ∈ C(sp(A)), then we have

sp(f(A)) = {f(λ) | λ ∈ sp(A)} = f(sp(A)).

Moreover, if g ∈ C(sp(f(A))), then (g ◦ f)(A) = g(f(A)).

Proof: We claim that f(ρ(A)) = ρ(f(A)) for all ρ ∈ P(C∗(A)). Indeed, the maps h 7→ h(ρ(A))
and h 7→ ρ(h(A)) are both ∗-homomorphisms C(sp(A))→ C that agree on id sp(A), hence on
a dense subset.

We may thus proceed as follows:

sp(f(A)) = f̂(A)(P(C∗(A))) = {ρ(f(A)) | ρ ∈ P(C∗(A))} = {f(ρ(A)) | ρ ∈ P(C∗(A))}
= {f(Â(ρ)) | ρ ∈ P(C∗(A))} = f(Â(P(C∗(A)))) = f(sp(A)).

Observe that C∗(f(A)) ⊆ C∗(A) and the restriction ρ0 of any nonzero multiplicative linear
functional ρ on C∗(A) to C∗(f(A)) is again one. We have for all ρ ∈ P(C∗(A)),

ρ((g ◦ f)(A)) = (g ◦ f)(ρ(A)) = g(f(ρ(A))) = g(ρ0(f(A)) = ρ0(g(f(A))) = ρ(g(f(A))).
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Therefore (g ◦ f)(A)̂ = g(f(A))̂ for the Gelfand tranforms, which implies (g ◦ f)(A) =
g(f(A)).

2.9. Examples: 1) Let X be a compact Hausdorff space. Every h ∈ C(X) is normal and
sp(h) = h(X). The functional calculus for h then boils down to plain composition f ◦ h for
every f ∈ C(h(X)). This follows from the uniqueness clause in Theorem 2.6.

2) For normal or self-adjoint elements in B(H), Theorem 2.6 gives the opportunity to establish
the usual calculus with continuous functions of Hilbert space operators via abstract C∗-algebra
theory. In fact, some textbooks (for example, [Con10]) even prefer to quickly develop a
sufficient bundle of C∗-algebraic methods prior to discussing functional calculus and spectral
theory for (non-compact) operators. (An approach independent of the C∗-algebraic results is outlined,
e.g., in [Hoe23] following [Wer18].)

In the remaining parts of this chapter, we will give a few applications of the functional calculus
to C∗-algebra theory.

Let B be a closed subalgebra of a unital Banach algebra A and suppose that I ∈ B. Then the
notion of spectrum is defined with respect to both algebras and the notation should indicate
the dependence on the algebra. We always have for any A ∈ B

spA(A) ⊆ spB(A),

since invertibility of an element in B implies the same in A. In general for Banach algebras,
the inclusion may be strict (see, e.g., [KRI, Example 3.2.19]). However, in case of C∗-algebras
and unital C∗-subalgebras the spectrum does not depend on the subalgebra.

2.10. Proposition: If B is a unital C∗-subalgebra of the C∗-algebra A and A ∈ B, then
spA(A) = spB(A).

Proof: It suffices to prove the following: If C ∈ B has an inverse C−1 in A, then C−1 ∈ B.

In fact, we only need to show this in case C is self-adjoint, since C∗C ∈ B is self-adjoint,
invertible if and only if C is, and in this case C−1 = (C∗C)−1C∗ ∈ B follows from (C∗C)−1 ∈ B.

Let C ∈ B be self-adjoint with inverse C−1 ∈ A. Then 0 6∈ spA(C) and f(z) = 1/z defines
a function f ∈ C(spA(C)), f(C) = C−1 by functional calculus, and from the statement of
Theorem 2.6 we also have f(C) ∈ C∗(C) ⊆ B.

2.11. Completing the proof of Theorem 1.8: Let us now close the gaps left in the proof
of Theorem 1.8 characterizing positive elements in a C∗-algebra. We recall the statement:
If A is self-adjoint in the C∗-algebra A, then the conditions

(i) A ≥ 0, i.e., there is some self-adjoint C ∈ A such that A = C2,

(ii) sp(A) ⊆ [0,∞[, and

(iii) there is some C ∈ A such that A = C∗C,

are equivalent. The implication (i) ⇒ (ii) has already been noted and (i) ⇒ (iii) is obvious.
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To show (ii) ⇒ (i), we note that the function f(t) :=
√
t belongs to C(sp(A)) and put

C := f(A). Since f ≥ 0, hence real-valued, C is self-adjoint, in fact even positive. The relation
f2 = id sp(A) implies C2 = f2(A) = id sp(A)(A) = A.

(∆) As an intermediate result we have established that (i) ⇔ (ii).

Before showing that (iii) implies (i) we need a lemma that is also of interest in its own right.

Lemma Let A be a C∗-algebra.

(a) Let A ∈ A be self-adjoint and c ≥ ‖A‖, then A is positive if and only if ‖c−A‖ ≤ c.

(b) If A,B ∈ A are positive, then also A+B ≥ 0.

Proof: (a): We have sp(A) ⊆ [−c, c] and therefore,

‖c−A‖ = r(c−A) = max{|c− a| | a ∈ sp(A)} = max{c− a | a ∈ sp(A)},

which shows that ‖c−A‖ ≤ c if and only if sp(A) ⊆ [0,∞[. The assertion follows from (∆).

(b): Applying (a) we have ‖‖A‖ −A‖ ≤ ‖A‖ and ‖‖B‖ −B‖ ≤ ‖B‖ and obtain the estimate

‖(‖A‖+‖B‖)− (A+B)‖ = ‖(‖A‖−A)+(‖B‖−B)‖ ≤ ‖‖A‖−A‖+‖‖B‖−B‖ ≤ ‖A‖+‖B‖.

Noting c := ‖A‖+‖B‖ ≥ ‖A+B‖ we use once more (a) and conclude that A+B is positive.

We finally prove (iii) ⇒ (i): In a first step we claim that for every B ∈ A,

−B∗B positive ⇒ B = 0.

From (∆) we know that sp(−B∗B) ⊆ [0,∞[. Recall that from elementary Banach algebra
theory, sp(−BB∗) \ {0} = sp(−B∗B) \ {0}, thus sp(−BB∗) ⊆ [0,∞[, hence the self-adjoint
element −BB∗ is positive due to (∆). Using the real and imaginary part of B we may
write B = R + iS with self-adjoint R,S ∈ A. Then B∗B = R2 − iSR + iRS + S2 and
BB∗ = R2 + iSR − iRS + S2, hence B∗B + BB∗ = 2R2 + 2S2, which implies B∗B =
2R2 + 2S2 −BB∗. Thus, B∗B is a sum of three positive elements and is therefore positive by
the above lemma. To summarize, both B∗B and −B∗B are positive, hence again by (∆) we
find that sp(B∗B) ⊆ ]−∞, 0] ∩ [0,∞[ = {0}. Therefore, ‖B‖2 = ‖B∗B‖ = r(B∗B) = 0, thus
B = 0.

In the second step now suppose that A = C∗C with some C ∈ A. By Lemma 2.3(i) we may
write A = A+ − A− with positive elements A+ and A− such that A+A− = A−A+ = 0. Let
B := CA−, then

−B∗B = −A−C∗CA− = −A−(A+ −A−)A− = (A−)3,

where (A−)3 is self-adjoint and sp((A−)3) = {λ3 | λ ∈ sp(A−)} ⊆ [0,∞[, since A− is positive.
Therefore, −B∗B is positive, which implies B = 0 by the first step of this proof and then in
turn that (A−)3 = 0. Again by the self-adjointness of A− and (A−)k = (A−)k−3(A−)3 = 0
for all k ≥ 3 we deduce ‖A−‖ = r(A−) = limk→∞ ‖(A−)k‖1/k = 0, i.e., A− = 0. In summary,
A = A+ −A− = A+ ≥ 0.

Square roots and absolute value: As the construction in the proof of (ii) ⇒ (i) above
shows, we can have A = C2 with positive C ∈ A in condition (i). In fact, for each positive

24



A ∈ A, the positive element C ∈ A with A = C2 is even unique and called the positive square
root of A and denoted by A1/2.
The uniqueness of the positive square root can be seen as follows: Let C := f(A) be the root
constructed from f(t) =

√
t via functional calculus as above. Since f is a uniform limit of

polynomials on the compact set sp(A) (Weierstraß theorem), C is a limit of polynomials in A.
Let B ∈ A be positive and such that B2 = A. Then BA = BB2 = B3 = B2B = AB and
therefore B commutes also with every polynomial of A, hence also with C. Let B denote the
commutative C∗-algebra generated by B and C, then clearly A = B2 = C2 ∈ B. We have
the Gelfand isomorphism ψ : B→ C(X) and both ψ(B) and ψ(C) are positive square roots
of ψ(A) in C(X). But in function algebras the positive square root is unique (namely the
pointwise square root of the non-negative function), hence ψ(B) = ψ(C) and this implies
B = C.

If A ∈ A is arbitrary, then A∗A is positive by part (iii) of the above theorem. We may thus
define the absolute value of A by |A| := (A∗A)1/2.

We have seen in Theorem 1.9 that a ∗-homomorphisms between C∗-algebras is automatically
continuous. We will now add general information about the kernel and the range.

2.12. Theorem: Let ϕ : A → B be a ∗-homomorphism between C∗-algebras. Then the
kernel kerϕ = {A ∈ A | ϕ(A) = 0} is a closed self-adjoint ideal in A and the image
ranϕ = {ϕ(A) | A ∈ A} is a C∗-subalgebra of B. If ϕ is injective, then ϕ is an isometry.

Note that kerϕ is thus a C∗-subalgebra of A that is non-unital in the typical, nontrivial case
kerϕ 6= A.

Proof: It follows from the boundedness of ϕ that kerϕ is closed and the ideal properties as well
as invariance under the involution follow algebraically from the definition of a ∗-homomorphism.

For pure algebraic reasons, the range is a ∗-subalgebra of B (and unital, since we consider unital
∗-homomorphisms by default). It remains to show that the range is closed.

Suppose (An) is a sequence in A such that limϕ(An) = B ∈ B. We have to show that
B ∈ ranϕ. Thanks to real and imaginary parts and linearity of ϕ we may reduce this to
the case where all An and B are self-adjoint, which allows for the application of functional
calculus.

We may assume that ‖ϕ(An+1)− ϕ(An)‖ < 2−n, because this is certainly true for a suitable
subsequence. For every n ∈ N choose a continuous function fn : R→ R such that fn(t) = t
when |t| ≤ 2−n and f(R) ⊆ [−2−n, 2−n]. Note that every ϕ(An+1)− ϕ(An) = ϕ(An+1 −An)
is self-adjoint and Sn := sp(ϕ(An+1) − ϕ(An)) ⊆ [−2−n, 2−n], so that fn|Sn = idSn . This
together with Proposition 2.7 yields

ϕ(An+1)− ϕ(An) = fn(ϕ(An+1 −An)) = ϕ(fn(An+1 −An)).

The estimate ‖fn(An+1−An)‖ ≤ ‖fn‖∞ ≤ 2−n proves that the series A1 +∑∞n=1 fn(An+1−An)
is absolutely convergent, hence converges in A to some element A. Then continuity of ϕ and
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the above equation implies

ϕ(A) = lim
N→∞

(
ϕ(A1) +

N∑
n=1

ϕ(fn(An+1 −An))
)

= lim
N→∞

(
ϕ(A1) +

N∑
n=1

(
ϕ(An+1)− ϕ(An)

))
= lim

N→∞
ϕ(AN+1) = B,

which shows that B ∈ ranϕ.

Finally, if ϕ is injective, then ϕ induces a ∗-isomorphism between the C∗-algebras A and ranϕ,
which is an isometry by Theorem 1.9. Hence ϕ is an isometric map into B.

2.13. Remark: One can show that closed ideals in C∗-algebras are automatically self-adjoint
([Con00, Chapter 1, Proposition 5.4]) and that the quotient of a C∗-algebra by a closed ideal
with the standard quotient norm is a C∗-algebra ([Con00, Chapter 1, Theorems 5.6]). This
opens up a more structure theoretic argument for the properties of the kernel and the image of
a ∗-homomorphism ϕ as established in the previous theorem (cf. [Con00, Chapter 1, Corollary
5.7] or [KRII, Corollary 10.1.8]), because the ∗-homomorphism ϕ then factors in the usual
way, where ϕ̃ is an injective ∗-homomorphism A/ kerϕ→ B with ran ϕ̃ = ranϕ:

A B

A/ kerϕ

ϕ

ϕ̃
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3. Representations of C∗-algebras

3 Our main sources for this chapter are [KRI, BR1, KRII, Con00, Mur90]. More background and related
material can be found in [Dix82, All11, PII].

One important consequence of the results in this chapter will be that a C∗-algebra can always
be isometrically embedded as a C∗-subalgebra of B(H) for some Hilbert space H. In this sense,
any C∗-algebra is an operator algebra. This does not hold for Banach ∗-algebras in general: If
A is a Banach ∗-algebra whose norm is not a C∗-norm, then the existence of an isometric ∗-
homomorphism ϕ : A→ B(H) would imply ‖A∗A‖ = ‖ϕ(A∗A)‖ = ‖ϕ(A)∗ϕ(A)‖ = ‖ϕ(A)‖2 =
‖A‖2 for all A ∈ A, a contradiction. For a concrete example, consider π : L1(R)→ B(L2(R))
with π(f)g = f ∗ g (f ∈ L1(R), g ∈ L2(R)); then π is an injective ∗-homomorphism with
‖π(f)‖ ≤ ‖f‖1 (see, e.g., [KRI, pages 188-190]), but π cannot be isometric, since ‖.‖1 is not a
C∗-norm (Example 1.4.4)). Similarly with l1(Z), to mention an example of a unital Banach
∗-algebra (cf. [KRI, KRIII, Exercise 3.5.33]).

Recall that we are still using our standard assumptions and consider C∗-algebras and ∗-
homomorphisms to be unital, unless stated otherwise.

3.1. Definition: Let A be a C∗-algebra.

(i) A representation of A on a Hilbert space H is a ∗-homomorphism π : A→ B(H).

(ii) The representation π : A→ B(H) is said to be faithful, if π is injective.

(iii) A representation π : A → B(H) is said to be cyclic, if there is a vector x ∈ H, called a
cyclic vector for π, such that the subspace π(A)x := {π(A)x | A ∈ A} is dense in H.

(iv) If π : A→ B(H) is a representation and K ⊆ H is a closed subspace that is invariant under
each operator in π(A) ⊆ B(H), then A 7→ π(A)|K defines a subrepresentation π1 : A→ B(K)
of A. In this case, K⊥ is also closed and invariant under π(A) (since A ∈ A, x ∈ K⊥, y ∈ K implies
〈π(A)x|y〉 = 〈x|π(A∗)y〉 = 0), hence defines a subrepresentation π2 : A→ B(K⊥) and π = π1 ⊕ π2
in the sense that π(A)(x1 + x2) = π1(A)x1 + π2(A)x2 holds for the unique decomposition of
vectors in H with x1 ∈ K and x2 ∈ K⊥.

(v) Two representations π : A→ B(H) and ψ : A→ B(E) of A on Hilbert spaces H and E are
(unitarily) equivalent, if there is a unitary linear map U : H→ E such that ψ(A) = Uπ(A)U−1

for every A ∈ A.

H H

E E

π(A)

U U

ψ(A)

27



Let π : A→ B(H) be a representation of the C∗-algebra A. Then we obtain from Theorems
1.9 and 2.12 that π is continuous, in fact, ‖π(A)‖ ≤ ‖A‖, and furthermore, that kerπ is a
closed self-adjoint ideal in A and π(A) is a C∗-subalgebra of B(H). Moreover, if π is faithful,
then π is isometric, i.e., ‖π(A)‖ = ‖A‖.

Let A be a unital C∗-subalgebra of B(H), then the inclusion map is a faithful representation.
If K ⊆ H is a closed subspace that is invariant under each A ∈ A, then A 7→ A|K defines a
subrepresentation.

3.2. Examples: 1) Let (Ω, µ) be a σ-finite measure space and consider the C∗-algebra
L∞(Ω, µ). Let π0 : L∞(Ω, µ) → B(L2(Ω, µ)) with π0(f) := Mf , where Mf denotes the
multiplication operator g 7→ fg for every g ∈ L2(Ω, µ), f ∈ L∞(Ω, µ). Then π0 is a faithful
representation. (While it is always true that ‖Mf‖ ≤ ‖f‖∞, the proof of isometry requires σ-finiteness of
the measure µ (see [Con10, Chapter II, Theorem 1.5] or [KRI, Example 2.4.11]; in fact, the representation π0

need not be faithful otherwise, as can be seen from an example on page 28 in [Con10]).)

2) If Ω is a compact Hausdorff space and µ a regular Borel measure, then C(Ω) is a C∗-
subalgebra of L∞(Ω, µ). With π0 as in 1), π := π0|C(Ω) is a faithful representation π : C(Ω)→
B(L2(Ω, µ)) of C(Ω).

3) If A is a commutative C∗-algebra, Ω := P(A), and ϕ : A→ C(Ω) is the Gelfand isomorphism,
then from π as in 2) we obtain a faithful representation π1 := π ◦ ϕ : A→ B(L2(Ω, µ)).

The representations in 2) and 3) have the function 1 ∈ L2(Ω, µ) as a a cyclic vector, since
π(C(Ω))1 = {f1 | f ∈ C(Ω)} = C(Ω) is dense in L2(Ω, µ).

Note that in the setting of the previous examples, a probability measure µ on Ω corresponds
to a state on each algebra; namely, in 1) or 2), via f 7→

∫
f dµ, and in 3) via A 7→

∫
ϕ(A) dµ.

Let us focus on 2) and call the state ρ. Then ρ(f) =
∫
f dµ = 〈1|π(f)1〉 and, on the dense

subspace C(Ω) of the representation space Hilbert space L2(Ω, µ), the inner product may
be written as 〈g|h〉 =

∫
ḡh dµ = 〈1|π(g∗h)1〉 = ρ(g∗f). An abstract distillation of this is

the observation that for any state ρ on a (not necessarily commutative) C∗-algebra A, the
assignment (A,B) 7→ ρ(A∗B) defines a positive semi-definite hermitian sesquilinear form on
A (see also the proof of the Cauchy-Schwarz inequality in 1.10). This will be the starting
point for the construction of the so-called GNS representation, referring to the names Gelfand,
Neumark (often transcribed also as Naimark), and Segal, which we will describe in detail
shortly (see 3.3 and 3.4).

Another aspect of the examples leads to the following observation: If π : A → B(H) is a
representation and x ∈ H a unit vector, then we may define a state ρ on A by ρ(A) := 〈x|π(A)x〉
(A ∈ A). Employing the notation ωx for the vector state on B(H) corresponding to x (see the
examples in 1.10), i.e., ωx(L) = 〈x|Lx〉 (L ∈ B(H)), we may write ρ = ωx ◦ π. It will be one
of the results of the GNS construction that, in fact, each state on a C∗-algebra arises in this
way from a vector state in an appropriate representation.

3.3. Preparations for the GNS construction: Let A be a C∗-algebra and ρ be a state on
A. The left kernel of ρ is defined by

Lρ := {A ∈ A | ρ(A∗A) = 0}.
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We claim that Lρ is a closed left ideal in A: Boundedness of ρ implies that Lρ is closed.
Writing γ(A,B) := ρ(A∗B) (A,B ∈ A), noting Lρ = {A ∈ A | γ(A,A) = 0}, and defining
N := {A ∈ A | ∀B ∈ A : γ(A,B) = 0}, we see that N is a vector subspace of A with N ⊆ Lρ.
If A ∈ Lρ and B ∈ A, then we may conclude that γ(A,B) = 0, since the Cauchy-Schwarz
inequality implies

|γ(A,B)|2 = |ρ(A∗B)|2 ≤ ρ(A∗A)ρ(B∗B) = 0.

Thus Lρ = N, in particular, Lρ is a vector subspace. The above estimate shows that ρ(A∗B) = 0
whenever A ∈ Lρ and B ∈ A arbitrary. Since ρ is hermitian, then also

(∆) ρ(B∗A) = ρ((A∗B)∗) = ρ(A∗B) = 0

and further,
ρ((BA)∗(BA)) = ρ((B∗BA)∗A) = 0,

which implies BA ∈ Lρ. We have thus shown that Lρ is a left ideal.

The quotient vector space A/Lρ can be equipped with the positive definite inner product

〈A+ Lρ|B + Lρ〉 := ρ(A∗B) (A,B ∈ A).

Indeed, it is well-defined, since M = A−A′ ∈ Lρ and N = B −B′ ∈ Lρ implies by (∆) that

ρ(A′∗B′) = ρ((A∗ +M∗)(B +N)) = ρ(A∗B) + ρ(M∗(B +N)) = ρ(A∗B),

and positive definite, since 0 = 〈A+ Lρ|A+ Lρ〉 = ρ(A∗A) implies A ∈ Lρ.

We define the Hilbert space Hρ to be the completion of the pre-Hilbert space (A/Lρ, 〈.|.〉).

Suppose A,B1, B2 ∈ A such that B1 − B2 ∈ Lρ. Then AB1 − AB2 = A(B1 − B2) ∈ Lρ and
therefore, AB1 +Lρ = AB2 +Lρ. Clearly, for every A fixed, B+Lρ 7→ AB+Lρ is linear with
respect to B + Lρ. In other words,

πρ(A)(B + Lρ) := AB + Lρ (B ∈ A)

is a well-defined linear map
πρ(A) : A/Lρ → A/Lρ

for every A ∈ A.

3.4. Theorem (GNS representation): Let ρ be a state on the C∗-algebra A and the
notation be as in 3.3. We obtain a cyclic representation πρ of A on the Hilbert space Hρ with
the cyclic unit vector xρ corresponding to I + Lρ ∈ A/Lρ such that ρ = ωxρ ◦ πρ, i.e.,

∀A ∈ A : ρ(A) = 〈xρ|πρ(A)xρ〉.

Proof: Step 1 : πρ(A) is bounded and hence has a unique extension to an operator πρ(A) ∈
B(Hρ).

Recall from Corollary 1.8(iii) that ‖A‖2 −A∗A is positive and hence by Corollary 1.8(i) also

‖A‖2B∗B −B∗A∗AB = B∗(‖A‖2 −A∗A)B ≥ 0.
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We have therefore

‖A‖2‖B + Lρ‖2 − ‖πρ(A)(B + Lρ)‖2 = ‖A‖2‖B + Lρ‖2 − ‖AB + Lρ‖2

= ‖A‖2〈B + Lρ|B + Lρ〉 − 〈AB + Lρ|AB + Lρ〉 = ‖A‖2ρ(B∗B)− ρ(B∗A∗AB)
= ρ(‖A‖2B∗B −B∗A∗AB) ≥ 0,

so that ‖πρ(A)‖ ≤ ‖A‖.

Step 2 : A 7→ πρ(A) defines a (unital) ∗-homomorphism πρ : A→ B(Hρ).

From πρ(I)(B + Lρ) = B + Lρ we immediately obtain that πρ(I) = I on Hρ. Linearity and
multiplicativity of A 7→ πρ(A) is elementary when checked on the subspace A/Lρ ⊆ Hρ in
each instance and then follows by density:

πρ(αA+ βB)(C + Lρ) = (αA+ βB)C + Lρ = α(AC + Lρ) + β(BC + Lρ)
= απρ(A)(C + Lρ) + β πρ(B)(C + Lρ) = (απρ(A) + β πρ(B))(C + Lρ)

and
πρ(AB)(C + Lρ) = ABC + Lρ = πρ(A)(BC + Lρ) = πρ(A)πρ(B)(C + Lρ).

Similarly, we show that πρ(A)∗ = πρ(A∗) by checking this directly on the dense subspace
A/Lρ:

〈πρ(A)(B + Lρ)|C + Lρ〉 = 〈AB + Lρ|C + Lρ〉 = ρ(B∗A∗C) = 〈B + Lρ|A∗C + Lρ〉
= 〈B + Lρ|πρ(A∗)(C + Lρ)〉.

In summary, so far we have shown that πρ is a representation of A on Hρ.

Step 3 : xρ is a unit vector, cyclic for πρ, and ρ = ωxρ ◦ πρ.

We have ‖xρ‖2 = 〈I +Lρ|I +Lρ〉 = ρ(I∗I) = ρ(I) = 1 and πρ(A)xρ = A+Lρ for every A ∈ A,
hence xρ is a unit vector and πρ(A)xρ = {πρ(A)xρ | A ∈ A} is obviously dense in Hρ. Finally,

〈xρ|πρ(A)xρ〉 = 〈I + Lρ|A+ Lρ〉 = ρ(I∗A) = ρ(A).

The additional good news are that the GNS representation is essentially uniquely determined
by the requirement ρ = ωxρ ◦ πρ as we will make precise in the following statement.

3.5. Proposition (Uniqueness of the GNS representation): Let ρ be a state on the
C∗-algebra A and suppose that π is a cyclic representation of A on the Hilbert space H such
that ρ = ωx ◦ π holds for some unit cyclic vector x ∈ H. Then π is (unitarily) equivalent to
the GNS representation πρ, more precisely, there is a unitary map U : Hρ → H such that

Uxρ = x and ∀A ∈ A : Uπρ(A)U−1 = π(A).

Proof: For arbitrary C ∈ A, we have

‖π(C)x‖2 = 〈π(C)x|π(C)x〉 = 〈x|π(C∗C)x〉 = ρ(C∗C) = 〈πρ(C)xρ|πρ(C)xρ〉 = ‖πρ(C)xρ‖2,
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which (upon setting C = A−B) shows: πρ(A)xρ = πρ(B)xρ ⇒ π(A)x = π(B)x.
Therefore, Uπρ(A)xρ := π(A)x is a well-defined isometric and surjective linear map between
the dense subspaces A/Lρ ⊆ Hρ and π(A)x ⊆ H, thus extends to a unitary map U : Hρ → H.
By construction, Uxρ = Uπρ(I)xρ = π(I)x = x and on the dense set of vectors y = πρ(B)xρ
in Hρ we see that

Uπρ(A)y = Uπρ(A)πρ(B)xρ = Uπρ(AB)xρ = π(AB)x = π(A)π(B)x
= π(A)Uπρ(B)xρ = π(A)Uy,

hence Uπρ(A) = π(A)U .

One immediate consequence of the essential uniqueness of the GNS representation is the
following result about the unitary implementation of a ∗-automorphism via invariant states.

3.6. Corollary: Let τ : A→ A be a ∗-automorphism of the C∗-algebra A and suppose that
ρ is a τ -invariant state on A, i.e., ρ(τ(A)) = ρ(A) holds for all A ∈ A. Then there exists a
unique unitary operator U on the GNS representation Hilbert space Hρ such that

Uxρ = xρ and ∀A ∈ A : πρ(τ(A)) = Uπρ(A)U∗.

Proof: Clearly, µ := ρ ◦ τ is a state on A and µ = ρ. Thus Hµ = Hρ and π := πρ ◦ τ is a cyclic
representation of A on Hρ with cyclic vector x = xρ such that for any A ∈ A,

ρ(A) = ρ(τ(A)) = (ωxρ ◦ πρ)(τ(A)) = ωx(πρ(τ(A))) = ωx(π(A)) = (ωx ◦ π)(A).

The assertion follows from Proposition 3.5 and its proof (since U is determined on a dense subset).

3.7. Proposition: Let A be a C∗-algebra and A ∈ A with A 6= 0. Then there is a pure state
ρ on A such that in the corresponding GNS representation, πρ(A) 6= 0.

Proof: By Corollary 1.14, there is a pure state ρ on A such that 0 6= ρ(A) = 〈xρ|πρ(A)xρ〉.
This certainly implies πρ(A) 6= 0.

3.8. Remark: Let ρ be a state on A with left kernel Lρ as in the construction of the GNS
representation πρ. Recall that kerπρ is a two-sided ideal and Lρ is a left ideal.

If A ∈ Lρ, then |ρ(A)|2 ≤ ρ(I∗I)ρ(A∗A) = 0 implies that A ∈ ker ρ. Note that the GNS
construction gives kerπρ = {A ∈ A | ∀B,C ∈ A : 〈B + Lρ|πρ(A)(C + Lρ)〉 = 0} and using
〈B + Lρ|πρ(A)(C + Lρ)〉 = 〈I + Lρ|πρ(B∗AC)(I + Lρ)〉 = ρ(B∗AC) then implies

kerπρ = {A ∈ A | ∀B,C ∈ A : ρ(B∗AC) = 0}.

Using B = A and C = I as a special case in the above shows that A ∈ kerπρ implies A ∈ Lρ.
(In fact, kerπρ ⊆ Lρ can be seen more directly: If πρ(A) = 0, then Lρ = πρ(A)xρ = A+ Lρ and hence A ∈ Lρ.)

In summary, we have the general relations

kerπρ ⊆ Lρ ⊆ ker ρ.
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We observe from ρ(A∗) = ρ(A) and ρ(B∗A∗C) = ρ(C∗AB) that both ker ρ and kerπρ are
self-adjoint subsets of A. This does in general not hold for the left kernel Lρ. (Consider
A = B(l2) and let L be the left-shift L(a1, a2, a3, . . .) = (a2, a3, . . .) and recall that L∗ = R, the right-shift
R(a1, a2, . . .) = (0, a1, a2, . . .), so that LL∗ = I and L∗L(a1, a2, a3, . . .) = (0, a2, a3, . . .); with e1 := (1, 0, 0, . . .)
and ρ(A) := 〈e1|Ae1〉 for all A ∈ B(l2) we thus obtain ρ(L∗L) = 0 while ρ(LL∗) = 1, thus L ∈ Lρ, but L∗ 6∈ Lρ.)

We have learned how to find plenty of nontrivial representations and now we only need methods
to combine these into one representation that will be guaranteed to be faithful. The means to
achieve this is by the following basic constructions.

3.9. Hilbert space direct sums and direct sum representations: Let J be a nonempty
set and suppose that Hj is a Hilbert space for every j ∈ J . Let ⊕j∈J Hj denote the vector
space of all families (xj)j∈J such that xj ∈ Hj (j ∈ J) and

∑
j∈J ‖xj‖2 <∞, equipped with

the inner product
〈(xj)|(yj)〉 :=

∑
j∈J
〈xj |yj〉.

It can be shown—we refer to [KRI, Section 2.6] for detailed arguments of all technicalities we
skip here—that ⊕j∈J Hj is complete with respect to the norm ‖(xj)‖ := (∑j∈J ‖xj‖2)1/2 =√
〈(xj)|(xj)〉. We call ⊕j∈J Hj the Hilbert space direct sum, henceforth often referred to

simply as direct sum. Note that every Hj is naturally embedded as a closed subspace and, in
this sense, Hj ⊥ Hk holds if j 6= k. This direct sum concept can be applied also to a family of
mutually orthogonal closed subspaces Hj of a given Hilbert space H such that span⋃j∈J Hj

is dense in H.

