
Proseminar ‘Advanced functional analysis’ — SS 2023

Try to solve the problems on the basis of the corresponding lecture course content (or its prerequisites).

(Many of these problems are based on suggestions in Dirk Werner’s book ‘Funktionalanalysis’.)

1 Let H be a complex Hilbert space.

(a) For any S ∈ L(H) show that ran(S)⊥ = ker(S∗) and therefore also ker(S) = ran(S∗)⊥

and ran(S) = ker(S∗)⊥.

(b) Give an explicit example of a bounded operator on H whose range is not closed.

(c) If S ∈ L(H) satisfies S2 = S, then ran(S) is closed. (Hint: Consider also I − S.)

Remark: This applies then in particular to any orthogonal projection.

2 Let H be a complex Hilbert space and E1, E2 ∈ L(H) be orthogonal projections. Show
that the following are equivalent: (It may be convenient to show (i) ⇔ (ii) first.)

(i) ran(E1) ⊆ ran(E2),

(ii) ker(E2) ⊆ ker(E1),

(iii) E1E2 = E2E1 = E1,

(iv) E2 − E1 ≥ 0.

3 Let H be a complex Hilbert space and T ∈ L(H). Show that the following are equivalent:

(i) T is normal,

(ii) ∀x ∈ H: ‖Tx‖ = ‖T ∗x‖. (Hint: T∗T − TT∗ is self-adjoint.)

4 Let H be a complex Hilbert space and T ∈ L(H). Show that the following are equivalent:

(i) T is self-adjoint,

(ii) ∀x ∈ H: 〈Tx, x〉 ∈ R. (Hint: Consider x + λy in place of x.)

5 Let H be a complex Hilbert space and consider the resolvent map R : ρ(T ) → L(H),
R(λ) = Rλ := (λ− T )−1 for a given operator T ∈ L(H).

(a) Prove the resolvent identity

Rλ −Rµ = (µ − λ)RλRµ (λ, µ ∈ ρ(T )).

(b) Based on the Neumann series, show that R is an analytic map, i.e., locally given by a
power series with coefficients from L(H),

6 Let H be a complex Hilbert space and T ∈ L(H). Show that λ ∈ ρ(T ) implies

‖(λ− T )−1‖ ≥ 1

d(λ, σ(T ))
.

Remark: We see that ‖(λ− T )−1‖ → ∞ as λ approaches σ(T ).
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7 Let (αn) ∈ l∞ and A ∈ L(l2) be defined by Ax = (αnxn) for every x = (xn) ∈ l2. Show

that σ(A) = {αn | n ∈ N}.
Remark: We may thus conclude that for any nonempty compact subset K of C we can find some

A ∈ L(l2) such that σ(A) = K. In fact, upon choosing (αn) such that {αn | n ∈ N} is dense in K we

may simply put Ax := (αnxn)n∈N.

8 We consider the right-shift R on l2, given by R(x1, x2, x3, . . .) = (0, x1, x2, . . .). Show:

(a) σ(R) ⊆ {λ ∈ C | |λ| ≤ 1},
(b) {λ ∈ C | |λ| < 1} ⊆ σr(R), (Hint: In what relation is (1, λ, λ

2
, . . .) with ran(λ− R)?)

(c) σ(R) = {λ ∈ C | |λ| ≤ 1},
(d) σp(R) = ∅,
(e) σc(R) = {λ ∈ C | |λ| = 1}, (Hint for ⊇ : Show density of ran(λ− R) by looking at {(λ− R)en | n ∈ N}⊥.)

(f) σr(R) = {λ ∈ C | |λ| < 1}.

9 We consider the left-shift L on l2, given by L(x1, x2, x3, . . .) = (x2, x3, x4, . . .). Show:

(a) L = R∗ and σ(L) = {λ ∈ C | |λ| ≤ 1},
(b) σp(L) = {λ ∈ C | |λ| < 1},
(c) σc(L) = {λ ∈ C | |λ| = 1}, (Hint: Use 1 (a).)

(d) σr(L) = ∅.

10 Let H be a complex Hilbert space and T ∈ L(H) be self-adjoint.

(a) Show that we obtain equality in 6 .

