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Preface

These lecture notes draw a substantial part of their material and style as well as its logical
build-up from Chapters VII and VIII of Dirk Werner’s excellent textbook [Wer18] (in
German). Regarding the prerequisites according to an introductory course on functional
analysis at our faculty we may refer to Chapters I–VI in [Wer18] or [Hoe21], both in
German, or for English texts to the corresponding chapters in [Con10, Con16, Tes14].
(The latter sources contain also many further aspects and material.)

In course of the semester we might occasionally provide hints to supplementary concepts,
examples, or further applications not covered in these notes. In fact, these notes do cer-
tainly not replace a book on the subject and are particularly sparse with intermediate and
explanatory or motivating texts in between mathematical statements. However, Sections
1-7 as presented in the notes define the compulsory material for the exam. (Thus excluding
Section 0 and the appendix.)

Many thanks go to Michael Kunzinger for several suggestions and corrections regarding a
previous version of these notes and to Nobuya Kakehashi for several subtle mathematical
comments leading to further improvements later on.

Günther Hörmann
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Bounded and unbounded self-adjoint
operators
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0. Before we begin . . .

Recalling a few functional analytic basics

Notation and conventions: N = {1, 2, . . .}, H denotes a complex Hilbert space with scalar
product 〈., .〉 (conjugate-linear in its second argument), L(H) is the space of bounded linear
operators on H; sequences (fn)n∈N are often written simply in the form (fn).

If S ∈ L(H), then its adjoint S∗ ∈ L(H) can be characterized by the condition 〈Sx, y〉 =
〈x, S∗y〉 for all x, y ∈ H; we have S∗∗ := (S∗)∗ = S. The kernel ker(S) := {x ∈ H | Sx = 0}
is always a closed subspace of H, while the range (or image) ran(S) := {Sx | x ∈ H}
is a subspace of H that is not necessarily closed. A basic relation involving these is
ran(S)⊥ = ker(S∗), hence also ker(S) = ran(S∗)⊥ and ran(S) = ran(S)⊥⊥ = ker(S∗)⊥.

Recall that T ∈ L(H) is self-adjoint, if T = T ∗, i.e., 〈Tx, y〉 = 〈x, Ty〉 for all x, y ∈ H; and
that T is normal, if TT ∗ = T ∗T . Clearly, every self-adjoint operator is normal. We call
T ∈ L(H) positive, if 〈Tx, x〉 ≥ 0 holds for all x ∈ H. On complex Hilbert spaces, positive
operators in this sense are automatically self-adjoint ([Wer18, Satz V.5.6]). Finally, an
operator P ∈ L(H) is an orthogonal projection—onto the closed subspace ran(P ) and we
haveH = ker(P )⊕ran(P ) as an orthogonal direct sum—, if and only if P is self-adjoint and
P 2 = P . In the sequel we will simply speak of projections to mean orthogonal projections.

0.1. Proposition: If T ∈ L(H) is self-adjoint, then

(i) 〈Tx, x〉 ∈ R for every x ∈ H,

(ii) ‖T‖ = sup
‖x‖≤1

|〈Tx, x〉|.

Remark: Property (i) is, in fact, also sufficient for self-adjointness of a bounded operator
on complex Hilbert spaces (cf. [Wer18, Satz V.5.6]).

Proof: (i): 〈Tx, x〉 = 〈x, Tx〉 = 〈Tx, x〉.

(ii): For any x ∈ H with ‖x‖ ≤ 1, we have |〈Tx, x〉| ≤ ‖Tx‖ · ‖x‖ ≤ ‖T‖ · ‖x‖2 ≤ ‖T‖,
hence it remains to show that ‖T‖ ≤ sup‖x‖≤1 |〈Tx, x〉| =: M .
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By elementary maneuvering,

〈T (x+ y), x+ y〉 − 〈T (x− y), x− y〉 = 2〈Tx, y〉+ 2〈Ty, x〉 = 2〈Tx, y〉+ 2〈x, Ty〉
= 2(〈Tx, y〉+ 〈Tx, y〉) = 4 Re〈Tx, y〉.

Therefore,

4 Re〈Tx, y〉 ≤ |〈T (x+ y), x+ y〉|+ |〈T (x− y), x− y〉| ≤M‖x+ y‖2 +M‖x− y‖2

= M(2‖x‖2 + 2‖y‖2) (by the parallelogram law).

If ‖x‖, ‖y‖ ≤ 1, then we obtain 4 Re〈Tx, y〉 ≤ M · 4, hence Re〈Tx, y〉 ≤ M . Replacing x
by λx we deduce

Re(λ〈Tx, y〉) ≤M ∀λ ∈ C, |λ| = 1,∀x, y ∈ H, ‖x‖, ‖y‖ ≤ 1,

thus, |〈Tx, y〉| ≤ M , if ‖x‖, ‖y‖ ≤ 1. We conclude that ‖Tx‖ ≤ M , if ‖x‖ ≤ 1, which in
turn yields ‖T‖ ≤M .

0.2. Basic closed range condition: Recall that any T ∈ L(H) satisfying for some c > 0
the following lower bound condition

∀x ∈ H : ‖Tx‖ ≥ c‖x‖

has a closed range ran(T ) = {Tx | x ∈ H} in H and the inverse T−1 : ran(T ) → H is
continuous with ‖T−1‖ ≤ 1/c. In fact, a convergent sequence (Txn) in ran(T ) is a Cauchy
sequence in H and the estimate ‖xn − xm‖ ≤ ‖Txn − Txm‖/c shows that (xn) is a Cauchy
sequence inH, hence convergent to some x ∈ H, thus (Txn) converges to Tx ∈ ran(T ), thus
ran(T ) is closed. Clearly, T is injective and with y = Tx we have ‖T−1y‖ = ‖x‖ ≤ ‖y‖/c.

0.3. Theorem: Let B : H ×H → C be a sesquilinear form.

(a) The following are equivalent:

(i) B is continuous,

(ii) B is separately continuous,

(iii) ∃M ≥ 0 ∀x, y ∈ H: |B(x, y)| ≤M ‖x‖ ‖y‖.

(b) (Lax-Milgram theorem) If B is continuous andM is as in (a), part (iii), then there exists
a unique T ∈ L(H) such that B(x, y) = 〈Tx, y〉 for all x, y ∈ H and we have ‖T‖ ≤M .
If, in addition, B is bounded below in the sense that |B(x, x)| ≥ c ‖x‖2 holds with some
c > 0 for all x ∈ H, then T is invertible and ‖T−1‖ ≤ 1/c.

Proof: (a): (i) ⇒ (ii) is clear.

(ii) ⇒ (iii): For y ∈ H define the continuous linear functional ly on H by ly(x) := B(x, y).
If x ∈ H, then y 7→ B(x, y) is conjugate-linear and continuous, hence there is some Cx ≥ 0
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such that |ly(x)| = |B(x, y)| ≤ Cx ‖y‖. Thus, the family A := {ly ∈ H ′ | y ∈ H, ‖y‖ ≤ 1} of
linear functionals is pointwise bounded on H, since sup‖y‖≤1 |ly(x)| ≤ Cx. By the Banach-
Steinhaus theorem (or uniform boundedness principle), A is bounded in H ′, i.e., there is
an M ≥ 0 such that ‖ly‖ ≤M for all y ∈ H with ‖y‖ ≤ 1. In other words,

∀x, y ∈ H, ‖x‖ ≤ 1, ‖y‖ ≤ 1 : |B(x, y)| ≤M.

Since B(x, y) = 0 if x = 0 or y = 0, and |B( x
‖x‖ ,

y
‖y‖ )| ≤ M , if x 6= 0 and y 6= 0, by the

above inequality, we obtain |B(x, y)| ≤M‖x‖‖y‖.

(iii) ⇒ (i): Let (x0, y0) ∈ H and ε > 0 be given. Choose δ ∈ ]0, 1] such that δ < ε/(M(1 +
‖x0‖ + ‖y0‖)), and put Uδ := {(x, y) ∈ H ×H | ‖x− x0‖ + ‖y − y0‖ < δ}. Then Uδ is a
neighborhood of (x0, y0) in H ×H (with respect to the product topology) and we have for
(x, y) ∈ Uδ:

|B(x, y)−B(x0, y0)| = |(B(x, y)−B(x0, y)) + (B(x0, y)−B(x0, y0))|
≤ |B(x− x0, y)|+ |B(x0, y − y0)| ≤M ‖x− x0‖ ‖y‖ +M ‖x0‖ ‖y − y0‖

≤M δ (‖y0‖ + δ) +M ‖x0‖ δ = δM (‖x0‖ + ‖y0‖ + δ) ≤ δM (‖x0‖ + ‖y0‖ + 1) < ε.

(b): If x ∈ H then hx(y) := B(x, y) defines a conjugate-linear continuous functional on H
and the conjugate-linear variant of the Riesz-Fréchet theorem provides us with a unique
vector T (x) ∈ H such that B(x, y) = hx(y) = 〈T (x), y〉 for every y ∈ H. We obtain a
map T : H → H, x 7→ T (x), which is easily seen to be linear, since 〈T (λ1x1 + λ2x2), y〉 =
B(λ1x1 + λ2x2, y) = λ1B(x1, y) + λ2B(x2, y) = 〈λ1T (x1) + λ2T (x2), y〉 for every y implies
T (λ1x1 + λ2x2) = λ1T (x1) + λ2T (x2).

We have |〈Tx, y〉| = |B(x, y)| ≤M ‖x‖ ‖y‖, hence sup‖y‖≤1 |〈Tx, y〉| ≤M‖x‖, i.e., ‖Tx‖ ≤
M‖x‖, and therefore ‖T‖ ≤M .

Uniqueness of T : If 〈Tx, y〉 = B(x, y) = 〈Sx, y〉 for all x, y ∈ H, then Tx− Sx ⊥ H for all
x ∈ H, hence T = S.

Finally, c ‖x‖2 ≤ |B(x, x)| = |〈Tx, x〉| ≤ ‖Tx‖ ‖x‖ implies c‖x‖ ≤ ‖Tx‖, which shows
(cf. 0.2) that ran(T ) is closed and that T−1 is continuous as linear map ran(T ) → H
with ‖T−1‖ ≤ 1/c. We claim that ran(T ) = H, for otherwise there is some z 6= 0 with
z ⊥ ran(T ), i.e., 0 = |〈Tz, z〉| = |B(z, z)| ≥ c ‖z‖2, a contradiction.

0.4. The spectrum of a bounded operator T ∈ L(H): For proofs not given here and
the more general Banach space context see [Wer18, Abschnitt VI.1].

The resolvent set
ρ(T ) := {λ ∈ C | ∃(λ− T )−1 in L(H)}

is an open subset of C and the resolvent map R : ρ(T )→ L(H), Rλ := R(λ) := (λ− T )−1

is analytic, i.e., is locally given by a power series with coefficients from L(H).
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The spectrum σ(T ) := C \ ρ(T ) is a compact non-empty subset of C. We have σ(T ∗) =
{λ | λ ∈ σ(T )}, since ((λ− T )−1)∗ = ((λ− T )∗)−1 = (λ− T ∗)−1.

If |λ| > ‖T‖ we can apply the Neumann series to find (λ − T )−1 = (I − T/λ)−1/λ, thus
σ(T ) ⊆ {λ ∈ C | |λ| ≤ ‖T‖}.

We obtain a slightly sharper “encirclement” of the spectrum by the spectral radius r(T ) :=

infn∈N ‖T n‖1/n = limn→∞ ‖T n‖1/n, which clearly satisfies r(T ) ≤ ‖T‖ (since ‖Tn‖1/n ≤
(‖T‖n)1/n = ‖T‖), namely

r(T ) = max{|λ| | λ ∈ σ(T )}.

If T is normal, then r(T ) = ‖T‖. In particular, we can then always find a spectral value
λ ∈ σ(T ) with |λ| = ‖T‖.

A spectral value λ ∈ C is defined by the failure of (λ− T )−1 to exist in L(H). Note that,
due to the open mapping principle, the bijectivity of (λ − T ) : H → H already implies
continuity of its inverse. Hence the “cases of failure” can be separated into the following
three classes:
1. λ− T fails to be injective (it has a nontrivial kernel and thus λ is an eigenvalue),
2. λ− T is injective, not surjective, and ran(λ− T ) is dense in H,
3. λ− T is injective and ran(λ− T ) is not dense in H (hence T is also not surjective).
Accordingly, we have the following decomposition of the spectrum (as a disjoint union)

σ(T ) = {λ ∈ C | @(λ− T )−1 in L(H)} = {λ ∈ C | ker(λ− T ) 6= {0}}︸ ︷︷ ︸
σp(T )

∪ {λ ∈ C | ker(λ− T ) = {0}, ran(λ− T ) 6= H, ran(λ− T ) dense}︸ ︷︷ ︸
σc(T )

∪ {λ ∈ C | ker(λ− T ) = {0}, ran(λ− T ) not dense in H}︸ ︷︷ ︸
σr(T )

.

The point spectrum σp(T ) consists of the eigenvalues of T , σc(T ) is called the continuous
spectrum, and σr(T ) is the residual spectrum1. However, we show that the latter does not
play any role for normal (or self-adjoint) operators.

0.5. Lemma: If T is normal, then σr(T ) = ∅.

Proof: The operator λ − T is normal as well, hence ker(λ − T ) = ker(λ − T )∗. (In fact,
‖(λ− T )x‖ = ‖(λ− T )∗x‖ holds, since 0 = 〈((λ − T )∗(λ − T ) − (λ − T )(λ − T )∗)x, x〉 = 〈(λ −
T )∗(λ−T )x, x〉−〈(λ−T )(λ−T )∗x, x〉 = ‖(λ− T )x‖2−‖(λ− T )∗x‖2.) Thus, λ ∈ σr(T ) would
imply {0} 6= ran(λ− T )⊥ = ker(λ− T )∗ = ker(λ− T ), i.e., λ ∈ σp(T ), a contradiction.

0.6. Proposition (on approximate eigenvalues of normal operators): Let T ∈
L(H) be normal and λ ∈ C, then the following are equivalent:

1A simple example for the existence of a residual spectrum is λ = 0 for the right-shift R(x1, x2, . . .) =
(0, x1, x2, . . .) on l2(N), since it has (1, 0, 0, . . .) orthogonal to its range.
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(i) λ ∈ σ(T ),

(ii) there is a sequence (xn) in H with ‖xn‖ = 1 and lim
n→∞

(λxn − Txn) = 0.

Proof: (i)⇒ (ii): By the above lemma we have σ(T ) = σp(T )∪σc(T ). If λ is an eigenvalue
with normalized eigenvector x, then we may simply put xn := x and obtain λxn−Txn = 0.

It remains to consider λ ∈ σc(T ). Then λ−T is injective and ran(λ−T ) is dense in H, but
ran(λ− T ) 6= H. There can be no constant c > 0 such that ‖(λ− T )x‖ ≥ c ‖x‖ holds for
all x ∈ H, since this would imply continuity of (λ− T )−1 as a linear map ran(λ− T )→ H
with a continuous extension to H due to the density of ran(λ− T ) (and uniform continuity
of continuous linear maps). Therefore, for every n ∈ N we can find yn ∈ H such that
‖(λ− T )yn‖ < ‖yn‖/n. Putting xn := yn/‖yn‖ we obtain ‖λxn − Txn‖ < 1/n.

(ii) ⇒ (i): If λ 6∈ σ(T ), then (λ − T )−1 : H → H is bounded and hence there is some
M > 0 such that ‖(λ− T )−1z‖ ≤ M ‖z‖ holds for all z ∈ H. Equivalently, upon putting
z = (λ − T )x, we have ‖x‖ ≤ M ‖(λ− T )x‖ for all x ∈ H, which contradicts (ii), since
this means ‖λx− Tx‖ ≥ 1/M > 0 for every x ∈ H with ‖x‖ = 1.

And a bit of measure theory

Here we collect a few measure theoretic notions and results (available also, e.g, in Appendix
A and Chapters I, II, VII of [Wer18]); more on the measure theoretic background can be
found in the excellent textbooks [Bau90, Els11] (in German) or [Bau01, Coh80, Con16,
Fol99, Rud86] (in English). Prerequisites from basic topology courses as in [Hoe20] (con-
tained in English in the book [Wil70]) will be used throughout the course without special
notice. We denote by P(Ω) the power set of the set Ω.

(A) Measures

0.7. Definition: Let Ω be a set. A sigma algebra on Ω is a subset Σ ⊆ P(Ω) satisfying

(i) ∅ ∈ Σ,

(ii) A ∈ Σ ⇒ Ω \ A ∈ Σ,

(iii) Aj ∈ Σ (j ∈ N) ⇒
⋃
j∈N

Aj ∈ Σ.

0.8. Definition: Let Ω be a topological space. The Borel sigma algebra on Ω is the
smallest sigma algebra B(Ω) containing the topology, i.e., the system of open subsets of
Ω. The elements in B(Ω) are called Borel sets.
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Clearly, B(Ω) contains all closed subsets, and in case of a Hausdorff space also all compact
subsets. In R every interval is a Borel set, in C ∼= R2 any product of two intervals belongs
to B(C). For more on these issues see [Els11, Kapitel I, §4].

0.9. Definition: Let Σ be a sigma algebra on the set Ω. A measure is a map µ : Σ→ [0,∞]
satisfying

(i) µ(∅) = 0,

(ii) σ-additivity : If A1, A2, . . . is a sequence of pairwise disjoint sets in Σ, then

µ(
⋃
j∈N

Aj) =
∑
j∈N

µ(Aj).

If µ(Ω) <∞, µ is a finite measure, and, if µ(Ω) = 1, it is said to be a probability measure.
The triple (Ω,Σ, µ), or often simply the pair (Ω, µ), is called a measure space (or probability
space, if µ(Ω) = 1). If Ω is a topological space and Σ ⊇ B(Ω), then a measure µ defined
on Σ (or rather its restriction µ |B(Ω)) is called a Borel measure on Ω.

The two simplest (nontrivial) examples of measures on an arbitrary set Ω with sigma
algebra P(Ω) are the Dirac measure δp concentrated at p ∈ Ω with δp(A) = 1, if p ∈ A,
δp(A) = 0 otherwise, and the counting measure µ with µ(A) =∞, if A is an infinite subset
of Ω, and µ(A) equal to the number of elements of A, if A is finite.