If (Cj)j∈J is a family of operators Cj ∈ B(Hj) (j ∈ J) such that sup{‖Cj‖ | j ∈ J} <∞, then
we may define the direct sum operator C = ⊕

j∈J Cj on
⊕

j∈J Hj by C(xj)j∈J := (Cjxj)j∈J
and we have ∥∥∥⊕

j∈J
Cj
∥∥∥ = sup{‖Cj‖ | j ∈ J}.

Moreover, with hopefully obvious notation, we have ⊕j∈J(αCj + βDj) = α
(⊕

j∈J Cj
)

+
β
(⊕

j∈J Dj
)
,
(⊕

j∈J Cj
)(⊕

j∈J Dj
)

= ⊕
j∈J CjDj , and

(⊕
j∈J Cj

)∗ = ⊕
j∈J C

∗
j .

We are now ready to define the direct sum of a family of representations: Let πj : A→ B(Hj)
be a representation of A for every j ∈ J . Recall that for each A ∈ A, ‖πj(A)‖ ≤ ‖A‖ (j ∈ J),
so that ⊕j∈J πj(A) is defined as bounded operator on ⊕j∈J Hj . From the relations for direct
sum operators noted in the previous paragraph, it follows that the map A 7→

⊕
j∈J πj(A)

defines a representation π : A→ B(⊕j∈J Hj), which we call the direct sum representation and
denote it by ⊕j∈Jπj .

A first application of the concept of direct sum representations and subrepresentations is the
following decomposition result.

3.10. Proposition: Every representation of a C∗-algebra is equivalent to a direct sum of
cyclic representations. In case the representation Hilbert space is separable the direct sum is
at most countable.
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Sketch of proof: Let π : A → B(H) be a representation of the C∗-algebra A. For any unit
vector h ∈ H let Eh denote the closure of π(A)h = {π(A)h | A ∈ A}, then both Eh and E⊥h
define subrepresentations πh and π⊥h . By construction, the representation πh is cyclic. We
may now proceed in the same way to produce a cyclic subrepresentation of π⊥h .

A routine application of Zorn’s lemma allows us to find a maximal set F ⊆ H of unit vectors
such that h, g ∈ F with h 6= g implies Eh ⊥ Eg. By maximality, we must have H = ⊕

h∈F Eh
and π = ⊕

h∈F πh.

If H is separable, then the orthonormal set of vectors F can be at most countable.

The second application is one of the main results announced earlier, which implies that any
C∗-algebra is isometrically ∗-isomorphic to a subalgebra of operators on a Hilbert space.

3.11. Theorem (Gelfand-Neumark): Every C∗-algebra has a faithful representation.

Proof: Let A be a C∗-algebra and S0 a subset of states such that P(A) ⊆ S0 ⊆ S(A). With πρ
denoting the GNS representation, let π := ⊕

ρ∈S0 πρ. We prove that π is faithful: If A ∈ A

with π(A) = 0, then πρ(A) = 0 for every pure state ρ. Proposition 3.7 implies A = 0.

3.12. The universal representation: In the proof of the Gelfand-Neumark theorem we
have shown that the direct sum representation ⊕ρ∈S0 πρ of a C∗-algebra A is faithful if
P(A) ⊆ S0 ⊆ S(A). Choosing S0 = S(A) we obtain the so-called universal representation of A,
given by

Φ :=
⊕

ρ∈S(A)
πρ,

and note that we have thus an isometric ∗-isomorphism A ∼= Φ(A) of C∗-algebras.

If τ is an arbitrary state on A, then we know that τ = ωxτ ◦ πτ with the standard unit cyclic
vector xτ ∈ Hτ . Define y = (yρ) ∈ HΦ := ⊕

ρ∈S(A) Hρ by yτ := xτ and yρ := 0 if ρ 6= τ . Then
we obtain τ = ωy ◦ Φ, i.e., the state τ on A corresponds to the vector state ωy on Φ(A). Put
in other words, every state on Φ(A) is a vector state.

Since A ∼= Φ(A), taking Banach space duals also gives A# ∼= Φ(A)# and A## ∼= Φ(A)##.
Recall that Φ(A) ⊆ B(HΦ). It is interesting to report (cf. [KRII, Proposition 10.1.21]) that
the canonical embedding Φ(A) ↪→ Φ(A)## extends to an isometric isomorphism Φ(A)− →
Φ(A)##, where Φ(A)− denotes the closure of Φ(A) in the weak operator topology of B(HΦ).
(Recall that this topology is defined by seminorms on operators T in the form p(T ) = |〈y|Tz〉|, where y and z
are vectors; see, e.g., [Hoe23, 4.12.10)] or [Con10, Chapter IX, Definition 1.2]; we will also introduce it later.)
Therefore, we obtain

A## ∼= Φ(A)−

and the latter is a von Neumann algebra as we will see in the next chapter. Note that we
have an isometric ∗-isomorphic embedding A ↪→ Φ(A)− and Φ(A)− is sometimes called the
enveloping von Neumann algebra of A (cf. [Ped18, 3.7.6]).

3.13. Remark: (i) The GNS construction can be carried out in essentially the same way for
non-unital C∗-algebras, but to obtain it as a cyclic representation requires to argue with the
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help of approximate units (see [BR1, Subsection 2.3.3]). Also the Gelfand-Neumark theorem
holds in the non-unital case ([BR1, Theorem 2.1.10 and its proof in Subsection 2.3.4]).

One convenient consequence of our standard requirements in this course of having unital C∗-
algebras and unital ∗-homomorphisms, hence π(I) = I for any representation π : A→ B(H),
is that π(A)H := {π(A)x | x ∈ H, A ∈ A} is automatically dense1 in H. If A is non-unital, a
representation with the latter property is said to be non-degenerate.

(ii) In the context of applications to quantum physics, it is being discussed whether the structure
of unital ∗-algebras suffices and—with a somewhat weakened version of the GNS representation
(cf. [Mor19, Subsections 8.3.2] or [PII, Chapter 9])—could replace the requirement of having
unital C∗-algebras (see, e.g., [Mor19, Subsection 8.2.2], [Rej16], and [FV15]).

Representations that do not have any nontrivial subrepresentations are certainly of specific
interest and will be studied in the remainder of this chapter.

3.14. Definition: A representation π : A→ B(H) of a C∗-algebra A is called irreducible, if
{0} and H are the only closed subspaces of H invariant under all operators from π(A).

3.15. Invariant subspaces and projections: Let π : A→ B(H) be a representation of a
C∗-algebra A and suppose K is a closed invariant subspace, i.e., π(A)K ⊆ K for all A ∈ A.
Let P be the (orthogonal) projection onto K. Then, by the following standard argument, P
commutes with π(A): Recall that I −P is the projection onto (ranP )⊥, which is also invariant
under π(A); for every x ∈ H and A ∈ A, we use the decomposition x = Px+ (I − P )x and
obtain

Pπ(A)x = Pπ(A)(Px+ (I − P )x) = P π(A)Px︸ ︷︷ ︸
∈ ranP

+P π(A)(I − P )x︸ ︷︷ ︸
∈ ran(I−P )

= π(A)Px+ 0 = π(A)Px.

Conversely, if P ∈ B(H) is a projection that commutes with π(A), then ranP is a closed
invariant subspace: Recall that the general relation ranP = ker(I − P ) shows that the range
is closed and the invariance follows immediately from π(A)x = π(A)Px = Pπ(A)x ∈ ranP
(x ∈ ranP , A ∈ A).

We recall a definition from 0.1, which we need here only in the special case of a subset
M ⊆ B(H), where H is some Hilbert space: The commutant of M is given by M′ := {B ∈
B(H) | ∀M ∈M : MB = BM}.

3.16. Proposition: Let π : A → B(H) be a representation of a C∗-algebra A, then the
following conditions are equivalent:

(i) π is irreducible,

(ii) every nonzero vector in H is cyclic for π,

(iii) π(A)′ = CI, i.e., only the scalar multiples of the identity I on H commute with π(A).
1in fact, equal to H
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Proof: (i) ⇒ (ii): If there is a nonzero x ∈ H such that the subspace π(A)x is not dense, then
K := (π(A)x)⊥ 6= {0} gives rise to a nontrivial subrepresentation, since K is closed and also
invariant under π(A) (because π(A)x is invariant). Therefore, π cannot be irreducible.

(ii)⇒ (iii): If π(A)′ 6= CI, then there is some self-adjoint operator T ∈ π(A)′ such that T 6∈ CI.
It follows that every spectral projection of T commutes with all the operators in π(A) (see
[Hoe23, 1.18] or [Con10, 2.2 in Chapter IX]). Let P be any nontrivial spectral projection of T
and choose a nonzero vector x in its (closed) range. Then x = Px and we obtain for every
A ∈ A that π(A)x = π(A)Px = Pπ(A)x ∈ ranP (see also 3.15). Since ranP 6= H, the vector x
cannot be cyclic.

(iii)⇒ (i): If π is not irreducible, then there is some closed invariant subspace K with K 6= {0}
and K 6= H. Then the projection P onto K is nontrivial, i.e., P 6= 0 and P 6= I, and by 3.15
commutes with π(A). Therefore, P ∈ π(A)′ and clearly, P 6∈ CI.

For GNS representations we obtain a particularly nice characterization of irreducibility.

3.17. Theorem: Let ρ be a state on the C∗-algebra A and πρ denote the corresponding GNS
representation. Then the following conditions are equivalent:

(i) πρ is irreducible,

(ii) ρ is pure.

Proof: (i) ⇒ (ii): Suppose that ρ is not pure, then by Lemma 1.12 there is some positive linear
functional µ on A with µ ≤ ρ and µ 6= tρ for all t ∈ [0, 1]. In fact, it then follows that µ 6= λρ
for all λ ∈ C, since 0 ≤ µ(A∗A) ≤ ρ(A∗A) for all A ∈ A.

The Cauchy-Schwarz inequality combined with the above gives that for any A,B ∈ A,

|µ(A∗B)|2 ≤ µ(A∗A)µ(B∗B) ≤ ρ(A∗A)ρ(B∗B) = ‖πρ(A)xρ‖2‖πρ(B)xρ‖2,

hence the map (πρ(A)xρ, πρ(B)xρ) 7→ µ(A∗B) is a bounded sesquilinear form on A/Lρ, which
can be extended to such on Hρ. There exists a unique operator T ∈ B(Hρ) such that for all
A,B ∈ A,

〈πρ(A)xρ|Tπρ(B)xρ〉 = µ(A∗B)

(cf. [Con10, Chapter II, Theorem 2.2] or [Hoe23, Theorem 0.3(b)]). We obtain 0 ≤ T ≤ I from
0 ≤ µ(A∗A) ≤ ρ(A∗A) and T 6∈ CI, since µ 6= λρ for all λ ∈ C.

We claim that T ∈ πρ(A)′, which then completes this part of the proof by appealing to
Proposition 3.16(iii). Indeed, we obtain Tπρ(C) = πρ(C)T for every C ∈ A by considering
inner products with all vectors of the form πρ(A)xρ and πρ(B)xρ from the dense subset
A/Lρ ⊆ Hρ, in fact,

〈πρ(B)xρ|Tπρ(C)πρ(A)xρ〉 = µ(B∗CA) = µ((C∗B)∗A)
= 〈πρ(C∗)πρ(B)xρ|Tπρ(A)xρ〉 = 〈πρ(B)xρ|πρ(C)Tπρ(A)xρ〉.

(ii) ⇒ (i): Suppose that πρ is not irreducible, so that by Proposition 3.16 we can find some
T ∈ πρ(A)′ such that T 6∈ CI. We may assume that T is self-adjoint, since πρ(A)′ is a ∗-algebra
and hence the real part (T + T ∗)/2 as well as the imaginary part (T − T ∗)/(2i) belong to
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π(A)′ whenever T does. There is a spectral projection P of T such that P 6= 0 and P 6= I.
Recall that also P as well as (I −P ) belong to π(A)′, and 0 ≤ P ≤ I, in particular, I −P ≥ 0
holds. Therefore the linear functional µ : A→ C, µ(A) := 〈Pxρ|πρ(A)xρ〉, is easily seen to be
positive, since

µ(A∗A) = 〈Pxρ|πρ(A)∗πρ(A)xρ〉 = 〈πρ(A)Pxρ|πρ(A)xρ〉 = 〈Pπρ(A)xρ|πρ(A)xρ〉 ≥ 0.

We have µ ≤ ρ, which can be seen as follows:

ρ(A∗A)− µ(A∗A) = 〈xρ|πρ(A∗A)xρ〉 − 〈Pxρ|πρ(A∗A)xρ〉 = 〈(I − P )xρ|πρ(A)∗πρ(A)xρ〉
= 〈(I − P )πρ(A)xρ|πρ(A)xρ〉 ≥ 0.

We finally claim that µ 6= tρ for all t ∈ [0, 1], which then implies that ρ cannot be pure by
Lemma 1.12 and completes the proof.

If µ = tρ, then we have for all A,B ∈ A,

〈Pπρ(B)xρ|πρ(A)xρ〉 = µ(B∗A) = tρ(B∗A) = t〈πρ(B)xρ|πρ(A)xρ〉,

which implies P = tI. Since P is a projection, we must have t = 0 or t = 1, but this contradicts
the fact that P 6= 0 and P 6= I.

Combining the previous theorem with Proposition 3.7 proves the following statement.

3.18. Corollary: If A 6= 0 in the C∗-algebra A, then there exists an irreducible representation
π of A such that π(A) 6= 0.

3.19. Remarks: (i) If π : A→ B(H) is an irreducible representation, then any unit vector
x ∈ H induces a pure state on A by ρ := ωx ◦ π. Indeed, x is a cyclic vector by Proposition
3.16 and then the essential uniqueness of the GNS representation shown in Proposition 3.5
implies that π and πρ are (unitarily) equivalent. Hence πρ is irreducible, thus ρ is pure.

(ii) One can show that in the GNS construction with a pure state ρ, the inner product space
A/Lρ is already complete, i.e., Hρ = A/Lρ (c.f. [KRII, Theorem 10.2.7]). (The subspace A/Lρ

clearly is invariant under πρ(A) and A/Lρ 6= {0}; now for C∗-algebras it can be shown that topological
irreducibility implies algebraic irreducibility ([KRI, Corollary 5.4.4]), hence we must have A/Lρ = Hρ even
without having to know a priori whether the subspace is closed or not.)

3.20. Example: Let A be a commutative C∗-algebra. If π : A → B(H) is an irreducible
representation, then π(A)′ = CI. Since A is commutative, we have π(A) ⊆ π(A)′ = CI, which
implies that

∀A ∈ A : π(A) = ρ(A)I,

where ρ : A→ C is necessarily a multiplicative linear functional with ρ(I) = 1, thus a pure
state on A by Proposition 2.4. We see that π(A) = CI and, moreover, since every subspace of
H is invariant under CI = π(A), the irreducibility of π requires2 that H is one-dimensional.
Conversely, every pure state ρ on A defines a one-dimensional irreducible representation on C

2Note that H = {0}, thus B(H) = {0}, is excluded by our conventions about unital normed algebras.
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by A 7→ ρ(A). It is an exercise to show that two irreducible representations given by the pure
states ρ1 and ρ2 are equivalent if and only if ρ1 = ρ2.

3.21. Remark: We have seen in Proposition 3.10 that every representation of a C∗-algebra can
be decomposed as a sum of cyclic subrepresentations. The analogue of this result for irreducible
subrepresentation is not true. In fact, there are even simple examples of representations that
are not irreducible themselves and have no irreducible subrepresentation. Instead of direct sums
one may then employ methods from so-called direct integrals of Hilbert spaces and of operator
algebras (cf. [Dix82, Chapter 8], [TakI, Section IV.8], [Bla10, Section III.5], [KRII, Chapter
14]). As for an example consider A = C([0, 1]) with the representation π as multiplication
operators on L2([0, 1]), i.e., π(f) = Mf with Mfg = fg (f ∈ C([0, 1]), g ∈ L2([0, 1])). Since A

is commutative, we have seen in the above example that an irreducible representation has to be
one-dimensional. Therefore π is not irreducible and an irreducible subrepresentation of π must
correspond to some one-dimensional subspace K of L2([0, 1]). In particular, K = span{h},
where h ∈ L2([0, 1]) is an eigenvector for every multiplication operator Mf . But, as is
well-known, already T := π(id) = Mid does not have any eigenvector3 although sp(T ) = [0, 1].

Recall that every irreducible representation of C([0, 1]) has to be given directly by a pure
state ρ; and we know from Example 1) in 1.12 that ρ is necessarily of the form ρ(f) = f(s)
for some s ∈ [0, 1].

3If λ ∈ C and th(t) = λh(t) for almost all t, then t = λ for t in a set of positive measure unless h = 0 (a.e.).
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4. A glimpse at von Neumann algebras

3 Our main sources for this chapter are [KRI, KRII, Con00, Mur90, BR1, Sun87, Dix81].

In the current chapter we will study a particular class of C∗-subalgebras of B(H). Thus we
focus on algebras of operators on a Hilbert space H 6= {0}. In this context, several topologies
different from the operator norm topology on B(H) turn out to be of relevance.

4.1. The weak and strong operator topologies: Recall ([Hoe23, 4.12.10)]) or define the
strong operator topology (SOT) on B(H) as the Hausdorff locally convex topology generated
by the family of seminorms px (x ∈ H), where

px(T ) := ‖Tx‖ (T ∈ B(H)),

and the weak operator topology (WOT) on B(H) as the Hausdorff locally convex topology
generated by the family of seminorms px,y (x, y ∈ H), where

px,y(T ) := |〈Tx|y〉| (T ∈ B(H)).

Bases of neighborhoods of a given operator B ∈ B(H) and convergence of nets to B in these
topologies can be described as follows:

(a) SOT: For every ε > 0, m ∈ N, and x1, . . . , xm ∈ H,

{T ∈ B(H) | j = 1, . . . ,m : ‖Txj −Bxj‖ < ε}.

Convergence of a net (Tl)l∈Λ in B(H) to B is equivalent to pointwise convergence of (Tl) to B
on H, i.e., Tlx→ Bx in H for every x ∈ H.

(b) WOT: For every ε > 0, m ∈ N, x1, . . . , xm ∈ H, and y1, . . . ym ∈ H,

{T ∈ B(H) | j = 1, . . . ,m : |〈Txj −Bxj |yj〉| < ε}.

Convergence of a net (Tl)l∈Λ in B(H) to B is equivalent to weak convergence of (Tlx) to Bx
in H for every x ∈ H, i.e., 〈y|Tlx〉 → 〈y|Bx〉 for all x, y ∈ H.

The norm topology is finer than the strong operator topology, since sufficiently small balls
are contained in any SOT neighborhood. The two topologies are different unless H is finite-
dimensional, since any orthonormal sequence (en)n∈N in H gives rise to the operator sequence
Tn ∈ B(H) with Tnx := ∑n

k=1〈ek|x〉ek (x ∈ H) that is SOT convergent to the projection P
onto the closure of span{en | n ∈ N}, but ‖P − Tn‖ = 1 for every n ∈ N (clearly ‖P − Tn‖ ≤ 1
and, e.g., ‖(P − Tn)en+1‖ = ‖en+1‖ = 1).

The strong operator topology is obviously finer than the weak operator topology. In infinite
dimensions the SOT is strictly finer than the WOT, as can be seen easily from the example
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Pn ∈ B(H) with Pnx := 〈e1|x〉en (x ∈ H, n ∈ N), where (en) is as above. (We have Pn → 0 w.r.t.
the WOT, since |〈Pnx|y〉| = |〈e1|x〉||〈en|y〉|, but ‖Pne1‖ = ‖en‖ = 1 for all n ∈ N, hence Pn 6→ 0 w.r.t. the
SOT.) In light of this observation, it is interesting to note that the WOT and SOT closures
coincide on convex subsets of B(H) (cf. [KRI, Theorem 5.1.2]).

It is not difficult to show that the involution, i.e., taking the adjoint A 7→ A∗, B(H)→ B(H)
is WOT continuous (see [KRI, KRIII, Exercise 5.7.1]), but not SOT continuous ([KRI, KRIII,
Exercise 2.8.32]).

We recall once more the definition and a few elementary properties of the commutant M′

of a subset M ⊆ B(H): We have M′ := {B ∈ B(H) | ∀M ∈ M : MB = BM} and M′ is
automatically a unital subalgebra of B(H). It is a ∗-subalgebra in case M is self-adjoint, since
A ∈M′ and M ∈M then implies M∗ ∈M and A∗M = (M∗A)∗ = (AM∗)∗ = MA∗.

We clearly have M ⊆M′′ := (M′)′ and applying this to M′ in place of M immediately gives
M′ ⊆ (M′)′′ = (M′′)′ =: M′′′. Moreover, M ⊆ N ⊆ B(H) always implies N′ ⊆ M′. We
therefore obtain M′′′ ⊆M′ ⊆M′′′, which proves M′ = M′′′.

Upon defining inductively also M(4) := (M′′′)′ and M(m) := (M(m−1))′ (m ≥ 5) we may
summarize all of this as

M ⊆M′′ = M(2n) and M′ = M′′′ = M(2n+1) (n ∈ N).

This suggest to single out subsets M ⊆ B(H) that satisfy, in addition, M = M′′, and will
lead us towards the definition of von Neumann algebras once we have shown a topological
characterization of the algebraic construct of the double commutant.

Note that a commutant M′ is always WOT closed (hence also SOT closed). Indeed, suppose
(Al) is a net in M′ converging with respect to the WOT to some A ∈ B(H). Let B ∈M and
x, y ∈ H arbitrary, then

〈y|ABx〉 = lim〈y|AlBx〉 = lim〈y|BAlx〉 = lim〈B∗y|Alx〉 = 〈B∗y|Ax〉 = 〈y|BAx〉

and therefore A ∈M′.

4.2. Theorem (Double commutant): Let M be a unital ∗-subalgebra of B(H), then the
weak and strong operator closures of M both coincide with M′′.

Proof: Since M ⊆M′′ and M′′ is closed with respect to the WOT and the SOT, we know that
both the WOT closure M−w of M and the SOT closure M−s of M are contained in M′′, in fact,
M−s ⊆M−w ⊆M′′. It remains to show that M′′ ⊆M−s , then the proof will be complete.

Let T ∈ M′′. For arbitrarily given x1, . . . , xn ∈ H and ε > 0 we have to find some T0 ∈ M

such that ‖(T − T0)xj‖ < ε (j = 1, . . . , n).

Define H̃ := ⊕n
j=1 H and, for any A ∈ B(H), Ã := ⊕n

j=1A, so that we have Ã(y1, . . . , yn) =
(Ay1, . . . , Ayn) for all (y1, . . . , yn) ∈ H̃. Put x̃ := (x1, . . . , xn) and M̃ := {M̃ |M ∈M}. Then
M̃ is a unital ∗-subalgebra of B(H̃) and the closure K̃ of {M̃ x̃ | M̃ ∈ M̃} is invariant under
M̃. Let P̃ be the orthogonal projection onto K̃, then P̃ commutes with all operators from M̃

(see 3.15), i.e., P̃ ∈ M̃
′.
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We claim that T̃ ∈ M̃
′′: The operators in B(H̃) have a natural representation as (n × n)-

matrices with entries from B(H). Then T̃ is a diagonal matrix with repeated entry T along
the diagonal, and similarly for every M̃ ∈ M̃. It is easy to see that M̃ ′ consists all (n× n)-
matrices with arbitrary entries from M′: We simply have to note that for matrices of the form
B = (Bjk)1≤j,k≤n with Bjk ∈ B(H) and Ã = (δjkA)1≤j,k≤n with A ∈ B(H), we obtain in the
resulting (j, k)-entries for the matrix products(

B · Ã
)
jk

= BjkA and
(
Ã ·B

)
jk

= ABjk.

Now in turn, M̃ ′′ can also be determined by elementary matrix calculations and we claim that
it consists of all diagonal matrices of the form

(∆)


C 0 · · · 0
0 C · · · 0
...

... . . . ...
0 0 · · · C

 with C ∈M′′.

It is immediate that all these matrices do belong to M̃
′′, and for the reverse inclusion relation

one may consider the product of a general matrix C̃ = (Cjk)1≤j,k≤n, where Cjk ∈ B(H),
with a specific matrix from M̃

′ of the form Epq(B) := (δjpδqkB)1≤j,k≤n, where B ∈ M′ and
p, q ∈ {1, . . . , n}; this results in(

C̃ · Epq(B)
)
jk

= δqkCjpB and
(
Epq(B) · C̃

)
jk

= δjpBCqk;

requiring equality for all j, k and B allows us to first to choose B = I, which implies Cjk = 0
when j 6= k, and second to choose j = p, k = q to obtain the conditions CppB = BCqq for all
p, q; once more choosing B = I in the latter implies C11 = · · · = Cnn =: C and then varying
B ∈M′ yields C ∈M′′.

Since M̃
′′ is described by (∆) we see that indeed T̃ ∈ M̃

′′ .

The properties T̃ ∈ M̃
′′ and P̃ ∈ M̃

′ imply that the subspace K̃ = ran P̃ is invariant
under T̃ (argue as in 3.15). In particular, T̃ x̃ ∈ K̃, since clearly x̃ ∈ K̃. By construction,
{M̃ x̃ | M̃ ∈ M̃} is dense in K̃, thus there is some T0 ∈M such that

ε2 > ‖T̃ x̃− T̃0 x̃‖2 =
n∑
j=1
‖Txj − T0xj‖2

and we conclude that ‖Txj − T0xj‖ < ε holds for j = 1, . . . , n.

4.3. Definition: A von Neumann algebra (vNA) on a Hilbert space H is a ∗-subalgebra R of
B(H) such that R = R′′. The center of R is the ∗-subalgebra C := R ∩ R′ of R. If the center
is trivial, i.e., C = CI, then R is said to be a factor .

Alternatively, by the double commutant theorem we could have defined a von Neumann
algebra as a unital ∗-subalgebra R of B(H) that is WOT or SOT closed. Since a SOT closed
set is also norm closed, every vNA is a C∗-algebra. By the way, our defining requirement
R = R′′ does certainly imply that I ∈ R.
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4.4. A few elementary constructions and properties: (i) Clearly, B(H) is a SOT closed
unital ∗-subalgebra of B(H), hence a von Neumann algebra. It is also a factor, since obviously
CI is a vNA and (CI)′ = B(H), therefore B(H)′ = (CI)′′ = CI. (Of course, there is also an
elementary direct proof that B(H)′ = CI, e.g., noting that any A ∈ B(H)′ commutes with every projection and
hence leaves every closed subspace of H invariant.)

(ii) For any self-adjoint subset M of B(H), the commutant M′ is a vNA, and M′′ is a vNA
containing M. In fact, M′′ is the smallest vNA with this property, since for any vNA A with
M ⊆ A we obtain M′′ ⊆ A′′ = A.

If M ⊆ B(H) is arbitrary and M∗ := {M∗ |M ∈M}, then (M ∪M∗)′′ is a vNA and is called
the von Neumann algebra generated by M.

(iii) The center C of a von Neumann algebra R is itself a vNA, since C = R ∩ R′ is certainly a
unital ∗-subalgebra as well as SOT closed. The center of the von Neumann algebra R′ is also
C = R ∩ R′ = R′′ ∩ R′, thus R is a factor if and only if R′ is a factor.

(iv) We claim that for any von Neumann algebra R,

(R ∪ R′)′ = R ∩ R′ = C.

The last equality is just the definition of the center and the inclusion (R∪R′)′ ⊇ R′∩R′′ = R′∩R
is clear. Since obviously R ∪ R′ ⊇ R we obtain (R ∪ R′)′ ⊆ R′ and, similarly, R ∪ R′ ⊇ R′

implies (R ∪ R′)′ ⊆ R′′ = R, therefore (R ∪ R′)′ ⊆ R ∩ R′.

We may conclude from the above relation that for a factor R we obtain (R ∪ R′)′ = C = CI
and therefore that the vNA generated by R ∪ R′ is all of B(H), since

(R ∪ R′)′′ = B(H).

(v) A von Neumann algebra R is commutative or abelian if and only if R ⊆ R′. In this case, R
is equal to its center C. An abelian von Neumann algebra R on a Hilbert space H is said to
be maximally abelian if it is not contained in any other abelian vNA on H. We claim that
this condition is equivalent to

R = R′.

Indeed, suppose first that the above equality holds and let A be an abelian vNA with R ⊆ A.
Then we have R ⊆ A ⊆ A′, which implies A = A′′ ⊆ A′ ⊆ R′ = R, hence R is maximally
abelian. Conversely, if R ⊆ R′ and R′ 6= R, then we may find some self-adjoint element1 S ∈ R′

such that S 6∈ R. Then we have R ⊆ (R ∪ {S})′′ =: A with A 6= R, where A is a vNA and
commutative, since R∪{S} ⊆ (R∪{S})′ impliesA = (R∪{S})′′ ⊆ (R∪{S})′ = (R∪{S})′′′ = A′.
Thus R is not maximally abelian.

(vi) Suppose R is a vNA that contains some maximally abelian subalgebra R0 = R′0. Then
R′ ⊆ R′0 = R0 ⊆ R and therefore we have C = R′ for the center.

4.5. Corollary: A C∗-algebra representation π : A→ B(H) is irreducible if and only if the
von Neumann algebra generated by π(A) equals B(H), i.e., π(A)′′ = B(H).

1Take the real or imaginary part of any element in R′ \ R.
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Proof: We know that π(A) is a C∗-subalgebra of B(H), hence the vNA generated by π(A) is
given by the double commutant π(A)′′. By Proposition 3.16, irreducibility of π is equivalent
to having π(A)′ = CI, and clearly the latter implies π(A)′′ = B(H). Conversely, the relation
π(A)′′ = B(H) implies π(A)′ = π(A)′′′ = B(H)′ = CI and thus irreducibility of π.

4.6. Example: Let (Ω, µ) be a σ-finite measure space, H = L2(Ω, µ), and A denote the algebra
of multiplication operators Mf with f ∈ L∞(Ω, µ) on H, i.e., Mf g = fg for all g ∈ L2(Ω, µ)
and f ∈ L∞(Ω, µ). We already know that A is a C∗-algebra and that ‖Mf‖ = ‖f‖∞ (Example
1) in 3.2). Clearly, A is commutative, i.e., A ⊆ A′. We will sketch a proof (from [KRI, Example
5.1.6]) that A′ ⊆ A, which then implies

A′ = A

and hence that A is a maximal abelian von Neumann algebra.

Let T ∈ A′ ⊆ B(L2(Ω, µ)). Choose a sequence of pairwise disjoint measurable subsets Ωn of Ω
(n ∈ N) such that Ω = ⋃

n∈N Ωn and µ(Ωn) <∞ for all n ∈ N. Let en denote the characteristic
function of Ωn and put fn := Ten.