(b) Let fs(t) := exp(ist) (s, t ∈ R) and observe that, for t in a compact subset of R, we have
(fr(t)− fs(t))/(r − s) → itfs(t) uniformly as r → s. Apply this to conclude

d

ds
eisT := lim

r→s

eirT − eisT

r − s
= iT eisT .

11 Let H be a complex Hilbert space and T ∈ L(H).

(a) Consider the numerical range W (T ) = {〈Tx, x〉 | x ∈ H, ‖x‖ = 1} of T . Show that
(i) W (T ) is compact, if H is finite dimensional,
(ii) but W (T ) is not necessarily closed, if H is infnite dimensional.

(b) Let T be self-adjoint with σ(T ) = {0, 1}. Show that T is an orthogonal projection.
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In the following three problems, let h be in C0(R) = {f ∈ C(R) | ∀ε > 0∃K ⊂ R compact,
∀x ∈ R \K : |f(x)| < ε} and Mh denote the operator of multiplication ϕ 7→ hϕ on L2(R).

12 Let λ ∈ C: Find a necessary and sufficient condition for λ to be an eigenvalue of Mh.

13 Show that {0} ∪ h(R) = h(R) ⊇ σ(Mh).

14 Prove that σ(Mh) = {0} ∪ h(R).
(Hint: Since σ(Mh) is closed and in view of 13 , it suffices to show that h(R) ⊆ σ(Mh). Try to make use of the observation that

λ ∈ ρ(Mh) and ψ ∈ L2(R) implies that ϕ := (λ−Mh)−1ψ ∈ L2(R) and (λ− h(t))ϕ(t) = ψ(t) holds for almost every t.)

15 Let H be a complex Hilbert space and E : B(R) → L(H) be a spectral measure. Show
that the following hold for any A,B ∈ B(R):
(a) A ⊆ B ⇒ EA ≤ EB , i.e., EB − EA ≥ 0, and EAEB = EA,

(b) A ∩B = ∅ ⇒ EAEB = 0,

(c) EAEB = EBEA = EA∩B.

16 Let H be a complex Hilbert space, ⌊s⌋ := max{m ∈ Z | m ≤ s} for s ∈ R denote the
floor function , and T ∈ L(H) be self-adjoint. Show the following two properties and conclude
that the operators with finite spectrum are dense in the subspace of self-adjoint operators:

(a) If fn(t) := ⌊nt⌋/n (n ∈ N, −‖T‖ ≤ t ≤ ‖T‖), then T = lim
n→∞

fn(T ) (operator norm limit),

(b) σ(fn(T )) is a finite subset of C for every n ∈ N.

17 Let H be a complex separable Hilbert space with orthonormal basis {en | n ∈ N} and let
pn ∈ N denote the nth prime number (n ∈ N).

(a) For A ∈ B(R) and x ∈ H we put EA x :=
∑

n∈N, 1
pn

∈A

〈x, en〉en. Show that A 7→ EA defines

a spectral measure E : B(R) → L(H).

(b) Suppose T is the self-adjoint operator on H corresponding to the spectral measure E given
in (a). We immediately know that the residual spectrum σr(T ) is empty (from Lemma 0.5 in
the lecture notes). Try to determine σ(T ), σp(T ), and σc(T ) based on the descriptions given
in 1.22 of the lecture notes.
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In the following two problems, let H be a complex Hilbert space, T ∈ L(H) be self-adjoint,
and E : B(R) → L(H) be the spectral measure of T . Consider the map S : R → L(H),
defined by S(λ) := E ]−∞,λ], which is the analogue of the distribution function (German:
Verteilungsfunktion) corresponding to a Borel measure on R.

18 Provide brief sketches of arguments (essentially by identifying the relevant properties
of E) indicating that S has the following properties of a so-called spectral family (German:
Spektralschar ; historically, this is the “older version” of spectral measures):

(a) ∀λ ∈ R: S(λ) is an orthogonal projection,

(b) monotonicity: λ ≤ µ ⇒ S(λ) ≤ S(µ),

(c) ∀x ∈ H: lim
λ→∞

S(λ)x = x and lim
λ→−∞

S(λ)x = 0,

(d) pointwise continuity from the right, i.e., ∀x ∈ H: lim
λ→µ+

S(λ)x = S(µ)x.