0.10. Theorem: For every d ∈ N there is a unique measure (defined at least) on the Borel
sigma algebraB(Rd) which is translation invariant and assigns the value (b1−a1) · · · (bd−ad)
to the product of closed bounded intervals [a1, b1] × · · · × [ad, bd]. This measure is called
the d-dimensional Lebesgue measure.

(B) Construction of the integral

0.11. Definition: Let Σ be a sigma algebra on Ω. A function f : Ω→ R (or Ω→ [0,∞])
is measurable (or Σ-measurable), if f−1([a, b[) ∈ Σ for any a ≤ b. A complex function
f : Ω → C is measurable, if Re f and Im f are measurable functions Ω → R. In case of a
topological space with Σ = B(Ω), a measurable function is called Borel measurable.

Continuous functions on a topological space are easily seen to be Borel measurable.

For any A ⊆ Ω we have the characteristic function (or indicator function) of A, defined
by χA(q) = 1, if q ∈ A, and χA(q) = 0, if q 6∈ A. Clearly, χA is measurable if and only if
A ∈ Σ.
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Integral of step functions: A simple function or step function (or an elementary func-
tion) on Ω is a function of the form

f =
m∑
j=1

cj χAj ,

where cj ∈ C and Aj ∈ Σ (j = 1, . . . ,m), and A1, A2, . . . Am are pairwise disjoint. The
integral of a non-negative step function f with respect to a measure µ on Σ is defined by∫

f dµ =
m∑
j=1

cj µ(Aj).

Integral of non-negative measurable functions: It can be shown that pointwise limits
of sequences of measurable functions are measurable and that any measurable function
f : Ω → [0,∞] is the pointwise increasing limit of a sequence (ϕn) of non-negative step
functions 0 ≤ ϕ1(q) ≤ ϕ2(q) ≤ · · · (cf. [Els11, Kapitel III, Satz 4.13]). The real sequence
of integrals (

∫
ϕn dµ)n∈N is thus increasing and one puts∫

f dµ := lim
n→∞

∫
ϕn dµ ∈ [0,∞].

In case
∫
f dµ <∞ the function f : Ω→ [0,∞] is called integrable (or µ-integrable).

Integral of real- or complex-valued measurable functions: Let f : Ω→ R be mea-
surable, then f+ := max(f, 0) and f− := max(−f, 0) are measurable functions Ω→ [0,∞[
and f = f+ − f−. If both f+ and f− are integrable, then f is called integrable and we put∫

f dµ :=

∫
f+ dµ−

∫
f− dµ.

A complex-valued measurable function f : Ω→ C is called integrable, if Re f and Im f are
integrable, and we then put

∫
f dµ :=

∫
Re f dµ+ i

∫
Im f dµ.

A property Φ depending on the points in Ω is said to hold µ-almost everywhere (µ-a.e.),
if there is a set N ∈ Σ with µ(N) = 0 (N is a null set) such that Φ(q) holds whenever
q 6∈ N .

0.12. Theorem (on dominated convergence): Let f and f1, f2, . . . be measurable
functions on Ω and suppose that f is the pointwise limit of fn µ-almost everywhere. If
there is an integrable function g on Ω such that |fn| ≤ g holds for all n ∈ N and µ-almost
everywhere, then f as well as every fn is integrable and we have

lim
n→∞

∫
fn dµ =

∫
f dµ.

(In fact, the slightly stronger statement lim
n→∞

∫
|fn − f | dµ = 0 is true.)
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Brief review of the construction of Lp-spaces: Let (Ω,Σ, µ) be a measure space.
If 1 ≤ p <∞, we define Lp(Ω, µ) as vector space quotient of Lp := {f : Ω→ C measurable |∫
|f |p dµ < ∞} modulo N := {f measurable | f = 0 µ-a.e.} and equip it with the norm
‖class of f‖p := (

∫
|f |p dµ)1/p. We obtain a Banach space, which in case of a compact

subset Ω ⊆ Rd and µ the (restriction of) d-dimensional Lebesgue measure is the completion
of the space of continuous functions on Ω with respect to ‖.‖p. (More generally, the
compactly supported continuous functions on a locally compact Hausdorff space Ω are
dense in Lp(Ω, µ), if µ is a regular Borel measure.)
In case p = ∞ we define L∞ to be the set of all µ-measurable functions f : Ω → C that
are bounded µ-a.e., i.e., there exists a set N ∈ Σ with µ(N) = 0 such that the restriction
f |Ω\N is bounded. On the quotient vector space L∞(Ω, µ) := L∞/N we have the norm
‖class of f‖∞ := inf{supx∈Ω\N |f(x)| | N ∈ Σ, µ(N) = 0}.
Note that Ω = N and µ the counting measure gives lp(N) as special cases.

(C) The Banach space of bounded Borel functions

Let Ω ⊆ C and denote by Bb(Ω) the vector space of bounded Borel measurable functions
f : Ω→ C. We obtain Bb(Ω) as a closed subspace of the Banach space of all bounded func-
tions on Ω equipped with the supremum norm ‖f‖∞ := supx∈Ω |f(x)|, since measurability
is preserved even under pointwise limits. The proof of the monotone pointwise approxi-
mation of non-negative measurable functions shows, in fact, that a bounded measurable
function can be uniformly approximated by step functions (cf. [Els11, Kapitel III, Korollar
4.14(a)]), i.e., the step functions are dense in the Banach space (Bb(Ω), ‖.‖∞).

We state a technical lemma (cf. [Wer18, Lemma VII.1.5]) that will be useful in constructing
a measurable functional calculus for self-adjoint operators on Hilbert spaces. (A proof is
given in the appendix.)

0.13. Lemma: Let Ω ⊆ C be compact and (Bb(Ω), ‖.‖∞) be the Banach space of bounded
Borel measurable functions Ω→ C. Suppose U ⊆ Bb(Ω) has the following properties:

(a) C(Ω) ⊆ U ,

(b) fn ∈ U (n ∈ N), sup
n∈N
‖fn‖∞ <∞, and f(t) := lim

n→∞
fn(t) exists for every t ∈ Ω

=⇒ f ∈ U .

Then U = Bb(Ω).

(D) Signed and complex measures

0.14. Definition: Let Σ be a σ-algebra on the set Ω. A (finite) signed measure is a
σ-additive map µ : Σ→ R. A complex measure is a σ-additive map µ : Σ→ C.
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In both cases, µ(∅) = 0 follows from σ-additivity, since we excluded the possibility of
infinite values in the above definition: µ(∅) = µ(∅ ∪ ∅) = µ(∅) + µ(∅). A map µ : Σ→ C is
a complex measure if and only if Reµ and Imµ are finite signed measures.

Let µ be a signed or complex measure. We define the variation |µ| : Σ→ [0,∞[ of µ by

|µ|(A) := sup{
n∑
k=1

|µ(Ek)| | E1, . . . , En ∈ Σ pairwise disjoint, A = E1 ∪ . . . ∪ En}.

The variation |µ| is a finite (positive) measure and the so-called Jordan decomposition holds
for a signed measure: There are finite (positive) measures µ+ and µ− on Σ (concentrated
on measurable subsets with |µ|-null overlap only) such that µ = µ+ − µ− and |µ| = µ+ + µ−.

Integrability of measurable functions f with respect to a (finite) signed measure µ is defined
in terms of |µ|-integrability and the integral is given by

∫
f dµ :=

∫
f dµ+ −

∫
f dµ−. For

a complex measure µ = µ1 + iµ2 with real part µ1 and imaginary part µ2 the notion of
µ-integrability is also defined in terms of |µ|-integrability and the integral is then given by∫
f dµ :=

∫
f dµ1 + i

∫
f dµ2.

(E) Regular measures

0.15. Definition: Let Ω be a Hausdorff space. A Borel measure µ on Ω is regular, if

(i) µ(C) <∞ for every compact subset C ⊆ Ω,

(ii) for every A ∈ B(Ω),

µ(A) = sup{µ(C) | C ⊆ A, C compact} = inf{µ(O) | A ⊆ O, O open}.

A signed or complex Borel measure is called regular, if the variation |µ| is regular. We
denote by M(Ω) the vector space of all signed or complex regular Borel measures on Ω.

0.16. Lemma: If Ω is a compact metric space or a complete separable metric space or an
open subset of Rd, then every finite Borel measure on Ω is regular. The Lebesgue measure
is regular. (This result is included in Ulam’s theorem [Els11, Kapitel VIII, Satz 1.16].)

(F) Riesz representation theorem

Let Σ be a sigma algebra on the set Ω. The vector space of signed (or complex) measures
on Σ becomes a Banach space when equipped with the variation norm ‖µ‖ := |µ|(Ω) (cf.
[Wer18, Abschnitt I.1, Beispiel (j), Seiten 22-24]). If Ω is a Hausdorff space and Σ = B(Ω),
then the set of signed (or complex) regular Borel measures M(Ω) is a closed subspace of
the former ([Els11, Kapitel VIII, Folgerung 2.22.a)]), hence (M(Ω), ‖.‖) is a Banach space.
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0.17. Theorem (Riesz representation theorem): Let Ω be a compact metric space.
Then the normed dual C(Ω)′ of (C(Ω), ‖.‖∞) is isometrically isomorphic to (M(Ω), ‖.‖)
via the map R : M(Ω)→ C(Ω)′, given by

(Rµ)(f) :=

∫
Ω

f dµ.

For a proof we refer to [Wer18, Theorem II.2.5] (or [Els11, Kapitel VIII, §2] and [Bau01]
for more general variants of the theorem).

(G) Absolutely continuous functions

We introduce a notion that is stronger than plain continuity, weaker than Lipschitz con-
tinuity, and provides the perfect setting for a general fundamental theorem of calculus.

0.18. Definition: A function f : [a, b] → C is absolutely continuous, if it satisfies the
following: ∀ε > 0 ∃δ > 0 such that for any n ∈ N and sequences [a1, b1], . . . , [an, bn] of
subintervals with a ≤ a1 < b1 ≤ a2 < b2 ≤ . . . ≤ an < bn ≤ b of [a, b] we have

n∑
k=1

(bk − ak) < δ =⇒
n∑
k=1

|f(bk)− f(ak)| < ε.

The Cantor function and f : [0, 1] → R, f(0) := 0, f(x) := x sin(1/x) (x > 0), are
prominent examples of continuous functions which are not absolutely continuous. The
function g : [0, 1]→ R, g(x) :=

√
x, is absolutely continuous, but not Lipschitz continuous.

0.19. Theorem (Fundamental theorem of calculus): A function f : [a, b] → C is
absolutely continuous if and only if it is differentiable almost everywhere and f ′ defines a
Lebesgue integrable function on [a, b]. In this case we have for every t ∈ [a, b]

f(t) = f(a) +

t∫
a

f ′ dµ,

where µ denotes the one-dimensional Lebesgue measure and
∫ t
a
f ′ dµ means

∫
χ[a,t]f

′ dµ.

We may even extend the formula of integration by parts to the case of absolutely continuous
functions (see [Els11, Kapitel VII, 4.16] for (a) and [Bog07, 5.8.43] for (b)).
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0.20. Proposition (Integration by parts): (a) If f and g are absolutely continuous
functions [a, b]→ C, then

b∫
a

f ′g dµ = f(b)g(b)− f(a)g(a)−
b∫

a

fg′ dµ.

(b) Suppose f and g are functions on R that are absolutely continuous on bounded intervals
and such that f or g is in L1(R) and f ′g, fg′ ∈ L1(R), then

∞∫
−∞

f ′g dµ = −
∞∫

−∞

fg′ dµ.

(H) Image measures

If Σj is a σ-algebra on Ωj (j = 1, 2) and the map F : Ω1 → Ω2 has the property that
F−1(A2) ∈ Σ1 whenever A2 ∈ Σ2 (this is the notion of Σ1-Σ2-measurability), then a measure
µ on Σ1 can be “transported” to a measure ν on Σ2 by setting ν(A2) := µ(F−1(A2)). We
call ν the image measure of µ with respect to F and write ν =: F (µ).

0.21. Theorem: A Σ2-measurable function f : Ω2 → C is F (µ)-integrable if and only
if the function f ◦ F : Ω1 → C is µ-integrable. In this case we have the transformation
formula ∫

Ω2

f dF (µ) =

∫
Ω1

(f ◦ F ) dµ.

(We refer to [Els11, Kapitel V, §3, Unterabschnitt 1] for a proof and to [Els11, Kapitel V,
§4] for further variants of transformation formulae.)
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1. The spectral theorem for bounded
self-adjoint operators

1.1. The finite-dimensional case: If H = Cn, equipped with the standard inner prod-
uct, and T is a self-adjoint (or normal) operator on Cn, then we know from linear algebra
that there is an orthonormal basis B of Cn consisting of eigenvectors of T , i.e., the ma-
trix of T with respect to the basis B is diagonal and the eigenvalues of T , with their
multiplicities, occur as the entries along the diagonal. Identifying vectors v in Cn with
functions v : {1, 2, . . . , n} → C, vl := v(l) being the l-th component of v, a diagonal matrix
D with diagonal entries d(1), . . . , d(n) ∈ C acts on v as a multiplication operator, because
(D · v)(l) = d(l)v(l) for l = 1, . . . , n; thus, we may state that the unitary transformation
U : Cn → Cn associated with the orthonormal basis B (used as column vectors of U) maps
T to a multiplication operator D on l2({1, . . . , n}) ∼= Cn via

(1.1) D = U−1TU.

In this finite-dimensional case, the spectrum σ(T ) = {λ1, . . . , λm} is the set of pairwise
distinct eigenvalues. Let Ej denote the orthogonal projection onto the eigenspace of λj
(j = 1, . . . ,m), then we may write the diagonal representation of T in the abstract form

(1.2) T =
m∑
j=1

λjEj.

For any polynomial function p on C we easily derive the following formula (using EjEk = 0,

if j 6= k, and Ej l = Ej for every l ∈ N, and T 0 := I): p(T ) =
m∑
j=1

p(λj)Ej.

Nothing prevents us from using the scheme of this formula to define f(T ) for an arbitrary
function f : σ(T )→ C, namely

f(T ) :=
m∑
j=1

f(λj)Ej.

As an example, it is straight-forward to show that the above definition with f = exp agrees
with the usual power series definition of eT :=

∑∞
k=0 T

k/k!, since T k =
∑m

j=1 λ
k
jEj.
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1.2. The case of compact operators: If T is a compact self-adjoint (or normal) operator
on the complex Hilbert space H, then the analogue of equation (1.2) holds with an infinite
sum, convergent in the operator norm ([Wer18, Korollar VI.3.3]) and a multiplication
operator analogue of the diagonal matrix representation (1.1) can be constructed via a
unitary map U : l2(S)→ H, where S is a set of cardinality equal to the Hilbert dimension
of H (i.e., the cardinality of a, hence any, complete orthonormal system in H), such that
(U−1TUx)(s) = h(s)x(s) (s ∈ S) holds with some h ∈ l∞(S) and for every x ∈ l2(S). (We
give a sketch of the construction in the appendix.)

In the current section we discuss the unitary equivalence of a bounded self-adjoint operator
T on a complex Hilbert space H with a multiplication operator on an appropriate space
L2(Ω, µ). We will also discuss how to define f(T ) for a bounded Borel measurable function
f on σ(T ) based on an integral representation generalizing (1.2).

1.3. Lemma: Let the numerical range of T ∈ L(H) be W (T ) := {〈Tx, x〉 | ‖x‖ = 1}.
Then W (T ) is a bounded subset of C satisfying σ(T ) ⊆ W (T ).

Proof: Boundedness of W (T ) follows from |〈Tx, x〉| ≤ ‖Tx‖‖x‖ ≤ ‖T‖‖x‖2. Let λ ∈
C \W (T ) and d denote the distance from λ to the compact set W (T ), hence d > 0. If
x ∈ H with ‖x‖ = 1, then

0 < d‖x‖ = d ≤ |λ− 〈Tx, x〉| = |〈(λ− T )x, x〉| ≤ ‖(λ− T )x‖‖x‖ = ‖(λ− T )x‖,

which proves injectivity of λ − T and that the inverse (λ − T )−1 : ran(λ − T ) → H is
continuous with norm bounded by 1/d; the estimate d‖x‖ ≤ ‖(λ− T )x‖ holds for all
x ∈ H upon rescaling, which proves closedness of ran(λ − T ) (cf. 0.2). We show that
ran(λ−T ) is also dense, thus ran(λ−T ) = H and λ ∈ ρ(T ) and the lemma will be proved.
If ran(λ−T ) were not dense in H, then we had some x0 ∈ ran(λ−T )⊥ with ‖x0‖ = 1 and
thus

0 = 〈(λ− T )x0, x0〉 = λ− 〈Tx0, x0〉,

contradicting the fact λ 6∈ W (T ).

Recalling Proposition 0.1 we immediately obtain for self-adjoint T the relationsW (T ) ⊂ R,
‖T‖ = max{|λ| | λ ∈ W (T )}, and in combination with the lemma the following statement.

1.4. Corollary: If T ∈ L(H) is self-adjoint, then σ(T ) ⊂ R, more precisely,

σ(T ) ⊆ [m(T ),M(T )],

where m(T ) := inf{〈Tx, x〉 | ‖x‖ = 1} andM(T ) := sup{〈Tx, x〉 | ‖x‖ = 1}. In particular,
σ(T ) ⊂ [0,∞[ for a positive operator T .

Let T ∈ L(H) be self-adjoint. A first task is the definition of f(T ) ∈ L(H) for any
function f ∈ C(σ(T )). This is very easy, if f is a polynomial function f(t) =

∑n
k=0 akt

k,
since then the only reasonable choice is f(T ) :=

∑n
k=0 akT

k, with the convention T 0 := I.
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For general f ∈ C(σ(T )), one may continuously extend1 f to a function f̃ on the real
interval [m(T ),M(T )] ⊃ σ(T ) and then use approximation by polynomials according to the
Weierstraß theorem (cf., e.g., [Wer18, Satz I.2.11]). This leads to the so-called continuous
functional calculus, which is summarized in the following theorem. Since this construction
is often contained already in standard introductory courses on functional analysis, we
repeat the technical details of its proof only in the appendix.