For any g ∈ L2(Ω, µ) ∩ L∞(Ω, µ) we may calculate that

fng = gfn = Mg fn = Mg Ten = TMg en = T (gen) = TMen g,

which shows boundedness of the linear map g 7→ fng on the dense subspace of bounded L2-
functions. Denote the unique bounded operator extension by Mfn . One could now reproduce
an argument from [KRI, Example 2.4.11] (alternatively, see [Con00, Proposition 1.2.4]) to
show that ess sup |fn| ≤ ‖Mfn‖, which gives fn ∈ L∞(Ω, µ) and justifies the notation Mfn .
We obtain

∀n ∈ N : Mfn = TMen ,

where Men is the projection onto the subspace of L2-functions supported in Ωn. We define
the function f on Ω by f(ω) := fn(ω) if ω ∈ Ωn and note that ‖fn‖∞ = ‖Mfn‖ = ‖TMen‖ ≤
‖T‖‖Men‖ ≤ ‖T‖ yields ‖f‖∞ ≤ ‖T‖, thus f ∈ L∞(Ω, µ). Since ∑n∈NMeng = g for all
g ∈ L2(Ω, µ) and

MfMen = Mfen = Mfn = TMen

we finally obtain Mfg = ∑
n∈NMfMeng = ∑

n∈N TMeng = Tg, i.e., T = Mf ∈ A.

Note that the special case Ω = N with µ the counting measure gives l∞ acting as the maximal
abelian vNA of diagonal or multiplication operators on l2.

4.7. Remark (Commutative von Neumann algebras): (i) It can be shown that maximal
abelian vNA serve as basic building blocks in the description of commutative von Neumann
algebras ([KRII, Section 9.4 and Theorem 9.3.2]). Furthermore, any maximal abelian vNA on
a separable Hilbert space is—modulo unitary isomorphisms of Hilbert spaces—of a form as
given in the previous example (cf. [KRII, Theorem 9.4.1] or [Con00, Theorem 14.5]).

(ii) As von Neumann algebras are particular C∗-algebras, one might ask what the standard
Gelfand isomorphism of an abelian vNA with C(X), X the compact Hausdorff space of pure
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states, would tell in this case. As it turns out, X is then extremely disconnected (cf. [KRI,
Theorem 5.2.1]), which means that the closure of each open subset of X is open2.

4.8. Measurable functional calculus in von Neumann algebras: (i) We indicate very
briefly why a vNA possesses plenty of projections. In fact, we have ([Con00, Proposition
13.3(e)] or [KRI, Throem 5.2.2(v)]) that

a von Neumann algebra always equals the norm closure of the linear span of its projections.

Let A be a self-adjoint operator in a vNA R on the Hilbert space H and denote by A the
abelian vNA generated by A, i.e., A = {A}′′.

In the first variant, consider the Gelfand isomorphism A ∼= C(X), where we noted in the
remark above that X is extremely disconnected and hence has a rich supply of so-called clopen
subsets (i.e., sets that are at the same time closed and open). The characteristic functions
of such sets are therefore continuous, real-valued, and idempotent, hence provide us with
projection operators belonging to A.

In the second variant, one may first argue that the standard calculus for A with bounded Borel
measurable functions on sp(A) stays within A, since these functions may be approximated by
uniformly bounded sequences of continuous functions fn ∈ C(sp(A)) such that fn(A) converges
pointwise on the Hilbert space (see, e.g., [Hoe23, Lemma 0.13 and Theorem 1.8(b)]), i.e., with
respect to the strong operator topology, therefore the limit belongs to A. In particular, a
characteristic function of a Borel subset defines a projection belonging to A.

In any case, all spectral projections of A are guaranteed to be elements in A as well. We
obtain that A is the norm limit of linear combinations of its spectral projections, which follows,
e.g., from its operator integral representation. Since any element R in R can be expressed as
a linear combination of its self-adjoint real and imaginary parts, we conclude that R can be
approximated by linear combinations of projections belonging to R.

(ii) The measurable functional calculus can easily be extended to the case of a normal operator
A acting on a Hilbert space H by considering the abelian von Neumann algebra A generated
by A and A∗, i.e.,

A = {A,A∗}′′.

We obtain g(A) ∈ A for every bounded Borel measurable function g on sp(A) also in this case.
If the Hilbert space H is separable and upon passing from Borel functions to classes of such,
one can give a structurally very satisfying formulation of this functional calculus ([Con00,
15.10]): There is a Borel measure µ on sp(A) and a well-defined ∗-isomorphism

ϕ : L∞(sp(A), µ)→ A

mapping the class of the bounded Borel function g to the operator g(A). In addition, ϕ is also
a homeomorphism when L∞(sp(A), µ) = L1(sp(A), µ)# is equipped with the weak* topology
and A with the weak operator topology.

2This is even stronger than the more well-known property of a totally disconnected space, where each pair of
distinct points lie in different connected components.
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4.9. Ultraweak topology and normal states: Let H be a Hilbert space. A net (Hj)j∈J of
self-adjoint operators on H is said to be increasing if the map from the directed set J into
B(H) is monotone increasing, i.e., if j1, j2 ∈ J with j1 ≤ j2, then Hj1 ≤ Hj2 in the sense that
Hj2 −Hj1 is a positive operator.

Lemma: (i) If (Hj)j∈J is an increasing net of self-adjoint operators on H such that

sup{‖Hj‖ | j ∈ J} <∞,

then (Hj) is SOT convergent to a self-adjoint operator H that is also the least upper bound.

(ii) Let (Pl)l∈Λ be a family of pairwise orthogonal projections on H. Then (Pl) is a SOT
summable family, i.e., ∑l∈Λ Pl is SOT convergent.

Proof: (i): Upon fixing an arbitrary index j0 ∈ J and considering Hj −Hj0 for j ≥ j0 we may
suppose, without loss of generality, that every Hj is positive. Put γ := sup{‖Hj‖ | j ∈ J}.

For every x ∈ H, the net (〈x|Hjx〉)j∈J is increasing and bounded by γ‖x‖2, hence conver-
gent. By the polarization identity for complex inner products, we deduce that β(x, y) :=
lim〈x|Hjy〉 = lim〈H1/2

j x|H1/2
j y〉 exists for all x, y ∈ H, (x, y) 7→ β(x, y) is sesquilinear, and

|β(x, y)| ≤ γ‖x‖‖y‖. Thus, there is a bounded operatorH onH such that 〈x|Hy〉 = lim〈x|Hjy〉
holds for all x, y ∈ H.

We immediately obtain that H is positive, Hj ≤ H for all j ∈ J , ‖H‖ ≤ γ, and that Hj → H
with respect to the WOT. If K is a self-adjoint operator such that Hj ≤ K for all j ∈ J , then
〈x|Hjx〉 ≤ 〈x|Kx〉 for all x ∈ H, hence H ≤ K and H is the supremum.

To show that also SOT convergence Hj → H holds, note first that f(t) =
√
t is bounded on

sp(H −Hj) ⊆ [0, ‖H‖] by
√
‖H‖ and then consider

‖(H −Hj)x‖2 = ‖(H −Hj)1/2(H −Hj)1/2x‖2 ≤ ‖(H −Hj)1/2‖2‖(H −Hj)1/2x‖2

≤ ‖H‖〈(H −Hj)1/2x|(H −Hj)1/2x〉 = ‖H‖〈x|(H −Hj)x〉 → 0.

(ii): For finite subsets F and G of Λ with F ⊆ G, we have 0 ≤ ∑l∈F Pl ≤
∑
l∈G Pl ≤ I. We

obtain the uniformly bounded increasing net of positive operators (∑l∈F Pl)F, where F ranges
over the finite subsets of Λ with the inclusion relation as partial order. The assertion follows
from part (i).

Since a von Neumann algebra R is always SOT closed, we see that in the above lemma, the
supremum H and the sum ∑

Pl exist in R, if the Hj and Pl belong to R.

Definition: (i) A positive linear functional ρ on a von Neumann algebra R is called normal,
if ρ(Hj)→ ρ(H) for any increasing net (Hj) of self-adjoint operators in R with supremum H.

(ii) The ultraweak topology on B(H) is the locally convex Hausdorff topology defined by all
seminorms of the form

T 7→
∣∣∣∑
k∈N
〈xk|Tyk〉

∣∣∣,
where (xk)k∈N and (yk)k∈N are sequences in H with ∑k∈N ‖xk‖2 <∞ and ∑k∈N ‖yk‖2 <∞.

45



Obviously, the ultraweak topology is finer than the weak operator topology and coarser than
the norm topology. It is certainly inherited on any vNA acting on H, in particular, we may
study ultraweak continuity of linear functionals on any vNA.

The following theorem provides an extensive list of properties characterizing normal positive
linear functionals or states and hints at their relevance also for quantum physics, where an
operator C as in property (vi) is usually called a density matrix, if its trace is normalized
(cf. [Thi10, Part II, 2.1.2], [BR1, Theorem 2.4.21], [Ara99, Theorem 2.7]). Recall that an
operator B ∈ B(H) is of trace class if there is a complete orthonormal system S in H such
that ∑e∈S〈e||B|e〉 is finite, where |B| := (B∗B)1/2 is the absolute value of B as in 2.11. In
this case, the corresponding sum is finite for every choice of complete orthonormal system and
its value independent of the choice ([Con00, Section 18]). The trace of B is then defined by

trace(B) :=
∑
e∈S
〈e|Be〉.

The set B1(H) of trace class operators on H is an ideal in B(H) and we obtain a norm by

‖B‖1 := trace(|B|) (B ∈ B1(H)).

We will not give a proof of the theorem here and instead refer to a large reservoir of references:
[Con00, Theorem 46.6], [Dix81, Sections 3.3 and 4.2], [BR1, Proposition 2.4.6, Theorem 2.4.21],
[TakI, Chapter II, Theorem 2.6], [Bla10, Subsection III.2.1], [KRII, Theorem 7.1.9, Remark
7.1.10, Theorem 7.1.11, Proposition 7.4.5], and [Mur90, Theorem 4.2.10]. We note however
that (i) ⇒ (ii) follows directly from the shown above lemma and that (iii) ⇒ (iv) is immediate,
since the SOT is finer than the WOT.

Theorem Let ρ be a positive linear functional on the von Neumann algebra R, then the
following statements are equivalent:

(i) ρ is normal,

(ii) ρ is completely additive, i.e., ρ(∑l∈Λ Pl) = ∑
l∈Λ ρ(Pl) for any pairwise orthogonal family

of projections (Pl)l∈Λ in R,

(iii) ρ is WOT continuous on the unit ball of R,

(iv) ρ is SOT continuous on the unit ball of R,

(v) ρ is ultraweakly continuous,

(vi) there is a positive trace class operator C on H such that ρ(A) = trace(AC) for all A ∈ R.

Remark: A normal state ρ on a von Neumann algebra R has one further convenient property
in terms of its associated GNS representation πρ : R→ B(Hρ), because it turns out that in
this case, the image πρ(R) is automatically SOT closed inB(Hρ), thus a vNA on Hρ.

4.10. B(H) as a dual space: The special case R = B(H) in the previous theorem suggests
that it might be interesting to study the dual pairing of B(H) with the trace class operators
B1(H), defined via the bilinear form β : B1(H)×B(H)→ C with

β(B,A) := trace(AB) (B ∈ B1(H), A ∈ B(H)).
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As it turns out, this produces a very good analogy with the classical ([Con10, Theorem 5.6 and
Example 5.9]) Banach space dualities (l1)# ∼= l∞ or L1(Ω, µ)# ∼= L∞(Ω, µ) for any σ-finite
measure space (Ω, µ). Namely, it can be shown (cf. [Con00, Theorem 19.2] or [Mur90, Theorem
4.2.3]) that the linear map A 7→ β(., A) is an isometric isomorphism between B(H) and the
dual B1(H)# with respect to the trace norm ‖.‖1 on B1(H). We note in passing that quite
similarly and in some analogy with the classical sequence duality c#

0
∼= l1, one also obtains an

interesting isomorphism when β is restricted in its second slot to the compact operators C(H),
thus considering B 7→ β(B, .)|C(H) produces an isometric isomorphism B1(H)→ C(H)# (cf.
[Con00, Theorem 19.1], [Mur90, Theorem 4.2.1], [BR1, Proposition 2.4.3]). In summary,

B(H) ∼= B1(H)# and B1(H) ∼= C(H)#

and from the first isometry, in view of the previous theorem, one might suspect that the
weak* topology on B(H) from its duality with B1(H) coincides with the ultraweak topology.
This is correct and backed-up, e.g., by [Con00, Proposition 20.2] (and upon sorting out a possible
confusion, because the ultraweak topology is called weak* topology in that book; see also [Dix81, Section
3.3], [Mur90, Section 4.2], [BR1, Proposition 2.4.3], [Sun87, Section 0.3]). One immediate consequence
in combination with the Banach-Alaoglu theorem is that the closed unit ball K1 in B(H)
is ultraweakly compact. Since the identity map is continuous from K1 with the ultraweak
topology to K1 equipped with the weak operator topology, we obtain compactness of both and
even a homeomorphism between compact Hausdorff spaces. We learn that both topologies
coincide on K1 and, in particular, that the closed unit ball of B(H) is WOT compact.

Some aspects of the observations about duality for B(H) can be transferred to the general
case of a vNA. Moreover, this even gives an opportunity for a more abstract characterization
of vNA without recourse to a pre-defined action as operators on some Hilbert space.

4.11. The predual of a von Neumann algebra and W∗-algebras:

(i) Let R ⊆ B(H) be a von Neumann algebra. We collect here a few arguments showing that
R is the dual space of a Banach space.

As reported in 4.10, we have the isometric isomorphism B(H)→ B1(H)# mapping A ∈ B(H)
to the functional C 7→ trace(AC) (C ∈ B1(H)). In this sense, we may consider R as a subspace
of B1(H)# and the annihilator of R is then given by

R⊥ = {C ∈ B1(H) | ∀A ∈ R : trace(AC) = 0}.

This is a closed subspace of the Banach space B1(H) and we may construct the quotient
Banach space B1(H)/R⊥. Recall that for any closed subspace Z of a Banach space X, we
have the isometric isomorphism (X/Z)# ∼= Z⊥, where Z⊥ = {µ ∈ X# | µ(z) = 0 for all z ∈ Z}
([Con10, Chapter III, Theorem 10.2]). Applying this to our situation with X = B1(H) and
Z = R⊥ yields

(B1(H)/R⊥)# ∼= (R⊥)⊥ = R,

where the last equality follows from the bipolar theorem ([Con10, Chapter V, Theorem 1.8] or
[Hoe23, 6.4]) in combination with these facts: On B(H) the weak* topology coincides with
the ultraweak topology and the obviously convex set R is WOT as well as norm closed, hence
ultraweakly closed since this topology lies between the WOT and the norm topology.
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(ii) We have seen in (i) that a von Neumann algebra always has a predual as a Banach
space, i.e., it is the dual space of some Banach space. In general—apart from the case of
reflexive Banach spaces (and, as noted in [Sak71, Concluding remarks on 1.13], a reflexive vNA is necessarily
finite-dimensional)—a predual need not be unique as the classic example c#

0
∼= l1 ∼= c# illustrates.

However, it can be shown ([Bla10, Subsection III.2.4], [Sak71, Corollary 1.13.3], [TakI, Chapter
III, Corollary 3.9]) that for a von Neumann algebra the predual is unique up to isometric
isomorphism.

A somewhat concrete realization of the predual of a von Neumann algebra R can be given
(cf. [KRII, Definition 7.4.1, Theorem 7.4.2, Proposition 7.4.5] or [Mur90, Theorem 4.2.9]) in
terms of the set

R# := {µ : R→ C | µ is linear and ultraweakly continuous}.

In view of the characterization of ultraweakly positive linear functionals outlined in 4.9, the
elements in R# are often called normal linear functionals. We have naturally that R# ⊆ R#,
since the norm topology is finer than the ultraweak topology, but the non-obvious result is
then that

(R#)# ∼= R.

By uniqueness of the predual we also have R# ∼= B1(H)/R⊥. (An independent argument for this
last fact can be sketched by the following basic construction: Consider the linear map θ̃ : B1(H)→ R#, where
θ̃(B)(A) := trace(AB) for all A ∈ R and we note that, thanks to a suitable variant of (v)⇔ (vi) in Theorem 4.9
for general linear functionals (see, e.g., [Con00, Corollary 54.10] or [Ped18, Theorem 3.6.4] or [TakI, Chapter II,
Theorem 2.6]), we do have θ̃(B) ∈ R#. The map θ̃ is seen to be surjective, if we again appeal to the appropriate
variant of (v) ⇔ (vi) in Theorem 4.9, because given any µ ∈ R# we then find some B ∈ B1(H) such that
µ(A) = trace(AB) (A ∈ R), i.e., µ = θ̃(B). Furthermore, the inequality |θ̃(B)(A)| = |trace(AB)| ≤ ‖B‖1‖A‖
shows that θ̃ is bounded, in fact it does not increase norm since ‖θ̃(B)‖ ≤ ‖B‖1. Finally, the kernel of θ̃
obviously is exactly R⊥. Therefore, θ̃ factors to a bijective bounded linear map

θ : B1(H)/R⊥ → R#

with ‖θ‖ = ‖θ̃‖ ≤ 1 ([Theorem 1.5.8][KRI]), hence ‖θ(B + R⊥)‖ ≤ ‖B + R⊥‖ for all B ∈ B1(H). It would
remain to show that θ is an isometry; I admit that I could not find an elementary proof for this, but it is
concluded by other means in the first part of the proof of Theorem 7.4.2 in [KRII].)

(iii) The observations in (i) and (ii) can be used as a basis for an abstract definition of von
Neumann algebras without referring to an action as operators on a Hilbert space at the outset.
For example, the book [Sak71] develops the theory consequently from this point of view and
starts with the definition of a W∗-algebra as a C∗-algebra that is the dual of some Banach
space. Later it is shown (cf. [Sak71, Theorem 1.16.7]) that every W∗-algebra is ∗-isomorphic
to a vNA on some Hilbert space, where the ∗-isomorphism is also continuous with respect to
the weak* topologies. Accounts of the relationship between W∗-algebras and von Neumann
algebras can be found, e.g., in these references: [KRII, KRIV, Exercises 7.6.38, 7.6.41, 7.6.45]
[TakI, Chapter III, Section 3], [Ped18, Section 3.9], [Bla10, Subsection III.2.4]. The notion of
a W∗-algebra is also employed in textbooks that are oriented towards mathematical physics
(cf. [Ara99, BR1, BSZ92, Haa96, Thi10]). In these cases, the emphasis occasionally is on an
equivalent definition in terms of a C∗-algebra that (a) always possesses suprema of norm
bounded increasing nets and (b) has a sufficiently rich set of normal states (defined as states
that respect suprema of increasing nets).
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We review finally a few very brief aspects regarding the types of von Neumann algebras.

4.12. Equivalence of projections and types of factors:

(i) Let R be a von Neumann algebra on the Hilbert space H. We have noted earlier that a
vNA possesses sufficiently many projections so that it is even generated as the norm closure of
their linear span in B(H). We say that two projections P,Q ∈ R are equivalent (relative R),
in notation P ∼ Q, if there is some V ∈ R such that

V ∗V = P and V V ∗ = Q.

It follows then automatically ([KRII, Proposition 6.1.1]) that V is a partial isometry on H,
which means that there is some closed subspace K of H such that kerV = K⊥ and V maps K
isometrically onto a closed subspace.

In the specific case R = B(H) the equivalence P ∼ Q corresponds to dim ranP = dim ranQ
(in the sense of cardinality of complete orthonormal systems). In the example of an abelian
von Neumann algebra, equivalence always implies equality since P = V ∗V = V V ∗ = Q.

It is easy to check that we obtain an equivalence relation on the set

Proj(R) := {P ∈ R | P ∗ = P, P 2 = P}

of all orthogonal projections on H that belong to R (cf. [KRII, Proposition 6.1.5]). Recall that
0 ≤ P ≤ I for any projection P and we have a partial order on the projections, where P ≤ Q
corresponds to the fact that ranP ⊆ ranQ. We can make this partial order compatible with
the equivalence relation introduced above (cf. [KRII, Propositions 6.2.4 and 6.2.5]) by defining

P - Q, if there is some projection E ≤ Q such that P ∼ E.

This partial order turns out to be a total order in case the vNA that is a factor (cf. [KRII,
Proposition 6.2.6]): If R is a factor, so that C = R ∩ R′ = CI for the center, then any two
projections P and Q in R are comparable, i.e., we have either P - Q or Q - P .

A projection P in the von Neumann algebra R is called infinite if it has a subprojection E ≤ P ,
E ∈ R, such that E 6= P and P ∼ E. Otherwise P is called finite.

For example, in R = B(H) a projection P is finite if and only if dim ranP <∞. As a second
example, consider an abelian von Neumann algebra A ⊆ A′, then every projection is finite.

A von Neumann algebra R is called finite, if I is finite, otherwise R is said to be infinite.

A projection P 6= 0 in a von Neumann algebra R is minimal, if it has no subprojection in R

other than 0. A minimal projection is finite, since any projection equivalent to 0 must be zero
(V ∗V = 0 implies V = 0 and hence also V V ∗ = 0).

The minimal projections in R = B(H) are those with one-dimensional range.

(ii) A von Neumann algebra can be decomposed into a direct sum of vNAs of particular types
by way of mutually orthogonal projections in the center that sum up to I ([KRII, Theorem
6.5.2], [Con00, Theorem 48.16], [Bla10, III.1.4.7], [TakI, Chapter V, Theorem 1.19]). Moreover, at least on
separable Hilbert spaces, any vNA can be expressed in its so-called central decomposition as a
direct integral of factors ([KRII, Corollary 14.2.3], [Bla10, III.1.6], [TakI, Chpater IV, Theorem 8.21]) and
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a factor vNA can be shown to be always of one specific type only ([KRII, Corollary 6.5.3], [Bla10,
III.1.4.7], [TakI, Chpater V, Corollary 1.20]). These facts serve as our excuse to mention here at the
very end of this quick glimpse at von Neumann algebras only a rough distinction into types
for factors (following [Sun87, Chapter I]).

Definition: A factor R is said to be of

type I , if there exist minimal projections in R,

type II , if R has no minimal projection, but there exist non-zero finite projections,

type III , if there are no non-zero finite projections in R.

If we consider the simple example R = B(H), then the equivalence classes of projections are
characterized by the dimensions of the ranges and the minimal projections are one-dimensional.
Thus we may define a function D : Proj(B(H)) → [0,∞] by setting D(P ) := dim ranP =
trace(P ) if ranP is finite-dimensional and D(P ) :=∞ if ranP is not finite-dimensional. Note
that we obtain D(P ) = D(Q) if and only if P ∼ Q, D(P+Q) = D(P )+D(Q) if ranP ⊥ ranQ,
and D(P ) <∞ if and only if P is finite. It can be shown that such a function can be defined
on any factor and it will turn out to be very useful in describing the type of a factor. For a
proof of the following theorem we refer to [Sun87, Theorem 1.3.1].

Theorem: Let R be a factor, then there exists a dimension function D : Proj(R)→ [0,∞]
satisfying the following properties for any P,Q ∈ Proj(R):

(a) D(P ) = D(Q) ⇔ P ∼ Q,

(b) ranP ⊥ ranQ ⇒ D(P +Q) = D(P ) +D(Q),

(c) D(P ) <∞ ⇔ P is finite.

A dimension function is unique up to positive constant multiple.

It is easy to see thatD(P ) ≤ D(Q) holds if P - Q, and less trivial to see thatD respects sums of
sequences of pairwise orthogonal projections Pk (k ∈ N) in the sense that D(∑Pk) = ∑

D(Pk).
If R has minimal projections, then these are all equivalent and we may normalize D to give
value 1 on these. Depending on whether D(I) <∞ or D(I) =∞ we obtain that in this case,
which corresponds to type I, D(Proj(R)) is either a finite set {0, 1, . . . , n} or N0 ∪ {∞}. For
type II it turns out that the range of values of D is continuous and, depending again on the
value D(I), can normalized to give [0, 1] or [0,∞], while in case of type III the only choice is
{0,∞}. In this way, we obtain a characterization and further refinement of types of factors as
follows ([Sun87, Proposition 1.3.14]):

Type In with D(Proj(R)) = {0, 1, . . . , n},

type I∞ with D(Proj(R)) = N0 ∪ {∞},

type II1 with D(Proj(R)) = [0, 1],

type II∞ with D(Proj(R)) = [0,∞],

type III with D(Proj(R)) = {0,∞}.
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The prototypical examples of type In (n ∈ N) are M(n,C) and B(H) with infinite-dimensional
H for type I∞. In fact, if R is a factor of type In (n ∈ N or n =∞), then R is ∗-isomorphic
to B(H) with n = dimH (cf. [KRII, Theorem 6.6.1]).

Examples of factors of all subtypes do exist (see [Sun87, Section 4.3]) and there is still a
finer classification of the type III factors, but this requires more advanced and very different
methods (see, e.g., [Sun87, Chapters 2 and 3] for a quick introduction).
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5. Canonical commutation relations and
the Weyl C∗-algebra

3 Our main sources for this chapter are [Petz90, Thi10, BR2, Mor17, Mor19, DG13, Ott95, Fol08, BLOT].

5.1. The canonical commutation relations: The fundamental observables in elementary
quantum mechanics are those corresponding to position and momentum coordinates. These
are operators Q1, . . . , QN and P1, . . . , PN with the rapidly decreasing Schwartz functions
S (RN ) = {f ∈ C∞(RN ) | ∀α ∈ NN0 ∀m ∈ N0 : x 7→ (1 + |x|2)m∂αf(x) is bounded on RN} as
a common dense and invariant domain in L2(RN ). Every Qj and Pk is essentially self-adjoint
on S (RN ) ([Mor17, Propositions 5.21, 5.23, 5.29]), hence has a unique self-adjoint extension
given by its closure, and the action on any f ∈ S (RN ) is given by

(Qjf)(x) = xjf(x), (Pkf)(x) = −i ∂kf(x).

Depending on the nature of the application, we usually have N = mn, where n is the (relevant)
spatial dimension (1, 2, or 3) and m is the number of particles involved, and the coordinates
of x are relabeled so that x(j−1)n+1, . . . , xjn refer to particle number j (1 ≤ j ≤ m). Note
that we have also followed a widespread habit in mathematical physics by assuming (upon
rescaling physical units) that ~ = 1, otherwise the momentum operator action would read
(Pkf)(x) = −i~ ∂kf(x). Since every Qj and Pk leaves S (RN ) invariant, compositions and
hence also commutators [A,B] := AB −BA, where A and B are any of these operators, are
defined on S (RN ). An elementary calculation then gives the canonical commutation relations

(CCR) [Qj , Qk] = 0, [Pj , Pk] = 0, and [Qj , Pk] = iδjkI (1 ≤ j, k ≤ N).

These commutator relations may be summarized conveniently as follows: For any a, b ∈ RN let
us write a ·Q := ∑N

j=1 ajQj and b · P := ∑N
k=1 bkPk, then from bilinearity and antisymmetry

of the commutator we have that

∀a, b, c, d ∈ RN : [a ·Q+ b · P, c ·Q+ d · P ] = i
N∑
j=1

(ajdj − bjcj)I = i
(
〈a|d〉 − 〈b|c〉

)
I.

(We (ab)used here the notation 〈.|.〉 also for the standard euclidean inner product on RN .) Note that the
assigment ((a, b), (c, d)) 7→ 〈a|d〉 − 〈b|c〉 defines a symplectic (i.e., antisymmetric, non-degenerate
bilinear) form β on RN × RN and we may thus abbreviate the above relations further upon
introducing the operators R(a, b) := a ·Q+ b · P , which are also essentially self-adjoint on the
common domain S (RN ), and the 2N -dimensional symplectic vector space V := RN × RN
with symplectic form β to obtain

∀u, v ∈ V : [R(u), R(v)] = iβ(u, v)I.
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In high energy particle physics or in quantum statistical mechanics the number of particles
or of degrees of freedom is not fixed or bounded throughout the processes of interest. This
suggests to generalize the above relations to the following situation with potentially infinitely
many degrees of freedom, i.e., a possibly infinite dimensional parameter space V :

(a) Let V 6= {0} be a real vector space with a bilinear form β that is antisymmetric, β(v, u) =
−β(u, v), and non-degenerate, β(u, v) = 0 for every v ∈ V implies that u = 0. We call (V, β)
a symplectic vector space. A quick example is any complex pre-Hilbert space E, considered as
a real vector space, with the symplectic form given by β(f, g) := Im〈f |g〉 (f, g ∈ E).

(b) Represent the CCR (canonical commutation relations) on some Hilbert space H by means
of a family R(u) (u ∈ V ) of essentially self-adjoint operators with a common dense and
invariant domain D ⊆ H such that

[R(u), R(v)] = iβ(u, v)I (u, v ∈ V ).

Remark: Recall that a commutation relation of the form [Q,P ] = iI cannot be implemented
with bounded operatorsQ and P . Indeed, one easily derives inductively thatQn+1P−PQn+1 =
i(n + 1)Qn for every n ∈ N; supposing that Q and P are bounded and self-adjoint we may
apply the C∗-property of the operator norm and deduce ‖Q2m‖ = ‖Q‖2m as in the proof of
Proposition 1.7, (ii); therefore, we have with n = 2m,

(n+ 1)‖Q‖n = (n+ 1)‖Qn‖ = ‖Qn+1P − PQn+1‖ ≤ 2‖P‖‖Qn+1‖
≤ 2‖P‖‖Q‖‖Qn‖ = 2‖P‖‖Q‖‖Q‖n;

since certainly ‖Q‖ 6= 0 (otherwise [Q,P ] = 0), we obtain ‖P‖‖Q‖ ≥ (2m + 1)/2 for all m ∈ N, a
contradiction.

5.2. Algebraic formulation of quantum theories: If we are interested mainly in structural
and foundational aspects, then the details of concrete Schrödinger operator models with issues
about domains and (essential) self-adjointness for certain atomic or molecular potentials should
be secondary. In fact, an unbounded self-adjoint operator on a Hilbert space is, thanks to
spectral theory, completely determined by the commutative C∗-algebra generated by the
bounded Borel measurable functions applied to that operator (all of these give bounded normal
operators). It suffices even to consider just the spectral measure that is uniquely associated
with the self-adjoint operator.