19 The spectral family can be used to characterize spectral points, i.e., show that the
following hold for any λ ∈ R:

(i) λ ∈ ρ(T ) ⇔ S is constant in a neighborhood of λ,

(ii) λ ∈ σp(T ) ⇔ S is discontinuous at λ,

(iii) λ ∈ σc(T ) ⇔ S is continuous at λ, but not constant in any neighborhood of λ.

In the following two problems, let F : L2(R) → L2(R) denote the Fourier-Plancherel transform,
which is a unitary operator on L2(R), e.g., obtained by extension of the Fourier transform on
the dense subspace L1(R) ∩ L2(R) with

√
2π(Fϕ)(x) =

∫

R

e−ixξ ϕ(x) dx.

20 (a) Knowing or taking for granted that (F2ϕ)(x) = ϕ(−x) holds for every ϕ ∈ L2(R)
for almost all x, deduce that σ(F) ⊆ {−1, 1,−i, i} and that all spectral values of F are
eigenvalues. (Hint: Recall that unitary operators are normal.)

(b) Consider ϕ(x) = exp(−x2/2), which is a solution to the ordinary differential equation
ϕ′ + xϕ = 0. Knowing or taking for granted the exchange formulae F(ϕ′)(ξ) = iξFϕ(ξ)
and F(xϕ) = i(Fϕ)′, deduce that Fϕ = λϕ, where λ = (Fϕ)(0) = 1. Therefore, ϕ is an
eigenvector of F with eigenvalue 1.

21 Define (Ph)(x) := xh(x) − h′(x) (x ∈ R), if h is a differentiable function on R. Show
that P is injective when restricted to functions h ∈ S (R). With ϕ denoting the Gaussian
function as in part (b) of the previous problem, let ϕk := P kϕ (k ∈ N0). Show that ϕk is an
eigenvector for F with eigenvalue (−i)k and conclude that σ(F) = σp(F) = {−1, 1,−i, i}.
Remark: A spectral respresentation of F can be obtained in terms of a series involving Hermite
functions, but we will not go into details about this here . . .
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22 Let T be the unitary operator on L2(R), given by translation (Tϕ)(x) := ϕ(x− 1).
Can you find a multiplication operator representation of T ? Determine σ(T ).

23 Let H be a complex Hilbert space and U(H) denote the group of unitary operators on
H, considered as a topological space with the metric topology induced by the operator norm
on L(H). Make use of the observations in Example 1.26 of the lecture notes to show that
U(H) is pathwise connected by proving that any U ∈ U(H) is the endpoint of a continuouns
path γ : [0, 1] → U(H) with γ(0) = I.

24 (Impossibility of implementing Heisenberg’s uncertainty relation with bounded operators)
Show that there cannot be a complex Hilbert spaceH and two bounded operators P,Q ∈ L(H)
such that

[Q,P ] := QP − PQ = iI.

(Hint: Derive an expression for Qn+1P − PQn+1 and use it to produce an estimate showing that ‖P‖‖Q‖ cannot be finite.)

25 Let H be a complex Hilbert space and T be a linear operator on H with domain dom(T ).
Show the equivalence of the following statements:

(i) T is closed, i.e., gr(T ), the graph of T , is closed in H ×H,

(ii) dom(T ) is complete with respect to the graph norm ‖x‖T :=
√

‖x‖2 + ‖Tx‖2,

(iii) if (xn) is a sequence in dom(T ) such that xn → x and Txn → y hold in H as n → ∞,
then x ∈ dom(T ) and y = Tx.

26 Consider the operator T on L2([−1, 1]) with dense domain dom(T ) := C([−1, 1]) and
given by Tϕ := ϕ(0) · 1 (constant function on [−1, 1]).

(a) Show that T is unbounded and not closed.

(b) Show that dom(T ∗) = {1}⊥. Hence T ∗ is not densely defined.