1.5. Theorem (Continuous functional calculus): If T ∈ L(H) is self-adjoint, then
there is a unique map Φ: C(σ(T ))→ L(H) with the following properties:

(a) Φ(id) = T and Φ(1) = I,

(b) Φ is an involutive algebra homomorphism, i.e.,

• Φ is C-linear,

• ∀f, g ∈ C(σ(T )): Φ(f · g) = Φ(f) · Φ(g),

• Φ(f̄) = Φ(f)∗,

(c) Φ is continuous with respect to the norm ‖.‖∞ on C(σ(T )), in fact, isometric,
i.e., ‖Φ(f)‖ = ‖f‖∞.

We write f(T ) instead of Φ(f) and call f 7→ f(T ) the continuous functional calculus of T .

The following list collects a few more properties of the continuous functional calculus.

1.6. Theorem: Let T ∈ L(H) be self-adjoint and f ∈ C(σ(T )), then the following hold:

(i) ‖f(T )‖ = ‖f‖∞,

(ii) f ≥ 0 implies that f(T ) is positive,

(iii) x ∈ H and Tx = λx implies f(T )x = f(λ)x,

(iv) f(T ) is normal; f(T ) is self-adjoint, if and only if f is real-valued,

(v) the spectral mapping theorem: σ(f(T )) = f(σ(T )).

Moreover, C∗(T ) := {f(T ) ∈ L(H) | f ∈ C(σ(T ))} is a closed involutive commutative
subalgebra of L(H).

Proof: (i): This is only a restatement of part (c) in the above theorem.

(ii): We may write f = g2 with g ∈ C(σ(T )) and g ≥ 0. We get f(T ) = g(T )g(T ) and
g(T )∗ = g(T ) = g(T ), hence for any x ∈ H,

〈f(T )x, x〉 = 〈g(T )x, g(T )∗x〉 = 〈g(T )x, g(T )x〉 = 〈g(T )x, g(T )x〉 = ‖g(T )x‖2 ≥ 0.

1With the Euclidean topology, R and any closed subset is a normal topological space.
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(iii): This is elementary, if f is a polynomial, and extends to general continuous f by
uniform polynomial approximation pn → f (thanks to the Stone-Weierstraß theorem applied to
the compact subset σ(T ) ⊆ R; cf., e.g., [Wer18, Satz VIII.4.7]), since this implies pn(T )→ f(T )
with convergence in the operator norm.

(iv): f(T )∗f(T ) = (f̄f)(T ) = (ff̄)(T ) = f(T )f(T )∗; f̄ = f implies f(T )∗ = f̄(T ) = f(T ),
and for the converse note that f(T ) = f(T )∗ = f̄(T ) in view of (i) yields ‖f − f̄‖∞ =
‖f(T )− f̄(T )‖ = 0, hence f = f̄ .

(v): For a polynomial function, this relation is elementary (and already established, e.g.,
in course of the proof of Theorem 1.5; cf. Claim (i) in the proof given in the appendix).

Let µ ∈ C \ f(σ(T )). Then g := 1
f−µ ∈ C(σ(T )) and g · (f − µ) = (f − µ) · g = 1, hence

g(T )(f(T )− µ) = (f(T )− µ)g(T ) = I,

which shows that µ ∈ ρ(f(T )); i.e., σ(f(T )) ⊆ f(σ(T )).

Let µ ∈ f(σ(T )). There is some λ ∈ σ(T ) such that µ = f(λ) and we have to show
that f(λ) ∈ σ(f(T )). For every n ∈ N choose a polynomial pn with ‖f − pn‖∞ ≤ 1/n
(again thanks to the Stone-Weierstraß theorem). It follows that ‖f(T )− pn(T )‖ ≤ 1/n as
well as |pn(λ) − f(λ)| ≤ 1/n. Since pn is a polynomial, we have pn(λ) ∈ σ(pn(T )).
By Proposition 0.6 there is some approximate eigenvector xn ∈ H with ‖xn‖ = 1 and
‖(pn(T )− pn(λ))xn‖ ≤ 1/n. In summary, we obtain for every n ∈ N,

‖(f(T )− µ)xn‖ = ‖(f(T )− pn(T ) + pn(T )− pn(λ) + pn(λ)− f(λ))xn‖

≤ ‖f(T )− pn(T )‖︸ ︷︷ ︸
≤1/n

‖xn‖ + ‖(pn(T )− pn(λ))xn‖︸ ︷︷ ︸
≤1/n

+ |pn(λ)− f(λ)|︸ ︷︷ ︸
≤1/n

‖xn‖ ≤
3

n
,

which means, again by Proposition 0.6, that µ ∈ σ(f(T )).

Since the map f 7→ f(T ) = Φ(f) is multiplicative and involutive, C∗(T ) = Φ(C(σ(T )))
is an involutive subalgebra of L(H) and commutativity follows from the same property
of the pointwise multiplication in C(σ(T )). The closedness of C∗(T ) follows from the
completeness of C(σ(T )) together with the fact that f 7→ f(T ) = Φ(f) is an isometry: If
(fn(T ))n∈N is a sequence in C∗(T ) that converges in L(H), then it is a Cauchy sequence
with respect to the operator norm; isometry implies that (fn)n∈N is a Cauchy sequence
in C(σ(T )); hence there is some f ∈ C(σ(T )) such that fn → f uniformly and thus
fn(T )→ f(T ) ∈ C∗(T ).

1.7. Remark: The notation for the closed involutive abelian algebra C∗(T ) shall indicate
the fact that it is exactly the C∗-subalgebra of L(H) generated by the normal element T
and I. On the background of this “Banach algebra point of view”, the above continuous
functional calculus appears as a special case of isometric embeddings (Gelfand transforms)
or isomorphisms of abstract commutative Banach or C∗-algebras (cf. [Con10, Chapter VIII]
or [Wer18, Korollar IX.3.8] or [Hoe24, Chapter 2]).
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In the finite-dimensional case (1.2) the spectrum σ(T ) = {λ1, . . . , λm} is a discrete and the
projections E1, . . . , Em onto the eigenspaces can be obtained via functional calculus: Let
f : σ(T )→ C be defined by f(λj) = 0, if j 6= k, and f(λk) = 1, then Ek =

∑m
j=1 f(λj)Ej =

f(T ). Note that f = χ{λk}, the characteristic function of the singleton {λk}. In general
σ(T ) is not discrete and a characteristic function χA, A ⊆ σ(T ), need not be continuous.
If we can extend the functional calculus appropriately, then χA(T ) is a perfect way to
produce an orthogonal projection, since χ2

A = χA and χA is real-valued. From characteristic
functions we get to step functions by linear combinations and then pointwise limits would
bring us into the realm of measurable functions.

To investigate an extension of the continuous functional calculus for a self-adjoint operator
T ∈ L(H), let x, y ∈ H and write for any f ∈ C(σ(T )),

lx,y(f) := 〈f(T )x, y〉.

The map lx,y : C(σ(T ))→ C is linear and

|lx,y(f)| ≤ ‖f(T )‖‖x‖‖y‖ = ‖f‖∞‖x‖‖y‖,

thus, lx,y is an element in the dual space of (C(σ(T )), ‖.‖∞) with ‖lx,y‖ ≤ ‖x‖‖y‖. By the
Riesz representation theorem (see Theorem 0.17) there is a unique complex Borel measure
µx,y on σ(T ) with ‖µx,y‖ = ‖lx,y‖, such that

(1.3) 〈f(T )x, y〉 =

∫
σ(T )

f dµx,y ∀f ∈ C(σ(T )).

Observe that the right-hand side of (1.3) makes sense also for f ∈ Bb(σ(T )) and, consider-
ing its dependence on (x, y), defines a continuous sesquilinear form bf : H ×H → C, since
(x, y) 7→ µx,y clearly is sesquilinear H ×H →M(σ(T )) as is seen from (1.3) and

(1.4) |bf (x, y)| = |
∫

σ(T )

f dµx,y| ≤ ‖f‖∞‖µx,y‖ = ‖f‖∞‖lx,y‖ ≤ ‖f‖∞‖x‖‖y‖.

By the Lax-Milgram theorem (Theorem 0.3(b)), bf defines an operator f(T ) ∈ L(H) with

(1.5) 〈f(T )x, y〉 = bf (x, y) ∀x, y ∈ H.

Thereby the main ingredient for the measurable functional calculus has been constructed,
namely a map Bb(σ(T ))→ L(H) given by f 7→ f(T ).

1.8. Theorem (Measurable functional calculus): Let T ∈ L(H) be self-adjoint, then
there is a unique map Φ̂ : Bb(σ(T ))→ L(H) with the following properties (we will typically
write f(T ) to mean Φ̂(f)):

(a) Φ̂ is an involutive algebra homomorphism that extends the continuous functional cal-
culus Φ, i.e., Φ̂ |C(σ(T ))= Φ, and is ‖.‖∞-continuous, more precisely, ‖f(T )‖ ≤ ‖f‖∞,
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(b) if fn ∈ Bb(σ(T )) (n ∈ N) is such that supn∈N ‖fn‖∞ < ∞ and fn(t) → f(t) pointwise
for t ∈ σ(T ), then fn(T )x→ f(T )x for all x ∈ H.

Proof: Uniqueness: Suppose Ψ̂ is another measurable functional calculus satisfying (a) and
(b). Define U := {f ∈ Bb(σ(T )) | Ψ̂(f) = Φ̂(f)}. Then C(σ(T )) ⊆ U and U satisfies also
condition (b) in Lemma 0.13, hence U = Bb(σ(T )), which proves Ψ̂ = Φ̂.

Existence: If f ∈ Bb(σ(T )), then we define Φ̂(f) := f(T ) ∈ L(H) as above via the
sesquilinear form bf , based on the complex Borel measures µx,y ∈M(σ(T )) for all x, y ∈ H,
by the property in (1.5). Linearity of Φ̂ : Bb(σ(T ))→ L(H) is clear from (1.3) and we have
|〈f(T )x, y〉| = |bf (x, y)| ≤ ‖f‖∞‖x‖‖y‖ by (1.4), hence ‖f(T )‖ ≤ ‖f‖∞, which shows
continuity of Φ̂.

We easily obtain an intermediate, weaker, variant of (b): If x, y ∈ H are arbitrary and fn
(n ∈ N), f are as in the premise of (b), then by the theorem on dominated convergence

(1.6) 〈fn(T )x, y〉 =

∫
fn dµx,y →

∫
f dµx,y = 〈f(T )x, y〉 (n→∞),

i.e., fn(T )x→ f(T )x weakly in H for every x.

We will first show that Φ̂ is multiplicative and involutive before getting back to the im-
provement of (1.6) establishing (b).

We already know that Φ̂(fg) = Φ̂(f) Φ̂(g), if both f and g are continuous.
Let g be continuous and put U := {f ∈ Bb(σ(T )) | Φ̂(fg) = Φ̂(f) Φ̂(g)}, then we clearly
have C(σ(T )) ⊆ U . Suppose that the sequence fn ∈ U (n ∈ N) is uniformly bounded and
pointwise convergent to f ∈ Bb(σ(T )). Then by (1.6),

〈Φ̂(f)(Φ̂(g)x), y〉 = lim
n→∞
〈Φ̂(fn)(Φ̂(g)x), y〉 = lim

n→∞
〈Φ̂(fng)x, y〉 = 〈Φ̂(fg)x, y〉 ∀x, y ∈ H,

which implies Φ̂(f)Φ̂(g) = Φ̂(fg), hence f ∈ U and Lemma 0.13 yields U = Bb(σ(T )).
Now let f be measurable and bounded and put V := {g ∈ Bb(σ(T )) | Φ̂(fg) = Φ̂(f) Φ̂(g)}.
We have shown above that C(σ(T )) ⊆ V , and, employing Lemma 0.13 in the same way
again (strictly speaking, upon rewriting 〈Φ̂(f)(Φ̂(g)x), y〉 = 〈Φ̂(g)x, Φ̂(f)∗y〉 and then using
gn → g), we find V = Bb(σ(T )), thus, multiplicativity of Φ̂.

A similar technique is used to show Φ̂(f)∗ = Φ̂(f̄), which clearly holds for continuous
functions: Put U := {f ∈ Bb(σ(T )) | Φ̂(f)∗ = Φ̂(f̄)} and note that C(σ(T )) ⊆ U . If (fn)
is a uniformly bounded sequence in U and converges pointwise to f , then

〈Φ̂(f)∗x, y〉 = 〈x, Φ̂(f)y〉 = 〈Φ̂(f)y, x〉 = lim
n→∞

〈Φ̂(fn)y, x〉 = lim
n→∞
〈Φ̂(fn)x, y〉 = 〈Φ̂(f̄)x, y〉

holds for arbitrary x, y ∈ H and hence f ∈ U ; thus, U = Bb(σ(T )) again by Lemma 0.13,
i.e., Φ̂ is involutive.
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Finally, we prove (b): Let fn (n ∈ N), f be as in the premise of (b) and x ∈ H. By (1.6)
we have fn(T )x→ f(T )x weakly in H. By the properties of Φ̂ we obtain in addition

‖fn(T )x‖2 = 〈fn(T )x, fn(T )x〉 = 〈fn(T )∗fn(T )x, x〉 = 〈(fnfn)(T )x, x〉
→ 〈(f̄f)(T )x, x〉 = 〈f(T )∗f(T )x, x〉 = ‖f(T )x‖2 (n→∞).

We conclude that fn(T )x→ f(T )x in H, since ‖fn(T )x− f(T )x‖2 = ‖fn(T )x‖2−
2 Re〈fn(T )x, f(T )x〉+ ‖f(T )x‖2 → ‖f(T )x‖2 − 2 Re〈f(T )x, f(T )x〉+ ‖f(T )x‖2 = 0.

1.9. Remark: While Φ is injective, since ‖Φ(f)‖ = ‖f‖∞, its extension Φ̂ is in general
not. For example, we will prove later in this section that for any λ ∈ σ(T ), Φ̂(χ{λ}) 6= 0 if
and only if λ is an eigenvalue.

As first application of the measurable functional calculus we investigate the orthogonal
projections obtained from characteristic functions.

1.10. Lemma: Let T ∈ L(H) be self-adjoint, then the following hold:

(i) for every Borel set A ⊆ σ(T ), χA(T ) is an orthogonal projection,

(ii) χ∅(T ) = 0 and χσ(T )(T ) = I,

(iii) if A1, A2, . . . are pairwise disjoint Borel subsets of σ(T ) and x ∈ H, then we have
with A :=

⋃∞
j=1 Aj

∞∑
j=1

χAj(T )x = χA(T )x,

(iv) χA(T )χB(T ) = χA∩B(T ) for Borel sets A,B ⊆ σ(T ).

Proof: (i) follows from χ2
A = χA and χA = χA.

(ii): χ∅ = 0 ∈ C(σ(T )) and Φ(0) = 0 (by linearity); χσ(T ) = 1 in C(σ(T )) and Φ(1) = I.

(iii): Put fn =
∑n

j=1 χAj , f := χA and apply Theorem 1.8(b).

(iv) follows from χAχB = χA∩B.

1.11. Remark: In general, there is no operator norm convergent analogue of (iii), since
the projection χAj(T ) has operator norm 1, unless it is the zero operator (corresponding
to the case µx,y(Aj) = 0 for all x, y ∈ H).

The above lemma allows to define a projection-valued measure E : B(R) → L(H) on the
Borel sigma algebra B(R) by A 7→ χA∩σ(T )(T ). This is an example of the following concept.

1.12. Definition: A map E : B(R)→ L(H), A 7→ EA is called a spectral measure, if every
EA is an orthogonal projection and

(i) E∅ = 0, ER = I,

(ii) if A1, A2, . . . are pairwise disjoint Borel sets in R, A :=
⋃∞
j=1Aj, and x ∈ H, then

∞∑
j=1

EAjx = EAx.
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A spectral measure E has compact support, if EK = I for some compact subset K ⊂ R.

It is an exercise to deduce EAEB = EA∩B = EBEA and monotonicity, i.e., EA ≤ EB (in
the sense that EB − EA is a positive operator), if A ⊆ B.

1.13. Integration with respect to a spectral measure: Let E be a spectral measure.
We first define the integral of a step function h =

∑m
j=1 αj χAj on R simply by

∫
h dE :=

m∑
j=1

αjEAj

and note that this is independent of the representation of h: If
∑m

j=1 αj χAj =
∑n

l=1 βl χBl ,
we may suppose that both A1, . . . , Am and B1, . . . , Bn are partitions of R (by possibly
adding terms with coefficient 0 in the sum representations). Then EAj =

∑n
l=1EAj∩Bl ,

EBl =
∑m

j=1 EAj∩Bl and αj = βl, if Aj ∩Bl 6= ∅, therefore

m∑
j=1

αjEAj =
∑

1≤j≤m
1≤l≤n

αjEAj∩Bl =
n∑
l=1

βlEBl .

We claim that ‖
∫
h dE‖ ≤ ‖h‖∞. In fact, if h =

∑m
j=1 αjχAj (with pairwise disjoint

A1, . . . , Am ∈ B(R)) and x ∈ H, then (since the EAjx are pairwise orthogonal)

∥∥∥∥(∫ h dE

)
x

∥∥∥∥2

=

∥∥∥∥∥
m∑
j=1

αjEAjx

∥∥∥∥∥
2

=
m∑
j=1

|αj|2‖EAjx‖
2 ≤

(
max

j=1,...,m
|αj|2

) m∑
j=1

‖EAjx‖
2

= ‖h‖2
∞

∥∥∥∥∥
m∑
j=1

EAjx

∥∥∥∥∥
2

= ‖h‖2
∞

∥∥∥E⋃m
j=1 Aj

x
∥∥∥2

≤ ‖h‖2
∞‖x‖

2.

Let f ∈ Bb(R), then by density of the step functions, there is a uniformly convergent
sequence of step functions hn → f . We have

‖
∫
hn dE −

∫
hm dE‖ = ‖

∫
(hn − hm) dE‖ ≤ ‖hn − hm‖∞,

hence (
∫
hn dE)n∈N is a Cauchy sequence in L(H) and possesses a limit; furthermore, this

limit is independent of the choice of approximating sequence (hn), since any mix of such
sequences yields a Cauchy sequence of integrals, which cannot have a different accumulation
point. Therefore, we may define∫

f dE := lim
n→∞

∫
hn dE.
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Notations such as
∫
f dE,

∫
f(λ) dEλ, and

∫
R f dE will be used in the sequel. The map

f 7→
∫
f dE clearly satisfies

∫
f̄ dE = (

∫
f dE)∗, is linear Bb(R)→ L(H), and continuous,

since
‖
∫
f dE‖ ≤ ‖f‖∞.