In this context, it is also worth while to recall the direct correspondence between self-adjoint
operators and unitary groups: If A is a self-adjoint operator on a Hilbert space H, then its
corresponding unitary group U(t) := exp(itA) (t ∈ R) is easily given by functional calculus.
Indeed, with the family of continuous bounded functions et : R→ C, et(r) := eitr (t ∈ R), we
put U(t) := et(A) and obtain d

dtU(t)x|t=0 := limt→0(U(t)x−x)/t = iAx for all x in the domain
of A, which is obvious in the multiplication operator version of the spectral theorem. Moreover,
by a famous theorem due to Stone (cf. [Mor17, Theorem 9.33]), any strongly continuous unitary
group U(t) (t ∈ R) on H, i.e., where we have for all t0, t1, t2 ∈ R,

(5.1) U(0) = I, U(t1 + t2) = U(t1)U(t2), and lim
t→t0

U(t)x = U(t0)x for all x ∈ H,
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is generated from a unique self-adjoint operator as described above. Thanks to the group
property, it suffices to require limt→0 U(t)x = x in the last part of (5.1).

We may thus have sketched a little bit of the background motivation for the following basic
notion of a quantum theory in the C∗-algebraic setting (cf. [Haa96, page 5], [Thi10, Part I,
2.2.32], [Mor19, Subsection 8.2.1], [Mor17, Subection 14.1.1], [BLOT, Section 6.1]):

The observables of a quantum theory are described by self-adjoint elements of a
C∗-algebra A. The (physical) states of the quantum system are given by the states
on A in the sense of Definition 1.10. The possible values of measurements of the
observable A ∈ A in the state ρ ∈ S(A) are contained in sp(A), with probability
distribution corresponding to the measure induced on sp(A) by the pullback of
ρ|C∗(A) under the functional calculus ∗-isomorphism C(sp(A))→ C∗(A) according
to Theorem 2.6.

Let us make the final part about the probability measure associated with an observable A and
a state ρ a bit more concrete: Denote the ∗-isomorphism providing the functional calculus
by ϕ : C(sp(A)) → C∗(A) and ρ0 := ρ|C∗(A) ∈ C∗(A)#. Then ρ0 ◦ ϕ belongs to C(sp(A))#

and is a state, hence the Riesz representation theorem tells that it is given by a unique Borel
probability measure µ on sp(A) in the form f 7→

∫
f dµ. Writing f(A) in place of ϕ(f) for

f ∈ C(sp(A)) we therefore have

ρ(f(A)) = ρ0(f(A)) = (ρ0 ◦ ϕ)(f) =
∫

sp(A)

f dµ,

in particular,
ρ(A) =

∫
sp(A)

r dµ(r).

Example or remark: A classical system on a compact Hausdorff configuration space X
is modeled by the commutative C∗-algebra A = C(X). A state on C(X) corresponds to
a regular Borel probability measure ρ on X and an observable is a real-valued continuous
function h : X → R. We have sp(h) = h(X) and

ρ(h) =
∫
X

h dρ =
∫

h(X)

r dµ(r),

where µ is the image measure on h(X) of ρ under h, occasionally denoted by µ = h(ρ) and
meaning that µ(Z) = ρ(h−1(Z)) for every Borel subset Z of h(X).

5.3. A little detour on uncertainty relations: Let A be a self-adjoint element, i.e., an
observable, in the C∗-algebra A and ρ be a state on A. From the Cauchy-Schwarz inequality,
we have ρ(A)2 = |ρ(A)|2 = |ρ(I∗A)|2 ≤ ρ(I∗I)ρ(A∗A) = ρ(A2) and therefore,

ρ(A2)− ρ(A)2 ≥ 0.
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We may thus define the mean-square deviation by

∆ρ(A) :=
√
ρ(A2)− ρ(A)2.

If A is commutative and ρ is pure, i.e., multiplicative, then ρ is nondispersive for all observables
A ∈ A, since then ∆ρ(A) = 0. Another example with vanishing mean-square deviation is
the case of a self-adjoint operator A ∈ B(H) and a vector state ρ = ωx corresponding to an
eigenvector x of A: If Ax = λx with λ ∈ R, then ρ(A2) = 〈x|A2x〉 = 〈x|λ2x〉 = λ2〈x|x〉 =
λ2 = 〈x|λx〉2 = 〈x|Ax〉2 = ρ(A)2.

Proposition: Let A,B ∈ A be self-adjoint elements of the C∗-algebra A and ρ be a state on
A, then we have the uncertainty relation

∆ρ(A)∆ρ(B) ≥ |ρ([A,B])|
2 .

Proof: Suppose first that ∆ρ(A) > 0 and ∆ρ(B) > 0. We put C := 1
∆ρ(A)(A − ρ(A)) −

i
∆ρ(B)(B − ρ(B)) ∈ A and note that ρ(A), ρ(B), ∆ρ(A), and ∆ρ(B) are real, hence C∗ =

1
∆ρ(A)(A− ρ(A)) + i

∆ρ(B)(B − ρ(B)). Thus, applying the positive functional ρ to the positive
operator C∗C yields

0 ≤ ρ(C∗C) =
ρ
(
(A− ρ(A))2)

∆ρ(A)2 +
ρ
(
(B − ρ(B))2)

∆ρ(B)2

+
iρ
(
− (A− ρ(A))(B − ρ(B)) + (B − ρ(B))(A− ρ(A))

)
∆ρ(A)∆ρ(B)

=
ρ
(
A2 − 2ρ(A)A+ ρ(A)2)

∆ρ(A)2 +
ρ
(
B2 − 2ρ(B)B − ρ(B)2)

∆ρ(B)2 +
iρ
(
−AB +BA

)
∆ρ(A)∆ρ(B)

= ρ(A2)− 2ρ(A)ρ(A) + ρ(A)2

∆ρ(A)2 + ρ(B2)− 2ρ(B)ρ(B)− ρ(B)2

∆ρ(B)2 − iρ([A,B])
∆ρ(A)∆ρ(B)

= ρ(A2)− ρ(A)2

∆ρ(A)2 + ρ(B2)− ρ(B)2

∆ρ(B)2 − iρ([A,B])
∆ρ(A)∆ρ(B) = 1 + 1− iρ([A,B])

∆ρ(A)∆ρ(B) ,

hence 0 ≤ 2∆ρ(A)∆ρ(B) − iρ([A,B]) (note that [A,B]∗ = [B,A] = −[A,B], so that ρ([A,B]) ∈ iR).
The analogous calculation with CC∗ gives 0 ≤ 2∆ρ(A)∆ρ(B) + iρ([A,B]), and therefore we
arrive at |ρ([A,B])| = |iρ([A,B])| ≤ 2∆ρ(A)∆ρ(B).

Finally, we claim that in case ∆ρ(A) = 0 or ∆ρ(B) = 0 we necessarily have ρ([A,B]) = 0:
Suppose ∆ρ(B) = 0; if t > 0 and C := t(A − ρ(A)) − i(B − ρ(B)), then calculations as
above yield 0 ≤ t2∆ρ(A)2 + ∆ρ(B)2 ± itρ([A,B]) = t2∆ρ(A)2 ± itρ([A,B]), which implies
|ρ([A,B])| ≤ t∆ρ(A)2; since t > 0 may be arbitrarily small we must have ρ([A,B]) = 0.

Remark: In case of (possibly) unbounded self-adjoint operators A and B on a Hilbert
space with common dense invariant domain D of essential self-adjointness, we can show a
companion uncertainty relation for any “vector state ωx” with x ∈ D , ‖x‖ = 1, in place of ρ
by the same calculations as above upon slight adaptations: Writing ωx(A) := 〈x|Ax〉 we have
ωx(A2)− ωx(A)2 = 〈x|(A− ωx(A))2x〉 = 〈(A− ωx(A))x|(A− ωx(A))x〉 ≥ 0, so that we may
put

∆x(A) :=
√
〈x|A2x〉 − 〈x|Ax〉2;
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we further note that C and C∗ also map D → D and that 〈x|C∗Cx〉 = 〈Cx|Cx〉 ≥ 0 holds.

In particular, this remark applies to the position and momentum operators in 5.1, where we
now temporarily restore the physics to ~ 6= 1 so that [Qj , Pk] = i~δjkI. We therefore obtain
the Heisenberg uncertainty relations

∀f ∈ S (RN ) with ‖f‖2 = 1: ∆f (Qj)∆f (Pk) ≥
~
2δjk.

In elementary quantum mechanics, based on experience with the phase space of classical
mechanics, one expects the algebra of observables to be constructed from functions of the
position and momentum operators. We should therefore try to determine some basic bounded
functions of the operators featuring in the canonical commutation relations (CCR) in 5.1.

5.4. From the CCR to the Weyl relations: We consider the position and momentum
operators Q1, . . . , QN and P1, . . . , PN as defined in 5.1 and determine the unitary operators on
L2(RN ) generated from R(a, 0) = a·Q = ∑N

j=1 ajQj (a ∈ RN ) and R(0, b) = b·P = ∑N
k=1 bkPk

(b ∈ RN ), or rather from the self-adjoint closures of these operators, which we will tacitly
denote by the same symbols.

Since every Qj is already given as a multiplication operator on the Schwartz space S (RN ) ⊆
L2(RN ) and [Qj , Ql] = 0, we easily deduce that (exp(iQj)f)(x) = eixjf(x) and further that

(exp(iR(a, 0))f)(x) = (exp(ia ·Q)f)(x) = ei〈a|x〉f(x) (f ∈ L2(RN ), almost all x ∈ RN ).

The Fourier transform F can be normalized to become unitary on L2(RN ) and, as operators
on S (RN ), we have the so-called exchange formulae FPk = QkF and therefore FR(0, b) =
F(b · P ) = (b ·Q)F = R(b, 0)F. We may thus determine exp(iR(0, b))f as the inverse Fourier
transform of exp(iR(b, 0))Ff , which directly gives

(exp(iR(0, b))f)(x) = (exp(ib · P )f)(x) = f(x+ b) (f ∈ L2(RN ), almost all x ∈ RN ).

Let us introduce the short-hand notation U(a) := exp(iR(a, 0)) and V (b) := exp(iR(0, b)),
then we obviously have

(U(a)V (b)f)(x) = ei〈a|x〉f(x+ b),
while

(V (b)U(a)f)(x) = ei〈a|x+b〉f(x+ b),
and therefore obtain

(WCCR) V (b)U(a) = ei〈a|b〉U(a)V (b) (a, b ∈ RN ).

These are called the Weyl form of the canonical commutation relations. We note in passing
that the (CCR) can be derived (quite literally) from (WCCR) by considering the strongly
continuous unitary groups r 7→ U(rej) and s 7→ V (sek) and differentiating at r = 0 and s = 0
upon action on elements from S (RN ).

We may combine U and V into one family of unitary operators with parameters (a, b) ∈ RN×RN
by setting

W (a, b) := e
i
2 〈a|b〉U(a)V (b),
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which corresponds to the following formula for the action on functions f ∈ L2(RN ):

(5.2) (W (a, b)f)(x) = e
i
2 〈a|b〉ei〈a|x〉f(x+ b).

We claim that

(5.3) W (a, b)W (c, d) = e
i
2 (〈b|c〉−〈a|d〉)W (a+ c, b+ d),

where we see again the symplectic form β introduced in 5.1 appearing, since the exponent in
the phase factor on the right-hand side equals −β((a, b), (c, d))/2.

To prove (5.3) we consider W (a, b)W (c, d) = ei(〈a|b〉+〈c|d〉)/2 U(a)V (b)U(c)V (d) and apply
(WCCR) to the product in the middle, i.e., V (b)U(c) = ei〈c|bs〉U(c)V (b), and then make
use of the obvious relations U(a)U(c) = U(a + c) and V (b)V (d) = V (b + d) to obtain
W (a, b)W (c, d) = ei(〈a|b〉+〈c|d〉)/2ei〈c|b〉 U(a + c)V (b + d). The claim now follows from 〈a|b〉 +
〈c|d〉+ 2〈c|b〉 − 〈a+ c|b+ d〉 = −〈a|d〉+ 〈b|c〉.

With the more compact notation u = (a, b), v = (c, d) ∈ RN × RN and the symplectic form
σ(u, v) := −β(u, v)/2 we may rewrite (5.3) in the simpler form

(5.4) W (u)W (v) = eiσ(u,v)W (u+ v).

We clearly have the unitarity relations

(5.5) W (0) = I and W (−u) = W (u)∗

as well as the non-commutativity

W (u)W (v) = e2iσ(u,v)W (v)W (u).

Remark: One can show that W (a, b) = exp(iR(a, b)) (cf. [Mor17, combining Equations
(11.34), (11.47), and (11.48)]). Although we do not need this result in the sequel, let us briefly
see why it is very plausible. For arbitrary fixed (a, b) ∈ RN × RN , f ∈ S (RN ), x ∈ RN , and
t ∈ R we may differentiate the expression for (W (ta, tb)f)(x) with respect to t, evaluate at
t = 0, and thus get by elementary calculation that

d

dt
(W (ta, tb)f)(x)|t=0 = i〈a|x〉f(x) +

N∑
k=1

bk∂kf(x) = i((a ·Q+ b · P )f)(x).

It can be checked directly from (5.2) or from Equation (5.3), that S(t) := W (ta, tb) satisfies
the relations (5.1) of a unitary group. To make the claim W (a, b) = exp(iR(a, b)) precise, one
still has to show strong continuity of t 7→ S(t) and that the above derivative is correct also in
the L2 norm sense.

In an abstract setting for the CCR such as described in 5.1, (a) and (b), we can in general not
expect the analogue of the relations (WCCR) or (5.4) to hold as well ([Thi10, Part I, Remark
3.1.10.2]). The reverse implication is also “not for free” without additional assumptions, i.e.,
merely starting from a family of unitary operators on some Hilbert space that is parametrized
by elements from a symplectic vector space and satisfies (5.4) will not even guarantee that the
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one-parameter unitary soubgroups t 7→W (tu) are strongly continuous and have self-adjoint
generators (see [Thi10, Part I, Remark 3.1.6.3] or [DG13, 8.1.8] for examples), which could
serve as field operators in the physical theory. The latter can be restored with the help of
additional technical assumptions, e.g., that the parameter space is a topological vector space,
the symplectic form is continuous, and the map u 7→ W (u) is continuous when the strong
operator topology is put on the target space; in this situation, also the CCR can be recovered
(cf. [BSZ92, Section 1.2] or [DG13, Section 8.2]). However, such additional assumptions might
be somewhat restrictive, unnatural, or too strong to ask for in building concrete models of
quantum physics from the outset.

The relations (5.4) are quite elegant and have the advantage of being in better reach from the
perspective of general operator algebras. The strategy is therefore to aim for a C∗-algebraic
implementation of the Weyl relations, defined as the abstract version of (5.4), and then put
the burden for the question about existence of field operators on the representations of this
yet-to-be-found C∗-algebra (as discussed in detail, e.g., in [Petz90, Chapter 3]).

5.5. Theorem: Let (V, σ) be a symplectic vector space. There exists a C∗-algebra W(V, σ),
uniquely determined up to ∗-isomorphism, that is generated by a family of elements W (u)
(u ∈ V ) such that for all u, v ∈ V ,

W (0) = I, W (−u) = W (u)∗, and W (u)W (v) = eiσ(u,v)W (u+ v).

We call W(V, σ) the Weyl algebra over (V, σ).

Remarks: (i) The product relations already imply that W (0) is a unit element. However,
we have included the somewhat redundant property W (0) = I here for clarity (and it also
emphasizes that the W (u) are nonzero). Combining the second and third property shows that
each W (u) is unitary.

(ii) The Weyl relations imply that the ∗-subalgebra generated from {W (u) | u ∈ V } coincides
with the vector space linear hull span{W (u) | u ∈ V } and thus W(V, σ) is simply the norm
closure of this vector subspace.

Proof: Existence: Consider the Hilbert space l2(V ) = {F : V → C |
∑
z∈V |F (z)|2 <∞} with

the inner product 〈F |G〉 = ∑
z∈V F (z)G(z) (F,G ∈ l2(V )) and define for any u ∈ V the

obviously unitary operator W (u) ∈ B(l2(V )) by

(W (u)F )(z) := eiσ(z,u)F (z + u) (F ∈ l2(V ), z ∈ V ).

Clearly, W (0) = I, W (u)−1 = W (u)∗ expresses just the unitarity of W (u), and direct
calculation gives

(W (u)W (v)F )(z) = eiσ(z,u)eiσ(z+u,v)F (z + u+ v) = eiσ(u,v)eiσ(z,u+v)F (z + u+ v)
= eiσ(u,v)(W (u+ v)F )(z).

In particular, W (u)W (−u) = W (−u)W (u) = W (0) = I, hence W (−u) = W (u)−1 = W (u)∗.
Denote by A the C∗-subalgebra of B(l2(V )) generated by {W (u) | u ∈ V }. (As we observed right
after the statement of the theorem, it suffices to consider the operator norm closure of span{W (u) | u ∈ V }.)
Then A is a Weyl algebra.
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Uniqueness: Suppose B is a C∗-algebra generated by the subset {W ′(u) | u ∈ V } of unitary
elements satisfying W ′(0) = I, W ′(−u) = W ′(u)∗, and W ′(u)W ′(v) = eiσ(u,v)W ′(u+ v). By
the Gelfand-Neumark theorem we may assume that B ⊆ B(H) for some Hilbert space H. Our
goal is to construct a ∗-isomorphism α : A→ B such that α(W (u)) = W ′(u) for all u ∈ V .

Step 1: A faithful representation π0 : A→ B(l2(V,H)).

Define the Hilbert space l2(V,H) := {ψ : V → H |
∑
v∈V ‖ψ(v)‖2 < ∞} with inner product

〈ϕ|ψ〉 := ∑
v∈V 〈ϕ(v)|ψ(v)〉. (It is isometrically isomorphic to the Hilbert space tensor product l2(V )⊗H.)

For ψ ∈ l2(V,H) and u ∈ V let

(π0(W (u))ψ)(z) := eiσ(z,u)ψ(z + u) (z ∈ V ).

By calculations completely analogous to those in the above existence proof, we obtain that
π0(W (u)) is unitary on l2(V,H), π0(W (u)∗) = π0(W (−u)) = π0(W (u))−1 = π0(W (u))∗,
and (π0(W (u))π0(W (v)) = π0(W (u)W (v)). We may thus extend π0 to a ∗-homomorphism
from the ∗-subalgebra A0 of A generated by {W (u) | u ∈ V } into B(l2(V,H)). Recall that
due to the Weyl relations A0 = span{W (u) | u ∈ V }. We claim that π0 is isometric: In
fact, let ψ ∈ l2(V,H), A ∈ A0, and E be a complete orthonormal system in H; note that
〈e|(π0(A)ψ)(z)〉 = (A〈e|ψ〉)(z) for all z ∈ V and e ∈ E, where 〈e|ψ〉 ∈ l2(V ) is short-hand for
the function z 7→ 〈e|ψ(z)〉 (in case A = W (u) this is obvious from 〈e|(π0(W (u))ψ)(z)〉 = eiσ(z,u)〈e|ψ(z+u)〉
and follows from linearity for general A ∈ A0); we have

‖π0(A)ψ‖2 =
∑
z∈V

∑
e∈E
|〈e|(π0(A)ψ)(z)〉|2 =

∑
z∈V

∑
e∈E
|(A〈e|ψ〉)(z)|2 =

∑
e∈E

∑
z∈V
|(A〈e|ψ〉)(z)|2

=
∑
e∈E
‖A〈e|ψ〉‖2 ≤

∑
e∈E
‖A‖2‖〈e|ψ〉‖2 = ‖A‖2

∑
e∈E

∑
z∈V
|〈e|ψ(z)〉|2

= ‖A‖2
∑
z∈V

∑
e∈E
|〈e|ψ(z)〉|2 = ‖A‖2

∑
z∈V
‖ψ(z)‖2 = ‖A‖2‖ψ‖2,

which shows that ‖π0(A)‖ ≤ ‖A‖; specializing in the first part of the above calculation to ψ
of the form ψ(z) = F (z)e with F ∈ l2(V ) and e ∈ E gives ‖π0(A)ψ‖2 = ‖AF‖2, which upon
taking the supremum over F ∈ l2(V ) with ‖F‖ = 1 and e ∈ E implies that ‖π0(A)‖ ≥ ‖A‖.

We may extend π0 to an isometric ∗-homomorphism A→ B(l2(V,H)), denoted again by π0,
which is thus a faithful representation of A and provides a ∗-isomorphism A ∼= π0(A) =: Ã.
(From the tensor product point of view, l2(V,H) ∼= l2(V )⊗H and Ã ∼= A⊗ I.)

Let W0(u) := π0(W (u)), then Ã is generated as a C∗-algebra by {W0(u) | u ∈ V } and
is, thanks to the Weyl relations, the norm closure as a vector space of the ∗-subalgebra
Ã0 := span{W0(u) | u ∈ V }.

Step 2: A unitarily equivalent subalgebra U∗ÃU of B(l2(V,H)).

For ψ ∈ l2(V,H) define
(Uψ)(z) := W ′(z)ψ(z) (z ∈ V ),

then clearly, U is unitary on l2(V,H) and (U∗ψ)(z) = W ′(−z)ψ(z). The assignment A 7→
U∗AU then defines an isometric ∗-homomorphism π : Ã → B(l2(V,H)) and therefore the
C∗-algebra π(Ã) = U∗ÃU is ∗-isomorphic with Ã, hence also A ∼= π(Ã).
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A quick calculation using eiσ(z,u)W ′(−z)W ′(z + u) = W ′(u) shows that

(∗) (π(W0(u))ψ)(z) = (U∗W0(u)Uψ)(z) = W ′(u)ψ(z + u).

Step 3: A ∗-isomorphism β : π(Ã)→ B.

Let B0 := span{W ′(u) | u ∈ V }, then we know that, thanks to the Weyl relations, B0 is a
∗-subalgebra and its norm closure is B. We define a ∗-homomorphism β0 : π(Ã0) → B0 by
linear extension of β0(π(W0(u))) := W ′(u) (u ∈ V ) to π(Ã0).

We will establish below that β0 is isometric, which then completes the proof, because β0
extends to a ∗-isomorphism β : π(Ã)→ B and we obtain in summary,

A ∼= Ã ∼= π(Ã) ∼= B.

It remains to prove the following assertion.

Claim: Let λ1, . . . , λm ∈ C and u1, . . . , um ∈ V be arbitrary, then we have∥∥∥ m∑
j=1

λjπ(W0(uj))
∥∥∥ =

∥∥∥ m∑
j=1

λjW
′(uj)

∥∥∥.
The strategy is to find some kind of diagonalization of the operators appearing on the left-hand
side, so that the norm becomes computable similarly to those of multiplication operators. The
means to achieve this is to apply some Fourier analysis for the discrete commutative additive
group V that is underlying the construction of l2(V ). In this case the dual group of all characters
on V is1 V̂ := {χ : V → S1 | ∀u, v ∈ V : χ(u+ v) = χ(u)χ(v)} ⊆ (S1)V = ∏

z∈V S
1 equipped

with the product topology, also known as topology of pointwise convergence. Obviously V̂ is
closed and hence compact, since Tychonoff’s theorem guarantees that ∏z∈V S

1 is a compact
Hausdorff space. Pointwise multiplication of characters thus turns V̂ into a commutative
compact group with continuous group operations.

The Fourier transform can be given explicitly on the dense subset of l2(V ) consisting of all
functions with finite support, namely we have for any such function F : V → C the Fourier
transform F̂ : V̂ → C, given by

F̂ (χ) =
∑
z∈V

χ(z)F (z) (χ ∈ V̂ ).

We may thus calculate similarly for any ψ ∈ l2(V,H) with ψ(z) 6= 0 for at most finitely many
z ∈ V , upon defining (Fψ)(χ) := ∑

z∈V χ(z)ψ(z), and using (∗) to obtain

F(π(W0(u))ψ)(χ) =
∑
z∈V

χ(z) (π(W0(u))ψ)(z) =
∑
z∈V

χ(z)W ′(u)ψ(z + u)

=
∑
y∈V

χ(y − u)W ′(u)ψ(y) = χ(u)W ′(u)
∑
y∈V

χ(y)ψ(y) = χ(u)W ′(u)(Fψ)(χ).

This is “our diagonalization” of π(W0(u)), but we have to ask for more substantial help from
harmonic analysis to establish F as a unitary transformation ([Fol16, Chapters 2 and 4]):

1S1 = {λ ∈ C | |λ| = 1}
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Plancherel’s theorem yields that the Fourier transform extends to a unitary map from l2(V )
to L2(V̂, µ), where µ denotes the suitably normalized Haar measure on V̂ , which is a regular
Borel measure. It follows then that the transformation F we introduced above also extends
to a unitary map from l2(V,H) to the Hilbert space L2(V̂,H), which is the completion of
the continuous maps φ : V̂ → H with respect to the norm

( ∫
V̂ ‖φ(χ)‖2 dµ(χ)

)1/2 (or realized as
Hilbert space tensor product L2(V̂, µ)⊗H).

We have therefore reached the intermediate result

(∗∗)
∥∥∥ m∑
j=1

λjπ(W0(uj))
∥∥∥ =

∥∥∥ m∑
j=1

λjŴ (uj)
∥∥∥,

where
(Ŵ (u)φ)(χ) := χ(u)W ′(u)φ(χ) (φ ∈ L2(V̂,H), χ ∈ V̂, u ∈ V ).

We have ‖
(∑m

j=1 λjŴ (uj)
)
φ‖2 =

∫
V̂ ‖
(∑m

j=1 λjχ(uj)W ′(uj)
)
φ(χ)‖2 dµ(χ), which implies, by

arguments essentially as in the scalar case H = C (see [Sla72, Equation (3.7)]), that

(∗ ∗ ∗) ‖
m∑
j=1

λjŴ (uj)‖ = sup
{
‖
m∑
j=1

λjχ(uj)W ′(uj)‖ | χ ∈ V̂
}
.

By continuity of χ 7→ χ(uj)W ′(uj), thus also of χ 7→ ‖∑m
j=1 λjχ(uj)W ′(uj)‖, we may evaluate

the supremum on a suitable dense subset of V̂ .

Note that for any z ∈ V we have the character χz(u) := e2iσ(u,z) (u ∈ V ) and we may again
draw from the resources of harmonic analysis ([Fol16, Chapter 4]) to argue that

T := {χz | z ∈ V }

is dense in V̂ : By Pontrjagin duality, the dual group of V̂ is isomorphic to V via the map v 7→ ṽ,
where ṽ is the character on V̂ defined by ṽ(χ) := χ(v) (χ ∈ V̂ ); note that T is a subgroup of V̂
and so is its closure T ; for any closed subgroup H of a locally compact abelian group G, one can
show ([Fol16, Proposition 4.39]) that (H⊥)⊥ = H, where H⊥ := {ξ ∈ Ĝ | ∀h ∈ H : ξ(h) = 1}
etc.; we have H = T in G := V̂ with Ĝ ∼= V and determine

T
⊥ = {ṽ | ∀χ ∈ T : χ(v) = 1} ⊆ T⊥ = {ṽ | ∀z ∈ V : χz(v) = 1};

thus, ṽ ∈ T⊥ implies that e2iσ(v,z) = 1 for all z ∈ V , which means that σ(v, z) ∈ πZ for all
z ∈ V ; since V is a vector space, the latter can only hold, if

∀z ∈ V : σ(v, z) = 0,

which implies v = 0 by non-degeneracy of σ; therefore, T⊥ = {0̃} and hence T = {0̃}⊥ = V̂ .

Let z ∈ V and recall that by unitarity of W ′(z) we obviously have ‖W ′(z)RW ′(−z)‖ = ‖R‖
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for any R ∈ B(L2(V̂,H)), so that we obtain

‖
m∑
j=1

λjχz(uj)W ′(uj)‖ = ‖W ′(z)
( m∑
j=1

λjχz(uj)W ′(uj)
)
W ′(−z)‖

= ‖
m∑
j=1

λje
2iσ(uj ,z)W ′(z)W ′(uj)W ′(−z)‖ = ‖

m∑
j=1

λje
2iσ(uj ,z)eiσ(z,uj)W ′(z + uj)W ′(−z)‖

= ‖
m∑
j=1

λje
2iσ(uj ,z)eiσ(z,uj)eiσ(z+uj ,−z)W ′(uj)‖ = ‖

m∑
j=1

λje
2iσ(uj ,z)e−iσ(uj ,z)e−iσ(uj ,z)W ′(uj)‖

= ‖
m∑
j=1

λjW
′(uj)‖.

Calling on (∗∗) and (∗ ∗ ∗) now proves the claim and completes the proof.

Note that the uniqueness proof of the previous theorem showed, in fact, that for any two
models of the Weyl algebra over the symplectic vector space (V, σ), say A generated by W (u)
and B generated by W ′(u) with u ∈ V , there is a unique ∗-isomorphism α : A→ B such that
α(W (u)) = W ′(u).

We collect a few direct consequences of Theorem 5.5. Recall that we learned from the existence
proof that span{W (u) | u ∈ V } is a norm dense ∗-subalgebra of the Weyl algebra W(V, σ). In
particular, a continuous linear functional on the Weyl algebra is determined once the values on
all linear combinations ∑u∈V λ(u)W (u) are known, where λ : V → C is a function vanishing
for all but finitely many points in V . It can also be shown that the set {W (u) | u ∈ V } is
linearly independent ([Mor17, Theorem 11.48, (b)]).

5.6. Corollary: Let (V, σ) be a symplectic vector space and W(V, σ) be the Weyl algebra.

(i) For every u ∈ V such that u 6= 0 we have sp(W (u)) = S1 and ‖W (u)− I‖ = 2.
If u, v ∈ V are distinct, then ‖W (u)−W (v)‖ = 2.

(ii) W(V, σ) is not separable.

(iii) Every representation of W(V, σ) is faithful.

(iv) If T : V → V is a symplectic linear map, i.e., T is invertible and σ(Tu, Tv) = σ(u, v) for
all u, v ∈ V , then there is unique ∗-automorphism α of W(V, σ) such that

α(W (u)) = W (Tu) (u ∈ V ).

The ∗-automorphism α is called the Bogoliubov2 transform corresponding to T .

(v) Let M be a subspace of V and WM the C∗-subalgebra of W(V, σ) generated by {W (u) |
u ∈M}. We have WM = W(V, σ) if and only if M = V .

Remark: In case M is symplectic, i.e., σ restricted to M is also non-degenerate, then
WM

∼= W(M,σ) by Theorem 5.5. Hence we obtain W(M,σ) as C∗-subalgebra of W(V, σ).
2Transcriptions also as Bogolubov, Bogoljubov, Bogolyubov, Bogoljubow, Bogoliouboff ...
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Proof: (i): We have W (v)W (u)W (v)∗ = eiσ(v,u)W (v + u)W (−v) = ei(σ(v,u)−σ(v+u,v))W (u) =
e2iσ(v,u)W (u) and sp(W (v)W (u)W (v)∗) = sp(W (u)), hence sp(W (u)) is a subset of S1 (since
W (u) is unitary) and must be invariant under rotations, if u 6= 0. This implies sp(W (u)) = S1

in this case, and further we obtain from sp(W (u)− I) = {λ− 1 | λ ∈ S1} that the spectral
radius of W (u)− I is 2, hence ‖W (u)− I‖ = 2, since W (u)− I is normal.

