Blatt 6

- **31** Zeigen Sie:
- (a) Ist X homöomorph zur abgeschlossenen Einheitskreisscheibe $B^2 \subseteq \mathbb{R}^2$ und $f: X \to X$ stetig, dann hat f einen Fixpunkt. (Bemerkung zur Anwendbarkeit: Es lässt sich z.B. recht elementar zeigen, dass jede kompakte konvexe Teilmenge von \mathbb{R}^n , die Umgebung zumindest eines ihrer Punkte ist [d.h. sie hat nichtleeres Inneres], homöomorph zur abgeschlossenen euklidischen Einheitskugel B^n ist.)
- (b) Ist $g: B^2 \to \mathbb{R}^2$ stetig und $\langle g(x), x \rangle \geq 0$ für alle $x \in S^1$, dann hat das nichtlineare Gleichungssystem g(x) = 0 eine Lösung $x \in B^2$. (Hinweis: Indirekt angenommen $g(x) \neq 0$ für alle $x \in B^2$, dann betrachte f(x) := -g(x)/||g(x)||.)
- $\boxed{\bf 32}$ Sind die folgenden 1-Formen auf $U\subseteq\mathbb{R}^2$ geschlossen? Sind sie exakt? Wenn ja, geben Sie eine Stammfunktion an.
- (a) $e^x \sin y \, dx + e^x \cos y \, dy$ auf $U = \mathbb{R}^2$,
- (b) $(x^2 + 2y) dx + (2x y^3) dy$ auf $U = \mathbb{R}^2$,
- (c) $x \log y \, dx + y \log x \, dy$ auf $U =]0, \infty[^2]$.
- $\boxed{\bf 33}$ Sind die folgenden 1-Formen auf $U\subseteq\mathbb{R}^3$ geschlossen? Sind sie exakt? Wenn ja, geben Sie eine Stammfunktion an.
- (a) $x^2y \, dx + ze^x \, dy + xy \log z \, dz$ auf $U = \{(x, y, z) \in \mathbb{R}^3 \mid z > 0\},$
- (b) (x+z) dx (y+z) dy + (x-y) dz auf $U = \mathbb{R}^3$,
- (c) (x+2z) dx (y+z) dy + 2(x-y) dz auf $U = \mathbb{R}^3$.

In den verbleibenden Aufgaben sei $f\colon U\to\mathbb{R}$ stetig auf der offenen zusammenhängenden Menge $U\subseteq\mathbb{R}^2$. Wir ordnen der skalaren Differentialgleichung y'=f(x,y) die Differentialform $\omega=f(x,y)\,dx-dy$ zu. Dies wird nämlich nahegelegt bei formaler Ersetzung von y' durch $\frac{dy}{dx}$ und "anschließender Multiplikation" der Gleichung $f(x,y)-\frac{dy}{dx}=0$ mit dx.

- **34** Sei I =]a, b[und $u: I \to \mathbb{R}$ eine Lösung der Differentialgleichung, d.h. u ist C^1 und $(t, u(t)) \in U$ sowie u'(t) = f(t, u(t)) für alle $t \in I$. Zeigen Sie: Die zugeordnete C^1 -Kurve $c: I \to U$ mit c(t) := (t, u(t)) ist regulär parametrisiert und erfüllt $c^*\omega = 0$.
- **35** Sei $J \subseteq \mathbb{R}$ ein offenes Intervall und $c = (c_1, c_2) \colon J \to U$ eine regulär parametrisierte Kurve mit der Eigenschaft $c^*\omega = 0$. Zeigen Sie: Durch $s \mapsto c_1(s)$ erhalten wir einen C^1 -Diffeomorphismus $J \to c_1(J) =: I$ mit Inverser $\tau \colon I \to J$ und $u(t) := c_2(\tau(t))$ liefert eine Lösung $u \colon I \to \mathbb{R}$ der Differentialgleichung.
- **36** (a) Sei α eine exakte 1-Form auf U mit Stammfunktion $h \in C^1(U, \mathbb{R})$. Zeigen Sie: Für eine C^1 -Kurve c in U gilt $c^*\alpha = 0$ genau dann, wenn $h \circ c$ konstant ist.
- (b) Eine stetige Funktion $g: U \to \mathbb{R}$ mit $g(x,y) \neq 0$ für alle $(x,y) \in U$ heißt integrierender Faktor für die Differentialgleichung bzw. für ω , falls $\alpha := g \cdot \omega$ eine exakte 1-Form ist. Warum ist für eine C^1 -Kurve c in U genau dann $c^*\omega = 0$ erfüllt, wenn $c^*\alpha = 0$ gilt? Welche Lösungsstrategie ergibt sich daraus für die Differentialgleichung?