Furthermore, a real-valued function f ∈ Bb(R) gives a self-adjoint operator
∫
f dE ∈ L(H).

If E has compact support, say EK = I for a compact set K ⊂ R, and f ∈ Bb(K), then we
define

∫
K
f dE :=

∫
χKf dE (formally, upon extending f to R, e.g., by the value 0 outside

K); we will often abuse notation by still writing
∫
f dE in this case. The choice of K with

EK = I is not essential, since A ∈ B(R) with A ∩K = ∅ implies EA = EAI = EAEK =
EA∩K = 0 and hence

∫
χAf dE = 0.

The measurable functional calculus for a self-adjoint operator T ∈ L(H) provided us with
the means to define a compactly supported spectral measure E associated with T by
EA := χA∩σ(T )(T ) (A ∈ B(R)).

Conversely, if a compactly supported spectral measure E is given, say EK = I with K ⊂ R
compact, then any f ∈ C(K) is bounded and Borel measurable. Hence T :=

∫
λ dEλ ∈

L(H) is defined and self-adjoint, since idK is real-valued. We will show that the spectral
measure of T is exactly E and that the integrals with respect to E give the (uniquely
determined) measurable functional calculus of T .

1.14. Proposition: Let E be a compactly supported spectral measure and T =
∫
λ dEλ.

Then Eσ(T ) = I, T is self-adjoint, and its measurable functional calculus is given by

Ψ: Bb(σ(T ))→ L(H), f 7→
∫

σ(T )

f dE.

In particular, we may conclude that

∀A ∈ B(σ(T )) : χA(T ) = Ψ(χA) =

∫
χA dE = EA,

thus the spectral measure associated with T according to Lemma 1.10 coincides with E.

Proof: We first prove that condition (a) of Theorem 1.8 is satisfied by Ψ: We already
know that Ψ is involutive, linear, and continuous. Multiplicativity is clear in case of step
functions, since Ψ(χA)Ψ(χB) = EAEB = EA∩B = Ψ(χA∩B) = Ψ(χAχB), and follows in
general by a routine argument employing uniform approximation by step functions. We
clearly have Ψ(id) = T and, by multiplicativity, Ψ(idn) = T n for n ∈ N. It remains to
show Ψ(1) = I, then we have that Ψ coincides with the continuous functional calculus on
polynomials, hence on all of C(σ(T )).

Note that Ψ(1) =
∫
σ(T )

1 dE = Eσ(T ), thus we need to show that Eσ(T ) = I. In fact, we
will show Eρ(T )∩R = 0, which implies Eσ(T ) = Eσ(T ) + Eρ(T )∩R = E(σ(T )∪ρ(T ))∩R = ER = I.
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Here, and also in the sequel, we will simplify notation by writing EA instead of EA∩R, if
A ⊆ C is a Borel set.

Choose a < b such that E]a,b] = I, i.e., EK = I for some compact subset K of ]a, b]. Let
µ ∈ ρ(T ). If µ 6∈ ]a, b], then choosing an open neighborhood U of µ with U ∩K = ∅ yields
EU = 0.

It remains to consider the case µ ∈ ]a, b]. Recall that the set of invertible operators is
open in L(H) and that inversion is a continuous map on that set. Therefore, given C :=
‖(µ− T )−1‖ + 1, there is δ > 0 such that

∀S ∈ L(H) : ‖S − (µ− T )‖ ≤ δ ⇒ S is invertible and ‖S−1‖ ≤ C.

We may suppose that δ = (b− a)/N for some N ∈ N and that δ < 1/C.

Put ak := a + kδ (k = 0, . . . , N), Ak := ]ak−1, ak] (k = 1, . . . , N), and consider the step
function h :=

∑N
k=1 akχAk . Then |λ − h(λ)| ≤ δ for all λ ∈ ]a, b]. Note that

∑N
k=1 EAk =

E]a,b] = I and EAkEAl = EAk∩Al = δklEAk . Writing µI =
∑N

k=1 µEAk gives

‖
N∑
k=1

(µ− ak)EAk − (µ− T )‖ = ‖T −
N∑
k=1

akEAk‖ = ‖T −
∫
h dE‖ ≤ sup

a<λ≤b
|λ− h(λ)| ≤ δ,

hence B :=
∑N

k=1(µ − ak)EAk is invertible and ‖B−1‖ ≤ C. Denoting by Σ′ the sum
only over those k ∈ {1, . . . , N} such that EAk 6= 0 we may write B = Σ′(µ − ak)EAk and
B−1 = Σ′(µ− ak)−1EAk . Therefore,

C ≥ ‖B−1‖ = max{ 1

|µ− ak|
| 1 ≤ k ≤ N and EAk 6= 0}.

Since µ ∈ ]a, b] = A1 ∪ . . . ∪ AN there is some k such that µ ∈ Ak = ]ak−1, ak]. Therefore,
|µ−ak| ≤ |ak−1−ak| = δ < 1/C, which implies EAk = 0. If µ < ak, then U := ]ak−1, ak[ is an
open neighborhood of µ such that EU = 0. If µ = ak < b = aN , then |µ− ak+1| = δ < 1/C
and also EAk+1

= 0, so that U := ]ak−1, ak+1[ is an open neighborhood of µ with EU = 0.
If µ = b = aN we may choose U := ]aN−1, b+ 1[, since EAN = 0 and E]b,b+1[ = 0.

To summarize, we found for any µ ∈ ρ(T ) an open neighborhood U of µ such that EU = 0.

If M ⊂ ρ(T ) is compact, we can cover M by neighborhoods U(µ) (µ ∈ M) constructed
as above with EU(µ) = 0. By compactness, finitely many U(µ1), . . . , U(µm) suffice, hence
0 ≤ EM ≤ E⋃m

j=1 U(µj) ≤ 2∑m
j=1 EU(µj) = 0, hence EM = 0. For arbitrary x ∈ H, the finite

positive Borel measure A 7→ 〈EAx, x〉, B(R) → [0,∞[ is regular due to Lemma 0.16; it
vanishes on compact subsets of ρ(T ) and we therefore have 〈Eρ(T )x, x〉 = 0; since x was
arbitrary and Eρ(T ) is self-adjont, we conclude from Proposition 0.1(ii) that ‖Eρ(T )‖ =
sup‖x‖≤1 |〈Eρ(T )x, x〉| = 0, hence Eρ(T ) = 0.

2EA∪B = EA\B + EB ≤ EA + EB and similarly for finitely many terms
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We finally show that Ψ satisfies also condition (b) of Theorem 1.8: It suffices to show
the weaker variant (1.6), since the final argument in the proof of Theorem 1.8 could be
repeated here with Ψ(fn) in place of fn(T ).

Let x, y ∈ H and denote by νx,y the complex measure on B(σ(T )) given by A 7→ 〈EAx, y〉.
Then for any step function h =

∑m
j=1 αjχAj we have

〈Ψ(h)x, y〉 = 〈(
∫
h dE)x, y〉 = 〈

m∑
j=1

αjEAjx, y〉 =
m∑
j=1

αj 〈EAjx, y〉︸ ︷︷ ︸
νx,y(Aj)

=

∫
h dνx,y,

and for g ∈ Bb(σ(T )) we apply uniform approximation by step functions and pass to the
limit to obtain

〈Ψ(g)x, y〉 =

∫
g dνx,y.

If (fn) and f are as in the premise of condition (b), then (1.6) follows from the theorem
on dominated convergence, since

〈Ψ(fn)x, y〉 =

∫
fn dνx,y →

∫
f dνx,y = 〈Ψ(f)x, y〉 (n→∞).

Let T ∈ L(H) be self-adjoint with spectral measure E, given by EA := χA∩σ(T )(T ) (A ∈
B(R)), so that Eσ(T ) = χσ(T )(T ) = I.

Define S :=
∫
σ(T )

λ dEλ, then we claim that S = T .

Let ε > 0 and h be a step function on σ(T ) such that ‖ id−h‖∞ ≤ ε/2; suppose h =∑m
j=1 αjχAj (with Aj ∈ B(σ(T )) pairwise disjoint). Denote by f(T ) the functional calculus

of T and by Ψ(f) that of S (according to the above proposition), then

‖T − S‖ ≤ ‖T − h(T )‖ + ‖h(T )−Ψ(h)‖ + ‖Ψ(h)− S‖ =

‖(id−h)(T )‖ + ‖
m∑
j=1

αjχAj(T )−
∫

σ(T )

h(λ) dEλ‖ + ‖
∫

σ(T )

h(λ) dEλ −
∫

σ(T )

λ dEλ‖ =

‖(id−h)(T )‖ + ‖
m∑
j=1

αjχAj(T )−
m∑
j=1

αjEAj‖ + ‖
∫

σ(T )

(h− id) dE‖ ≤

‖ id−h‖∞ + ‖
m∑
j=1

αj (χAj(T )− EAj)︸ ︷︷ ︸
= 0

‖ + ‖h− id ‖∞ ≤
ε

2
+ 0 +

ε

2
= ε.

Thus, taking into account Proposition 1.14, we have proved the following statement.
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1.15. Theorem (Spectral theorem for self-adjoint bounded operators): Let T ∈
L(H) be self-adjoint, then there exists a unique spectral measure E with compact support
on R such that

T =

∫
σ(T )

λ dEλ.

The map f 7→
∫
σ(T )

f dE, Bb(σ(T ))→ L(H), defines the measurable functional calculus of
T , and f(T ) is determined by the measures µx,y ∈M(σ(T )) (x, y ∈ H), µx,y(A) = 〈EAx, y〉,
via

〈f(T )x, y〉 =

∫
σ(T )

f dµx,y =:

∫
σ(T )

f(λ) d〈Eλx, y〉 ∀x, y ∈ H.

1.16. The finite-dimensional case revisited: Let H = Cn, T self-adjoint on H with
σ(T ) = {λ1, . . . λm}, and E1, . . . , Em denote the projections onto the eigenspaces. Then
B(σ(T )) = P(σ(T )) and putting for any A ⊆ σ(T )

EA :=
∑

{j∈{1,...,m}|λj∈A}

Ej

defines the spectral measure of T , since Eσ(T ) =
∑m

j=1Ej = I and

T =
m∑
j=1

λjEj =
m∑
j=1

λjE{λj} =

∫
σ(T )

λ dEλ.

1.17. Example: Let H = L2([0, 1]) and T : L2([0, 1]) → L2([0, 1]) be the multiplication
operator (Tx)(t) = tx(t) (t ∈ [0, 1], x ∈ L2([0, 1])). Clearly, T is self-adjoint and T − λ
possesses a continuous inverse, namely, ((T − λ)−1x)(t) = x(t)/(t − λ), if and only if
λ ∈ C\ [0, 1], hence σ(T ) = [0, 1]. It is an exercise to show that T has no eigenvalues, thus,
by Lemma 0.5 we have σ(T ) = σc(T ) = [0, 1]. Let x, y ∈ L2([0, 1]), then

〈Tx, y〉 =

1∫
0

λx(λ)y(λ) dλ =

∫
σ(T )

λx(λ)y(λ) dλ,

which suggests that µx,y is Lebesgue measure on [0, 1] with density function xy, i.e, that
the spectral measure E is defined by (EAx)(t) := χA∩[0,1](t)x(t) (A ∈ B(R)). Indeed3,
〈EAx, y〉 =

∫ 1

0
χA∩[0,1](λ)x(λ)y(λ) dλ =

∫
A∩[0,1]

x(λ)y(λ) dλ and

∫
σ(T )

λ d〈Eλx, y〉 =

∫
σ(T )

id dµx,y = 〈Tx, y〉 =

1∫
0

λx(λ)y(λ) dλ.

3Strictly speaking,we also need to check that E is a spectral measure, but this is easy.
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1.18. Remark: Let T ∈ L(H) be self-adjoint with spectral measure E. An operator
S ∈ L(H) commutes with T , if and only if S commutes with every EA (A ∈ B(R)). The
statement can be shown by first noting that ST = TS is equivalent to S commuting with
all powers T n, in other words, that 〈ST nx, y〉 = 〈T nSx, y〉 holds for all x, y ∈ H. Using∫

λn d〈EλSx, y〉 = 〈T nSx, y〉 = 〈ST nx, y〉 = 〈T nx, S∗y〉

=

∫
λn d〈Eλx, S∗y〉 =

∫
λn d〈SEλx, y〉

and density of polynomials, this in turn can be seen to mean that the complex measures
ν1(A) := 〈SEAx, y〉 and ν2(A) := 〈EASx, y〉 agree when considered as functionals on
C(σ(T )). Varying x and y we obtain SEA = EAS.

1.19. Proposition: If S ∈ L(H) is self-adjoint, g : σ(S)→ R and f : R→ C are bounded
and Borel measurable, then

(f ◦ g)(S) = f(g(S)).

Proof: The composition f ◦ g : σ(S) → C is Borel measurable and bounded, therefore
(f ◦ g)(S) is defined by the measurable functional calculus. Let F denote the spectral
measure of S. Since g is real-valued, T := g(S) is self-adjoint and possesses as a unique
spectral measure E. It suffices to prove the statement of the proposition in case f = χA
(A ∈ B(R)), since it can then be extended to step functions and measurable functions by
the usual techniques and properties of the functional calculus.

We have χA ◦ g = χg−1(A), thus it suffices to show Fg−1(A) = EA for every A ∈ B(R). This
in turn is equivalent to the equality of the measures µx,y(A) := 〈EAx, y〉 and νx,y(A) :=
〈Fg−1(A)x, y〉 for arbitrary x, y ∈ H. Note that νx,y is the image measure of the mea-
sure ρx,y(B) := 〈FBx, y〉 (B ∈ B(R)) associated with the spectral measure F of S, since
νx,y(A) = 〈Fg−1(A)x, y〉 = ρx,y(g

−1(A)), i.e., νx,y = g(ρx,y). We obtain∫
λn dνx,y =

∫
g(λ)n dρx,y = 〈g(S)nx, y〉 = 〈T nx, y〉 =

∫
λn d〈Eλx, y〉 =

∫
λn dµx,y,

therefore νx,y and µx,y are equal as (continuous) linear functionals on polynomial functions
on σ(S). By the theorem of Weierstraß, the two measures are equal on C(σ(S)). Since
x, y were arbitrary, we have shown Fg−1(A) = EA.

1.20. Example (roots of positive operators): Let T ∈ L(H) be positive and n ∈ N,
then there is a unique positive S ∈ L(H) such that Sn = T . Existence is clear, if we
note that σ(T ) ⊆ [0,∞[ and put S := T 1/n. To show uniqueness, suppose S is positive,
hence σ(S) ⊆ [0,∞[, and satisfies Sn = T . Let g : σ(S)→ R be defined by g(s) := sn and
f : R→ R, f(t) := (tχσ(T )(t))

1/n. Then f ◦ g = idσ(S), since σ(T ) = σ(Sn) = g(σ(S)), and
we obtain from Proposition 1.19

S = (f ◦ g)(S) = f(g(S)) = f(Sn) = f(T ) = T 1/n.
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1.21. Remark (polar decomposition): For arbitrary T ∈ L(H), the operator T ∗T is
positive and we may define the positive operator |T | := (T ∗T )1/2. Note that ‖|T |x‖2 =
〈x, |T |2x〉 = 〈x, T ∗Tx〉 = ‖Tx‖2, which enables us to define U : ran(|T |) → ran(T ) by
U(|T |x) := Tx and extend it as an isometry to ran(|T |) → ran(T ). Putting U = 0

on ran(|T |)
⊥

= ran(|T |)⊥ = ker(|T |) = ker(T ), we obtain an operator U ∈ L(H) with
ker(U) = ker(T ), which acts as an isometry ker(T )⊥ → ran(T ), a so-called partial isometry,
with the property U |T | = T . This relation is called polar decomposition of T , since
it resembles the similar formula z = eiα|z| for complex numbers. (It can be shown that
U |T | = T = (TT ∗)1/2 U , see, e.g., [KR, Theorem 6.1.2].)

1.22. Description of the spectrum in terms of the spectral measure: Let T ∈ L(H)
be self-adjoint with spectral measure E and λ be a complex number.

(a) λ 6∈ σ(T ) if and only if there is an open neighborhood U ⊆ C of λ such that EU = 0.

Proof: By construction, Eσ(T ) = I (Proposition 1.14), thus Eρ(T ) = 0, and the resolvent set
ρ(T ) is open, which proves the ‘only if’ part. To show the reverse implication, suppose U
is an open neighborhood of λ such that EU = 0. Define the bounded measurable function
f : σ(T ) → C by f(t) := 1/(λ − t), if t ∈ σ(T ) \ U , and f(t) := 0, if t ∈ U ∩ σ(T ). The
function g : σ(T ) → C, g(t) := λ − t is also bounded and measurable and f · g = χσ(T )\U ,
hence

f(T )(λ− T ) = f(T )g(T ) = (fg)(T ) = χσ(T )\U(T ) = Eσ(T )\U = Eσ(T ) − EU = I.

The same holds for (λ − T )f(T ) = g(T )f(T ) = (gf)(T ) = (fg)(T ), thus showing that
f(T ) ∈ L(H) is an inverse of λ− T , i.e., λ ∈ ρ(T ).

(b) λ ∈ σp(T ) (i.e., λ is an eigenvalue of T ) if and only if E{λ} 6= 0.
In this case, E{λ} projects onto the eigenspace of λ.