Consider now u, v ∈ V such that u 6= v. A simple calculation using the Weyl relations gives

(W (u)−W (v))∗(W (u)−W (v)) = (W (−u)−W (−v))(W (u)−W (v))
= I−e−iσ(v,u)W (u−v)−e−iσ(u,v)W (v−u)+I = 2−eiσ(u,v)W (u−v)− (eiσ(u,v)W (u−v))∗.

We know from the previous paragraph that sp(eiσ(u,v)W (u− v)) = S1 and may now apply the
spectral mapping theorem to the normal element A = eiσ(u,v)W (u− v) to deduce

sp
(
(W (u)−W (v))∗(W (u)−W (v))

)
= sp

(
2− eiσ(u,v)W (u− v)− (eiσ(u,v)W (u− v))∗

)
= {2− λ− λ | λ ∈ S1} = {2− 2 Reλ | λ ∈ S1} = [0, 4]

and therefore, ‖W (u)−W (v)‖2 = ‖(W (u)−W (v))∗(W (u)−W (v))‖ = 4.

(ii): The set V is uncountable (since V 6= {0} by our basic assumption for a symplectic vector space in 5.1,
(a)), hence by (i) the subset {W (u) | u ∈ V } cannot be approximated to arbitrary precision by
any countable subset in W(V, σ).

(iii): Let π : W(V, σ)→ B(H) be a representation. Then the C∗-algebra π(W(V, σ)) is a Weyl
algebra generated by {π(W (u)) | u ∈ V }, hence is ∗-isomorphic to W(V, σ) via π (as remarked
above just before the statement of the corollary). Therefore, π is isometric, in particular, injective.

(iv): By considering W ′(u) := W (Tu) (u ∈ V ) this follows also from the uniqueness of the
Weyl algebra in addition with the remark above about uniqueness of ∗-isomorphisms mapping
generators to generators.

(v): Clearly, M = V implies WM = W(V, σ). If M 6= V , then pick v ∈ V \M so that by (i),
‖W (v)−W (u)‖ = 2 for all u ∈M , hence WM 6= W(V, σ).

Property (iii) in the corollary can be used to show that the Weyl algebra is simple, i.e., does
not possess any nontrivial closed ideals. The argument uses the fact that any closed ideal
J 6= A in a C∗-algebra A is the kernel of some representation: As mentioned earlier in 2.13,
the quotient A/J can be shown to be a C∗-algebra, which can be faithfully represented as an
operator algebra by the Gelfand-Neumark theorem, say by π : A/J→ B(H); if q : A→ A/J
denotes the canonical surjection, then π ◦ q defines a representation of A with kernel J. If every
representation of A has to be faithful, as is the case with A = W(V, σ), then we necessarily
have J = {0}.

We will study a bit of representation theory for the Weyl algebra. The first focus will be on
systems with finitely many degrees of freedom, i.e., W(V, σ) with finite-dimensional V . Note
that in this case the existence of the non-degenerate antisymmetric form σ has the consequence
that dimV is an even integer: Indeed, let e1, . . . , ed be a basis of V and S := (σ(ej , ek))1≤j,k≤d
be the matrix representing σ; non-degeneracy and antisymmetry of σ imply that S is invertible
and ST = −S; hence 0 6= detS = detST = det(−S) = (−1)d detS and therefore, (−1)d = 1.
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For any symplectic form σ on RN × RN we can find a so-called symplectic basis, where the
matrix representing σ is of the form

(
0 I
−I 0

)
(see, e.g., [Wald2, Satz 4.35]). This corresponds

to an invertible linear map L on R2N such that σ(Lu,Lv) = β(u, v) for all u, v ∈ R2N , where
β((a, b), (c, d)) = 〈a|d〉 − 〈b|c〉 for u = (a, b) and v = (c, d) with a, b, c, d ∈ RN is the same
standard symplectic form as in 5.1. However, the corresponding Weyl algebras W(R2N , σ)
and W(R2N , β) should be distinguished. (Although the natural assignment α(W (u)) := W (Lu) can
be linearly extended to a bijective linear map α between the linear spans of the corresponding generators,
this does not define an algebra homomorphism, since, e.g., α(W (u)W (v)) = eiσ(u,v)W (L(u + v)), while
α(W (u))α(W (v)) = eiβ(u,v)W (L(u+ v)).)

In the case of finitely many degrees of freedom, we may thus assume that V = R2N . We
will prove below that, up to unitary equivalence, W(R2N , σ) possesses only one irreducible
representation πS : W(R2N , σ)→ B(H) such that u 7→ πS(W (u)) is continuous R2N → B(H)
with respect to the strong operator topology on B(H). The equivalence class of πS is described
by an analogue of the Schrödinger representation given in 5.1 and 5.4 for the special case
σ = −β/2. (Schrödinger representations for different symplectic forms on R2N are not unitarily equivalent,
because a transformation of the form πS(W (u)) 7→ U∗πS(W (u))U cannot change the phase factors from eiσ(u,v)

to eiβ(u,v) in the Weyl relations, unless σ = β. Recall that σ also depends on whether one uses the convention
~ = 1 or not in the defining CCR.)

In the general situation, the additional continuity condition for representations mentioned
above is replaced by the following notion, which is equivalent in the finite-dimensional case.
Note that for any u ∈ V and t, s ∈ R we have from the Weyl relations

W (su)W (tu) = eistσ(u,u)W (su+ tu) = W ((s+ t)u)

and W (0u) = I, thus t 7→ W (tu) is a homomorphism from the additive group R into the
group of unitary elements of the C∗-algebra W(V, σ). Note that we learn from Corollary 5.6,
(i), that the map t 7→W (tu) cannot be norm continuous unless u = 0.

5.7. Definition: (i) A representation π : W(V, σ)→ B(H) of the Weyl algebra is said to be
regular , if for every u ∈ V the map t 7→ π(W (tu)) is strongly continuous, i.e., continuous
as a map R → B(H) with respect to the strong operator topology on B(H). (By the group
homomorphims property, it suffices to check continuity at t = 0.) In this case, every u ∈ V defines a
strongly continuous unitary group π(W (tu)) (t ∈ R) on H, whose self-adjoint generator Bπ(u)
is called a field operator .

(ii) A state ρ on the Weyl algebra W(V, σ) is said to be regular , if the corresponding GNS
representation πρ is regular.

5.8. Lemma: Let H be a Hilbert space.

(i) If U(t) ∈ B(H) (t ∈ R) is a family of unitary operators, then WOT continuity of t 7→ U(t)
implies SOT continuity. In particular, a one-parameter unitary group of operators is strongly
continuous, if and only if it is weakly continuous, i.e., with respect to WOT.

(ii) Let t 7→ C(t) and t 7→ D(t) be SOT continuous maps R → B(H) and suppose that
γ := sup{‖C(t)‖ | t ∈ R} <∞, then t 7→ C(t)D(t) is SOT continuous.
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(iii) Suppose E is a dense subspace of H, C ∈ B(H), the sequence (Cn)n∈N of operators in
B(H) is uniformly bounded, and limn→∞Cny = Cy for every y ∈ E. Then Cn → C with
respect to the SOT.

Proof: Let x ∈ H and t, t0 ∈ R.

(i): We have ‖U(t)x − U(t0)x‖2 = 〈(U(t) − U(t0))x|(U(t) − U(t0))x〉 = 〈U(t)x|U(t)x〉 −
〈U(t0)x|U(t)x〉 − 〈U(t)x|U(t0)x〉 + 〈U(t0)x|U(t0)x〉 = 2‖x‖2 − 2 Re〈U(t)x|U(t0)x〉, which
converges to 2‖x‖2 − 2 Re〈U(t0)x|U(t0)x〉 = 2‖x‖2 − 2‖x‖2 = 0 as t→ t0.

(ii): Estimate ‖C(t)D(t)x−C(t0)D(t0)x‖ = ‖C(t)(D(t)−D(t0))x+ (C(t)−C(t0))D(t0)x‖ ≤
γ‖(D(t)−D(t0))x‖+ ‖(C(t)− C(t0))D(t0)x‖ to see that this converges to 0 as t→ t0.

(iii): Put γ := sup({‖Cn‖ | n ∈ N} ∪ {‖C‖}) and let ε > 0, x ∈ H arbitrary. Choose y ∈ E

with ‖x− y‖ < ε/(3γ) and n0 ∈ N such that ‖Cny − Cy‖ < ε/3 for all n ≥ n0. Then we have
for such n also

‖Cnx−Cx‖ = ‖Cnx−Cny+Cny−Cy+Cy−Cx‖ ≤ ‖Cn(x−y)‖+‖Cny−Cy‖+‖C(y−x)‖

≤ ‖Cn‖‖x− y‖+ ‖Cny − Cy‖+ ‖C‖‖y − x‖ ≤ γ ε

3γ + ε

3 + γ
ε

3γ = ε.

Thus (Cnx)n∈N converges to Cx. Since x ∈ H was arbitrary, we have Cn → C in the SOT.

If we consider a regular state ρ on the Weyl algebra W(V, σ), then in its GNS representation
πρ the map t 7→ πρ(W (tu)) is WOT continuous for every u ∈ V . In particular, for every
v, w ∈ V the map t 7→ 〈πρ(W (w))xρ|πρ(W (tu))πρ(W (v))xρ〉 is continuous. Noting that
〈xρ|πρ(W (−w)W (tu)W (v))xρ〉 = ρ(W (−w)W (tu)W (v)) and applying the Weyl relations, one
easily deduces that we obtain continuity of the map t 7→ ρ(W (tu+ z)) for all u, z ∈ V .

5.9. Proposition: Suppose ρ is a state on W(V, σ) such that for every u ∈ V , the function
t 7→ ρ(W (tu)) is continuous at t = 0. Then ρ is regular.

Proof: Regularity of the representation πρ means SOT continuity of t 7→ πρ(W (tu)) at t = 0
for every u ∈ V . Let u ∈ V and xρ ∈ Hρ be the cyclic vector from the GNS construction,
so that E := span{πρ(W (v))xρ | v ∈ V } is dense3 in Hρ. SOT continuity at t = 0 may be
checked with sequences πρ(W (tnu)) given tn → 0 and part (iii) of the above lemma allows us
to check pointwise convergence of these sequences on the dense subspace E. We write again t
in place of tn and consider

‖(πρ(W (tu))−I)πρ(W (v))xρ‖2 = 〈(πρ(W (tu))−I)πρ(W (v))xρ|(πρ(W (tu))−I)πρ(W (v))xρ〉
= 〈xρ|πρ(W (v))∗(πρ(W (tu))− I)∗(πρ(W (tu))− I)W (v)xρ〉

= 〈xρ|πρ(W (−v)(W (−tu)− I)(W (tu)− I)W (v))xρ〉
= ρ(W (−v)(W (−tu)− I)(W (tu)− I)W (v)) = ρ(W (−v)(I −W (tu)−W (−tu) + I)W (v))

= ρ(I −W (−v)W (tu)W (v)−W (−v)W (−tu)W (v) + I)
= 2− ρ(W (−v)W (tu)W (v))− ρ((W (−v)W (tu)W (v))∗)

= 2− 2 Re ρ(W (−v)W (tu)W (v)) = 2− 2 Re(e−itσ(v,u)eiσ(tu−v,v)ρ(W (tu)))
= 2− 2 Re(e2itσ(u,v)ρ(W (tu))).

3The density of span{W (v) | v ∈ V } in W(V, σ) together with the density of {πρ(A)xρ | A ∈W(V, σ)} in Hρ

implies that span{πρ(W (v))xρ | v ∈ V } is dense in Hρ.
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Since ρ(W (0)) = 1, the hypothesis of continuity of t 7→ ρ(W (tu)) at t = 0 implies that
‖(πρ(W (tu))− I)πρ(W (v))xρ‖ → 0 as t→ 0. Hence we obtain regularity of πρ, thus of ρ.

5.10. Examples: 1) Recall the Schrödinger representation in 5.1 and 5.4 with V = RN ×RN
and σ = −β/2, where β((a, b), (c, d)) = 〈a|d〉−〈b|c〉 for u = (a, b), v = (c, d) with a, b, c, d ∈ RN
and S(a, b) := πS(W (a, b)) acts on a function f ∈ L2(RN ) by

(5.6) S(a, b)f(x) = ei〈a|b〉/2ei〈a|x〉f(x+ b).

In fact, in 5.4 we had arrived at these concrete Weyl operators in the form S(a, b) =
ei〈a|b〉/2U(a)V (b) with U(a) = exp(ia ·Q) and V (b) = exp(ib ·P ) generated from the self-adjoint
operators a ·Q and b · P . Thus the maps t 7→ U(ta) and t 7→ V (tb) are strongly continuous
unitary groups, in particular also uniformly bounded. By part (ii) in the above lemma, the
product U(ta)V (tb) is SOT continuous, hence also t 7→ eit

2〈a|b〉/2U(ta)V (tb) = S(ta, tb).

To summarize, the Schrödinger representation πS is regular. According to the remark in
5.4, the field operators are B(a, b) = a ·Q+ b · P . We will show below that the Schrödinger
representation πS is irreducible. Therefore, the von Neumann algebra generated in this
representation by the ∗-isomorphic image of the Weyl algebra πS(W(R2N ,−β/2)) is all of
B(L2(RN )), hence a factor of type I∞.

As for the announced irreducibility of πS , we will show that every nonzero function f ∈ L2(RN )
is cyclic for πS and then appeal to Proposition 3.16. It suffices to show that for any g ∈ L2(RN ),
〈g|S(a, b)f〉 = 0 for every (a, b) ∈ RN × RN implies g = 0.

Since 〈g|S(a, b)f〉 = ei〈a|b〉/2〈U(a)∗g|V (b)f〉, we have that 〈U(−a)g|V (b)f〉 = 0 for all (a, b).
Recalling that (V (b)f)(x) = f(x + b), writing f = FF−1f with the Fourier transform F

and applying the exchange formula F(−b · Q) = (b · P )F, hence V (b)F = FU(−b), gives
V (b)f = V (b)F(F−1f) = FU(−b)F−1f . We obtain that for all (a, b) ∈ RN × RN ,

0 = 〈U(−a)g|V (b)f〉 = 〈FF−1U(−a)g|FU(−b)F−1f〉 = 〈F−1U(−a)g|U(−b)F−1f〉

= 〈F−1g(.− a)|U(−b)F−1f〉 =
∫
e−i〈b|ξ〉 F−1g(ξ − a)F−1f(ξ) dξ.

This tells that for all a ∈ RN , the Fourier transform of the function ξ 7→ F−1g(ξ − a)F−1f(ξ) =
Fg(ξ − a)F−1f(ξ) vanishes, hence

Fg(ξ − a)F−1f(ξ) = 0 for all a ∈ RN and almost all ξ ∈ RN .

Since f 6= 0 we know that also F−1f(ξ) is nonzero for ξ in some set of positive measure.
Translations ξ − a by all a ∈ RN then tell that 0 = Fg(η) holds for almost all η ∈ RN , so
uniqueness of the Fourier transform implies that g = 0 in L2(RN ).

2) The representation employed in the proof of existence of a Weyl algebra W(V, σ) (Theorem
5.5) is not regular: Recall that W (u)F (z) = eiσ(z,u)F (z + u) for F ∈ l2(V ) = {G : V →
C |

∑
z∈V |G(z)|2 < ∞}. Let u 6= 0 and consider F = δ0, where δ0(z) := δz,0, then

W (tu)F (z) = eiσ(z,tu)δz+tu,0 = δz+tu,0 (since σ(−u, u) = 0). Introducing also δv (v ∈ V ) with
δv(z) := δz,v we may write W (tu)δ0 = δ−tu and get for all t 6= 0,

〈F |W (tu)F 〉 = 〈δ0|δ−tu〉 = 0 6= 1 = 〈δ0|δ0〉 = 〈F |W (0u)F 〉.
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Note that the function F = δ0 is a cyclic vector for this representation, since span{W (u)δ0 |
u ∈ V } = span{δv | v ∈ V } is dense in l2(V ). We have here therefore a representation that
is unitarily equivalent to the GNS representation associated with a, necessarily non-regular,
state ρ on W(V, σ) such that

ρ(W (u)) = 〈δ0|W (u)δ0〉 = 〈δ0|δ−u〉 = δu,0.

On the dense subset span{W (u) | u ∈ V } the values of ρ are given by ρ
(∑

z∈V λ(z)W (z)
)

=
λ(0), where λ : V → C is a function of finite support. Since ρ(W (u)W (v)) = eiσ(u,v)ρ(W (u+
v)) = eiσ(u,v)δu+v,0 = δu+v,0 = eiσ(v,u)δu+v,0 = eiσ(v,u)ρ(W (v + u)) = ρ(W (v)W (u)) we obtain
that ρ is a so-called tracial state, i.e,

∀A,B ∈W(V, σ) : ρ(AB) = ρ(BA).

It can be shown ([Sla72]) that the von Neumann algebra generated in this representation by
the ∗-isomorphic image of the Weyl algebra W(V, σ) within B(l2(V )) is a factor of type II1.

5.11. Remark: In Proposition 5.9 the regularity of a state ρ on W(V, σ) was guaranteed
by properties of the scalar functions t 7→ ρ(W (tu)) for every u ∈ V . One could also ask
to what extent any state on the Weyl algebra is determined by the values of the function
u 7→ ρ(W (u)) =: g(u). It is not difficult to show ([Petz90, Proposition 3.1]) that given a
function g : V → C, there exists a state ρ on W(V, σ) such that ρ(W (u)) = g(u) for all u ∈ V ,
if and only if g(0) = 1 and g is positive definite in the sense that∑

1≤j,k≤N
cjck g(uj − uk)e−iσ(uj ,uk) ≥ 0

for every possible choice of N ∈ N and c1, . . . , cN ∈ C and u1, . . . , uN ∈ V .

For example ([Petz90, Theorem 3.4 and Chapter 4]), if V is the real vector space underlying a
complex Hilbert space H and σ(u, v) := − Im〈u|v〉/2, then it can be shown that u 7→ g(u) :=
e−〈u|u〉/4 is positive definite and hence there exists a state ρ on the corresponding Weyl algebra
such that

ρ(W (u)) = e−〈u|u〉/4 (u ∈ V ).
States of this form are called Fock states. The GNS representation corresponding to a Fock
state is said to be a Fock representation and its cyclic vector is referred to as vacuum vector .

For any symplectic form σ on R2N we may introduce the corresponding Schrödinger repre-
sentation πS : W(R2N , σ) → B(L2(RN )) as follows: Upon suitably rescaling and rearrang-
ing a symplectic basis we may pick an invertible linear map L : R2N → R2N such that
σ(u, v) = −β(Lu,Lv)/2 for all u, v ∈ R2N ; referring to the operators S in (5.6) we put

πS(W (u)) := S(Lu) (u ∈ V )

and indeed obtain the correct Weyl relations, since πS(W (u))πS(W (v)) = S(Lu)S(Lv) =
e−iβ(Lu,Lv)/2S(Lu+Lv) = eiσ(u,v)πS(W (u+v)); The Weyl algebra generated from {πS(W (u)) |
u ∈ V } is ∗-isomorphic to W(R2N , σ) and hence πS can be extended to the representation
corresponding to this ∗-isomorphism. We obtain from Example 5.10, 1), that πS is regular
and irreducible.
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We will now show that πS is the unique irreducible regular representation of W(R2N , σ) up to
unitary equivalence.

5.12. Theorem (Stone-von Neumann): Let π : W(R2N , σ) → B(H) be a regular repre-
sentation of the Weyl algebra. Then π can be decomposed as the direct sum π = ⊕j∈Jπj of
subrepresentations πj (j ∈ J) such that πj is equivalent to the Schrödinger representation πS
for each j ∈ J . In particular, if π is irreducible then π is equivalent to πS .

Proof: It suffices to prove the theorem for the case σ = −β/2, since the same method
used above to define Schrödinger representations for different σ can be applied to any given
representation and provides a perfect correspondence.

Step 1: The “integrated representation” π̃ : L1(R2N )→ B(H).

For any given function F ∈ L1(R2N ) we may define the sesquilinear form sF on H, defined by

sF (x, y) :=
∫
F (u)〈x|π(W (u))y〉 du (x, y ∈ H).

Note that the regularity of π provides continuity of u 7→ 〈x|π(W (u))y〉 (hence Borel mea-
surability) and that |〈x|π(W (u))y〉| ≤ ‖x‖‖π(W (u))y‖ = ‖x‖‖y‖ guarantees the convergence
of the integral while also implying |sF (x, y)| ≤ ‖F‖L1‖x‖‖y‖. Therefore, sF is bounded and
there is a unique operator π̃(F ) ∈ B(H) with ‖π̃(F )‖ ≤ ‖F‖L1 such that

sF (x, y) = 〈x|π̃(F )y〉 (x, y ∈ H).

We thus obtained a bounded linear map π̃ : L1(R2N )→ B(H). It is easy to see that

π̃(F )∗ = π̃(F ∗),

where F ∗(u) := F (−u). Furthermore, if F,G ∈ L1(R2N ) then the Weyl relations yield4

π̃(F )π̃(G) = π̃(F ? G),

where F ? G is given by the twisted convolution

(F ? G)(u) =
∫
eiσ(u,v)F (u− v)G(v) dv.

Indeed, for arbitrary x, y ∈ H, we have

〈x|π̃(F )π̃(G)y〉 =
∫
F (w)〈x|π(W (w))π̃(G)y〉 dw =

∫
F (w)〈π(W (w))∗x|π̃(G)y〉 dw

=
∫∫

F (w)G(v)〈π(W (w))∗x|π(W (v))y〉 dv dw =
∫∫

F (w)G(v)〈x|π(W (w)W (v))y〉 dw dv

=
∫∫

F (w)G(v)eiσ(w,v)〈x|π(W (w + v))y〉 dw dv

=
∫∫

F (u− v)G(v)eiσ(u−v,v)〈x|π(W (u))y〉 du dv

=
∫
〈x|π(W (u))y〉

∫
eiσ(u,v)F (u− v)G(v) dv du.

4Strictly speaking, this aspect of π̃ about the twisted convolution is not required logically for the current
proof. However, we decided to add the information about it here, because it seems to be the best context
for this elegant relation.
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To summarize, π̃ is a ∗-representation of the Banach ∗-algebra (L1(R2N ), ?).

Step 2: The representation π̃ of L1(R2N ) is faithful, i.e., injective.

It is easily seen from the Weyl relations that for any F ∈ L1(R2N ), x, y ∈ H, and w ∈ R2N ,

〈x|π(W (w))π̃(F )π(W (−w))y〉 =
∫
e2iσ(w,u)F (u)〈x|π(W (u))y〉 du.

Suppose π̃(F ) = 0, then we obtain for all w = (a, b) ∈ RN × RN (writing also u = (c, d)) that

0 =
∫
ei(〈b|c〉−〈a|d〉)F (c, d)〈x|π(W (c, d))y〉 d(c, d) =

∫
ei〈(b,−a)|u〉F (u)〈x|π(W (u))y〉 du.

We conclude from Fourier analysis that F (u)〈x|π(W (u))y〉 = 0 for almost all u ∈ R2N and for
all x, y ∈ H, which in turn implies that F (u) = 0 for almost all u ∈ R2N .

Step 3: An orthogonal projection P from the Gaussian function G0(u) := e−|u|
2/4.

Clearly, 0 6= G0 ∈ L1(R2N ) and from G∗0(u) = G0(−u) = G0(u) we obtain that P0 := π̃(G0) is
a nonzero self-adjoint operator on H. We claim that for every w ∈ R2N ,

P0π(W (w))P0 = (2π)NG0(w)P0.

Arguing similarly as above, we have for arbitrary x, y ∈ H,

〈x|P0π(W (w))P0y〉 =
∫∫

G0(u)G0(v)〈x|π(W (u)W (w)W (v))y〉 du dv

=
∫∫

G0(u)G0(v)eiσ(u,w)eiσ(u+w,v)〈x|π(W (u+ w + v)y〉 du dv.

Now a change of integration variables from (u, v) to (ξ, η) defined by u = (ξ − η − w)/2 and
v = (ξ + η − w)/2 gives, upon some trivial simplifications,

〈x|P0π(W (w))P0y〉 = 1
22N

∫∫
G0
(ξ − η − w

2
)
G0
(ξ + η − w

2
)
e
i
2σ(ξ+w,η) dη 〈x|π(W (ξ)y〉 dξ.

Noting that G0((ξ− η−w)/2)G0((ξ+ η−w)/2) = e−|ξ−w|
2/8e−|η|

2/8 we have the intermediate
result

〈x|P0π(W (w))P0y〉 =
∫
Fw(ξ)e−

|ξ−w|2
8 〈x|π(W (ξ)y〉 dξ,

where Fw(ξ) := 1
22N

∫
e
i
2σ(ξ+w,η)e−|η|

2/8 dη. Writing ξ = (r, s), w = (a, b), and η = (q, p) and
using σ(ξ + w, η)/2 = −β((r + a, s+ b), (q, p))/4 = −(〈r + a|p〉 − 〈s+ b|q〉)/4 we have

F(a,b)(r, s) = 1
22N

∫
e−

i
4 〈(−s−b,r+a)|(q,p)〉e−

|q|2+|p|2
8 d(q, p),

which we may interpret as the 2N -dimensional Fourier transform of the Gaussian function
u 7→ e−〈u|u/4〉/2/22N evaluated at (−s − b, r + a)/4 ∈ RN × RN . The result is F(a,b)(r, s) =
(2π)Ne−(|s+b|2+|r+a|2)/8 = (2π)Ne−|ξ+w|2/8 (using, e.g., [Hoe90, Theorem 7.6.1]). Noting that
e−|ξ−w|

2/8e−|ξ+w|
2/8 = e−|ξ|

2/4e−|w|
2/4 we arrive at

〈x|P0π(W (w))P0y〉 = (2π)Ne−|w|2/4
∫
e−|ξ|

2/4〈x|π(W (ξ)y〉 dξ = (2π)NG0(w)〈x|P0y〉
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and thus the claim P0π(W (w))P0 = (2π)NG0(w)P0 is verified. In particular, with w = 0 we
obtain P 2

0 = (2π)NP0 so that

P := (2π)−NP0 = (2π)−N π̃(G0)

is an orthogonal projection on the representation Hilbert space H with the property

Pπ(W (w))P = e−|w|
2/4P.

Step 4: Decomposing H and π with the help of P .

Let E := ranP . We have for any x, y ∈ E and u, v ∈ R2N ,

(∗) 〈π(W (u))x|π(W (v))y〉 = 〈π(W (u))Px|π(W (v))Py〉 = 〈Pπ(W (−v)W (u))Px|y〉
= eiσ(v,u)〈Pπ(W (u− v))Px|y〉 = eiσ(v,u)e−|u−v|

2/4〈Px|y〉 = eiσ(v,u)e−|u−v|
2/4〈x|y〉,

hence x ⊥ y implies π(W (u))x ⊥ π(W (v))y for all u, v ∈ R2N .

Let {ej | j ∈ J} be a complete orthonormal system of E and define Hj to be the closure of
span{π(W (u))ej | u ∈ R2N} for every j ∈ J . Then each Hj is invariant under π and Hj ⊥ Hk

when j 6= k. We define πj as the subrepresentation of π on Hj (j ∈ J).

We claim that ⊕j∈J Hj = H. Let K := (⊕j∈J Hj)⊥, then K defines a subrepresentation. In
case K 6= {0} we could argue as above to obtain P |K as a nonzero orthogonal projection. But
this would contradict the fact that E = ranP ⊆ K⊥. Thus K = {0} and indeed π = ⊕j∈Jπj .

Step 5: It remains to show that each πj is equivalent to the Schrödinger representation πS .

We obtain from (∗) that the vectors π(W (u))ej = πj(W (u))ej (u ∈ R2N ) satisfy

〈πj(W (u))ej |πj(W (v))ej〉 = eiσ(v,u)e−|u−v|
2/4.

We compare this with inner products of actions on Gaussian functions in the Schrödinger
representation as given in (5.6): Let S(u) := πS(W (u)), write u = (a, b), v = (c, d), and
consider ϕ(r) := e−|r|

2/2/πN/4 (r ∈ RN ); then ϕ ∈ L2(RN ) with ‖ϕ‖L2 = 1 and

S(u)ϕ(r) = S(a, b)ϕ(r) = 1
πN/4

ei〈a|b〉/2ei〈a|r〉e−|r+b|
2/2,

so that we may start calculating the L2 inner products

〈S(u)ϕ|S(v)ϕ〉 = 〈S(a, b)ϕ|S(c, d)ϕ〉 = ei(〈c|d〉−〈a|b〉)/2

πN/2

∫
e−i〈a−c|r〉e−(|r+b|2+|r+d|2)/2 dr;

changing of variables according to r = s− 1
2(b+ d) gives

〈S(u)ϕ|S(v)ϕ〉 = ei(〈c|d〉−〈a|b〉)/2

πN/2

∫
e−i〈a−c|s−

1
2 (b+d)〉e−(|s+ 1

2 (b−d)|2+|s− 1
2 (b−d)|2)/2 ds

= ei(〈c|d〉−〈a|b〉+〈a−c|b+d〉)/2

πN/2

∫
e−i〈a−c|s〉e−|s|

2
e−
|b−d|2

4 ds

= ei(〈a|d〉−〈b|c〉)/2

πN/2
e−
|b−d|2

4

∫
e−i〈a−c|s〉e−|s|

2
ds = eiσ(v,u)

πN/2
e−
|b−d|2

4

∫
e−i〈a−c|s〉e−|s|

2
ds,
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where the integral is the N -dimensional Fourier transform of the function s 7→ e−|s|
2 evaluated

at a− c, which gives πN/2e−|a−c|2/4; therefore, we obtain

(∗∗) 〈S(u)ϕ|S(v)ϕ〉 = eiσ(v,u)e−|u−v|
2/4 = 〈πj(W (u))ej |πj(W (v))ej〉.

Recall that Hj is the closure of {πj(W (u))ej | u ∈ R2N} and observe that by (∗∗), we have
for any linear combination z = ∑m

l=1 λlπj(W (ul))ej the equation ‖z‖2 = ‖∑m
l=1 λlS(ul)ϕ‖2L2 ,

which tells us that the linear map z 7→ Uz := ∑m
l=1 λlS(ul)ϕ is isometric, thus extends to an

isometric linear map U : Hj → L2(RN ) such that

Uπj(W (u)) = S(u)U = πS(W (u))U

for all u ∈ R2N . Since the Schrödinger representation is irreducible, the nonzero vector ϕ is
cyclic for πS , hence U is surjective and therefore unitary ([KRI, Proposition 2.4.6, (ii)]).