27 Let H be a complex Hilbert space and T , S be a densely defined linear operators on H.
Show that the following hold:

(a) T ⊆ S ⇒ S∗ ⊆ T ∗.

(b) If T is essentially self-adjoint, then T possesses a unique self-adjoint extension.

(c) If T is self-adjoint, then there is no symmetric extension of T distinct from T .

28 Let H be a complex Hilbert space and T and S be densely defined linear operators on H.
Suppose that dom(ST ) := {x ∈ dom(T ) | Tx ∈ dom(S)} is dense and define ST : dom(ST ) →
H by x 7→ S(Tx). Analogously, define dom(T ∗S∗) := {x ∈ dom(S∗) | S∗x ∈ dom(T ∗)} (no
density assumed) with T ∗S∗x := T ∗(S∗x). Show that

(a) T ∗S∗ ⊆ (ST )∗, (b) T ∗S∗ = (ST )∗, if S ∈ L(H).
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In the following two problems, let H be a complex Hilbert space and T be a densely defined
closed operator on H. Consider V : H ×H → H ×H, given by V (x, y) := (−y, x). Prove:

29 (a) V is unitary with respect to the inner product 〈(x, y), (u, v)〉2 := 〈x, u〉+ 〈y, v〉,

(b) gr(T ) = (V (gr(T ∗)))⊥. (Hint: Showing ’⊇’ can be achieved via gr(T )⊥ ⊆ V (gr(T∗)).)

30 (a) z ∈ dom(T ∗)⊥ ⇒ (0, z) ∈ gr(T ),

(b) T ∗ is densely defined and T = T ∗∗.

31 Let H be a complex Hilbert space and T be an operator on H with domain dom(T ). The
operator T is called closable, if it possesses a closed extension.

(a) Suppose T is closable. Show that the following holds:

(∗) for every sequence (xn) in dom(T ) with xn → 0 and such that (Txn) is a Cauchy sequence,
it follows that Txn → 0.

Remark: One can show that (∗) implies the property

(∗∗) the closure of gr(T ) in H ×H is the graph of a closed operator T extending T .

Obviously, T is the smallest closed extension of T . It is therefore called its closure. Moreover, the

properties of being closable, (∗), (∗∗), and that T ∗ is densely defined are all equivalent.

(b) Show that the following operator on l2 is not closable: With a := (1
l
)l∈N =

∑

∞

l=1
1
l
el ∈ l2

let dom(T ) := span({a} ∪ {el | l ∈ N}) and define T (λa+ µ1el1 + · · ·+ µmelm) := λa.

In the following two problems, we consider the operator T with dom(T ) := S (R) ⊆ L2(R)
and given by Tϕ := iϕ′. (Your reasoning here should be independent of the reasoning in
Example 3.2 of the lecture notes.)

32 By techniques similar to those in Example 2.7 of the lecure notes, show that dom(T ∗)
consists of all ψ ∈ L2(R) such that the restriction of ψ to every bounded interval is absolutely
continuous and ψ′ ∈ L2(R). In your argument you may use (without proof) the (true) fact
that ran(T ) is dense in L2(R).

33 Show that T is essentially self-adjoint and its closure is given by ψ 7→ iψ′ on the domain

described in 32 .
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34 Let H be a complex infinite dimensional Hilbert space and T be a self-adjoint operator
on H. Suppose there exists λ0 ∈ ρ(T ) such that (λ0 − T )−1 is a compact operator. T is said
to possess a compact resolvent in this case.

(a) Show that (λ− T )−1 is compact for every λ ∈ ρ(T ).
(b) Let λ ∈ ρ(T ). The operator Rλ = (λ− T )−1 is compact, normal, and injective. We know
therefore (from the basic course on functional analysis and noting the injectivity of Rλ on an infinite

dimensional space) that 0 ∈ σ(Rλ) \σp(Rλ) and that σ(Rλ) \{0} = σp(Rλ) = {µk ∈ C | k ∈ N}
with pairwise distinct µk → 0 (k → ∞) and mutually orthogonal finite dimensional eigenspaces
Vk for each µk. A spectral representation for Rλ is obtained as follows (see, e.g., Chapter II,

§7 in Conway’s book from the bibliography in the lecture notes): Let Ek denote the orthogonal
projection onto Vk; note that ElEk = δlkEl and x =

∑

∞

l=1Elx holds for every x ∈ H; we then
have the operator norm convergent series representation

(∗) (λ− T )−1 = Rλ =
∞
∑

k=1

µkEk.