Proof: We show that ran(E{λ}) = ker(λ− T ), then the result follows immediately.
• ran(E{λ}) ⊆ ker(λ − T ): x ∈ ran(E{λ}) means E{λ}x = x; let y ∈ H arbitrary and note
that (λ− t)χ{λ}(t) = 0 for all t to obtain

〈(λ− T )x, y〉 = 〈(λ− T )E{λ}x, y〉 =

∫
(λ− t)χ{λ}(t) d〈Etx, y〉 = 0;

thus, (λ− T )x = 0.
• ker(λ − T ) ⊆ ran(E{λ}): If Tx = λx, then f(T )x = f(λ)x for every f ∈ C(σ(T )) by
Theorem 1.6(iii); by the properties of the measurable functional calculus(Theorem 1.8) and
an application of Lemma 0.13, we deduce that the relation also holds with f ∈ Bb(σ(T ));
putting f = χ{λ} yields E{λ}x = χ{λ}(λ)x = x, thus, x ∈ ran(E{λ}).

(c) If λ is an isolated point in σ(T ), then λ ∈ σp(T ).
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Proof: Choose an open set U with U ∩ σ(T ) = {λ}; we have EU = EU\{λ} + E{λ} = E{λ},
since U \ {λ} ⊆ ρ(T ) and Eρ(T ) = 0; U is an open neighborhood of λ and λ ∈ σ(T ), hence
EU 6= 0 by (a); thus, E{λ} 6= 0 and therefore λ ∈ σp(T ) by (b).

(d) σ(T ) is the smallest compact subset of R with Eσ(T ) = I.

Proof: Let K ⊆ R be compact with EK = I. Then ER\K = 0 and, by (a), µ ∈ R \ K
implies µ 6∈ σ(T ), i.e., σ(T ) ⊆ K.

Remark: We may consider the map S : R → L(H), defined by S(λ) := E ]−∞,λ] from
the spectral measure. It is the analogue of the distribution function (German: Verteilungs-
funktion) corresponding to a Borel measure on R and easily seen to have the following
properties of a so-called spectral family or resolution of the identity (German: Spektralschar ;
historically, this is the “older version” of spectral measures; cf. [Wer18, VII.6] and [Kab14, 15.5]):
(a) ∀λ ∈ R: S(λ) is an orthogonal projection,
(b) monotonicity: λ ≤ µ ⇒ S(λ) ≤ S(µ),
(c) ∀x ∈ H: limλ→∞ S(λ)x = x and limλ→−∞ S(λ)x = 0,
(d) pointwise continuity from the right, i.e., ∀x ∈ H: limλ→µ+ S(λ)x = S(µ)x.

The spectral family can be used to characterize spectral points, because we have for λ ∈ R:
(i) λ ∈ ρ(T ) ⇔ S is constant in a neighborhood of λ,
(ii) λ ∈ σp(T ) ⇔ S is discontinuous at λ,
(iii) λ ∈ σc(T ) ⇔ S is continuous at λ, but not constant in any neighborhood of λ.

We will now discuss the aspect of diagonalization in terms of unitary equivalence with a
multiplication operator.

1.23. Multiplication operator version of the spectral theorem: A vector x ∈ H
is said to be a cyclic vector for an operator S ∈ L(H), if the linear span of the set
{x, Sx, S2x, . . .} is dense in H. (Note that then H is necessarily separable, hence possesses
a complete orthonormal system of at most countable cardinality.) The multiplication
operator T in Example 1.17 possesses the constant function 1 ∈ L2([0, 1]) as a cyclic
vector, because (T nx)(t) = tnx(t) and therefore span{1, T1, T 21, . . .} contains the L2-dense
subspace of all polynomial functions on [0, 1]. In contrast, the identity operator I ∈ L(H)
never possesses a cyclic vector, unless the dimension of H is 0 or 1.

Theorem A: Let T ∈ L(H) be self-adjoint with spectral measure E and suppose x ∈ H
is a cyclic vector for T . If µ := µx,x (recall µx,x(A) = 〈EAx, x〉), then there exists a unitary
operator U : H → L2(σ(T ), µ) such that we have, for every ϕ ∈ L2(σ(T ), µ),

(UTU−1ϕ)(t) = t ϕ(t) µ-almost everywhere.
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Proof: Start out with ϕ ∈ C(σ(T )) ⊆ L2(σ(T ), µ), then we have

‖ϕ‖2
2 =

∫
σ(T )

|ϕ(t)|2 dµ(t) =

∫
σ(T )

ϕ(t)ϕ(t) d〈Etx, x〉 = 〈ϕ(T )∗ϕ(T )x, x〉 = ‖ϕ(T )x‖2,

i.e., the linear map V0 : C(σ(T )) → H, ϕ 7→ ϕ(T )x is isometric with respect to ‖.‖2. The
unique continuous extension V : L2(σ(T ), µ) → H is linear and also isometric. Moreover,
ran(V ) ⊇ ran(V0) ⊇ span{x, Tx, T 2x, . . .} is dense in H, hence V is also surjective (since
‖V ψ‖ = ‖ψ‖2 shows that V has closed range; cf. 0.2); therefore V is a unitary map. It
satisfies the following relation for every ϕ in the dense subspace C(σ(T )) ⊆ L2(σ(T ), µ):

T (V ϕ) = T (ϕ(T )x) = (id(T )ϕ(T ))x = (id ·ϕ)(T )x = V (id ·ϕ),

in other words, (V −1TV ϕ)(t) = t ϕ(t) holds for all ϕ ∈ L2(σ(T ), µ) for µ-almost all t ∈
σ(T ). Thus, the theorem is proved upon setting U := V −1.

In the sense of Theorem A, the multiplication operator in Example 1.17 is the prototype
of any self-adjoint operator with (purely continuous) spectrum [0, 1] and a cyclic vector x
such that µx,x is (equivalent to) the Lebesgue measure.

The extension of the above theorem to the general situation of a self-adjoint operator T
on a Hilbert space H faces merely technical difficulties. The major step in overcoming
these is to show that H can be decomposed into T -invariant subspaces Hj (j ∈ J , J some
index set) with cyclic vectors in each Hj. Then Theorem A applies to each restriction Tj
of T to these components and we come up with an orthogonal direct sum of multiplication
operators on L2-spaces with respect to different measure spaces (σ(Tj),B(σ(Tj)), µj). This
still yields a multiplication operator—although not given as multiplication by a “global
identity function”—on the direct sum, which can be implemented as a single space L2(Ω, µ)
by artificially producing a disjoint union Ω of the sets σ(Tj) and consider the “sum” µ of
the measures µj on it. We do not go into the details of the constructions here, but refer
to [Wer18, Satz VII.1.21 and Lemma VII.1.22] for a proof in the separable case and to
[Con10, Chapter IX, Theorem 4.6] or [Kab14, Abschnitt 15.3] for a proof of the general
situation.

Theorem B: Let T ∈ L(H) be self-adjoint, then there exists a measure space (Ω,Σ, µ),
a bounded measurable function f : Ω→ R, and a unitary operator U : H → L2(Ω, µ) such
that we have, for every ϕ ∈ L2(Ω, µ),

UTU−1ϕ = fϕ µ-almost everywhere.

1.24. Example (convolution operators): [In this example we call on a few more basic
results from measure theory and Fourier analysis that are typically covered by the com-
panion master level course on Real Analysis; we may also refer to [Con16, Fol99, vNe22].]
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Let f ∈ L1(R) ∩ L2(R) and x ∈ L2(R), then for every s ∈ R, the function t 7→ f(s − t)
belongs to L2 as well and

(f ∗ x)(s) :=

∫
R

f(s− t)x(t) dt

defines a measurable function f ∗ x : R → C, the so-called convolution of f and x, which
obeys the estimate (a special case of Young’s inequality)

‖f ∗ x‖2 ≤ ‖f‖1‖x‖2.

The map x 7→ f ∗ x defines a linear continuous operator Cf : L2(R) → L2(R), which is
self-adjoint, if f(r) = f(−r) holds for all r ∈ R, since

〈Cfx, y〉 =

∫ ∫
f(s− t)x(t) dt y(s) ds =

∫
x(t)

∫
f(s− t) y(s) ds dt,

while 〈x,Cfy〉 =

∫
x(t)

∫
f(t− s) y(s) ds dt.

The Fourier transform, originally defined for functions g ∈ L1(R) via a formula like
ĝ(τ) =

∫
exp(−itτ)g(t) dt/

√
2π (factors involving 2π are a matter of convention), extends

to a unitary operator F on L2(R) (Plancherel’s theorem) and is famous for intertwining
differentiation with multiplication by id (on functions with appropriate regularity or decay
properties) as well as transforming convolution into multiplication, i.e.,

F(f ∗ x) =
√

2π f̂ · x̂ (f ∈ L1 ∩ L2, x ∈ L2).

By the Riemann-Lebesgue lemma, f̂ is continuous and vanishes at infinity.

Thus, Cf is unitarily equivalent to the operator Mh of multiplication by h =
√

2π f̂ , since
FCfx = F(f ∗ x) = h · x̂ = Mhx̂, i.e.,

FCfF
−1 = Mh.

Unitarily equivalent operators have the same spectrum, since λ−T is invertible if and only
if λ−UTU−1 is. Hence we may determine σ(Cf ) via σ(Mh), which in case of a continuous
function h vanishing at infinity can be shown to be h(R) = h(R) ∪ {0}. Furthermore, a
number λ can be seen to be an eigenvalue of Mh, hence also of Cf , if and only if the set
{t ∈ R | h(t) = λ} = h−1({λ}) has positive Lebesgue measure.

1.25. Towards a spectral theorem for normal operators: If T ∈ L(H) is a normal
operator, then T and T ∗ commute and

S1 :=
1

2
(T + T ∗), S2 :=

1

2i
(T − T ∗)
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are commuting self-adjoint operators such that T = S1 + iS2. Let E, F denote the spectral
measure of S1, S2, respectively. For arbitrary A,B ∈ B(R), the projections EA and FB
commute due to Remark 1.18. The operator GA×B := EAFB is an orthogonal projection,
since G∗A×B = F ∗BE

∗
A = FBEA = EAFB = GA×B and G2

A×B = (EAFB)(EAFB) = E2
AF

2
B =

EAFB = GA×B. For arbitrary x, y ∈ H, it can be shown that the map A×B 7→ 〈GA×Bx, y〉
can be extended to a complex measure onB(R2), hence also onB(C), and that the following
spectral theorem can be obtained for T = S1 + iS2 along the lines of the constructions for
self-adjoint operators carried out above. We skip the technical details and may refer to,
e.g., [Con10, Chapters VIII and IX], [Kab14, Abschnitte 15.3-5], or [vNe22, Chapter 9]
for the statements following below. We observe that the spectral representation at least
becomes plausible by this sketch of a calculation:

T = S1 + iS2 = S1 · I + iI · S2 =

∫
λ dEλ ·

∫
1 dFµ + i

∫
1 dEλ ·

∫
µ dFµ

=

∫∫
(λ+ iµ) dEλ dFµ =

∫
(λ+ iµ) dG(λ,µ) =

∫
z dGz.

Theorem: If T ∈ L(H) is normal, then there exists a unique spectral measure G : B(C)→
L(H) with compact support such that T =

∫
σ(T )

λ dGλ. The map f 7→
∫
f(λ) dGλ,

Bb(σ(T )) → L(H) defines the measurable functional calculus for T . Moreover, T is uni-
tarily equivalent to an operator on some L2(Ω, µ) of multiplication by a complex bounded
measurable function.

Spectral mapping theorem: If f ∈ C(σ(T )), then σ(f(T )) = f(σ(T )).

1.26. Example (unitary operators): Let U ∈ L(H) be unitary, then U is normal.
Recall that

σ(U) ⊆ S1 = {z ∈ C | |z| = 1},

which can be argued as follows: Since U is bijective and ‖U‖ = 1, we have 0 ∈ ρ(U) and
{λ ∈ C | |λ| > 1} ⊆ ρ(U); if 0 < |λ| < 1, then λU as well as ( 1

λ
− U∗) are bijective, hence

λ− U = (−λU)( 1
λ
− U∗) is continuously invertible showing that λ ∈ ρ(U).

Consider the function arg : S1 → R defined uniquely by the requirements ei arg(z) = z and
arg(S1) ⊆ ] − π, π]. The function arg is bounded by construction and continuous except
for a jump at z = −1, hence Borel measurable. The measurable functional calculus for U
allows us to define A := arg(U) ∈ L(H), which is self-adjoint, because arg is real-valued.
The relation (exp ◦(i arg))(z) = exp(i arg(z)) = z now implies

exp(iA) = exp(i arg(U)) = U.

Note that ‖A‖ = ‖ arg(U)‖ ≤ ‖ arg ‖∞ = π implies σ(A) ⊆ [−π, π].

1.27. Remark (Gelfand theory for commutative unital C∗-algebras): As with the
continuous functional calculus for self-adjoint bounded operators described in Theorem 1.6,
we may consider the commutative closed subalgebra C∗(T ) := {f(T ) | f ∈ C(σ(T ))} of
L(H) now for an arbitrary normal operator T ∈ L(H). Both L(H) and C∗(T ) are examples
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of a unital C∗-algebra, i.e., a Banach algebra A with a unit element I ∈ A and a conjugate
linear involution map A→ A, A 7→ A∗ satisfying (A∗)∗ = A and (AB)∗ = B∗A∗ such that
‖A∗A‖ = ‖A‖2. Since ‖AB‖ ≤ ‖A‖‖B‖ holds in any normed algebra, one easily deduces
that involution is an isometry, i.e., ‖A∗‖ = ‖A‖ (see [Con10, Chapter VIII, Proposition 1.7]
or [Wer18, Lemma IX.3.3] or [Hoe24, Lemma 1.3]).

While L(H) is not commutative (unless H is one-dimensional), for any normal operator T ,
the C∗-subalgebra C∗(T ) ⊆ L(H) is commutative and is, in fact, the smallest C∗-algebra
of L(H) containing I, T , and T ∗. Further examples of commutative unital C∗-algebras
are provided by C(X) = {f : X → C | f continuous} for any compact Hausdorff space X,
with involution f ∗(x) := f(x) (x ∈ X) and the supremum norm ‖.‖∞. According to the
Gelfand-Naimark theorem, every unital commutative C∗-algebra is of this latter form (cf.
[Con10, Chapter VIII, Theorem 2.1] or [Wer18, Theorem IX.3.4] or [Hoe24, Theorem 2.1]).

The basic construction of the Gelfand isomorphism establishing the Gelfand-Naimark the-
orem proceeds as follows: Let A be a unital commutative C∗-algebra and denote by X(A)
the set of all nonzero characters on A, i.e., multiplicative linear functionals A → C. It
can be shown that X(A) ⊆ A′ and that every character is also continuous with respect to
the weak* topology on A (cf. Example 4.12.1)). Moreover, the character space X(A) is
easily seen to be a weak* closed subset of the unit ball in A′, hence is weak* compact by
the Alaoglu-Bourbaki theorem (see Section 6). Recall the canonical isometry ι : A → A′′,
given by ιA(µ) := µ(A) for all A ∈ A and µ ∈ A′. Using the fact X(A) ⊆ A′, the Gelfand
transformation A → C(X(A)) is given by A 7→ Â := ιA|X(A) and can be shown to be an
isometric ∗-isomorphism

A ∼= C(X(A)).

In case A = C∗(T ) one can show that X(C∗(T )) is homeomorphic to σ(T ) (see [Wer18,
Satz IX.3.6] or [Con10, Chapter VIII, Proposition 2.3] or [Hoe24, Proof of and Theorem 2.6]) and
therefore the Gelfand transformation implies

C∗(T ) ∼= C(σ(T )).

This is yet another view on the continuous functional calculus for the normal operator T .
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2. Unbounded operators

Differential operators, in applications often supplied with boundary conditions, are promi-
nent examples of linear maps between function spaces, but they can typically not be
implemented as bounded operators with respect to L2-norms. For example, let V := {f ∈
C1([0, 1]) | f(0) = 0 = f(1)} and T0 : V → C([0, 1]) be given by f 7→ if ′. Then T0 is
bounded, if we equip V with the norm ‖f‖∞,1 = ‖f‖∞ + ‖f ′‖∞ and C([0, 1]) with ‖.‖∞ or
‖.‖2. But the map f 7→ if ′ is unbounded (hence discontinuous) considered as linear map
T : V → L2([0, 1]) with the L2-norm put on both spaces1. But the L2-setting still has the
advantage of reflecting the following symmetry property of T , being defined on the (dense)
subspace V ⊆ L2([0, 1]):

∀x, y ∈ V : 〈Tx, y〉 = i

1∫
0

x′(t) y(t) dt = ix(t) y(t)
∣∣∣t=1

t=0
− i

1∫
0

x(t) y′(t) dt = 〈x, Ty〉.

2.1. Definition: (a) Consider a linear map T : dom(T ) → H, where dom(T ) ⊆ H is a
subspace. Then T is called an operator on H with domain dom(T ). The operator T is said
to be densely defined, if dom(T ) is dense in H.

(b) An operator S : dom(S) → H is said to be an extension of T , in notation T ⊆ S, if
dom(T ) ⊆ dom(S) and Sx = Tx holds for all x ∈ dom(T ).

(c) Two operators T and S are equal, we write T = S, if T ⊆ S and S ⊆ T , i.e.,
dom(T ) = dom(S) and Tx = Sx for all x ∈ dom(T ).

(d) An operator T : dom(T )→ H is symmetric, if

〈Tx, y〉 = 〈x, Ty〉 ∀x, y ∈ dom(T ).

In the above sense, any element S ∈ L(H) is an operator on H with dom(S) = H. Clearly,
if T is a densely defined operator on H which happens to be continuous (with respect to the
Hilbert space norm restricted to dom(T )), then T has a unique extension T ⊆ S ∈ L(H).
Finally, by the Hellinger-Toeplitz theorem ([Wer18, Satz V.5.5] or [Tes14, §4.1, Theorem
4.9]), a symmetric operator with dom(T ) = H is bounded and self-adjoint, i.e., T ∈ L(H)
with T ∗ = T .

1To have an explicit example at hands: We find that fn(t) := sin(nπt) satisfies fn ∈ V and ‖fn‖2 = 1/
√

2,
whereas ‖Tfn‖2 = nπ/

√
2→∞ as n→∞.
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The operator T on L2([0, 1]) mentioned above, with domain V = {f ∈ C1([0, 1]) | f(0) =
0 = f(1)} and given by Tf = if ′, is symmetric. If Sf = if ′ with dom(S) := {f ∈
C1([0, 1]) | f(0) = f(1)}, then S is a symmetric extension of T .