5.13. Remark: (i) Any regular representation π of the Weyl algebra W(R2N , σ) on a Hilbert
space H can be interpreted as a unitary representation of the Heisenberg group HN := R2N×R,
where the group multiplication is given by (u, s)◦ (v, t) := (u+v, s+ t+σ(u, v)). We may then
define the strongly continuous group homomorphism θ : HN → U(H), where U(H) denotes
the group of unitary operators on H, by

θ(u, s) := eisπ(W (u)) ((u, s) ∈ HN ).

We quickly check that indeed

θ(u, s)θ(v, t) = ei(s+t)π(W (u))π(W (v)) = ei(s+t)eiσ(u,v)π(W (u+ v)) = θ((u, s) ◦ (v, t)).

Note that θ has the specific property θ(0, s) = eisI, thus maps the center {0} × R of HN

onto the center S1I of U(H), while the family ζz (z ∈ R2N ) of irreducible one-dimensional
group representations ζz(u, s) := ei〈z|u〉 acts trivially on the center and cannot arise from a
Weyl algebra representation (the latter are necessarily faithful, hence always infinite-dimensional). An
analogue of the Stone-von Neumann theorem can be proved also by advanced methods from
the theory of unitary representations of locally compact groups (cf. [Fol16, Theorem 6.50]).

(ii) We learn from Equation (∗∗) in the above proof that 〈ϕ|πS(W (u))ϕ〉 = e−|u|
2/4 for the

Gaussian function ϕ(x) = e−|x|
2/2/πN/4 in the Schrödinger representation. Therefore, A 7→

ρ(A) := 〈ϕ|πS(A)ϕ〉 defines a Fock state (see Remark 5.11) on the Weyl algebra W(R2N , σ).
By Proposition 3.5, the Schrödinger representation is equivalent to the corresponding GNS
representation and the irreducibility of πS implies that ρ is pure. (See also [BR2, Corollary
5.2.15 and Example 5.2.16] and [Petz90, Theorem 4.7, Corollary 4.8, and Theorems 9.3 and
9.4] for more on this context with Fock states.)

(iii) In a certain sense, the Stone-von Neumann theorem “justifies” the focus on representations
built up from the Schrödinger representation for quantum models with finitely many degrees
of freedom. The situation is radically different with infinitely many degrees of freedom: If
(V, σ) is an infinite-dimensional symplectic vector space, then there are always uncountably
many inequivalent regular irreducible representations of the Weyl algebra W(V, σ); this can be
considered one of the reasons for describing basic models of quantum systems to some extent
in the language of C∗-algebras rather than solely in terms of concrete representations. For a
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first selection of brief discussions, including partial results and many further references, we
may recommend the sources [Petz90, Chapter 9, in particular, e.g., Theorem 9.10], [BR2, on
page 218], [Emch, Chapter 3, Subsection 1.f], and [Haa96, Subsection II.1.1].

5.14. The Boson and Fermion Fock spaces: We briefly sketch the basic constructions
here and refer to [KRI, Section 2.5], [RSI, Section II.4], [Ott95, Section 2.1], [Fol08, Section
4.5] for more details and proofs.

A preparation—Hilbert space tensor product: Let H1, . . . ,Hn be Hilbert spaces and
denote by K their algebraic tensor product. There is a unique inner product on K such that
on splitting tensors x1 ⊗ · · · ⊗ xn, y1 ⊗ · · · ⊗ yn ∈ K with xj , yj ∈ Hj (j = 1, . . . , n) we have

〈x1 ⊗ · · · ⊗ xn|y1 ⊗ · · · ⊗ yn〉 = 〈x1|y1〉 · · · 〈xn|yn〉.

The Hilbert space tensor product H1 ⊗ · · · ⊗Hn is the completion of K with respect to the
norm defined from the above inner product. If we have a complete orthonormal system Sj
of Hj for each j = 1, . . . , n, then the set {z1 ⊗ · · · ⊗ zn | zj ∈ Sj (j = 1, . . . , n)} is a complete
orthonormal system in H1 ⊗ · · · ⊗Hn.

Hilbert space tensor products H1 ⊗ · · · ⊗Hn arise in quantum mechanical models describing
systems with n particles, where the particle number j has vector state space Hj .

Symmetric and antisymmetric tensor products: In case of n particles of the same
species we have Hj = H for all j = 1, . . . , n. We denote by ⊗nH the n-fold Hilbert space
tensor product H⊗ · · · ⊗H. If S = {el | l ∈M} is a complete orthonormal system in H, then
{el1 ⊗ · · · ⊗ eln | l1, . . . , ln ∈M} is a complete orthonormal system in ⊗nH.

Since quantum particles of the same species are indistinguishable, certain configurations of
splitting tensors x1 ⊗ · · · ⊗ xn of one-particle state vectors xj ∈ H will yield the same state of
the entire n-particle system.

Particles whose multiparticle states are invariant under any permutation of the indices j in
each splitting tensor vector state are called Bosons. Their modeling Hilbert space is given
by a subspace of ⊗nH corresponding to the symmetric tensor product snH, which can be
defined as follows: Let Sn denote the permutation group for n elements, then it can be shown
that there is a uniquely determined orthogonal projection Pn,s on ⊗nH satisfying

Pn,s(x1 ⊗ · · · ⊗ xn) = 1
n!
∑
τ∈Sn

xτ(1) ⊗ · · · ⊗ xτ(n);

we then define
snH := ranPn,s.

Fermions are particles whose multiparticle states are built up from the subspace of ⊗nH
corresponding to the antisymmetric tensor product

∧nH, which can be defined in terms of
the uniquely determined orthogonal projection Pn,a on ⊗nH satisfying

Pn,a(x1 ⊗ · · · ⊗ xn) = 1
n!
∑
τ∈Sn

(sgn τ)xτ(1) ⊗ · · · ⊗ xτ(n)
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and putting ∧nH := ranPn,a.

Note that ∧nH = {0}, if dimH < n.

In elementary quantum mechanics or non-relativistic quantum physics it is an additional
postulate that particles with integer spin are described as Bosons (with Bose-Einstein statistics)
and particles with spin that is the half of an odd number are described as Fermions (with
Fermi-Dirac statistics). In relativistic quantum theories, this connection between spin and
statistics can be turned into a theorem (cf. [Thi10, Part I, 3.1.16], [Fol08, pages 89, 116, and
152-153] [Haa96, Subsection II.5.1], and [SW00, Section 4.4]).

The Boson Fock space: To allow for models of large systems in quantum statistical mechanics
or for relativistic theories where particles may be annihilated or created in scattering processes,
we strive for a basic Hilbert state space that can “accommodate” an arbitrary number of
particles. Let us add here the conventions ⊗0H := C, s0H := C, and ∧0 H := C, to
potentially have observables also acting on a nontrivial Hilbert space when no particle is
present (vacuum).

As a basic arena in case of particles with integer spin and one-particle Hilbert space H one
can then take the Boson Fock space

Fs(H) :=
∞⊕
n=0

snH.

(Recall that the Hilbert space direct sum is the completion of the algebraic direct sum and that the summands
are mutually orthogonal subspaces.)

Upon putting P0,s := I, we may define Ps := ⊕∞n=0Pn,s as operator on the general Fock space
F(H) := ⊕∞

n=0⊗nH and obtain Fs(H) = ranPs. Let F0(H) denote the algebraic direct sum
of the spaces ⊗nH (n ∈ N0), then F0(H) is dense in F(H) and

(5.7) F0
s(H) := Ps(F0(H))

is dense in the Boson Fock space Fs(H). Each state vector in F0
s(H) or F0(H) involves only a

bounded total number of particles and is produced from a finite linear combination of splitting
tensors with a bounded number of factors.

The Fermion Fock space: For an arbitrary number of particles with half-odd (non-integer)
spin we define the Fermion Fock space

Fa(H) :=
∞⊕
n=0

∧nH.
We can again put P0,a := I and Pa := ⊕∞n=0Pn,a to obtain Fa(H) = ranPa and define

(5.8) F0
a(H) := Pa(F0(H)).
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5.15. A Weyl algebra representation on the Boson Fock space: Let E be a pre-Hilbert
space with completion H. For an example used frequently in physics, one could consider the
situation where E is a space of test functions like D(RN ) or S (RN ) and H = L2(RN ).

Define V as the real vector space underlying E and

σ(u, v) := −1
2 Im〈u|v〉 (u, v ∈ V ).

We will sketch the basics for a construction of a specific representation of the Weyl algebra
W(V, σ) on the Boson Fock space Fs(H). For more details we may refer to [BR2, Subsections
5.2.1-2], [Ott95, Section 3.1], and [Fol08, Section 4.5].

General prototypes for annihilation and creation operators: For any given u ∈ V we
define operators A0(u) and C0(u) with dense domain F0(H) in the Fock space F(H) by linear
extension of the following maps given on splitting tensors in the form

A0(u)(v1 ⊗ · · · ⊗ vn) :=
√
n 〈u|v1〉 v2 ⊗ · · · ⊗ vn (n ≥ 2),

A0(u)λ := 0 for λ ∈ C = ⊗0H, A0(u)v1 := 〈u|v1〉 ∈ C = ⊗0H, and

C0(u)(v1 ⊗ · · · ⊗ vn) :=
√
n+ 1 u⊗ v1 ⊗ · · · ⊗ vn (n ≥ 1),

C0(u)λ := λu for λ ∈ C = ⊗0H.

We see that A0(u)(⊗n+1H) ⊆ ⊗nH, C0(u)(⊗nH) ⊆ ⊗n+1H, and easily check, using the fact
⊗kH ⊥ ⊗nH if k 6= n within the Fock space and by calculating on splitting tensors, that we
have for all ϕ,ψ ∈ F0(H),

(5.9) 〈A0(u)ϕ|ψ〉 = 〈ϕ|C0(u)ψ〉

This relation means in the language of adjoints of densely defined unbounded operators that
C0(u) ⊆ A0(u)∗ and A0(u) ⊆ C0(u)∗.

We claim that A0(u) has both F0
s(H) and F0

a(H) as invariant subspaces, i.e.,

(5.10) A0(u)F0
s(H) ⊆ F0

s(H) and A0(u)F0
a(H) ⊆ F0

a(H).

Indeed, for the symmetric case, we note that

(5.11) A0(u)Ps(v1 ⊗ · · · ⊗ vn) =
√
n

n!
∑
τ∈Sn
〈u|vτ(1)〉 vτ(2) ⊗ · · · ⊗ vτ(n)

= 1√
n

n∑
k=1
〈u|vk〉

1
(n− 1)!

∑
τ∈Sn,τ(1)=k

vτ(2) ⊗ · · · ⊗ vτ(n)

= 1√
n

n∑
k=1
〈u|vk〉Ps(v1 ⊗ · · · v̂k · · · ⊗ vn) ∈ F0

s(H),
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where v̂k indicates that vk is omitted; for the antisymmetric analogue we have

(5.12) A0(u)Pa(v1 ⊗ · · · ⊗ vn) =
√
n

n!
∑
τ∈Sn
〈u|vτ(1)〉(sgn τ) vτ(2) ⊗ · · · ⊗ vτ(n)

= 1√
n

n∑
k=1
〈u|vk〉

1
(n− 1)!

∑
τ∈Sn,τ(1)=k

(sgn τ) vτ(2) ⊗ · · · ⊗ vτ(n)

= 1√
n

n∑
k=1

(−1)k−1〈u|vk〉Pa(v1 ⊗ · · · v̂k · · · ⊗ vn) ∈ F0
a(H).

(In the last equality we used sgn τ = (−1)k−1sgn τ (k), where the factor (−1)k−1 arises from moving vk back
from place 1 to place k and τ (k) is the permutation corresponding to τ but now leaving k fixed.)

Bosonic annihilation and creation operators: For any u ∈ V we may project the above
objects to the symmetric tensor products and thus define the operators

B0(u) := PsA0(u) and B†0(u) := PsC0(u)

on the common dense domain F0
s(H) = Ps(F0(H)), with the operators A0(u) and C0(u)

considered to be restricted to that subspace of their original domain. We call B0(u) the
annihilation operator and B†0(u) the creation operator for u ∈ V . Recall that by the invariance
noted in (5.10) we have

B0(u)Ps = PsA0(u)Ps = A0(u)Ps.

Furthermore, it follows directly from the definition of C0(u) that

B†0(u)Ps = PsC0(u)Ps = PsC0(u).

If ϕ,ψ ∈ F0
s(H) and u ∈ V then we immediately get from (5.9) that

(5.13) 〈B0(u)ϕ|ψ〉 = 〈ϕ|B†0(u)ψ〉.

Therefore, the Segal field operator for each u ∈ V

Φ0(u) := 1√
2

(B0(u) +B†0(u))

is densely defined and symmetric.

We claim that the bosonic annihilation and creation operators satisfy the following variant of
the canonical commutation relations

(5.14) [B0(u), B0(v)] = 0 = [B†0(u), B†0(v)], [B0(u), B†0(v)] = 〈u|v〉I (u, v ∈ V ).

Before discussing their proof, we quickly observe that the relations (5.14) immediately imply
by elementary calculation these commutation relations for the Segal field operators:

(5.15) [Φ0(u),Φ0(v)] = i Im〈u|v〉I (u, v ∈ V ).
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Due to linearity it suffices to show (5.14) when acting on an arbitrary element of the form
Ps(v1⊗ · · · ⊗ vn). To show the first relation in (5.14) we start by noting that B0(w)B0(u)Ps =
A0(w)PsA0(u)Ps = A0(w)A0(u)Ps, whose value on a typical splitting tensor is

A0(w)A0(u)Ps(v1 ⊗ · · · ⊗ vn) = 1
n!
∑
τ∈Sn

A0(w)A0(u) vτ(1) ⊗ · · · ⊗ vτ(n)

=
√
n

n!
∑
τ∈Sn
〈u|vτ(1)〉A0(w) vτ(2) ⊗ · · · ⊗ vτ(n)

=
√
n(n− 1)
n!

∑
τ∈Sn
〈u|vτ(1)〉〈w|vτ(2)〉 vτ(3) ⊗ · · · ⊗ vτ(n)

and, similarly,

A0(u)A0(w)Ps(v1 ⊗ · · · ⊗ vn) =
√
n(n− 1)
n!

∑
τ∈Sn
〈w|vτ(1)〉〈u|vτ(2)〉 vτ(3) ⊗ · · · ⊗ vτ(n).

We obtain A0(w)A0(u)Ps(v1 ⊗ · · · ⊗ vn) = A0(u)A0(w)Ps(v1 ⊗ · · · ⊗ vn) since the summations
are over all permutations. We further obtain the second relation in (5.14) using the fact
established above that B†0(u) is a formal adjoint of B0(u), i.e., B†0(u) ⊆ B0(u)∗.

It remains to check the third relation in (5.14). We note that B0(u)B†0(v)Ps = A0(u)PsC0(v)
and let this act on splitting tensors w1 ⊗ · · · ⊗ wn using (5.11):

A0(u)PsC0(v)(w1 ⊗ · · · ⊗ wn) =
√
n+ 1A0(u)Ps(v ⊗ w1 ⊗ · · · ⊗ wn)

= 〈u|v〉Ps(w1 ⊗ · · · ⊗ wn) +
n∑
k=1
〈u|wk〉Ps(v ⊗ w1 ⊗ · · · ŵk · · · ⊗ wn);

now calculate using B†0(v)B0(u)Ps = PsC0(v)A0(u)Ps and again (5.11), which gives

PsC0(v)A0(u)Ps(w1 ⊗ · · · ⊗ wn) = 1√
n
PsC0(v)

n∑
k=1
〈u|wk〉Ps(w1 ⊗ · · · ŵk · · · ⊗ wn)

=
√
n√
n
Ps

n∑
k=1
〈u|wk〉 v⊗Ps(w1⊗· · · ŵk · · ·⊗wn) =

n∑
k=1
〈u|wk〉Ps(v⊗w1⊗· · ·⊗ ŵk⊗· · ·⊗wn);

we therefore obtain

A0(u)PsC0(v)(w1 ⊗ · · · ⊗ wn)− PsC0(v)A0(u)Ps(w1 ⊗ · · · ⊗ wn) = 〈u|v〉Ps(w1 ⊗ · · · ⊗ wn),

which proves B0(u)B†0(v)−B†0(v)B0(u) = 〈u|v〉I.

Weyl operators from the Segal fields: The operator Φ0(u) can be shown to be essentially
self-adjoint([BR2, Proposition 5.2.3,(1)] or [Ott95, page 70]), hence we have a unique self-
adjoint extension that we denote by Φ(u). The domain of Φ(u) certainly contains the domain
of Φ0(u), which was the dense subspace F0

s(H).

We are now ready to define the Weyl operators by

W (u) := exp(iΦ(u)) (u ∈ V ).
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To keep the notation simple we skipped an extra symbol π for the prospective representation
of W(V, σ). We immediately obtain that W (0) = exp(iΦ(0)) = I, since Φ(0) = 0, and that
W (u) is unitary with W (−u) = exp(−iΦ(u)) = W (u)∗ by definition. One other obvious
consequence of the definition is that t 7→ W (tu) is strongly continuous for every u ∈ V ,
because Φ(tu) = tΦ(u) for real t. Thus we may claim to have a regular representation of the
Weyl algebra once the Weyl relations have been established, which we undertake now.

For every u, v ∈ V , it can be shown ([BR2, Proposition 5.2.4, (1)]) that the domain of
Φ(v) is invariant under W (u); furthermore, based on the power series expansion W (v)ψ =
exp(iΦ(v))ψ = ∑∞

k=0(ik/k!)Φ(v)kψ, which can be shown to be valid for ψ ∈ F0
s(H), and using

the commutation relation for the Segal fields (5.15) in expressions like

Φ(u)Φ(v)2 = (Φ(v)Φ(u) + i Im〈u|v〉)Φ(v) = Φ(v)Φ(u)Φ(v) + i Im〈u|v〉Φ(v)
Φ(v)(Φ(v)Φ(u) + i Im〈u|v〉) + i Im〈u|v〉Φ(v) = Φ(v)2Φ(u) + 2i Im〈u|v〉Φ(v)

and inductively, Φ(u)Φ(v)k = Φ(v)kΦ(u) + ik Im〈u|v〉Φ(v)k−1, we may calculate

Φ(u)W (v)ψ =
∞∑
k=0

ik

k!Φ(u)Φ(v)kψ =
∞∑
k=0

ik

k!Φ(v)kΦ(u)ψ +
∞∑
k=0

ik

k! ik Im〈u|v〉Φ(v)k−1ψ

= W (v)Φ(u)ψ + i2 Im〈u|v〉
∞∑
k=1

ik−1

(k − 1)!Φ(v)k−1ψ = W (v)Φ(u)ψ − Im〈u|v〉W (v)ψ

and thus derive the relation

Φ(u)W (v) = W (v)Φ(u)− Im〈u|v〉W (v).

Let ψ ∈ F0
s(H) and consider the differentiable function F : R → H, given by F (t) :=

W (tu)W (tv)W (t(u+ v))∗ψ (t ∈ R). Noting that a generator commutes with its unitary group
and Φ(u+ v) = Φ(u) + Φ(v) we calculate the derivative as

F ′(t) = iΦ(u)W (tu)W (tv)W (t(u+ v))∗ψ +W (tu)(iΦ(v))W (tv)W (t(u+ v))∗ψ
+W (tu)W (tv)(−iΦ(u+ v))W (t(u+ v))∗ψ

= iW (tu)
(
Φ(u)W (tv) + Φ(v)W (tv)−W (tv)Φ(u)−W (tv)Φ(v)

)
W (t(u+ v))∗ψ

= iW (tu) [Φ(u),W (tv)]W (t(u+ v))∗ψ = itW (tu)(− Im〈u|tv〉W (tv))W (t(u+ v))∗ψ
= −it Im〈u|v〉W (tu)W (tv)W (t(u+ v))∗ψ = −it Im〈u|v〉F (t).

Therefore, F (t) = e−it
2 Im〈u|v〉/2F (0) = e−it

2 Im〈u|v〉/2ψ and considering t = 1 gives eiσ(u,v)ψ =
e−i Im〈u|v〉/2ψ = F (1) = W (u)W (v)W (u+ v)∗ψ. Since F0

s(H) is dense, we conclude that the
Weyl relations

W (u)W (v) = eiσ(u,v)W (u+ v)

are indeed satisfied.

Vacuum expectation values: Let Ω := (1, 0, 0, . . .) ∈ F0
s(H), i.e., Ω has vanishing vector or

tensor components of order n ≥ 1 and entry 1 in the component s0H = C. We obviously have
B0(u)Ω = 0 and B†0(u)Ω = u (the state u is created out of the vacuum) and further B0(u)2Ω = 0,
B0(u)B†0(u)Ω = 〈u|u〉Ω, and B†0(u)B†0(u)Ω =

√
2Ps(u ⊗ u) =

√
2u ⊗ u. It is apparent that

78



only products with an equal number of annihilators and creators acting on Ω can give any
nontrivial contribution in the 0-component of Fs(H).

Recalling the definition Φ0(u) = (B0(u) + B†0(u))/
√

2, we therefore see that unavoidably
〈Ω|Φ(u)kΩ〉 = 0 in case k is odd. If k = 2m then only the terms with exactly m factors of
B0(u) and B†0(u) each can contribute at all—the order of factors matters too, because there
have to be more creators at work before too many annihilators act. In any case, we certainly
obtain a result proportional to 〈u|u〉m from creating and annihilating u successively and in a
“fortunate” order. It turns out ([Ott95, page 74]) that the precise combinatorics gives

〈Ω|Φ(u)2mΩ〉 = (2m)!
4mm! 〈u|u〉

m

and therefore,

〈Ω|W (u)Ω〉 =
∞∑
m=0

i2m

(2m)!〈Ω|Φ(u)2mΩ〉 =
∞∑
m=0

(−1)m
m!

〈u|u〉m

4m = e−〈u|u〉/4.

We give a plausibility argument—maybe it is in fact a proof—that Ω is a cyclic vector for
the representation of the Weyl algebra defined by the operators W (u) (u ∈ V ) on the Boson
Fock space. (The assertion is definitely true, because the representation constructed above is known to be
irreducible for independent reasons, hence every nonzero vector is cyclic.)

Recall that due to the Weyl relations, it suffices to show that G := span{W (u)Ω | u ∈ V }
is a dense subspace of Fs(H). The closure G is an invariant closed subspace and thus
defines a subrepresentation in which the field operators exist as strong derivatives of the
Weyl operators and have to agree with the restriction of Φ(u) and leave G invariant. Then
also the annihilation and creation operators can be obtained as operators on G, namely in
the form B0(u) = (Φ(u) + iΦ(iu))/

√
2 and B†0(u) = (Φ(u) − iΦ(iu))/

√
2 (one may check that

Φ0(iu) = −i(B0(u)−B†0(u))/
√

2 holds for the operators as introduced above).

If G 6= Fs(H), then also span{B†0(v1) · · ·B†0(vn)Ω | v1, . . . , vn ∈ V } cannot be dense in Fs(H).
But this produces a contradiction, since we observe that B†0(v1) · · ·B†0(vm)Ω is a scalar multiple
of Ps(v1 ⊗ · · · ⊗ vm) and hence we can clearly generate the dense subspace F0

s(H).

Finally, we remark that having Ω as a cyclic vector implies that the Fock space representation
of the Weyl algebra is unitarily equivalent to the GNS representation corresponding to the
Fock state ρ with the property

ρ(W (u)) = e−〈u|u〉/4 = 〈Ω|W (u)Ω〉 (u ∈ V ).

(Recall that strictly speaking we should have written π(W (u)) in place of W (u) in the rightmost term, if π
denotes the Fock representation of the abstract Weyl algebra constructed here.)

The Fock representation is irreducible. This is shown in the approach from the GNS con-
struction in [Petz90, Theorem 4.7] and in the concrete context of Fock space, e.g., in [DG13,
Theorem 9.5, (2)] or [BR2, Proposition 5.2.4, (3)] (although, it seems that according to
[Ott95, Corollary 12, page 75] there might be a problem with the proof by Bratteli-Robinson,
so Ottensen refers to [RSII, page 232, Lemma 1]).
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6. Fermions and the canonical
anticommutation relations

3 Our main sources for this chapter are [BR2, Ott95, Fol08, Ara87, PR94, DG13].

In this chapter we start from concrete operators on the Fermion Fock space that will lead us
to the canonical anticommutation relations (CAR), which are typical of fermionic fields in
quantum physics. This will establish the existence of a corresponding C∗-algebra of the CAR.

Throughout the current chapter, let E be a complex pre-Hilbert space with completion H.
The Hilbert space H serves as the one-particle Hilbert space for the Fermion Fock space
Fa(H) = ⊕∞

n=0
∧nH defined in 5.14.

6.1. Annihilation and creation operators on the Fermion Fock space: Recalling the
prototypes in 5.15 and the projection Pa from the general Fock space F(H) to the Fermion
Fock space built up from antisymmetric tensor products, we may now define the operators

a(u) := PaA0(u) and a†(u) := PaC0(u) (u ∈ E)

on the dense domain F0
a(H) = Pa(F0(H)) (recall that F0(H) denoted the algebraic direct sum over

⊗nH, n ∈ N0), where we may again consider A0(u) and C0(u) to be restricted to this subspace
of their original domain. We have seen in (5.10) that A0(u) leaves Fa(H) invariant, hence

a(u)Pa = PaA0(u)Pa = A0(u)Pa,

while the definition of C0(u) implies

a†(u)Pa = PaC0(u)Pa = PaC0(u).

As in the bosonic case, the general symmetry relation (5.9) directly implies also a corresponding
one for the fermionic annihilation and creation operators:

(6.1) 〈a(u)ϕ|ψ〉 = 〈ϕ|a†(u)ψ〉 (ϕ,ψ ∈ F0
a(H)).

Recall from (5.12) that for the annihilation operators we have already determined the action
on the antisymmetric Fock space as

A0(u)Pa(w1 ⊗ · · · ⊗ wn) = 1√
n

n∑
k=1

(−1)k−1〈u|wk〉Pa(w1 ⊗ · · · ŵk · · · ⊗ wn),

and for the creation operator it is simply

PaC0(u)Pa(w1 ⊗ · · · ⊗ wn) = PaC0(u)(w1 ⊗ · · · ⊗ wn) =
√
n+ 1Pa(u⊗ w1 ⊗ · · · ⊗ wn).
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We can obtain even simpler descriptions by using the notation of the exterior or wedge product

w1 ∧ · · · ∧ wn = Pa(w1 ⊗ · · · ⊗ wn) = 1
n!
∑
τ∈Sn

(sgn τ)wτ(1) ⊗ · · · ⊗ wτ(n) (wj ∈ H).

In fact, the two resulting equations could also serve as a convenient shortcut to the definition:

a(u)(w1 ∧ · · · ∧ wn) = 1√
n

n∑
k=1

(−1)k−1〈u|wk〉w1 ∧ · · · ŵk · · · ∧ wn,(6.2)

a†(u)(w1 ∧ · · · ∧ wn) =
√
n+ 1Pa(u⊗ w1 ⊗ · · · ⊗ wn) =

√
n+ 1 u ∧ w1 ∧ · · · ∧ wn.(6.3)

We will draw a few immediate, though important, conclusions.

(i) The Pauli exclusion principle reads

a†(u)a†(u) = 0

and is verified quickly from (6.3), since for any ϕ ∈ ∧nH,

a†(u)(a†(u)ϕ) =
√
n+ 1 a†(u)(u ∧ ϕ) =

√
(n+ 1)(n+ 2) (u ∧ u ∧ ϕ) = 0.

(ii) Using the expression of an anticommutator of A and B, given by {A,B} := AB +BA, we
have the following canonical anticommutation relations (CAR):

(6.4) {a(u), a(v)} = 0 = {a†(u), a†(v)}, {a(u), a†(v)} = 〈u|v〉I (u, v ∈ E).

Indeed, recalling u ∧ v = −v ∧ u we get for any ϕ ∈ ∧nH that

a†(u)a†(v)ϕ =
√

(n+ 1)(n+ 2) (u ∧ v ∧ ϕ) = −
√

(n+ 1)(n+ 2) (v ∧ u ∧ ϕ) = −a†(v)a†(u)ϕ

and a(u)a(v) = −a(v)a(u) then follows from the symmetry relation (6.1). To show the third
relation in (6.4) we first calculate

a(u)a†(v)(w1 ∧ · · · ∧ wn) =
√
n+ 1 a(u)(v ∧ w1 ∧ · · · ∧ wn)

= 〈u|v〉w1 ∧ · · · ∧ wn +
n∑
k=1

(−1)k〈u|wk〉 v ∧ w1 ∧ · · · ŵk · · · ∧ wn

and then also

a†(v)a(u)(w1 ∧ · · · ∧ wn) = 1√
n

n∑
k=1

(−1)k−1〈u|wk〉 a†(v)(w1 ∧ · · · ŵk · · · ∧ wn)

= −
n∑
k=1

(−1)k〈u|wk〉 v ∧ w1 ∧ · · · ŵk · · · ∧ wn.

(iii) The fermionic annihilation and creation operators are bounded: Let ϕ ∈ F0
a(H), then

‖a†(u)ϕ‖2 + ‖a(u)ϕ‖2 = 〈ϕ|a(u)a†(u)ϕ〉+ 〈ϕ|a†(u)a(u)ϕ〉 = 〈ϕ|{a(u), a(u)†}ϕ〉 = ‖u‖2‖ϕ‖2
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implies that ‖a†(u)ϕ‖ ≤ ‖u‖‖ϕ‖ and ‖a(u)ϕ‖ ≤ ‖u‖‖ϕ‖. It follows that a†(u) and a(u) can
be extended to bounded operators on Fa(H), which we denote by the same symbols, and that

(6.5) a†(u) = a(u)∗ (u ∈ E).

Moreover, we can show that the real linear maps u 7→ a(u) and u 7→ a†(u) are isometric, i.e,

(6.6) ‖a(u)‖ = ‖u‖ = ‖a†(u)‖ (u ∈ E).

Indeed, the CAR and the Pauli principle imply

(a†(u)a(u))2 = a†(u)
(
a(u)a†(u)

)
a(u) = a†(u)

(
‖u‖2 − a†(u)a(u)

)
a(u)

= ‖u‖2a†(u)a(u)− a†(u)a†(u)a(u)a(u) = ‖u‖2a†(u)a(u)

and then the C∗-property of the operator norm yields

‖a(u)‖4 = ‖a†(u)a(u)‖2 = ‖(a†(u)a(u))2‖ = ‖u‖2‖a†(u)a(u)‖ = ‖u‖2‖a(u)‖2.