Now finally the formulation of the problem: Deduce from (∗) a spectral respresentation of T
and conclude that σ(T ) is countable and has no accumulation point.

In the following two problems let H be a complex Hilbert space and A be a self-adjoint
operator on H. Define U(t) := exp(itA) via functional calculus for every t ∈ R.

35 Show the following: (Hint: Multiplication operator variant of the spectral theorem and dominated convergence.)

(a) The family (U(t))t∈R is a strongly continuous unitary group of operators on H, i.e.,

∀s, t ∈ R : U(s+ t) = U(s)U(t)

and ∀x ∈ H : limt→0 U(t)x = x.

(b) ∀x ∈ dom(A) : lim
t→0

U(t)x− x

t
= iAx.

36 (a) Show that, if in addition A ∈ L(H), then lim
t→0

‖U(t)− I‖ = 0.

(b) Let A be the self-adjoint extension of the operator discussed in problems 32 and 33 .
Determine U(t) explicitly in this example.

37 Recall that the right-shift R on l2 is given by R(x1, x2, x3, . . .) = (0, x1, x2, . . .) for every
x = (xk) ∈ l2. Check whether limn→∞Rn exists

(a) in the operator norm topology on L(l2),

(b) in the strong operator topology on L(l2),

(c) in the weak operator topology on L(l2).
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38 Consider the sequence (
√
n · en)n∈N in l2. Show that 0 is in the weak closure of A :=

{√n · en | n ∈ N}, but there is no subsequence of (
√
nm · enm)m∈N converging weakly to 0.

39 Let X be a vector space over R or C, P be the set of all seminorms on X, and τP denote
the locally convex topology generated by P . Show the following:

(a) (X, τP ) is a Hausdorff space,

(b) every linear map T from X to another locally convex vector space Y is τP -continuous,

(c) every subspace E of X is τP -closed.

(It is easy to see that τP is the finest locally convex vector space topology that exists on X . As we

know from Remark 4.8(i) in the lecture notes, τP cannot be the discrete topology.)

40 Let X be a locally convex vector space. A subset B ⊆ X is said to be bounded, if it is
absorbed by every neighborhood U of 0, i.e., there exists some α > 0 such that B ⊆ αU .
(In fact, this notion is used in the above sense also in general topological vector spaces.)

Show that the following properties of a subset B ⊆ X are equivalent:

(i) B is bounded,

(ii) every continuous seminorm is bounded on B,

(iii) for every sequence (xn) in B and for every null sequence (αn) in K, the sequence (αnxn)
converges to 0 in X.

Remark: A locally convex Hausdorff space can be shown to be normable, if and only if it possesses

a bounded neighborhood of 0; see, e.g., Proposition 14.4 in F. Trèves, Topological vector spaces,

distributions and kernels, Academic Press 1967.

41 Let X be a Banach space, Y be a normed space, and T : X → Y be linear. Show that
the following properties are equivalent: (Hint: 5.9., Example 2) in the lecture notes; uniform boundedness principle.)

(i) T is norm continuous,

(ii) T is σ(X,X ′)-σ(Y, Y ′)-continuous.

42 Let X be an infinite dimensional normed vector space and σ := σ(X,X ′). Show that
the unit sphere S := {x ∈ X | ‖x‖ = 1} is σ-dense in the σ-closed unit ball B := {x ∈ X |
‖x‖ ≤ 1}, more precisely, that the σ-closure of S equals B.
(Hints: 1. Show that X \ B is σ-open by applying the Hahn-Banach theorem for normed spaces and the fact that (Xσ)′ = X′ [see

lecture notes, 5.9., Example 2)]. 2. For any x0 ∈ B, consider a typical σ-neighborhood of the form {x0} + U{f1,...,fm},ε and prove that

{x0} + L0 does meet S, where L0 :=
⋂m

j=1 ker(fj).)