Recall that the adjoint T ∗ of a bounded operator T is uniquely defined by the requirement
〈Tx, y〉 = 〈x, T ∗y〉 for all x, y ∈ H and can be obtained by assigning to y ∈ H the unique
vector z ∈ H such that the linear functional x 7→ 〈Tx, y〉 is represented by x 7→ 〈x, z〉.
This construction still works in the more general context, if x 7→ 〈Tx, y〉 is defined on a
dense subspace, namely dom(T ), and is a continuous linear functional.

2.2. Definition: Let T be a densely defined operator on H. On the subspace

dom(T ∗) := {y ∈ H | x 7→ 〈Tx, y〉 is continuous dom(T )→ C}

we define the adjoint T ∗ of T as follows: If y ∈ dom(T ∗), then x 7→ 〈Tx, y〉 has a unique
continuous extension to a linear functional on H; by the Riesz-Fréchet theorem this func-
tional can be uniquely represented in the form x 7→ 〈x, z〉 with z ∈ H; we put T ∗y := z.
By construction,

〈Tx, y〉 = 〈x, T ∗y〉 ∀x ∈ dom(T ),∀y ∈ dom(T ∗).

The operator T is called self-adjoint, if T ∗ = T .

As noted above, the Hellinger-Toeplitz theorem guarantees consistency of this new notion
of self-adjointness with the corresponding one for bounded operators. Obviously, self-
adjoint operators are symmetric. Conversely, symmetric operators need not be self-adjoint
(in general, they need not even be densely defined): In the above example, dom(T ) (
dom(S) ⊆ dom(T ∗), since f 7→ 〈if ′, g〉 = 〈f, ig′〉 is L2-continuous on dom(T ) for every
g ∈ dom(S); therefore, T is symmetric, densely defined, but not self-adjoint.

A densely defined symmetric operator satisfies dom(T ) ⊆ dom(T ∗), since x 7→ 〈Tx, y〉 =
〈x, Ty〉 is continuous dom(T ) → C for every y ∈ dom(T ), thus T ⊆ T ∗ and T ∗ is densely
defined as well; moreover, T ∗∗ := (T ∗)∗ can be defined in this case. In general (without
symmetry), a densely defined operator T may have non-dense dom(T ∗), even examples
with dom(T ∗) = {0} can be found (see, e.g, [Wer18, page 371]).

2.3. Definition: Let T be an operator on H with graph

gr(T ) := {(x, Tx) ∈ H ×H | x ∈ dom(T )}

and equip H × H with the inner product 〈(x, y), (u, v)〉2 := 〈x, u〉 + 〈y, v〉, defining the

norm ‖(x, y)‖2 =
√
‖x‖2 + ‖y‖2 (which induces the product topology on H × H), thus

obtaining a Hilbert space structure on H × H. The operator T is closed (or has closed
graph), if gr(T ) is closed in H × H. Equivalently, for any sequence (xn) in dom(T ) such
that xn → x and Txn → y in H, we have x ∈ dom(T ) and y = Tx.
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Recall that the closed graph theorem states that a closed operator T with dom(T ) = H is
continuous. In case of unbounded operators the closedness serves as a partial replacement
of continuity properties. To give an example of an operator that is not closed we turn
again to Tx = ix′ with dom(T ) = {x ∈ C1([0, 1]) | x(0) = 0 = x(1)} ⊆ L2([0, 1]): Consider
xn(t) = (1

4
+ 1

n
)1/2 − ((t − 1

2
)2 + 1

n
)1/2, x(t) = 1

2
− |t − 1

2
|, and y(t) = i sgn(1

2
− t); then

xn → x uniformly, hence in L2([0, 1]), and Txn → y in L2([0, 1]) (dominated convergence),
but x 6∈ dom(T ). (A pity, since Tx = y almost everywhere; the chosen domain is too narrow).

2.4. Proposition: Let T : dom(T )→ H be densely defined, then:

(i) T ∗ is closed,

(ii) if T ∗ is densely defined, then T ⊆ T ∗∗,

(iii) if T ∗ is densely defined and S is a closed extension of T , then T ∗∗ ⊆ S.
This means that T ∗∗ is the “smallest” closed extension of T , the so-called closure of
T .

Proof: (i): Suppose yn ∈ dom(T ∗), yn → y, and T ∗yn → z. Then we have for every
x ∈ dom(T ),

〈Tx, y〉 = lim〈Tx, yn〉 = lim〈x, T ∗yn〉 = 〈x, z〉.

Therefore x 7→ 〈Tx, y〉 = 〈x, z〉 is continuous dom(T ) → C, hence y ∈ dom(T ∗) and
z = T ∗y.

(ii): If x ∈ dom(T ) and y ∈ dom(T ∗), then 〈Tx, y〉 = 〈x, T ∗y〉. Hence y 7→ 〈T ∗y, x〉 =
〈y, Tx〉 is continuous dom(T ∗) → C, hence x ∈ dom(T ∗∗) and 〈Tx, y〉 = 〈x, T ∗y〉 =
〈T ∗∗x, y〉 for every y ∈ dom(T ∗). Since dom(T ∗) is dense, we obtain Tx = T ∗∗x for every
x ∈ dom(T ), in summary, T ⊆ T ∗∗.

(iii): The statement follows once we showed gr(T ) = gr(T ∗∗). Here, gr(T ) ⊆ gr(T ∗∗)
holds, since T ∗∗ = (T ∗)∗ has closed graph by (i) and T ⊆ T ∗∗ by (ii). It remains to prove
gr(T ) ⊇ gr(T ∗∗), which follows, if we show gr(T )⊥ ⊆ gr(T ∗∗)⊥.

Let (u, v) ∈ gr(T )⊥. For every (x, Tx) ∈ gr(T ), we have 0 = 〈(x, Tx), (u, v)〉2 = 〈x, u〉 +
〈Tx, v〉, hence 〈Tx, v〉 = −〈x, u〉. This shows that v ∈ dom(T ∗) and T ∗v = −u.

Let (z, T ∗∗z) ∈ gr(T ∗∗) arbitrary, then

〈(z, T ∗∗z), (u, v)〉2 = 〈z, u〉+ 〈T ∗∗z, v〉 = 〈z, u〉+ 〈z, T ∗v〉 = 〈z, u+ T ∗v︸ ︷︷ ︸
u−u

〉 = 0,

thus, (u, v) ∈ gr(T ∗∗)⊥.

2.5. Corollary: Let T : dom(T )→ H be densely defined, then:

(i) T is symmetric, if and only if T ⊆ T ∗.
In this case, T ⊆ T ∗∗ ⊆ T ∗ = T ∗∗∗ and also T ∗∗ is symmetric.

(ii) T is closed and symmetric, if and only if T = T ∗∗ ⊆ T ∗.

(iii) T is self-adjoint, if and only if T = T ∗∗ = T ∗.
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Proof: (i): That symmetry of T implies T ⊆ T ∗ has been noted already in the paragraph
preceding Definition 2.3; the converse is clear. By Proposition 2.4, T ∗ is closed and T ∗∗

is the closure of T , therefore T ⊆ T ∗ implies T ⊆ T ∗∗ ⊆ T ∗. Since T ∗ is densely defined
as well, the closure of T ∗ is T ∗∗∗; since T ∗ is closed, we have T ∗ = T ∗∗∗. In particular, we
obtained T ∗∗ ⊆ T ∗∗∗, hence T ∗∗ is symmetric.

(ii): If T = T ∗∗ ⊆ T ∗, then T is symmetric by (i) and closed by Proposition 2.4. [T = (T∗)∗]

If T is closed and symmetric, then T = T ∗∗ by Proposition 2.4 and T ⊆ T ∗ by (i).

(iii): Self-adjointness is defined by the equality T = T ∗, which implies that T is closed by
Proposition 2.4, hence T = T ∗∗.

There is an interesting intermediate case between self-adjointness and symmetry for densely
defined operators, namely self-adjointness of the adjoint.

2.6. Definition: A densely defined symmetric operator T on H is essentially self-adjoint,
if its closure T ∗∗ is self-adjoint, or, equivalently, T ⊆ T ∗∗ = T ∗ (= T∗∗∗ by the above corollary).

In general, self-adjoint extensions of symmetric operators need not exist, but if T is es-
sentially self-adjoint it possesses its closure T ∗∗ = T ∗ as the unique self-adjoint extension.
(This is easily proved upon observing that T ⊆ S implies S∗ ⊆ T ∗.)

2.7. An example revisited: We study again the example Tx = ix′ with dom(T ) = {x ∈
C1([0, 1]) | x(0) = 0 = x(1)} ⊆ L2([0, 1]). We have seen above that T is symmetric, but
not self-adjoint, and not even closed.

We claim that dom(T ∗) = {x : [0, 1] → C | x is absolutely continuous and x′ ∈ L2([0, 1])}
and T ∗x = ix′.

Let x ∈ dom(T ∗) and y := T ∗x ∈ L2([0, 1]). We put F (t) :=
∫ t

0
y(s) ds and note that,

by the fundamental theorem of calculus, F is absolutely continuous2 and satisfies F ′ = y
almost everywhere. We may use the formula of integration by parts (Proposition 0.20) and
obtain for any z ∈ dom(T ) (recall that z(0) = 0 = z(1))

〈Tz, x〉 = 〈z, T ∗x〉 = 〈z, y〉 = 〈z, F ′〉 =

1∫
0

z(t)F ′(t) dt = z(t)F (t)
∣∣∣t=1

t=0
−

1∫
0

z′(t)F (t) dt

= −〈z′, F 〉 = 〈iz′,−iF 〉 = 〈Tz,−iF 〉,

i.e., 〈Tz, x+ iF 〉 = 0, and therefore

(∗) x+ iF ∈ ran(T )⊥.

2y ∈ L1([0, 1]), since
∫ 1

0
|y| ds =

∫ 1

0
1 · |y| ds ≤ ‖1‖2 · ‖y‖2 = ‖y‖2
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Observe that Tz ∈ C([0, 1]) with
∫ 1

0
Tz = i

∫ 1

0
z′ = i(z(1)−z(0)) = 0 for every z ∈ dom(T );

on the other hand, any continuous function w with
∫ 1

0
w = 0 is in ran(T ), since w = iW ′

with W ∈ dom(T ), if W (t) := −i
∫ t

0
w(s) ds (which yields W (0) = W (1) = 0). Thus,

ran(T )⊥ = {w ∈ C([0, 1]) |
∫ 1

0

w = 0}⊥ = {w ∈ C([0, 1]) | 〈w, 1〉 = 0}⊥

=
(
{w ∈ C([0, 1]) | 〈w, 1〉 = 0}

)⊥
= {w ∈ L2([0, 1]) | 〈w, 1〉 = 0}⊥ = ({1}⊥)⊥ = span{1}.

We conclude from (∗) that x+ iF ∈ span{1}, hence x = −iF +α1 with some α ∈ C, which
shows that x is absolutely continuous and ix′ = F ′ + 0 = y = T ∗x ∈ L2([0, 1]).

If x : [0, 1] → C is absolutely continuous with x′ ∈ L2([0, 1]), then we obtain for every
z ∈ dom(T ) (again employing integration by parts)

〈Tz, x〉 = 〈iz′, x〉 = 〈z, ix′〉,

which proves that z 7→ 〈Tz, x〉 is continuous, thus x ∈ dom(T ∗).

As an exercise, one can show along similar lines that dom(T ∗∗) = {x ∈ dom(T ∗) | x(0) =
0 = x(1)} ( dom(T ∗) and T ∗∗x = ix′, i.e, T ∗∗ ( T ∗. We conclude that T is not essentially
self-adjoint (and T ∗ is not symmetric).

2.8. Example (unbounded multiplication operators): Let (Ω,Σ, µ) be a measure
space, f : Ω→ R measurable, dom(T ) := {x ∈ L2(Ω, µ) | f ·x ∈ L2(Ω, µ)}, and Tx := f ·x.
Since f is real-valued, T is symmetric.

We show that dom(T ) is dense: For n ∈ N consider Ωn := {ω ∈ Ω | |f(ω)| ≤ n} ∈ Σ; then⋃
n∈N Ωn = Ω and Vn := {x ∈ L2(Ω, µ) | ∀ω ∈ Ω \ Ωn : x(ω) = 0} ⊆ dom(T ) (n ∈ N); if

x ∈ L2(Ω, µ), then xn := xχΩn ∈ Vn ⊆ dom(T ) and xn → x in L2(Ω, µ) (by dominated
convergence).

So far, we have seen that T is a densely defined symmetric operator, hence T ⊆ T ∗. We
claim that T is self-adjoint. It suffices to show that dom(T ∗) ⊆ dom(T ), since symmetry
then implies T ∗ ⊆ T , which yields T ∗ = T .

Let x ∈ dom(T ∗). We note that χΩnf ∈ L∞(Ω, µ) and that χΩnz ∈ dom(T ) for every
z ∈ dom(T ), hence we have for every n ∈ N,

〈z, χΩnT
∗x〉 = 〈χΩnz, T

∗x〉 = 〈T (χΩnz), x〉 = 〈fχΩnz, x〉 = 〈z, χΩnfx〉.

By density of dom(T ), we deduce that χΩnT
∗x = χΩnfx holds in L2(Ω, µ) for every n ∈ N.

Since χΩn → 1 pointwise, we obtain T ∗x = fx as measurable functions almost everywhere
on Ω, hence fx ∈ L2(Ω, µ) (because T ∗x belongs to L2(Ω, µ)), which proves x ∈ dom(T ).

Operators of the form λ−T , with λ ∈ C, can always be defined on dom(λ−T ) := dom(T ).
We will make use of this convention from now on.
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2.9. Lemma: Let T be a densely defined operator on H:

(i) ker(T ∗ ∓ i) = ran(T ± i)⊥, in particular,

ker(T ∗ ∓ i) = {0} ⇔ ran(T ± i) dense in H.

(Moreover, being orthogonal complements, the subspaces ker(T ∗ ∓ i) are closed.)

(ii) If T is closed and symmetric, then ran(T ± i) is closed in H.

Proof: (i): Clearly, (T ± i)∗ = T ∗ ∓ i, thus we have

y ∈ ran(T ± i)⊥ ⇔ ∀z ∈ dom(T ) : 〈(T ± i)z, y〉 = 0 ⇔
y ∈ dom(T ∗) and ∀z ∈ dom(T ) : 〈z, (T ∗ ∓ i)y〉 = 0 ⇔ y ∈ ker(T ∗ ∓ i).

(ii): By symmetry of T , 〈Tx, x〉 ∈ R for every x ∈ dom(T ), thus we have

(2.1) ‖(T ± i)x‖2 = ‖Tx‖2 + ‖x‖2 ± 2 Re 〈Tx, ix〉︸ ︷︷ ︸
−i〈Tx,x〉 ∈ iR

= ‖Tx‖2 + ‖x‖2 ≥ ‖x‖2.

Therefore (T ± i)−1 : ran(T ± i)→ dom(T ) exists and is continuous.

To show closedness of ran(T ± i), suppose (xn) is a sequence in dom(T ) such that the
sequence ((T ± i)xn) in ran(T ± i) converges to y ∈ H. By continuity of (T ± i)−1, the
Cauchy sequence ((T ± i)xn) in ran(T ± i) is then mapped to the Cauchy sequence (xn) in
dom(T ). Hence x := limxn exists in H and Txn → y ∓ ix. Since T is a closed operator,
x ∈ dom(T ) and y ∓ ix = Tx, i.e., y = (T ± i)x ∈ ran(T ± i).

2.10. Theorem: Let T be a symmetric and densely defined operator on H, then the
following are equivalent:

(i) T is self-adjoint,

(ii) T is closed and ker(T ∗ ± i) = {0},

(iii) ran(T ± i) = H.

Proof: (i) ⇒ (ii): T = T ∗ is closed by Proposition 2.4. By symmetry of T ∗ and Equation
(2.1) in the proof of Lemma 2.9 (applied to T ∗ in place of T ), we find that (T ∗ ± i)x = 0
implies x = 0.

(ii)⇒ (iii): By the above lemma, ran(T ± i)⊥ = ker(T ∗∓ i) = {0} and ran(T ± i) is closed,
since T is closed. Thus, we obtain ran(T ± i) = H.

(iii) ⇒ (i): The densely defined symmetric operator T satisfies T ⊆ T ∗, hence it suffices
to show dom(T ∗) ⊆ dom(T ). Let y ∈ dom(T ∗). Since H = ran(T − i) we can find
some x ∈ dom(T ) such that (T ∗ − i)y = (T − i)x. Due to T ⊆ T ∗ we may thus write
(T ∗ − i)y = (T ∗ − i)x. The previous lemma gives ker(T ∗ − i) = ran(T + i)⊥ = H⊥ = {0},
which implies that T ∗ − i is injective, hence y = x ∈ dom(T ).
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The theorem provides us with a very short argument that the operator T of multiplication
by the real-valued measurable function f from Example 2.8 is self-adjoint: The functions
1/(f ± i) and f/(f ± i) are measurable and bounded, hence any h ∈ L2(Ω, µ) is in the
range of (T ± i), since (f ± i) · h

f±i = h is clear and f · h
f±i = f

f±i · h ∈ L
2(Ω, µ) shows that

h
f±i ∈ dom(T ).

2.11. Corollary: Let T be a symmetric and densely defined operator on H, then the
following are equivalent:

(i) T is essentially self-adjoint,

(ii) ker(T ∗ ± i) = {0},

(iii) ran(T ± i) is dense in H.

Proof: (ii) ⇔ (iii): Follows directly from Lemma 2.9(i).

(i) ⇔ (ii): Recall that we have T ⊆ T ∗∗ ⊆ T ∗ = T ∗∗∗ by Corollary 2.5(i). The above
theorem, applied to T ∗∗ (which is closed), states that T ∗∗ is self-adjoint, if and only if
ker(T ∗ ± i) = ker(T ∗∗∗ ± i) = {0}.

For a densely defined symmetric operator T , the Hilbert dimensions of ker(T ∗ + i) and
ker(T ∗−i), i.e., the cardinalities of complete orthonormal systems, are called the deficiency
indices of T , denoted by dim ker(T ∗ + i) and dim ker(T ∗ − i). The corollary says that T
is essentially self-adjoint, if and only if both deficiency indices are 0. More generally, we
will show in the following theorem, that self-adjoint extensions exist, if and only if the
deficiency indices are equal. Recall that ker(T ∗ ± i) = ran(T ∓ i)⊥ by Lemma 2.9(i).