If u = 0 then a(u) = 0 and the assertion is trivial; in case u 6= 0 we have a(u) 6= 0 as is
seen by (6.2), therefore the above equation yields ‖a(u)‖2 = ‖u‖2 in this case. Clearly also
‖a†(u)‖ = ‖a(u)∗‖ = ‖a(u)‖ = ‖u‖.

(iv) Finally, we remark that the map u 7→ a(u), E → B(Fa(H)), is conjugate linear as is
obvious by (6.2).

6.2. Examples for the smallest dimensions of E = H: Let us consider the simplest
examples for the constructions in 6.1 with finite n = dimE = dimH.

1) The most basic case is n = 1, i.e., H = C, with the standard inner product 〈λ|µ〉 = λµ. We
have Fa(H) = C⊕ C and may choose the basis (1, 0), (0, 1), which yields the following matrix
representations of the annihilation and creation operators:

a(λ) =
(

0 λ
0 0

)
and a†(µ) =

(
0 0
µ 0

)
(λ, µ ∈ C = E).

Elementary calculations verify not only the CAR, but on the way also give a(u)a†(v) =
(
λµ 0
0 0

)
and a†(v)a(u) =

(
0 0
0 λµ

)
, from which we may deduce that the ∗-algebra generated by the set

{a(u) | u ∈ E} is all of M(2,C).

2) Let us take n = 2 so that H = C2, equip it again with the standard inner product
〈u|v〉 = u1v1 + u2v2, and denote the standard unit vectors by e1 = (1, 0) and e2 = (0, 1).
We now have the four dimensional Fermion Fock space Fa(H) = C ⊕ C2 ⊕ C with basis
(1, 0, 0), (0, e1, 0), (0, e2, 0), (0, 0,

√
2 e1 ∧ e2), which is easily checked to give the following

matrix representations of the annihilation and creation operators:

a(u) =


0 u1 u2 0
0 0 0 −u2
0 0 0 u1
0 0 0 0

 and a†(v) =


0 0 0 0
v1 0 0 0
v2 0 0 0
0 −v2 v1 0

 (u, v ∈ C2 = E).
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Although it is superfluous (and already a bit tedious) to verify the CAR here, formulae for the
products involved on the way will again be helpful in determining the ∗-algebra A0 generated
from {a(u) | u ∈ E}. We have

a(u)a†(v) =


〈u|v〉 0 0 0

0 u2v2 −u2v1 0
0 −u1v2 u1v1 0
0 0 0 0

 and a†(v)a(u) =


0 0 0 0
0 u1v1 u2v1 0
0 u1v2 u2v2 0
0 0 0 〈u|v〉


and therefore also

I − 2a†(v)a(u) =


1 0 0 0
0 1− 2u1v1 −2u2v1 0
0 −2u1v2 1− 2u2v2 0
0 0 0 1− 2〈u|v〉

 .
Let Ejk denote the standard basis (2 × 2)-matrix with entry 1 at row j, column k, and 0
otherwise. Further, denote by I2 and 02 the unit and zero (2× 2)-matrices, respectively. We
may thus identify the following block matrices all as elements of A0:

E
(1)
11 := a(e1)a†(e1) =

(
E11 02
02 E11

)
, E

(1)
12 := a(e1) =

(
E12 02
02 E12

)
,

E
(1)
21 := a†(e1) =

(
E21 02
02 E21

)
, E

(1)
22 := a†(e1)a(e1) =

(
E22 02
02 E22

)
,

We want to find a second set of four linearly independent matrices E(2)
pq in A0 commuting with

every E(1)
jk . Upon introducing V1 := I − 2a†(e1)a(e1) = diag(1,−1, 1,−1) we consider

E
(2)
11 := a(e2)a†(e2) =

(
I2 02
02 02

)
, E

(2)
12 := V1a(e2) =

(
02 I2
02 02

)
,

E
(2)
21 := V1a

†(e2) =
(

02 02
I2 02

)
, E

(2)
22 := a†(e2)a(e2) =

(
02 02
02 I2

)
,

which are obviously elements in A0. They have the nice property that E(1)
jk E

(2)
lm = E

(2)
lmE

(1)
jk

for all j, k, l,m ∈ {1, 2} and that the matrix Bjklm := E
(1)
jk E

(2)
lm has the (2× 2)-block Ejk put

in the corner corresponding to place (l,m) and 02 otherwise. In other words, the elements
Bjklm ∈ A0 give all the members of the standard (4× 4)-matrix basis and we conclude that
the ∗-algebra generated from {a(u) | u ∈ E} is all of M(4,C).

6.3. Remark: In view of Example 2) above, but also as a preparation for the proof of
the following theorem, we consider a higher dimensional analogue. Suppose A is a finite-
dimensional C∗-algebra that is generated from mutually commuting subsets E(1), . . . , E(n),
such that each E(r) = {E(r)

jk | j, k ∈ {1, 2}} (r = 1, . . . , n) is structurally like a (2× 2)-matrix
basis or, in the terminology of [KRII], a self-adjoint system of matrix units in A, i.e., we have

(6.7) E
(r)
jk

∗
= E

(r)
kj , E

(r)
jk E

(r)
pq = δkpE

(r)
jq , E

(r)
11 + E

(r)
22 = I.

84



(Remark: Elementary, though slightly tedious, arguments show that (6.7) implies the linear independence
of E(r); furthermore, these relations together with the requirement that E(r) and E(s) commute for r 6= s

guarantee that these sets are, in fact, also mutually disjoint.)

It can be shown that, in this situation, we necessarily have

A ∼= M(2n,C).

We sketch two routes to a proof of this fact. (See also [KRII, pages 759-760].)

One is to first note that the subalgebra Ar of A generated from E(r) is equal to spanE(r)

and ∗-isomorphic to M(2,C), say via ϕr : M(2,C) → Ar; then one can construct a direct
∗-isomorphism of ⊗nM(2,C) with A, essentially by B1 ⊗ · · · ⊗Bn 7→ ϕ1(B1) · · ·ϕn(Bn), and
finally use ⊗nM(2,C) ∼= M(2n,C).

The other way is as in Example 2) above and consists in showing that the 2n · 2n elements
produced from the commuting products E(1)

j1k1
· E(2)

j2k2
· · ·E(n)

jnkn
(jl, kl = 1, 2 and l = 1, . . . , n)

produce a self-adjoint system of (2n × 2n)-matrix units in A that generates a subalgebra
A0 ⊆ A with A0 ∼= M(2n,C); since I = E

(s)
11 + E

(s)
22 for all s = 1 . . . , n, we may write

E
(r)
jk = E

(r)
jk

∏
s 6=r(E

(s)
11 + E

(s)
22 ) ∈ A0; it follows that A ⊆ A0, since A is generated from⋃n

r=1E
(r); in summary, A ∼= M(2n,C).

We will now show that the canonical anticommutation relations determine a unique C∗-algebra
so that we do not rely on particular Hilbert space operator representations in their analysis.

6.4. Theorem: Let E be a complex pre-Hilbert space with completion H. There exists a
(unital) C∗-algebra A(E), uniquely determined up to ∗-isomorphism, that is generated from a
family of elements a(u) (u ∈ E) such that u 7→ a(u) is conjugate linear and for all u, v ∈ E the
following canonical anticommutation relations (CAR) are satisfied:

(6.8) {a(u), a(v)} = 0, {a(u), a(v)∗} = 〈u|v〉I (u, v ∈ E).

We call A(E) the CAR algebra or Fermion algebra over E. It has the following properties:

(i) The map u 7→ a(u) is an isometry, i.e., ‖a(u)‖ = ‖u‖ holds for all u ∈ E,

(ii) A(H) = A(E),

(iii) A(E) is separable, if and only if E is separable.

Proof: The existence of A(E) is established by considering the annihilation and creation
operators on the Fermion Fock space as described in 6.1 and the unital C∗-subalgebra of
B(Fa(H)) generated from these.

For the proof of uniqueness and properties (i)-(iii) let A be a C∗-algebra satisfying the
hypothesis of the theorem. We will show in course of the proof that (a) in case dimE is finite,
A is determined as a full matrix algebra, and (b) for infinite-dimensional E, A is generated by
an increasing net of full matrix algebras.

Step 1: We show that (6.8) implies that the map u 7→ a(u) is isometric. This therefore holds
in the abstract setting of any CAR algebra over E and proves (i).
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Note that {a(u), a(u)} = 0 implies a(u)2 = 0 (hence also the Pauli principle a(u)∗a(u)∗ = (a(u)2)∗ = 0)
and therefore we may repeat the following calculation used in 6.1 for the proof of (6.6):

(a(u)∗a(u))2 = a(u)∗
(
a(u)a(u)∗

)
a(u) = a(u)∗

(
‖u‖2 − a(u)∗a(u)

)
a(u)

= ‖u‖2a(u)∗a(u)− a(u)∗a(u)∗a(u)a(u) = ‖u‖2a(u)∗a(u),

and therefore

‖a(u)‖4 = ‖a(u)∗a(u)‖2 = ‖(a(u)∗a(u))2‖ = ‖u‖2‖a(u)∗a(u)‖ = ‖u‖2‖a(u)‖2;

if u 6= 0 then necessarily a(u) 6= 0, for otherwise the CAR yield 〈u|v〉I = {a(u), a(v)∗} = 0 for
all v ∈ E, thus u = 0; hence in this case we conclude ‖a(u)‖2 = ‖u‖2 from the above; if u = 0
then a(0) = 0 by conjugate linearity of u 7→ a(u) and the equality of norms is trivial.

Step 2: We consider the case dimE = n ∈ N and will prove that A ∼= M(2n,C).

Choose an orthonormal basis e1, . . . , en of E and use the abbreviations aj := a(ej) (j = 1, . . . , n).
We observe that Uj := I−2a∗jaj (j = 1, . . . , n) is self-adjoint and unitary in A. Self-adjointness
is obvious and by the CAR (recall in particular a(u)2 = 0 etc),

U2
j = (I − 2a∗jaj)2 = I − 4a∗jaj + 4a∗jaja∗jaj

= I − 4a∗jaj + 4a∗j (−a∗jaj + 〈ej |ej〉I)aj = I − 4a∗jaj − 4a∗ja∗jajaj + 4a∗jaj = I.

Moreover, UjUk = UkUj for j 6= k, since

UjUk = (I − 2a∗jaj)(I − 2a∗kak) = I − 2a∗jaj − 2a∗kak + 4a∗jaja∗kak
= I − 2a∗jaj − 2a∗kak + 4a∗j (−a∗kaj + 〈ej |ek〉)ak = I − 2a∗jaj − 2a∗kak − 4a∗ka∗jakaj

= I − 2a∗jaj − 2a∗kak − 4a∗k(−aka∗j + 〈ej |ek〉)aj
= I − 2a∗jaj − 2a∗kak + 4a∗kaka∗jaj = UkUj .

A very simple calculation also shows that Uj commutes with ak and a∗k in case j 6= k, while Uj
anticommutes with aj and a∗j . Setting V0 := I and Vr−1 := U1 · · ·Ur−1 (r = 2, . . . , n) we now
define for each r = 1, . . . , n the subset E(r) = {E(r)

jk | j, k ∈ {1, 2}} of A with the elements

E
(r)
11 := ara

∗
r , E

(r)
12 := Vr−1ar

E
(r)
21 := Vr−1a

∗
r , E

(r)
22 := a∗rar.

We claim that each E(r) is a self-adjoint system of (2 × 2)-matrix units as in (6.7). The
verification is by straightforward calculations: Self-adjointness of E(r)

11 and E(r)
22 is obvious and

the properties of Uj and ak established above immediately yield

E
(r)
12
∗

= (Vr−1ar)∗ = a∗rVr−1 = Vr−1a
∗
r = E

(r)
21 ;

we have E(r)
11 +E

(r)
22 = ara

∗
r + a∗rar = 〈er|er〉I = I; the relations E(r)

j1 E
(r)
2q = 0 and E(r)

j2 E
(r)
1q = 0

are clear, since the occurring products all involve terms a∗ra∗r = 0 or arar = 0; it remains to check

86



the products E(r)
j1 E

(r)
1q and E

(r)
j2 E

(r)
2q ; the special cases E(r)

11 E
(r)
11 = E

(r)
11 and E

(r)
22 E

(r)
22 = E

(r)
22

follow by applying a∗rar = −ara∗r + I and arar = 0; similarly, we have

E
(r)
11 E

(r)
12 = ara

∗
rVr−1ar = Vr−1ara

∗
rar = Vr−1ar(−ara∗r + I) = Vr−1ar = E

(r)
12

and hence E(r)
21 E

(r)
11 = (E(r)

11 E
(r)
12 )∗ = (E(r)

12 )∗ = E
(r)
21 ; finally,

E
(r)
12 E

(r)
22 = Vr−1ara

∗
rar = Vr−1ar(−ara∗r + I) = Vr−1ar = E

(r)
12

and thus also E(r)
22 E

(r)
21 = (E(r)

12 E
(r)
22 )∗ = (E(r)

12 )∗ = E
(r)
21 .

If r 6= s then E(r) and E(s) commute: It suffices to suppose r < s; let ãk denote either ak or
a∗k; note first that Vs−1ãr = −ãrVs−1, while Vr−1ãs = ãsVr−1, and Vs−1Vr−1 = Vr−1Vs−1 by
the properties of Uj established above; each matrix unit in E(r) is the product of two elements
that commute or anticommute with each of the two factors defining any matrix unit in E(s);
we have to check that one always needs an even number of anticommuting swaps in rearranging
the terms of E(r)

jk E
(s)
pq to get to the expression for E(s)

pq E
(r)
jk ; for E

(r)
11 each factor anticommutes

with both factors in every E(s)
pq , hence four anticommuting swaps suffice; the same holds for

E
(r)
22 ; for E

(r)
12 or E(r)

21 the factor Vr−1 commutes with all factors in E(s)
pq while the factor ãr

anticommutes with all the factors in E(s)
pq , hence two anticommuting swaps suffice.

Let A0 be the ∗-subalgebra of A generated from ⋃n
r=1E

(r). As we saw in Remark 6.3, we may
deduce from the n commuting subsets of (2× 2)-matrix units constructed above, that A0 is
∗-isomorphic to M(2n,C). We claim that, in fact, A0 = A, which then completes Step 2.

We note that E(j)
11 −E

(j)
22 = aja

∗
j −a∗jaj = I− 2a∗jaj = Uj , a1 = E

(1)
12 , and obtain for 2 ≤ r ≤ n,

ar = Vr−1(Vr−1ar) = U1 · · ·Ur−1(Vr−1ar) =
r−1∏
j=1

(
E

(j)
11 − E

(j)
22
)
E

(r)
12 .

We thus see that ar ∈ A0 for all r ∈ {1, . . . , n} and therefore, A ⊆ A0.

Step 3: We show uniqueness in the case where E is infinite-dimensional.

Let S be a maximal1 orthonormal system in E. For each finite subset F ⊆ S let EF := spanF
and let AF be the finite-dimensional C∗-subalgebra of A generated from {a(u) | u ∈ EF }. We
have

AF1 ⊆ AF2 , if F1 ⊆ F2.

Define A0 as the union of all AF , where F ranges over the finite subsets of S. Observe that
A0 is a ∗-subalgebra of A, because any two elements of A0 lie in some joint finite-dimensional
∗-subalgebra AF for sufficiently large F . In fact, A0 is generated as a ∗-algebra from the set
{a(u) | u ∈ E} and A is the norm closure of A0. For any finite subset F ⊆ S, let |F | denote
the cardinality of F . We clearly have |F | = dimEF and, by the result of Step 2, AF is the
unique CAR algebra over EF and satisfies

AF
∼= M(2|F |,C).

1The existence of a maximal orthonormal system does not require completeness, but the convergence of the
corresponding Fourier-type series expansions is guaranteed only in the completion.
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If B is another CAR algebra over E, then we have the analogous construction with finite-
dimensional ∗-subalgebras BF

∼= AF , due to Step 2, for every finite subset F of S; let
ϕF : AF → BF denote the ∗-isomorphism obtained from AF

∼= M(2|F |,C) ∼= BF and mapping
generators to corresponding generators. We may suppose that ϕF2 |AF1

= ϕF1 , if F1 ⊆ F2,
since AF1 ⊆ AF2 and BF1 ⊆ BF2 . We may consistently define a ∗-isomorphism ϕ0 : A0 → B0,
such that ϕ0|AF = ϕF , where B0 denotes the ∗-subalgebra of B obtained as the union of
all BF , where F ranges over the finite subsets of S. Recall that B is the norm closure of
B0, exactly as it was the case with A and A0 above. The ∗-isomorphism ϕ0 is isometric on
each AF , since the finite-dimensional ∗-subalgebras AF and BF are C∗-algebras. Hence ϕ0 is
isometric A0 → B0 and has by continuity a unique extension ϕ : A→ B which automatically
becomes a ∗-isomorphism.

Step 4: We show (ii) and (iii).

By Step 1, we know that the conjugate linear map a : u 7→ a(u) is isometric E→ A. Hence
the map is uniformly continuous and has thus a unique continuous extension â : H → A

(e.g., as map between metric spaces). By considering norm limits, it is clear that â is also
conjugate linear, isometric, and satisfies the CAR. By uniqueness, we therefore obtain A(H)
as a C∗-subalgebra of A(E). Since the ∗-subalgebras corresponding to the finite-dimensional
subspaces of E are certainly contained in A(H), the norm closure of their union, which is A(E),
must be contained in A(H). Therefore A(H) = A(E) and (ii) is proved.

It remains to show (iii). If A(E) is separable then its subspace a(E) is separable2 and
hence its isometric image E is separable. Finally, let E be separable and choose a countable
orthonormal system D = {em | m ∈ N} such that spanD is dense in E. Introduce the notation
En := span{em | m = 1, . . . , n} and An := A{e1,...,en}. For any finite subset F ⊆ D, we can
find n ∈ N such that EF = spanF ⊆ En and therefore, AF ⊆ An. We obtain A0 = ⋃

n∈NAn

and recall that A0 is a dense subspace of A. Each An is generated by the finite set of
(2n × 2n)-matrix units constructed in Step 2, hence A0 is generated as a ∗-subalgebra by a
countable set G of elements from A0. Linear combinations of finite products of elements in G
with scalars that have rational real and imaginary parts now provide a countable dense subset
of A0, thus A0 is separable. It follows that its norm closure A is separable.

6.5. Remark: (i) An inspection of the second paragraph in Step 3 of the proof of Theorem
6.4 shows that for any two CAR algebras A and B over E, say A generated from {a(u) | u ∈ E}
and B generated from {a′(u) | u ∈ E}, there is a unique ∗-isomorphism ϕ : A→ B such that
ϕ(a(u)) = a′(u) for all u ∈ E. (Make also use of the observation near the end of Step 2, where it is shown
how the generators can be expressed in terms of the matrix units.)

(ii) The proof we gave for Theorem 6.4 is quite technical and long. It is based on the proof
in [BR2, Theorem 5.2.5], which is very sketchy. We got some support also from a slightly
different approach, but still focusing on the unions of matrix algebras, that has been described
in detail in [Ara87], also taken up and described in [DG13, Chapter 12]. However, one has
to be aware of the fact that the latter two sources employ also a different convention about
CAR relations—a translation between the formalisms is provided in [Ott95, Section 2.6]–and,
in particular, a real odd dimensional case does not occur in our approach considering only
complex pre-Hilbert spaces E as parameter space for the generators instead of real euclidean

2Recall: This is true in metric spaces (though not in topological spaces in general).
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vector spaces. (Tempting as it was to work out the very short uniqueness proof for the CAR algebra
sketched in [Ott95, page 19], it seems to me that this misses an argument about a well-defined extension
from α(a(f)) := a′(f) to products; unique existence of such an extension could be built into a definition of
Clifford-algebra type [see (ii)] in terms of a universal property; in our context, this would then complicate the
existence proof or bring up the need to develop some Clifford theory prior to going into CAR.)

(iii) As indicated, e.g., in [Ott95, page 24], there is an equivalent approach to CAR algebras in
terms of C∗ Clifford algebras and details on this can be found in [PR94, Section 1.2]. The
starting point there is a real vector space V with a positive definite inner product and a
so-called Clifford map f : V → B, a real linear map into a unital associative complex algebra
B such that f(v)2 = ‖v‖2I. The connection with our context would be to take V as the real
vector space underlying E, Re〈u|v〉/2 as the inner product, and f(u) = (a(u) + a(u)∗)/

√
2.

(iv) The proof of Theorem 6.4 shows that CAR algebras are norm closures of a union over
matrix algebras AF with the compatibility property AF1 ⊆ AF2 if F1 ⊆ F2 . In case of
increasing sequences of nested matrix algebras these are known and extensiveley studied in the
literature under the names of uniformly matricial algebras ([KRII, Section 10.4]) or Glimm
algebras [Ped18, Section 6.4] or UHF (uniformly hyperfinite) algebras ([BR1, Example 2.6.12],
referred to from [BR2, page 16]; more in [Mur90, Section 6.2]).

6.6. Corollary: Let E be a complex pre-Hilbert space and A(E) be the CAR algebra over E.

(i) Every representation of A(E) is faithful. (Thus the CAR algebra is simple.)

(ii) Let U be bounded linear and V bounded conjugate linear on E such that3

V ∗U + U∗V = 0 = UV ∗ + V U∗,

U∗U + V ∗V = I = UU∗ + V V ∗,

then there is a unique ∗-automorphism, a Bogoliubov transformation, α of A(E) satisfying

α(a(z)) = a(Uz) + a(V z)∗ (z ∈ E).

Proof: (i): Let π : A(E)→ B(K) be a representation on the Hilbert space K. Then π(a(u)) 6= 0
for every 0 6= u ∈ E, since 0 6= ‖u‖2I = π(‖u‖2I) = π({a(u), a(u)}) by the CAR. Therefore,
the C∗-algebra π(A(E)) is a CAR algebra and, as observed in Remark 6.5, (i), π is the unique
∗-isomorphism A(E)→ π(A(E)) mapping a(u) 7→ π(a(u)), hence π is faithful.

(ii): Let a′(u) := a(Uu) + a(V u)∗ (u ∈ E), then u 7→ a′(u) is conjugate linear and the set

3A special case is certainly V = 0 and U unitary. The adjoint V ∗ of the conjugate linear operator V is
characterized by the requirement 〈V y|z〉 = 〈V ∗z|y〉 = 〈y|V ∗z〉 for all y, z ∈ E.
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{a′(u) | u ∈ E} satisfies the CAR. Indeed, we have

a′(y)a′(z) = a(Uy)a(Uz) + a(Uy)a(V z)∗ + a(V y)∗a(Uz) + a(V y)∗a(V z)∗

= −a(Uz)a(Uy)− a(V z)∗a(Uy) + 〈Uy|V z〉 − a(Uz)a(V y)∗ + 〈Uz|V y〉 − a(V z)∗a(V y)∗

= −a′(z)a′(y) + 〈y|U∗V z〉+ 〈y|V ∗Uz〉 = −a′(z)a′(y) + 〈y|(U∗V + V ∗U)z〉 = −a′(z)a′(y)
and

a′(y)a′(z)∗ = a(Uy)a(Uz)∗ + a(Uy)a(V z) + a(V y)∗a(Uz)∗ + a(V y)∗a(V z)
= −a(Uz)∗a(Uy) + 〈Uy|Uz〉 − a(V z)a(Uy)− a(Uz)∗a(V y)∗ − a(V z)a(V y)∗ + 〈V z|V y〉

= −a′(z)∗a′(y) + 〈y|U∗Uz〉+ 〈y|V ∗V z〉 = −a′(z)∗a′(y) + 〈y|(U∗U + V ∗V )z〉
= −a′(z)∗a′(y) + 〈y|z〉.

Let B be the C∗-subalgebra of A(E) generated from {a′(u) | u ∈ E}. We know by the
uniqueness that B is ∗-isomorphic to A(E) via a unique (Remark 6.5, (i)) ∗-isomorphism ϕ
such that ϕ(a(u)) = a′(u) for all u ∈ E. Since also

a′(U∗u) + a′(V ∗u)∗ = a(UU∗u) + a(V U∗u)∗ + a(UV ∗u)∗ + a(V V ∗u)
= a((UU∗ + V V ∗)u) + a((V U∗ + UV ∗)u)∗ = a(u) + a(0) = a(u),

we must have B = A(E) and therefore ϕ is a ∗-automorphism.

6.7. A few further properties of the CAR algebra:

(i) The Fock representation 6.1 is irreducible (see, e.g., [BR2, Proposition 5.2.2, (3)] or [Ott95,
Section 2.2, Theorem 1]), hence the von Neumann algebra generated from the CAR algebra
on the Fermion Fock space is all of B(Fa(H)). This is obvious for finite n = dimE, since
then the Fock space has dimension 2n and the CAR algebra is M(2n,C) as we have shown
in the uniqueness proof. We obtain in this case a von Neumann algebra of type I2n . If E is
infinite-dimensional then the von Neumann algebra generated from the CAR algebra in the
Fock space representation is of type I∞.

It is very easy to see independently that the Fock representation is cyclic. Consider the vacuum
vector Ω = (1, 0, 0, . . .) and let several creation operators act on it successively, then we get
according to (6.3) that for any u1, . . . , um,

a†(um) · · · a†(u2)a†(u1) Ω =
√
m! um ∧ · · · ∧ u2 ∧ u1,

so that we clearly obtain a dense subspace by their linear combinations.

Let ρ denote the vector state on A(E) corresponding to the vacuum Ω, i.e., ρ(A) = 〈Ω|AΩ〉
for all A ∈ A(E), then we have

ρ(a(u)a†(v)) = 〈a†(u)Ω|a†(v)Ω〉 = 〈u|v〉.

Moreover, every a(z) (z ∈ E) belongs to the left kernel of ρ, since

ρ(a†(z)a(z)) = 〈a(z)Ω|a(z)Ω〉 = 0.

(ii) For finitely many degrees of freedom, i.e., dimE <∞, we have seen that the CAR algebra
A(E) is finite-dimensional, in fact, ∗-isomorphic to the full matrix algebraM(2dimE,C). We will
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argue that in this case, A(E) possesses only one equivalence class of irreducible representations,
since this is true of any full matrix algebra M(d,C).

Suppose π is an irreducible representation of M(d,C) on a Hilbert space K. Then every
nonzero vector in K is cyclic for π by Proposition 3.16. We may choose some 0 6= z ∈ K, then
Proposition 3.5 implies that π is equivalent to the GNS representation πρ associated with
the state ρ(A) := 〈z|π(A)z〉 on M(d,C). According to Theorem 3.17, ρ must be pure. It is
elementary to show ([KRI, Exercise 4.6.18], with detailed solution in [KRIII, pages 152-153]) that the
pure states on M(d,C) are the vector states, hence ρ(A) = x0

T · A · x0 = 〈x0| id(A)x0〉 for
some unit vector x0 ∈ Cd, where id denotes the identity representation. The latter is clearly
cyclic, thus Proposition 3.5 now in turn implies that πρ and id are equivalent.

The uniqueness of irreducible representations for finitely many degrees of freedom is somewhat
similar to the Stone-von Neumann theorem for the CCR or Weyl algebra, though much simpler
because the representations here are also finite-dimensional.

(iii) As already noted in case of the CCR, it happens also with the CAR that the situation
changes drastically for infinitely many degrees of freedom, where E is not finite-dimensional.
There exist uncountably many inequivalent irreducible representations of A(E). We may
compare this with the corresponding Remark 5.13, (iii), for the Weyl algebra and again just
hint at a few sources containing further information or references: [BR2, on page 218], [Emch,
Chapter 3, Section 2], [Ara87, Theorem 6.14], [DG13, Subsection 16.4.3, Theorem 16.58], and
[Haa96, Subsection II.1.1].

(iv) Note that additional regularity of representations was not an issue with CAR algebras,
since the conjugate linear map u 7→ a(u) is a norm continuous, even isometric, map E→ A(E).
Therefore also u 7→ π(a(u)) is norm continuous in any representation π of A(E).

(v) It is a convenient property that states ρ on the CAR algebra A(E) are determined by
their values on the norm dense subspace A0, defined as the ∗-subalgebra generated from
{a(u) | u ∈ E}. Linearity of ρ reduces everything to knowing the values of ρ on arbitrary
finite products of elements and their adjoints from {a(u) | u ∈ E}, but the CAR allow further
reduction to products in the form a(u1)∗ · · · a(ul)∗a(v1) · · · a(vm) with l,m ∈ N0, l +m ≥ 1,
and uj , vk ∈ u. This is called a Wick ordered or normally ordered product—all creation
operators occur to the left of all annihilation operators. In summary, a state ρ is determined
by its values on all Wick ordered products

ρ(a(u1)∗ · · · a(ul)∗a(v1) · · · a(vm)).

(vi) The tracial state on the CAR algebra: We recall that A(E) is the norm completion of
the ∗-subalgebra A0 which is the union over finite-dimensional subalgebras AF

∼= M(2|F |,C),
where F ranges over finite subsets of some maximal orthonormal system in E. On each AF we
inherit a state τF which corresponds to the trace on the matrix algebraM(2|F |,C). Recall from
linear algebra that trace(MN) = trace(NM) for square matrices M and N , hence we also
have τF (AB) = τF (BA) for all A,B ∈ AF . Thanks to the compatibility AF1 ⊆ AF2 if F1 ⊆ F2,
we can define a continuous linear functional τ0 : A0 → C consistently by τ(A) = τF (A) if
A ∈ AF . The unique extension τ : A(E)→ C is a state that inherits also the property

τ(AB) = τ(BA) (A,B ∈ A(E)).

91



This property of a state is usually referred to as tracial, though it typically belongs more
to the context of von Neumann algebras. It can be shown that in the corresponding GNS
representation πτ , one obtains as the generated von Neumann algebra πτ (A(E))′′ a factor of
type II1, if E is of infinite dimension (cf. [Bla10, II.8.2.2, (iv), III.3.1.4, III.3.1.5, III.3.4.6],
[PR94, Theorems 1.3.6 and 1.3.7], or [DG13, Theorem 12.59]).