Remark: On R
n or C

n every locally convex Hausdorff topology is equivalent to the Euclidean norm

topology. Therefore, S is always σ(X,X ′)-closed in a finite dimensional normed space X .
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43 (a) Let (X,Y ) be a dual pair and A ⊆ X. Show that A◦◦◦ = A◦.

(b) Let X be a normed vector space and BX , BX′ denote the closed unit ball in X, X ′,
respectively. Show that in the dual pair (X,X ′) we have (BX)◦ = BX′ and (BX′)◦ = BX .
Furthermore, if W is a subspace of X, then the polar W ◦ coincides with the annihilator
W⊥ := {x′ ∈ X ′ | ∀w ∈W : x′(w) = 0}.

44 (a) Let X be a normed vector space and W be a dense subspace of X. Show that on
bounded subsets of X ′, the topologies σ(X ′,X) and σ(X ′,W ) coincide.

(b) Apply (a) to show that a net converges in the closed unit ball B of l∞ with respect to
the σ(l∞, l1)-topology if and only if it convergences in every coordinate. (Therefore, on B the

topology σ(l∞, l1) coincides with the topology of pointwise convergence inherited from CN.)

In course of the following sequence of four problems we will prove the theorem of Mackey-
Arens, and in the fifth problem we will discuss the special case of normed spaces. Let (E,F )
be a dual pair. A locally convex topology τ on E is said to be compatible with the duality, if
(Eτ )

′ = F (upon the canonical identification F →֒ E∗). The Mackey topology µ(E,F ) on E
is generated by the family of seminorms

pK(x) := sup
y∈K

|〈x, y〉|,

where K ⊆ F is a σ(F,E)-compact absolutely convex subset.

The theorem of Mackey-Arens states: A locally convex topology τ on E is compatible
with the duality (E,F ), if and only if σ(E,F ) ⊆ τ ⊆ µ(E,F ).

45 (a) Let X be a topological vector space and K1, . . . ,Km be compact absolutely convex
subsets of X. Show that the absolutely convex hull aco(K1∪· · ·∪Km) := {λ1x1+ . . .+λmxm |
λj ∈ K, xj ∈ Kj (j = 1, . . . ,m) and

∑m
j=1 |λj | ≤ 1} is compact.

(b) Show that U := {B◦ | B ⊆ F is absolutely convex and σ(F,E)-compact} is a basis of
µ(E,F )-neighborhoods of 0 in E.

46 (a) Let l : E → K be linear and µ(E,F )-continuous. Show that there exists an absolutely
convex σ(F,E)-compact subset K ⊆ F such that

∀x ∈ E : |l(x)| ≤ pK(x) = sup
y∈K

|〈x, y〉|.

(The point is here to obtain a continuity estimate with a single seminorm.)

Show that l ∈ K in the sense that F →֒ E∗. (Hint: Apply a Hahn-Banach separation theorem.)

(b) Show that (Eµ(E,F )
′ = F .

47 Let τ be a locally convex topology on E such that (Eτ )
′ = F . Show that τ is finer than

σ(E,F ). Let U be a closed absolutely convex τ -neighborhood of 0 in E. Show that U equals
its σ(E,F )-closure and belongs to the neighborhood basis U given in 45 (b).
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48 Prove the theorem of Mackey-Arens.

49 Let E be a Banach space. What is the Mackey topology µ(E,E′) on E?
(It will be useful to observe that σ(E′, E)-compact subsets are bounded in norm, as can be seen from the uniform boundedness principle.)

50 Do the following assignments (with ϕ ∈ D(Ω)) define distributions T ∈ D ′(Ω)?

(a) Ω = R
2, T (ϕ) =

2π
∫

0

ϕ(cos(s), sin(s)) ds,

(b) Ω = ]0, 1[, T (ϕ) =
∞
∑

n=2

ϕ(n)(
1

n
),

(c) Ω = R, T (ϕ) =
∞
∑

n=1

ϕ(n)(
1

n
).
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