2.12. Theorem: A symmetric densely defined operator T on H possesses self-adjoint
extensions, if and only if dim ker(T ∗+ i) = dim ker(T ∗− i) holds for the deficiency indices.

The basic idea in the following proof will be to transfer some of the properties of the
bijective map t 7→ t+i

t−i between R and {z ∈ C | |z| = 1, z 6= 1}, with inverse u 7→ iu+1
u−1

, to
the level of operators via the so-called Cayley transform U := (T + i)(T − i)−1 of T .

Proof: Suppose that S is a self-adjoint extension of T . Recall from (2.1) that T − i is
injective, hence U := (T + i)(T − i)−1 can be defined on dom(U) := ran(T − i). By
Theorem 2.10, ran(S − i) = H and we may define V := (S + i)(S − i)−1 on dom(V ) := H.
Equation (2.1) and Theorem 2.10 applied to S show that V is isometric and surjective, thus
unitary. Since T ⊆ S, V maps ran(T − i) onto ran(T + i); moreover, as unitary operator,
V also maps the respective orthogonal complements onto one another. Therefore, Lemma
2.9(i) implies that V maps ker(T ∗+i) = ran(T−i)⊥ unitarily onto ker(T ∗−i) = ran(T+i)⊥,
hence the deficiency indices have to be equal.

In proving the reverse implication, start by supposing dim ker(T ∗ + i) = dim ker(T ∗ − i).
We learn from (2.1) that

‖(T + i)x‖ = ‖(T − i)x‖ ∀x ∈ dom(T ),
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therefore, U : ran(T − i) → ran(T + i), (T − i)x 7→ (T + i)x is a well-defined isometric
(hence injective) and surjective operator, which can be uniquely extended to an isometry
between the corresponding closures of the subspaces. Appealing to Lemma 2.9(i), we obtain
dim ran(T − i)⊥ = dim ker(T ∗ + i) = dim ker(T ∗ − i) = dim ran(T + i)⊥, which allows us
to extend U to a unitary operator V : H → H by simply mapping a complete orthonormal
system of ran(T − i)⊥ into such for ran(T + i)⊥. We proceed in four steps:

1. V − I is injective: If y ∈ H with (V − I)y = 0, then also (V ∗ − I)y = 0, since V − I is
normal3. We therefore have for every x ∈ dom(T ),

2i〈x, y〉 = 〈(T + i)x− (T − i)x, y〉 = 〈V (T − i)x− (T − i)x, y〉
= 〈(V − I)(T − i)x, y〉 = 〈(T − i)x, (V ∗ − I)y〉 = 0,

i.e., y ∈ dom(T )⊥ = {0}.

2. Construction of an extension S of T : Let dom(S) := ran(V −I) and use the injectivity of
V −I to see that (V −I)z 7→ i(V z+z) gives a well-defined linear map S : ran(V −I)→ H.
If x ∈ dom(T ), then (V − I)(T − i)x = V (T − i)x− (T − i)x = (T + i)x− (T − i)x = 2ix,
which shows that x ∈ ran(V − I) = dom(S) and, moreover, that

Sx = S

(
1

2i
(V − I)(T − i)x

)
=

1

2i
i(V + I)(T − i)x =

1

2

(
V (T − i)x+ (T − i)x

)
=

1

2

(
(T + i)x+ (T − i)x

)
=

1

2
(2Tx) = Tx.

3. S is symmetric: If x ∈ dom(S) = ran(V − I), say x = (V − I)y for some y ∈ H, then

〈Sx, x〉 = 〈i(V + I)y, (V − I)y〉 = i (〈V y, V y〉+ 〈y, V y〉 − 〈V y, y〉 − 〈y, y〉)
= i (〈y, V y〉 − 〈V y, y〉) = i2i Im〈y, V y〉 = −2 Im〈y, V y〉

is a real number, in particular 〈Sx, x〉 = 〈Sx, x〉 = 〈x, Sx〉. As an exercise, one can
show that this implies symmetry of S (e.g., by comparing the expanded expressions for
〈S(x1 + x2), x1 + x2〉 = 〈x1 + x2, S(x1 + x2)〉 with arbitrary x1, x2 ∈ dom(S)).

4. S is self-adjoint: We show that ran(S ± i) = H, then the proof is complete by Theorem
2.10. For every x ∈ H, we have (S − i)(V − I)x = i(V + I)x − i(V − I)x = 2ix and
(S + i)(V − I)x = i(V + I)x+ i(V − I)x = 2iV x, thus,

x = (S − i)
(

1

2i
(V − I)x

)
= (S + i)

(
1

2i
(V − I)V ∗x

)
,

hence x ∈ ran(S − i) and x ∈ ran(S + i).
3Again by [Wer18, Lemma V.5.10], ‖Rx‖ = ‖R∗x‖, if R ∈ L(H) is normal. (Recall once more the quick
proof: 0 = 〈(R∗R−RR∗)x, x〉 = 〈R∗Rx, x〉 − 〈RR∗x, x〉 = ‖Rx‖2 − ‖R∗x‖2.)
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Remark: The above proof hints at concrete constructions of self-adjoint extensions that
depend on choices of extensions of the partial isometry U to a unitary operator V . For
the subclass of positive (or semi-bounded) operators, the so-called Friedrichs extension
provides an alternative method via the correspondence of operators with sesquilinear maps
on dense domains (cf. [vNe22, Chapter 12], [RS75, Section X.3], [Wer18, Satz VII.2.11], or
[Kab14, Abschnitt 16.5]).

2.13. Examples: 1) Let R+ := ]0,∞[ and consider Tx = ix′ on dom(T ) = D(R+) :=
{h ∈ C∞(R+) | supp(h) compact} ⊆ L2(R+). It is shown, e.g., in [Wer18, Lemma V.1.10],
hat D(R+) is dense. By techniques very similar to those applied in Example 2.7 above,
one can show that

dom(T ∗) = {x ∈ L2(R+) | the restriction x |I is absolutely continuous
for every compact interval I ⊂ R+ and x′ ∈ L2(R+)}

and T ∗x = ix′. Therefore, T is symmetric and densely defined.

Determining ker(T ∗ ± i) means solving the ordinary differential equation y′ ± y = 0 for
y ∈ dom(T ∗). The solutions are automatically in C1(R+) and have to be of the form αe∓t

with α ∈ C. The requirement y ∈ L2(R+) reduces the solution spaces to

ker(T ∗ + i) = span{e−t}, ker(T ∗ − i) = {0},

and shows that the deficiency indices are different. By Corollary 2.11, T is not essentially
self-adjoint and Theorem 2.12 shows that there is no self-adjoint extension of T .

2) In Example 2.8 put Ω = Rn, Σ = B(Rn), µ the Lebesgue measure, and f : Rn → R,
f(ξ) = |ξ|2. We immediately obtain that the operator M of multiplication by f with
domain dom(M) = {ψ ∈ L2(Rn) | ξ 7→ |ξ|2 ψ(ξ) belongs to L2(Rn)} is self-adjoint.
Consider M0 ϕ := f · ϕ with dense domain

(2.2) S (Rn) := {ϕ ∈ C∞(Rn) | ∀α, β ∈ Nn : ξ 7→ ξα∂βϕ(ξ) is bounded}
⊇ D(Rn) := {h ∈ C∞(Rn) | supp(h) compact},

then M0 is symmetric, densely defined, and M0 ⊆ M . Obviously, ran(M0 ± i) ⊇ D(Rn)
shows that these ranges are dense (since D(Rn) is dense in L2(Rn), again by [Wer18, Lemma
V.1.10]), hence Corollary 2.11 implies that M0 is essentially self-adjoint. Its unique self-
adjoint extension and closure M∗∗

0 is given by M (show gr(M) ⊆ gr(M0) and refer to 2.4).
Well-known properties of the Fourier transform imply (F∆h)(ξ) =

∑n
j=1 F(∂2

jh)(ξ) =

−
∑n

j=1 ξ
2
j ĥ(ξ) = −|ξ|2 ĥ(ξ) = −(Mĥ)(ξ), thus M is unitarily equivalent to the operator

−∆ on the domain H2(Rn) := F−1(dom(M)), which can be identified with the Sobolev
space of order 2 (i.e., the L2-functions with weak derivatives up to order 2 belonging to L2).
We conclude that −∆ with domain H2(Rn) ⊆ L2(Rn) is self-adjoint.
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2.14. Revisiting the example revisited in Example 2.7: We study the self-adjoint
extensions of Tx = ix′ with dom(T ) = {x ∈ C1([0, 1]) | x(0) = 0 = x(1)} ⊆ L2([0, 1]).

The deficiency spaces ker(T ∗ ± i) are easily determined by solving y′ ± y = 0 for y ∈
dom(T ∗). Both basic solutions t 7→ e∓t =: e∓(t) belong to dom(T ∗), which yields

ran(T − i)⊥ = ker(T ∗ + i) = span{e−} and ran(T + i)⊥ = ker(T ∗ − i) = span{e+}.

The operator U constructed in the proof of Theorem 2.12 maps ran(T − i)→ ran(T + i),
i(x′ − x) 7→ i(x′ + x) for any x ∈ dom(T ). It is extended to a unitary operator V on
L2([0, 1]) by assigning a fixed normalized vector in ran(T − i)⊥, say ẽ− := ec0e− with
c0 :=

√
2/(e2 − 1), to a normalized vector in ran(T + i)⊥, say V (ẽ−) := eiγ · ẽ+ for some

γ ∈ R, where ẽ+ := c0e+. Every γ ∈ [0, 2π[ gives a different extension V and these are all
possible unitary extensions of U . The corresponding self-adjoint extension S ⊃ T is then
given on dom(S) = ran(V − I) by (V − I)z 7→ i(V + I)z.

Since T ∗∗ is the closure of T , the self-adjoint extensions of T and T ∗∗ agree. The latter can
be shown to be described by the family of operators Sα (α ∈ C, |α| = 1) with Sαx = ix′ and
dom(Sα) = {x : [0, 1] → C | x is absolutely continuous and x′ ∈ L2([0, 1]), x(0) = αx(1)}
(see, e.g., [Sch00, 5.3, Beispiel 3 and 5.1, Beispiel 4, Beispiel 5] or [RS75, Section X.1,
Example 1], or also [Con10, Chapter X, Examples 2.21 and 1.11]).

2.15. Extension of the notion of a spectrum: In the most general case, the definition
of the spectrum of an operator which is unbounded or/and not defined on the whole Hilbert
space is not completely uniform in the literature. Thus, let us illustrate two technical issues
before giving a definition.

Artefacts with non-dense domains: Let H = l2(N) and consider the left-shift, given
by (Lx)n = xn+1 for x = (xn) ∈ l2(N). The bounded operator L ∈ L(H) clearly has
ker(L) = span{e1}, in particular 0 ∈ σ(L). If dom(L0) := {e1}⊥ and L0 is L restricted to
dom(L0), then we have the bounded inverse R0 : l2(N)→ dom(L0) given by the right-shift.
Hence we could not consider 0 to be a spectral value of L0. However, if dom(L1) is any
dense subspace of l2(N) and L1 is the corresponding restriction of L, then any sequence
from dom(L1) approximating e1 can be used to show that L1 is not continuously invertible,
hence 0 could be considered a spectral value of L1. This indicates why we will define the
spectrum only for densely defined operators.

Non-closed operators have empty resolvent sets: Let T : dom(T ) → H be a linear
operator (not necessarily densely defined) and suppose that λ ∈ C is such that λ − T is
bijective dom(T )→ H with bounded inverse. We will show that T has to be closed.
We first show that λ − T is closed: Let (xn) be a sequence in dom(T ) = dom(λ − T )
such that xn → x in H and (λ − T )xn → y in H. Then zn := (λ − T )xn belongs to
(λ− T )(dom(T )) and zn → y, hence continuity of (λ− T )−1 implies

xn = (λ− T )−1zn → (λ− T )−1y in addition to xn → x,
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therefore, x = (λ− T )−1y ∈ dom(T ) and (λ− T )x = y.
Now we find that also T is closed: Let (xn) be a sequence in dom(T ) such that xn → x in
H and Txn → z in H. Then we have

(λ− T )xn = λxn − Txn → λx− z.

Since λ− T is closed, this implies x ∈ dom(λ− T ) = dom(T ) and λx− z = (λ− T )x, i.e.,
Tx = z.
This fact is the reason why some authors prefer to define the spectrum only in case of closed
operators, since non-closed operators automatically have spectrum equal to C. However,
there are also closed unbounded densely defined operators with spectrum C, i.e., empty
resolvent set. (An explicit example is given by the multiplication operator (Tf)(z) = zf(z)
on dom(T ) := {f ∈ L2(C) | z 7→ zf(z) ∈ L2(C)} ⊂ L2(C); details of arguments, e.g., that
T is closed etc., can be easily supplied with the help of [Wei00, Abschnitt 6.1].)

Definition: Let T : dom(T )→ H be a densely defined linear operator, then

(i) ρ(T ) := {λ ∈ C | λ−T is bijective dom(T )→ H with bounded inverse} is called the
resolvent set of T ,

(ii) R : ρ(T )→ L(H), λ 7→ Rλ := (λ− T )−1, is the resolvent map of T ,

(iii) σ(T ) := C \ ρ(T ) is called the spectrum of T .

Remark: (i) For any closed subset S ⊆ C there is some closed densely defined operator
T on a separable Hilbert space H such that σ(T ) = S (see [Wei00, Beispiel 5.10]).

(ii) If T is closed, then it suffices to check whether λ− T is bijective to conclude λ ∈ ρ(T )
(this follows from [Wer18, Satz IV.4.4]).

(iii) By the observation made above, σ(T ) = C for every non-closed densely defined op-
erator T . In particular, σ(T ) need not be compact for unbounded operators. Neither is
it guaranteed that the spectrum of an unbounded operator is non-empty. (We will give an
example below.)

Proposition: Let T : dom(T )→ H be a densely defined linear operator, then

(i) ρ(T ) is open,

(ii) the resolvent map λ 7→ Rλ is analytic ρ(T )→ L(H) and we have

Rλ −Rµ = (µ− λ)RλRµ,

(Note that, in particular, Rλ and Rµ commute.)

(iii) σ(T ) is closed.

45



Proof: Clearly, (iii) follows from (i) due to σ(T ) = C \ ρ(T ). The proofs of (i) and (ii) are
very similar to the case of bounded T , since, by definition, the resolvent Rλ = (λ − T )−1

belongs to L(H) for every λ ∈ ρ(T ) and maps H into dom(T ): In detail, we obtain the
resolvent equation in (ii) from

Rλ = Rλ(µ− T )Rµ = Rλ(µ− λ+ λ− T )Rµ = (µ− λ)RλRµ +Rµ.

As for (i), suppose λ ∈ ρ(T ) and µ ∈ C satisfies |λ− µ| < 1/‖Rλ‖. Then ‖(λ− µ)Rλ‖ < 1
and hence 1 − (λ − µ)Rλ is invertible with inverse given by the Neumann series, thus as
a power series in the variable µ with coefficients in L(H). The resolvent equation would
suggest Rλ = Rµ(1 − (λ − µ)Rλ), and indeed S := Rλ(1 − (λ − µ)Rλ)

−1 ∈ L(H) is a
power series in the variable µ such that (µ − T )Sx = S(µ − T )x = x holds for all x
in the dense subspace dom(T ) ⊆ H (note that Rλ commutes with (1 − (λ − µ)Rλ)−1 use
µ − T = µ − λ + λ − T ). Therefore µ ∈ ρ(T ), thus ρ(T ) is open. Obviously, we have also
proven the claim of analyticity in (ii) along the way.

Examples: 1) On H = L2([0, 1]) consider Tx = ix′ with

dom(T ) = {x ∈ C([0, 1]) | x is absolutely continuous, x′ ∈ L2([0, 1]), x(0) = 0}.

The domain is dense and T is a closed operator (without proof, but recommended as an
exercise). We claim that σ(T ) = ∅.
Let λ ∈ C and x ∈ L2([0, 1]) be arbitrary and consider the equation (λ − T )y = x, which
translates into the ordinary differential equation y′ + iλy = ix. The solutions to the
homogeneous equation are complex multiples of the function t 7→ exp(−iλt) and the usual
“variation of constant” and adaptation to the “initial condition” y(0) = 0 yields the explicit
solution formula

y(t) = i

t∫
0

eiλ(s−t)x(s) ds =: (Sλx)(t) (t ∈ [0, 1]).

We see that indeed this defines a solution y ∈ dom(T ) and thus Sλ : L2([0, 1]) → dom(T )
is the inverse of λ − T . Closedness of T (hence of λ − T ) implies boundedness of Sλ
(again by [Wer18, Satz IV.4.4]), but alternatively it is not difficult to see directly that
‖Sλx‖2 ≤ e| Im(λ)|‖x‖2. Thus, Sλ is the resolvent Rλ and λ ∈ ρ(T ).

2) Let (Ω,Σ, µ) be a σ-finite4 measure space and f : Ω → R be measurable. Consider the
multiplication operator Tx = fx on L2(Ω, µ) with domain dom(T ) = {x ∈ L2(Ω, µ) | fx ∈
L2(Ω, µ)}. By Example 2.8, T is self-adjoint.

We claim that σ(T ) = {λ ∈ R | ∀ε > 0: µ
(
f−1([λ−ε, λ+ε])

)
> 0} =: essential range of f .

4i.e., ∃Ωn ∈ Σ (n ∈ N): µ(Ωn) <∞ and
⋃

n∈N Ωn = Ω.
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If λ ∈ C is not in the essential range of f , then 1/(λ−f) ∈ L∞(Ω, µ) and the corresponding
multiplication operator is bounded; moreover, it is an inverse of λ− T , since

fy

λ− f
= −y +

λ

λ− f
y ∈ L2(Ω, µ) + L∞(Ω, µ) · L2(Ω, µ) ⊆ L2(Ω, µ)

for every y ∈ L2(Ω, µ). Therefore, λ ∈ ρ(T ).