6.8. Remark on Fock space constructions for free particles of several species:
Perturbative methods in standard quantum field theory take noninteracting systems as a
starting point. To incorporate several different species of particles relevant for some scattering
process, one can take a tensor product of corresponding bosonic and fermionic Fock spaces for
each particle species involved (see, e.g., [Fol08, pages 95-96] and also [Haa96, Section II.3]).
The creation and annihilation operators for each species act like the identity operator on
all other tensor factors, so informally we have the tensor product of CAR or Weyl algebras
that contain also the observables. Tensor product operators acting in different factors usually
commute, but one adds also a “fermionic anticommutativity”, reflecting by an overall sign
whether an even or odd number of Fermions is being acted on. There is a certain dilemma: On
the one hand, depending too much on particular representations for models in quantum physics
is problematic, on the other hand, C∗-algebraic approaches face the difficulty to describe
particles in a more abstract setting ([Haa96, Sections VI.1 and VI.2]).
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7. A brief outlook on quasi-local algebras

3 Our main sources for this chapter are [BR1, BR2, Emch, Haa96].

In many instances the C∗-algebra and the states describing a quantum model are generated
from somewhat localized fields, observables, and states associated for example with bounded
regions in space (and time) or with finite parts of a chain or lattice arrangement of spins. The
structure of the idealized infinite or infinitely extended quantum system is often sufficiently
determined by the information on the local structures and this is the basic idea behind the
notion of quasi-local algebras, which we will now describe mathematically. To keep the notion
flexible for a variety of applications, we introduce rather abstract structures as index sets. To
support our intuition with these definitions, we may imagine each index representing some
bounded region in space, subsets being partially ordered by inclusion, and the orthogonality
relation to mean disjointness of sets.

7.1. Directed sets with an additional orthogonality relation: Recall that a set Λ is
said to be directed if there is a partial order1 relation ≤ on Λ satisfying in addition that for
each α, β ∈ Λ we can find some γ ∈ Λ such that α ≤ γ and β ≤ γ.

An orthogonality relation on the directed set Λ is a symmetric relation ⊥ on Λ with the
following properties (α, β, γ, δ ∈ Λ):

(a) For each α ∈ Λ there is some β ∈ Λ with α ⊥ β,

(b) α ≤ β and β ⊥ γ imply α ⊥ γ,

(c) if α ⊥ β and α ⊥ γ then there is some δ ∈ Λ with α ⊥ δ and β ≤ δ and γ ≤ δ.

7.2. Quasi-local algebras: One ingredient of the definition in this context will be an
self-inverse ∗-automorphism θ on a C∗-algebra A, which may be used mainly to implement
particle statistics, for example, θ = id for purely bosonic models and θ(a(u)) = −a(u) on the
annihilation operators of a Fermion algebra.

In this case, elements A ∈ A with θ(A) = A are called even, and odd if θ(A) = −A. The
subset A+ of even elements is easily seen to form a C∗-subalgebra of A, while the subset A−
of odd elements is a closed subspace of A. Every element A ∈ A can be uniquely decomposed
into odd and even parts by A± := (A± θ(A))/2 in the form A = A+ +A−.

Definition: A C∗-algebra A is called quasi-local, if there is an self-inverse ∗-automorphism θ,
a directed set Λ with an orthogonality relation, and a family Aα (α ∈ Λ) of C∗-subalgebras of
A with the following poperties:

1Partial order means that ≤ is reflexive (α ≤ α), transitive (α ≤ β and β ≤ γ imply α ≤ γ), and antisymmetric
(α ≤ β and β ≤ α imply α = β). In many definitions of directed sets, the antisymmetry of ≤ is not required,
so that ≤ is a so-called pre-order; technically, introducing the equivalence relation α ∼ β, if α ≤ β and
β ≤ α, then yields a partial order on Λ/ ∼.
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(i) All algebras have the common unit I ∈ A,

(ii) α ≤ β implies Aα ⊆ Aβ,

(iii) A is the norm closure of ⋃α∈Λ Aα,

(iv) θ(Aα) = Aα for all α ∈ Λ and in case α, β ∈ Λ are such that α ⊥ β, then2

[A+
α ,A

+
β ] = {0}, [A+

α ,A
−
β ] = {0}, {A−α ,A−β } = {0}.

The C∗-subalgebras Aα (α ∈ Λ) are called the local subalgebras of A.

In the special case θ = id we have A+
α = Aα, so that [Aα,Aβ] = {0} holds whenever α ⊥ β.

7.3. Remark: (i) Many properties considered and proved for quasi-local algebras do not
depend on the existence of an self-inverse ∗-automorphism satisfying (iv) in the above definition.
We will therefore occasionally drop or ignore the requirement (iv) and somewhat loosely speak
of quasi-local algebras if (i)-(iii) are satisfied.

(ii) Important aspects, which we omit in this course, that are central in many physical models
based on a quasi-local algebra A generated from local algebras Aα, are so-called clustering
properties of a state ρ on A. Very roughly speaking, this investigates whether for any given
A ∈ A there is some α ∈ Λ such that the values ρ(AB) may be approximated well by the
products ρ(A)ρ(B) whenever B ∈ Aβ with β ⊥ α (or B close to some Aβ with β ⊥ α).

The following result indicates that representations of quasi-local algebras are well described
by their restrictions to all local algebras.

7.4. Proposition: Let A be a quasi-local algebra generated from the local algebras Aα

(α ∈ Λ). If π is a representation of A such that for every α ∈ Λ, πα := π|Aα is a faithful
representation of Aα, then π is faithful.

Proof: Suppose 0 6= A ∈ A is such that π(A) = 0. There is a sequence (An) in ⋃α∈Λ Aα such
that An → A as n→∞. For every n ∈ N choose α(n) ∈ Λ such that An ∈ Aα(n).

Since ‖A‖ > 0 and An → A there is some N ∈ N such that ‖An‖ ≥ ‖A‖/2 for all n ≥ N .
Recall that injective ∗-homomorphisms are isometric and this applies to each πβ (β ∈ Λ).
Therefore we obtain that ‖π(An)‖ = ‖πα(n)(An)‖ = ‖An‖ ≥ ‖A‖/2, which contradicts the fact
that π(An)→ π(A) = 0 by continuity of π.

Of course the result just stated also has an algebraic sibling, namely that A is simple if every
Aα is simple ([BR1, Corollary 2.6.19]).

7.5. The CAR algebra as a quasi-local algebra: We consider the CAR algebra A over
some Hilbert space H.

Let Λ be a subset of the set of all closed subspaces of H, directed by set inclusion, such that
E := span⋃M∈ΛM is dense in H and the notion of orthogonality inherited from the Hilbert

2Here [B,C] := {[B,C] | B ∈ B, C ∈ C} and {B,C} := {{B,C} | B ∈ B, C ∈ C} for subsets B and C of A.
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space satisfies3 the relevant properties of an orthogonality relation: (a) If M ∈ Λ then there
is some N ∈ Λ with N ⊆ M⊥; (b) is no issue, since M,N,L ∈ Λ with M ⊆ N and N ⊥ L
always implies M ⊥ L; (c) is satisfied, if for any N,L ∈ Λ also the closure K of N +L belongs
to Λ, since in this case having M,N,L ∈ Λ with M ⊥ N and M ⊥ L implies N ⊆ K, L ⊆ K,
and M ⊥ K.

A nontrivial example of Λ is provided by the set of all finite-dimensional subspaces of H.

For every M ∈ Λ let AM be the C∗-subalgebra of A generated by the set {a(u) | u ∈M}.

Finally, we may define the ∗-automorphism θ of A with the property θ(a(u)) = −a(u) for all
u ∈ H as the special case of a Bogoliubov transformation in Corollary 6.6, (ii), corresponding
to the choice U = −I and V = 0.

We certainly have I ∈ AM for all M ∈ Λ and AM ⊆ AN if M,N ∈ Λ with M ⊆ N , hence
properties (i) and (ii) in the definition of a quasi-local algebra hold. To prove property (iii),
we first recall that A is the norm closure of the ∗-subalgebra generated by the subspace
a(H) := {a(u) | u ∈ H}, and then use the assumption that E = span⋃M∈ΛM is dense
in H and the isometry of the map u 7→ a(u) due to Theorem 6.4, (i), to conclude that
a(E) := {a(u) | u ∈ E} is dense in a(H).

It remains to check property (iv) in the definition of a quasi-local algebra. We clearly have
θ(AM ) = AM for allM ∈ Λ, since θ is a linear bijection on the set {a(u) | u ∈M} of generators
for AM . We argue that it suffices to show the commutation relation stated in condition (iv) for
polynomial expressions in a(u) and a(v)∗: Any A ∈ AM is the norm limit of a sequence (Qn)
of such polynomials with u, v ∈M ; if A is even, then A = (A+ θ(A))/2 = lim(Qn + θ(Qn))/2
and each (Qn + θ(Qn))/2 is a polynomial in a(u) and a(v)∗ belonging to A+

M , let us say
even polynomial for brevity; similarly, an odd element in AM can be approximated by odd
polynomials. Finally, for given M,N ∈ Λ with M ⊥ N the CAR for u ∈M and v ∈ N give
that a(u) or a(u)∗ always anticommute with a(v)∗ or a(v). Therefore, even powers of one type
commute with any power of the other type, while odd powers of one type anticommute with
odd powers of the other.

7.6. The Weyl algebra as a quasi-local algebra: Let W := W(V, σ) be the Weyl algebra
over the symplectic vector space (V, σ).

We consider the orthogonality relation on subspaces of V , where we writeM ⊥ N for subspaces
M and N , if and only if σ(u, v) = 0 for all u ∈M and v ∈ N .

Let Λ be a subset of the set of all subspaces of V , directed by set inclusion, with the following
properties of an orthogonality relation: (a) If M ∈ Λ then there is some N ∈ Λ with M ⊥ N ,
i.e., we need N ⊆M⊥ := {v ∈ V | ∀u ∈M : σ(u, v) = 0}; (b) is automatically satisfied, since
M,N,L ∈ Λ with M ⊆ N and N ⊥ L implies M ⊥ L; (c) if M,N,L ∈ Λ are such that
M ⊥ N and M ⊥ L then there is some K ∈ Λ such that M ⊥ K, N ⊆ K, and L ⊆ K (for
example, if N + L ∈ Λ, then K := N + L would work). Examples for such Λ are provided

3Taking Λ plainly to be the set of all closed subspaces of H has the required properties, but gives a somewhat
trivial example in the construction to follow; in fact, because then H ∈ Λ would already imply AH = A for
the “local algebra” AH.
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by the set of all subspaces or just the finite-dimensional subspaces of V . The last additional
requirement on Λ is ⋃

M∈Λ
M = V.

We note that mere density of the union on the left-hand side could produce some unwanted
artefacts for the quasi-local construction of Weyl algebras due to Corollary 5.6, (iv). For
example, compactly supported L2 functions on Rd are dense in L2, but the Weyl algebras
defined by either the dense subspace or the entire L2 (with the symplectic form extracted
from the imaginary part of the inner product) are not ∗-isomorphic.

For M ∈ Λ let WM be the C∗-subalgebra of W(V, σ) generated by the set {W (u) | u ∈M}.

As a self-inverse ∗-automorphism we now take simply θ = id, so that condition (iv) in the
definition of a quasi-local algebra reduces to [A,B] = 0, if A ∈WM and B ∈WN withM ⊥ N ,
which clearly holds by the Weyl relations for the generators and is therefore established.

Properties (i) and (ii) in the definition of a quasi-local algebra are immediate, i.e., obviously
I ∈WM for all M ∈ Λ and WM ⊆WN if M,N ∈ Λ with M ⊆ N . As for property (iii), we
only have to note that ⋃M∈Λ WM contains all generators of the Weyl algebra W(V, σ), since⋃
M∈ΛM = V , hence ⋃M∈Λ WM is norm dense in W(V, σ).

7.7. Examples of quasi-local algebras in quantum statistical mechanics:

1) Spin systems: The basic idea is that at each vertex z of an infinitely extended lattice Zd we
have the spin algebra Rz which is ∗-isomorphic to M(2,C) and generated by I and the Pauli
matrices σ1 = ( 0 1

1 0 ), σ2 =
( 0 −i
i 0

)
, and σ3 =

( 1 0
0 −1

)
. The local algebras are built with the set

of all finite subsets of Zd as index set Λ, where we define for any F ∈ Λ,

AF :=
⊗
z∈F

Rz.

It is mathematically a bit delicate in its details to construct and identify an appropriate
completion of ⋃F∈Λ AF , which may be described as an infinite tensor product of C∗-algebras
or von Neumann algebras. (A few introductory references for more physical and mathematical
aspects are [Emch, Chapter 4, Section 2(a)], [BR1, Example 2.6.12] and [BR2, Section 6.2],
[Thi10, Part II, Section 1.4], [KRII, Chapter 11].)

2) Fermi and Bose gases: Basically these are built up from CAR or CCR with a parameter
vector space L2(Rd). For the local subalgebras, one typically uses subspaces consisting of
functions, often also smooth, that are supported in bounded subsets of Rd. For the Fermi gas
this suffices to describe the entire quasi-local structure, but for the Bose gas one has to escape
the rigidity of Weyl algebras illustrated by Corollary 5.6, (iv); the definition of a global algebra
then takes the detour via the von Neumann algebra generated in the GNS representation of
an equilibrium state. We refer to [Emch, Chapter 4, Section 2(b), and Chapter 2, Section
1(c)] and [BR2, Subsections 5.2.4 and 5.2.5] for their constructions and properties.

Before we will attempt at the end of this course a brief outlook on the very basics regarding
quasi-local C∗-algebras for relativistic theories, it does make sense to invest some time and
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energy into a detour to visit the older Hilbert space based quantum field theory. Again our
emphasis is entirely on the mathematical objects and structures.

7.8. Intermezzo with the Wightman axioms for a quantum field theory: We describe
here the essence of an early attempt to mathematically formalize a special relativistic quantum
theory (and borrow a lot from the corresponding appendix in [HK21]). A classical tool
to model localized interactions is by the concept of fields, which are functions on space or
spacetime with values in some vector space, or sections of vector bundles in a more differential
geometric context. In special relativity these objects are defined over Minkowski space, that
is, R4 with the standard symmetric non-degenerate bilinear form η with signature according
to (+,−,−,−) (the so-called West Coast signature) given by

η(x, y) = x0y0 −
3∑
j=1

xjyj for all x = (x0, x1, x2, x3), y = (y0, y1, y2, y3) ∈ R4.

Recall that O(1, 3) is the group of invertible linear maps on R4 that leave the Minkowski
metric η invariant, SO(1, 3) is the subgroup of O(1, 3) with elements having determinant 1, and
SO+(1, 3) is the proper orthochronous Lorentz group consisting of those elements in SO(1, 3)
that leave {x ∈ R4 | η(x, x) > 0 and x0 > 0} invariant. Thus, the transformations belonging
to SO+(1, 3) preserve both the time orientation and the spatial orientation in Minkowski space.
It can be shown that SO+(1, 3) is the connected component of the identity in O(1, 3).

The transition to quantum fields is more than delicate, because the fields neither have values
in finite-dimensional vector spaces nor can they directly be considered as maps defined on
Minkowski space, but are instead distributions (generalized functions). Further complications
arise: The distributional fields have their “values” in the set of unbounded densely defined
operators on an infinite-dimensional Hilbert space; the latter is not even a vector space, since
addition of operators can only be defined on a common domain and this only gets worse when
we need compositions; still more severe is the fact that distribution theory is purely linear
(defined in terms of dual spaces) and does not allow easily for nonlinear combinations. This is
to indicate a little of the difficulties even in formulating the list of the (Gårding-)Wightman
axioms given below. No completely mathematical treatment is known as soon as one wants
to discuss truly interacting fields and one has to make a lot of “compromises with rigor” in
approaching results that are often so astonishingly coherent with experimental facts.

The two-fold covering group of the Poincaré group: Every element of the invariance
group of Minkowski space, the Poincaré group, should give rise to a Hilbert space transformation
leaving the vector states invariant, hence is determined apart from a phase factor by a unitary
operator. Requiring also compatibility of the respective group multiplications leads to the
concept of a so-called projective unitary group representation, which in the case at hand can
be shown to be in exact correspondence with the usual unitary representations of the simply
connected covering group (see [Var07, Chapters VII and IX]).

The Poincaré group P is the semidirect product R4nO(1, 3), i.e., (a,A)·(b, B) = (a+Ab,AB) for
a, b ∈ R4 and A,B ∈ O(1, 3). Let P0 denote the connected component of the identity (0, I) in P,
then we have P0 = R4 nSO+(1, 3). The universal covering group of SO+(1, 3) is Spin+(1, 3) =
SL(2,C) (see, e.g., [HK21]) with the 2-fold covering map κ : SL(2,C)→ SO+(1, 3), which is
constructed as follows: If H(2,C) denotes the set of all Hermitian complex (2× 2)-matrices,
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then we have the isomorphism of real vector spaces M : R4 → H(2,C), given conveniently in
terms of σ0 := ( 1 0

0 1 ) and the Pauli matrices σ1 = ( 0 1
1 0 ) , σ2 =

( 0 −i
i 0

)
, σ3 =

( 1 0
0 −1

)
by

M(x) :=
3∑

ν=0
xνσν =

(
x0 + x3 x1 − ix2
x1 + ix2 x0 − x3

)
for all x = (x0, x1, x2, x3) ∈ R4.

A simple calculation shows that detM(x) = η(x, x). For any A ∈ SL(2,C) we have4

∀x ∈ R4 : AM(x)A† ∈ H(2,C) and det(AM(x)A†) = detM(x) = η(x, x),

hence we can find a unique κ(A) ∈ SO+(1, 3) such that

∀x ∈ R4 : AM(x)A† = M(κ(A)x).

We observe that κ(±I) = I and obtain the two-fold covering map P̃0 := R4 n SL(2,C)→ P0
by the assignment (a,A) 7→ (a, κ(A)).

Fields as operator-valued distributions on Minkowski space: The following list
introduces all basic elements and properties used below for the formulation of the Gårding-
Wightman axioms.

(i) Let (F, 〈.|.〉) be a complex Hilbert space with a distinguished dense subspace D of F.

(ii) Let Ũ : R4 n SL(2,C) → GL(F) = {T ∈ B(F) | ∃T−1 ∈ B(F)} be a unitary strongly
continuous5 representation such that D is invariant under Ũ , i.e. Ũ(a,A)D ⊆ D for all
(a,A) ∈ R4 n SL(2,C).

(iii) We suppose to have K ∈ N different types of particles and for each j = 1, . . . ,K to
have nj ∈ N field components. If nj = 1, then the field corresponding to particle type j is
scalar; with nj > 1 we have vector, tensor, or spinor fields. The number of inner degrees of
freedom is the total number of field components N := n1 + . . .+ nK . For every particle type
l = 1, . . . ,K we are given an irreducible representation Sl : SL(2,C)→ GL(Cnl) (specifying
also the so-called particle statistics in the sense of Fermionic type [half-integer spin] or Bosonic
type [integer spin]) and we denote by S := S1 ⊕ · · · ⊕ SK the direct sum representation
S : SL(2,C)→ GL(CN ).

(iv) The set of bounded operators on F given by {Ũ(a, I) | a ∈ R4} is a commutative
subgroup of the group of all unitary operators on F and is generated by the following four
one-parameter unitary groups: For each of the standard basis vectors e0, e1, e2, e3 in R4 we
have the strongly continuous unitary group t 7→ Ũ(teν , I) and thus, by Stone’s theorem, also a
unique self-ajoint operator Pν as generator such that Ũ(teν , I) = exp(itPν). Spectral theory
([RSI, Theorems VIII.12 and VIII.13]) provides us with a joint spectral measure E for the
(commuting) momentum operators P0, P1, P2, P3, which is a (pointwise or SOT) σ-additive
map from the Borel σ-algebra of R4 to the set of orthogonal projections in F, normalized by
E(∅) = 0 and E(R4) = I, such that

Ũ(a, I) =
∫
R4

e−iη(p,a) dE(p).

4writing here and later A† for the adjoint of A
5That is, Ũ(a,A) is a unitary operator for every (a,A) ∈ R4 n SL(2,C) and, for every ξ ∈ F, the map

(a,A) 7→ Ũ(a,A)ξ is continuous R4 n SL(2,C)→ F (in other words, (a,A) 7→ Ũ(a,A) is SOT continuous).
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(v) Fields (in fact, field components) φ1, . . . , φN are linear maps from the test function space
S (R4) to the set of unbounded operators on F having D contained in their domain as well as
in the domain of their adjoint operators6 with the following two additonal properties:
(a) Invariance of the common domain, i.e., for all f ∈ S (R4) and n ∈ {1, . . . , N} we have
φn(f)D ⊆ D and φn(f)†D ⊆ D .
(b) Distributional continuity in the sense that for every ξ, η ∈ D , the map S (R4) → C,
f 7→ 〈ξ|φn(f)η〉 defines an element in S ′(R4), i.e., is a temperate distribution on R4.

The (Gårding-)Wightman axioms: Suppose we have all the objects with properties as
specified above, then the axioms read as follows (cf. [Ara99, Fol08, Haa96, RSII, SW00]):

(1) There exists a vector Ω ∈ D , ‖Ω‖ = 1, unique up to a phase factor, such that

∀(a,A) ∈ R4 n SL(2,C) : Ũ(a,A)Ω = Ω.

We call Ω the vacuum state of the theory.

(2) Completeness: The vacuum vector is a cyclic vector for the field algebra, i.e., the linear
hull of {φl1(f1) · · ·φlm(fm)Ω | m ∈ N0, 1 ≤ l1, . . . , lm ≤ N, f1, . . . , fm ∈ S (R4)} is dense in F.
(In case m = 0 we define the empty product of field operators as the identity on F.)

(3) For arbitary f ∈ S (R4), (a,A) ∈ R4 n SL(2,C), 1 ≤ n ≤ N , ξ ∈ D , and upon defining
((a,A)f)(x) := f(κ(A)−1(x− a)) for every x ∈ R4, we have

Ũ(a,A)φn(f)Ũ(a,A)−1ξ =
N∑
m=1

S(A−1)nm φm
(
(a,A)f

)
ξ.

Pretending that distributions were functions, the latter could be rewritten in the form

Ũ(a,A)φn(x)Ũ(a,A)−1 =
N∑
m=1

S(A−1)nm φm
(
κ(A)x+ a).

(4) Spectral condition: The support of the spectral measure E is inside the forward light cone,
i.e., contained in {(p0, ~p ) ∈ R4 | p0 ≥ |~p |}. Equivalently, with the self-adjoint momentum
operators Pν (ν = 0, 1, 2, 3), both P0 and P 2

0 − P 2
1 − P 2

2 − P 2
3 are positive operators.

(5) Causality: If f, g ∈ S (R4) have their supports space-like separated, i.e., η(x− y, x− y) < 0
if f(x)g(y) 6= 0, and m,n ∈ {1, . . . , N}, then as operators on the domain D the fields φm(f)
and φn(g) or φm(g)†, either commute

[φm(f), φn(g)] = 0 = [φm(f), φn(g)†]

or anticommute
{φm(f), φn(g)} = 0 = {φm(f), φn(g)†}

(depending on m, n, and on the particle species).

Remarks: (i) We add a quote by Rudolf Haag showing how he phrases the causality condition
in a discussion preparing for the translation of the above axioms into a structure with quasi-
local C∗-algebras ([Haa96, page 107]):“Two observables associated with space-like separated

6which we denote here in this context by a superscript † instead of ∗
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regions are compatible. The measurement of one does not disturb the measurement of the
other. The operators representing these observables must commute.” And then he immediately
adds a long comment starting with the following sentence: “To avoid possible confusion it must
be stressed that this has nothing to do with the discussion around the Einstein-Podolsky-Rosen
paradox and Bell’s inequality.”

(ii) The spin-statistics theorem (cf. [SW00, Section 4.4] or [Haa96, Section II.5]) implies the
following: Let the Schwartz functions f and g have space-like separated supports as in the
causality axiom. Particles of integer spin must be Bosons, that is, each of their field components
φn satisfies the commutation relation [φn(f), φn(g)†] = 0, while particles of half-integer spin
are Fermions, which means that each of their field components φn satisfies the anticommutator
relation {φn(f), φn(g)†} = 0.

(iii) The theorem on invariance under PCT ([SW00, Section 4.3]) or CPT ([Haa96, Section
II.5]) or TCP ([Ara99, Section 5.6]) states that a QFT is not influenced by the combined
operation of space inversion or parity P , time inversion T , and charge conjugation C. (The
invariance is in general not true for a single operation or an arbitrary pairwise combination, as is illustrated by
the non-axiomatic theory of weak interaction, which is known to be not P -invariant, and evidence from meson
decays about violation of CP -invariance.)

(iv) The reconstruction theorem ([SW00, Section 3.4] or [BLOT, Section 8.3]) shows that a
theory can be “recovered from knowing all its vacuum expectation values”. It means that the
so-called hierarchy of Wightman distributions wrl1,...,lr : f1 ⊗ · · · ⊗ fr 7→ 〈Ω|φl1(f1) · · ·φlr(fr)Ω〉
on R4r (r ∈ N) determines F and the action of all field operators φn(f) uniquely (up to a
unitary isomorphism).

(v) The rigorous construction of some theories with nontrivial interactions (cf. [SW00, Ap-
pendix] or [GJ87]) has been successful in space-time dimensions 2 and 3, although none so far
in dimension 4, where at least many rigorous free quantum field theories do exist and thus
show that the axioms are consistent (see, e.g., [Fol08, Chapter 5]).

7.9. Quasi-local algebras over Minkowski space: The Haag-Kastler axioms sketched out
below can be viewed as an attempt to transfer the structural essence of the Wightman axioms
to a C∗-algebraic setting (cf. [Haa96, Section III.1], [Ara99, Chapter 4], [Fred15, Section 1.1]).
They are formulated for a family of (unital) C∗-algebras A(O), where O is from the set Λ of
bounded subsets of Minkowski space, directed by set inclusion. An orthogonality relation is
introduced on Λ by writing O1 ⊥ O2, if and only if O1 and O2 are space-like separated (recall
that this means η(x− y, x− y) < 0 if x ∈ O1 and y ∈ O2); it is easily checked by elementary
Minkowski geometry that properties (a)-(c) of an orthogonality relation on a directed set are
indeed satisfied.

It can be shown that, for a net of C∗-algebras as above with all the additional properties listed
below—a so-called Haag-Kastler net—there is a unique (up to ∗-isomorphism) C∗-algebra A (given
by an inductive limit construction) with compatible embeddings A(O)→ A such that ⋃O∈Λ A(O) is
norm dense in A. However, we slightly reformulate it partially by already supposing that A is
a C∗-algebra with C∗-subalgebras A(O) (O ∈ Λ) such that the following properties hold:

(A) I ∈ A(O) for all O ∈ Λ and A(O1) ⊆ A(O2) if O1 ⊆ O2,
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(B) there is a group homomorphism α from the covering group of the identity component P0
of the Poincaré group to the group of ∗-automorphisms of A such that

α(b,L)(A(O)) = A(κ(L)O + b) (O ∈ Λ, b ∈ R4, L ∈ SL(2,C)),

(C) if O1,O2 ∈ Λ are space-like separated and O ∈ Λ is such that O1 ∪ O2 ⊆ O, then

[A,B] = 0 holds in A(O) for all A ∈ A(O1) and B ∈ A(O2).

(This is supposed to model causality for the local observable algebras A(O) and not directly for Wightman fields,
hence there is no variant with anticommutation and it does not mean here that Bose statistics is implied.)

The spectral condition (4) of the Wightman axioms can be replaced by the requirement that
there exists a(n irreducible) representation of A, where each α(b,L) is unitarily implementable
in a strongly continuous way and satisfies the analogue of the spectral condition on the repre-
sentation Hilbert space. Recall that cyclic representations correspond to GNS representations
associated with states on the C∗-algebra. So the spectrum condition could be read as a
requirement that a particular kind of vacuum state exists on A.

Remark: As indicated in [Haa96, Page 106] and [Ara99, Sections 4.8 and 4.9], neither do the
Wightman axioms imply the existence of a Haag-Kastler net nor is the converse true in general,
although the relationship seems close enough for most purposes.

7.10. Quasi-local algebras over curved spacetimes: To build an algebraic theory of
quantum fields on a general relativistic background requires to reformulate nets of C∗-algebras
parametrized by certain subsets of an appropriate spacetime model. The basic class of
spacetimes considered in this context is that of time-oriented connected Lorentzian manifolds,
in particular globally hyperbolic Lorentzian manifolds (cf. [BGP07]). A Lorentzian metric on
a smooth manifold is given by a symmetric non-degenerate (0, 2) tensor field that induces on
each tangent space a symmetric bilinear form of signature (+,−, . . . ,−) (like the Minkowski
metric on R4). Roughly speaking, a Lorentzian manifold has tangent spaces isomorphic to
the Minkowski space (or its analogue in d+ 1 dimensions) and it is time-oriented, if we can
choose the time-orientations in the tangent spaces in a smooth consistent way.

Global hyperbolicity of a connected time-oriented Lorentzian manifold M can be defined as
a combination of causality with topological conditions: Recall that in Minkowski space a
nonzero vector x is said to be time-like, light-like, or space-like, if η(x, x) > 0, η(x, x) = 0,
or η(x, x) < 0, respectively; in addition, the zero vector may be considered as space-like; a
curve in M is called causal, if its tangent vectors are all time-like or light-like; the condition
of strong causality requires that there are no almost closed causal curves in M and the precise
formulation of this is part of the definition7 of global hyperbolicity; the other requirement in
the definition is compactness of the intersections of the causal future and the causal past of any
two points (events) in M ; here, the causal future is the subset of M that can be reached from
a given point by causal curves; likewise for causal past. The notion of global hyperbolicity can
be seen as a certain guarantee that wave-type equations, e.g., also the Klein-Gordon equation,
on such manifolds are always well-posed.

7As it turned out (see [BS07]), in combination with the second condition, the plain causality assumption
suffices, i.e., there are no closed causal curves.
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Finally a few, still sketchy, words on the definition of quasi-local algebras on a given globally
hyperbolic, or more generally, connected time-oriented, Lorentzian manifold M (cf. [Fred15,
Section 1.2], [BGP07, Chapter 4], [FV15]). The index set Λ is directed by set inclusion and
consists of subsets O of M that are open, relatively compact, and have locally essentially the
same causality structure as M in a compatible way. The orthogonality relation O1 ⊥ O2 is
then introduced so as to model the idea that there are no causal curves connecting any events
in O1 with events in O2. This relation can be shown to satisfy the usual properties (a)-(c) of
an orthogonality relation, if M is globally hyperbolic, and at least properties (a) and (b), if
M is just connected time-oriented Lorentzian. Then the adapted Haag-Kastler-type axioms
for a C∗-algebra A with C∗-subalgebras A(O) (O ∈ Λ) such that ⋃O∈Λ A(O) is norm dense in
A read as follows:

(A′) All algebras have the common unit I and A(O1) ⊆ A(O2) if O1 ⊆ O2,

(C ′) if O1 ⊥ O2 then [A(O1),A(O2)] = {0}.

There is no analogue of (B), since general relativity is not Poincaré invariant. As in the special
case of Minkowski space, further and refined requirements can be formulated in terms of
properties of representations or states. In particular, this is possible with a generally covariant
replacement of the spectral condition (see [FV15, Subsection 4.5.4]).

It can be shown that A is simple, if M is globally hyperbolic.

The construction of these algebras is often formulated and carried out in the context of a
functor from a category of Lorentzian manifolds to one of quasi-local algebras.
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