If λ ∈ ρ(T ), then we may argue pointwise µ-almost everywhere to show that the resolvent
Rλ = (λ− T )−1 : L2(Ω, µ)→ dom(T ) has to be given as operator of multiplication by the
function h := 1/(λ− f). Note that for any E ∈ Σ of finite measure we have∫

E

|h(ω)|2 dµ(ω) =

∫
|h(ω)χE(ω)|2 dµ(ω) = ‖Rλ χE‖2

2 ≤ ‖Rλ‖2‖χE‖2
2 = ‖Rλ‖2µ(E).

We show that µ
(
{ω ∈ Ω | |h(ω)| > ‖Rλ‖}

)
= 0: For n ∈ N let An := {ω ∈ Ω | |h(ω)| ≥

n+1
n
‖Rλ‖}; if E is a measurable set of finite measure and with E ⊆ An, then we deduce

from the above that

‖Rλ‖2µ(E) ≥
∫
E

|h(ω)|2 dµ(ω) ≥ (n+ 1)2

n2
‖Rλ‖2

∫
E

1 dµ =
(n+ 1)2

n2
‖Rλ‖2µ(E),

hence µ(E) = 0 (since certainly Rλ 6= 0); therefore, µ(An) = 0 for every n ∈ N, and⋃
n∈NAn = {ω ∈ Ω | |h(ω)| > ‖Rλ‖} has measure 0.

We conclude that 1
|λ−f(ω)| = |h(ω)| ≤ ‖Rλ‖ holds for µ-almost all ω ∈ Ω, which implies

that λ cannot belong to in the essential range of f .

Theorem: Let T be a symmetric densely defined operator on H, then

T is self-adjoint ⇐⇒ σ(T ) ⊆ R.

Proof: ⇐: We have ∓i ∈ ρ(T ), which implies ran(T ± i) = H. By Theorem 2.10, T is
self-adjoint.

⇒: Let z = λ + iµ with real µ 6= 0 and consider S := (T − λ)/µ on dom(S) := dom(T ).
The operator S is self-adjoint and by Equation (2.1) (on page 40), applied to S, we obtain
for every x ∈ dom(T ):

‖(z − T )x‖2 = ‖(λ+ iµ)x− (λ+ µS)x‖2 = ‖iµx− µSx‖2 = µ2‖(i− S)x‖2 ≥ µ2‖x‖2.

From this we learn that the inverse (z − T )−1 exists as linear map ran(z − T )→ dom(T )
and is bounded. Since S is self-adjoint, ran(z−T ) = ran(i−S) = H by Theorem 2.10 and
therefore z ∈ ρ(T ).

Thus, symmetric operators need not have real spectrum. Recall that non-closed operators
have spectrum equal to C, hence, in particular, any non-closed densely defined symmetric
operator T has σ(T ) = C 6⊆ R (for example, Tx = ix′ on L2([0, 1]) with dom(T ) = {x ∈
C1([0, 1]) | x(0) = 0 = x(1)}, which has been studied repeatedly above).
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3. The spectral theorem for
unbounded self-adjoint operators

3.1. Theorem (Multiplication operator version of the spectral theorem): Let the
operator T : dom(T ) → H be self-adjoint, then there exists a measure space (Ω,Σ, µ), a
measurable function f : Ω→ R, and a unitary operator U : H → L2(Ω, µ) such that

(a) ∀x ∈ H: x ∈ dom(T ) if and only if f · Ux ∈ L2(Ω, µ),

(b) T is unitarily equivalent via U to the multiplication operatorMf ϕ := fϕ on L2(Ω, µ)
with dom(Mf ) := {ϕ ∈ L2(Ω, µ) | fϕ ∈ L2(Ω, µ)}, i.e., for every ϕ ∈ dom(Mf ),

UTU−1ϕ = Mf ϕ = fϕ µ-almost everywhere.

Proof: By Theorem 2.15, σ(T ) ⊆ R and therefore R := (T + i)−1 and (T − i)−1 exist as
bounded operators H → dom(T ). The plan of the proof is to show that R is normal, apply
the spectral theorem for bounded normal operators to R, and “map” everything back to T
via the formal relation T = R−1 − i.

Let z1, z2 ∈ H arbitrary. There exist x, y ∈ dom(T ) such that z1 = (T + i)x and z2 =
(T − i)y and we obtain

〈Rz1, z2〉 = 〈x, (T − i)y〉 = 〈(T + i)x, y〉 = 〈z1, (T − i)−1z2〉,

i.e., R∗ = (T − i)−1 and the resolvent equation, Proposition 2.15(ii), shows that

(∗) RR∗ = R∗R =
1

2i
(R∗ −R).

Thus, R is normal and by Theorem 1.25 there is a measure space (Ω,Σ, µ), a unitary map
U : H → L2(Ω, µ), and a bounded measurable function g : Ω→ C such that URU−1 = Mg,
where Mg denotes the operator of multiplication by g on L2(Ω, µ).

Being an inverse map, R is injective, hence Mg is and N := {ω ∈ Ω | g(ω) = 0} has to be

a µ-null set. Therefore, f(ω) :=
1

g(ω)
− i is defined for µ-almost every ω ∈ Ω. Moreover,

from (∗) we obtain

|g|2 =
1

2i
(g − g) =

1

2i
(−2i Im(g)) = − Im(g)
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and may deduce that

∀ω ∈ Ω\N : f(ω) =
1

g(ω)
−i =

g(ω)

g(ω)g(ω)
−i =

Re(g(ω)) + i|g(ω)|2

|g(ω)|2
−i =

Re(g(ω))

|g(ω)|2
∈ R,

in particular, f can be considered as a real-valued measurable function f : Ω→ R such that
fg = 1− ig holds µ-almost everywhere, which also shows that fg is essentially bounded.

We prove (a): Let x ∈ dom(T ), then there is y ∈ H such that x = Ry and we obtain

f · Ux = f · URy = f · (Mg Uy) = fg · Uy ∈ L2(Ω, µ),

because fg is essentially bounded and Uy ∈ L2(Ω, µ).
To show the reverse implication, suppose f ·Ux ∈ L2(Ω, µ). Then (f + i)Ux ∈ L2(Ω, µ) as
well and we may choose y ∈ H such that (f + i)Ux = Uy, hence g · Uy = g(f + i)Ux =
(gf + ig)Ux = Ux. In other words, x = (U−1MgU)y = Ry = (T + i)−1y ∈ dom(T ).

We prove (b): By (a) we have dom(Mf ) = U(dom(T )). Let ϕ ∈ dom(Mf ) and x ∈ dom(T )
such that ϕ = Ux. Choose y ∈ H with x = Ry = (T + i)−1y, then y = Tx + ix and
g · Uy = Ux as above. We obtain µ-almost everywhere

UTU−1ϕ = UTx = U(y − ix) = Uy − iUx =
1

g
Ux− iUx = (

1

g
− i)Ux = f · Ux = f · ϕ.

3.2. Example: [As earlier in Example 1.24 we will make use of basic facts about the Fourier
transform and refer again to the course on Real Analysis or [Con16, Fol99].]

We consider the operator Tx = −ix′ with dom(T ) = S (R) ⊆ L2(R).
Let F denote the Fourier transform as unitary operator L2(R)→ L2(R), then F(S (R)) =
S (R) and, similarly to Example 2.13, 2), we obtain (F T F−1ϕ)(t) = t ϕ(t) (from the so-
called “exchange” of differentiation with multiplication by the Fourier transform), i.e., the
unitary equivalence of T with the operator M , with dom(M) = S (R) of multiplication by
the real variable. Clearly, T and M are symmetric and densely defined; moreover, both
subspaces ran(T ± i) = F−1(ran(M ± i)) and ran(M ± i) are dense in L2(R), since the
latter obviously contains D(R). Thus, T and M are essentially self-adjoint by Corollary
2.11 and their unique self-adjoint extensions are given by (their closures) T ∗ and M∗.
We claim that dom(M∗) = {ψ ∈ L2(R) | t 7→ t ψ(t) ∈ L2(R)}: It is clear that any
ψ ∈ L2(R) such that t 7→ t ψ(t) ∈ L2(R) belongs to dom(M∗), since we may then
write 〈Mϕ,ψ〉 =

∫
ϕ(t) tψ(t) dt for every ϕ ∈ dom(M) = S (R) and obtain |〈Mϕ,ψ〉| ≤

(
∫
t2|ψ(t)|2 dt)1/2‖ϕ‖2. To show the reverse inclusion, suppose ψ ∈ L2(R) is such that

lψ : ϕ → 〈Mϕ,ψ〉 is an L2-norm continuous linear functional S (R) → C. By density of
S (R) ⊆ L2(R), it means that there is some η ∈ L2(R) such that

(∗) ∀ϕ ∈ S (R) :

∫
ϕ(t) t ψ(t) dt =

∫
ϕ(t) η(t) dt.
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(Note that we have lψ(ϕ) = 〈ϕ, η〉 for every ϕ ∈ L2(R), but at this moment we have the formula
lψ(ϕ) =

∫
tϕ(t)ψ(t) dt only if ϕ ∈ S (R).) Since both t 7→ tψ(t) and η are integrable on every

compact subset of R, we may use the following fact, which is shown later in course of an
injectivity argument in Example 1) of 7.5: If f1 and f2 are locally integrable functions on
R such that

∫
ϕf1 =

∫
ϕf2 holds for every ϕ ∈ S (R), then f1 = f2 almost everywhere.

Thus, (∗) implies that t ψ(t) = η(t) for almost all t, hence the function t 7→ t ψ(t) belongs
to L2(R).

We also obtain (M∗ψ)(t) = t ψ(t) and recognize M∗ as a special case of the self-adjoint
multiplication operator in Example 2.8. Therefore, T ∗x = −ix′ on the domain H1(R) :=
F−1(dom(M∗)), which can be shown to consist of all L2-functions that are absolutely
continuous on compact intervals and have derivative in L2(R)—this is the (L2-based) Sobolev
space of order 1 on R.

3.3. Spectral representation of an unbounded self-adjoint operator: Let T be
self-adjoint and Mf as in Theorem 3.1. If h : R → C is a bounded measurable function,
then h ◦ f : Ω→ C is bounded measurable and the multiplication operator h(Mf ) := Mh◦f
of multiplication by h ◦ f is bounded on L2(Ω, µ). The map h 7→ h(Mf ) is continuous
and multiplicative Bb(R)→ L(L2(Ω, µ)), since clearly ‖Mh◦f‖ ≤ ‖h‖∞ and (h1 · h2) ◦ f =
(h1 ◦ f) · (h2 ◦ f).

For any Borel subset A ⊆ R we put

FA := χA(Mf ) = MχA◦f = Mχf−1(A)
.

It is not difficult to check that F : A 7→ FA is a spectral measure and that

h(Mf ) =

∫
R

h(λ) dFλ ∀h ∈ Bb(R),

since the latter obviously holds for step functions and the multiplication operator action
reduces the question about the relevant limits to the approximation of bounded measurable
functions by step functions. In general, F will not have compact support.

Let EA := U−1FAU (A ∈ B(R)), then E : A 7→ EA is a spectral measure B(R) → L(H)
and for any bounded measurable function h : R→ C we have∫

R

h(λ) dEλ = U−1h(Mf )U,

again by extending the obvious relation for characteristic functions to step functions and
further to bounded measurable functions via approximation. We put h(T ) := U−1h(Mf )U
and obtain the usual properties of a functional calculus for the map h 7→ h(T ).

We will extend this functional calculus to allow for a measurable unbounded real-valued
function h : R→ R, thereby obtaining a self-adjoint unbounded operator h(T ) on the dense
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domain Dh := {x ∈ H |
∫
|h(λ)|2 d〈Eλx, x〉 < ∞} (the density is not obvious and will be

proved below).

Let x, y ∈ H and ϕ, ψ ∈ L2(Ω, µ) such that Ux = ϕ, Uy = ψ, then for any A ∈ B(R),

〈EAx, y〉 = 〈U−1FAUx, U
−1Uy〉 = 〈FAϕ, ψ〉 =

∫
χf−1(A) ϕψ dµ =

∫
f−1(A)

ϕψ dµ.

Putting ν(B) :=
∫
B
ϕψ dµ we may interpret the last expression above as image measure

f(ν)(A) = ν(f−1(A)), hence 〈EAx, y〉 = f(ν)(A). The transformation formula for the
integral of a d〈Eλx, y〉-integrable function g : R→ R with respect to image measures then
gives

(3.1)
∫
R

g(λ) d〈Eλx, y〉 =

∫
Ω

(g ◦ f) dν =

∫
Ω

(g ◦ f) · ϕ · ψ dµ.

Applying the above equation to |h|2 we find that x ∈ Dh, if and only if ϕ = Ux satisfies∫
Ω
|h◦f |2 |ϕ|2 dµ <∞. Note that Example 2.8, now with h◦f in place of f there, shows that

the set of such ϕ, namely, dom(Mh◦f ), is dense in L2(Ω, µ). Therefore, the corresponding
set of vectors x = U−1ϕ, which is Dh, is dense in H.

For every x ∈ Dh and y ∈ H, the integral
∫
R h(λ) d〈Eλx, y〉 exists: Using ϕ = Ux, ψ = Uy

and the analogue of (3.1) for the variations of the complex measures, we have

∫
R

|h(λ)| d|〈Eλx, y〉| =
∫
Ω

|h ◦ f | · |ϕ| · |ψ| dµ ≤

∫
Ω

|h ◦ f |2 · |ϕ|2 dµ

1/2∫
Ω

|ψ|2 dµ

1/2

=

∫
R

|h(λ)|2 d〈Eλx, x〉

1/2

‖Uy‖2︸ ︷︷ ︸
=‖y‖

<∞.

Hence, for every x ∈ Dh there is a unique vector z ∈ H such that
∫
R h(λ) d〈Eλx, y〉 = 〈z, y〉

for all y ∈ H; we put h(T )x := z. Therefore, we obtain

(3.2) 〈h(T )x, y〉 =

∫
R

h(λ) d〈Eλx, y〉 ∀x ∈ Dh, ∀y ∈ H.

This defines an operator h(T ) on H with dense domain Dh. The formal notation h(T ) =∫
h(λ) dEλ is commonly used, although this integral is in general not convergent with

respect to the operator norm; the precise statement is Equation (3.2).

The special case h(t) = t gives x ∈ Dh, if and only if ϕ = Ux satisfies fϕ ∈ L2(Ω, µ), i.e.,
Ux ∈ dom(Mf ), equivalently x ∈ dom(T ) by Theorem 3.1; moreover, we have∫

R

λ d〈Eλx, y〉 =

∫
Ω

fϕψ dµ = 〈Mfϕ, ψ〉 = 〈MfUx, Uy〉 = 〈U−1MfUx, y〉 = 〈Tx, y〉.

52



Similarly, one may show that 〈h(T )x, y〉 = 〈U−1Mh◦fUx, y〉 holds for all x ∈ Dh, y ∈ H,
which implies also the self-adjointness of h(T ) due to the established unitary equiva-
lence with the self-adjoint multiplication operator Mh◦f with domain dom(Mh◦f ) = {ϕ ∈
L2(Ω, µ) |

∫
Ω
|h ◦ f |2 |ϕ|2 dµ <∞}.

To summarize, we have proved the following spectral representation.

Theorem: Let T : dom(T )→ H be self-adjoint, then there exists a unique spectral mea-
sure E such that

〈Tx, y〉 =

∫
R

λ d〈Eλx, y〉 ∀x ∈ dom(T ), y ∈ H.

If h : R→ R is measurable and Dh := {x ∈ H |
∫
|h(λ)|2 d〈Eλx, x〉 <∞}, then

〈h(T )x, y〉 =

∫
R

h(λ) d〈Eλx, y〉 ∀x ∈ Dh, y ∈ H,

defines a self-adjoint operator h(T ) on H with domain Dh.

3.4. A glimpse at the formalism of quantum mechanics: [We discuss here the formal-
ism based directly on Hilbert spaces containing the physical states as in the so-called Schrödinger
picture described in [Kab14, Hal13, Tes14b, Wei00]. The more abstract algebraic approach is based
on C∗-algebras of observables and linear functionals on these as states (see, e.g., [Ara99, Thi03]).]

The basic idea is that (the state of) a single particle in Rd is described by a so-called complex
wave function Rd × R→ C, (x, t) 7→ ψ(x, t), where ρt(x) := |ψ(x, t)|2 is interpreted as the
probability density associated with the (state of the) particle at time t. Thus, the number∫

K

|ψ(x, t)|2 dx =

∫
Rd

χK(x)|ψ(x, t)|2 dx

corresponds to the probability of finding the particle (in state ψ) at time t inside the
measurable region K ⊆ Rd and, in particular,

∫
Rd |ψ(x, t)|2 dx = 1, since the particle has

to be somewhere.

To put it differently, ψ(., t) ∈ L2(Rd) for every t ∈ R, ‖ψ(., t)‖L2 = 1, and the value
of the L2-inner product 〈χK ψ(., t), ψ(., t)〉 gives the expectation of the random variable
x 7→ χK(x) at time t (for a particle in state ψ). The bounded linear operator ψ 7→ χK ψ is
but one example of an observable, the most prominent other examples are the unbounded
operators of spatial (coordinate) position Xj : ψ 7→ xjψ and momentum (coordinates)
Pj : ψ 7→ ~

i
∂xjψ (ψ ∈ S (Rd)).

In more abstract terms, the quantum mechanical (vector) states are represented by elements
ψ of a complex (usually separable) Hilbert space H that are normalized such that ‖ψ‖ = 1.
The observables are represented by densely defined linear operators onH. (Densely defined,
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since the observable should be “observable in most of the possible states”.) The expectation
(or mean value of measurement) of an observable A in the state ψ ∈ dom(A) is given by

Eψ(A) := 〈Aψ,ψ〉.

In order to guarantee that all expectation values are real numbers, we suppose that A is
symmetric (then 〈Aψ,ψ〉 = 〈ψ,Aψ〉 = 〈Aψ,ψ〉). But there are clear indications to require
even more: The set of all possible measurements of an observable A, represented by the
spectrum σ(A), should be real, thus, calling on Theorem 2.15, we further suppose that the
observables are self-adjoint.

Note that in case ψ is an eigenvector for A corresponding to the eigenvalue λ0 we obtain

Eψ(A) = λ0〈ψ, ψ〉 = λ0,

since Aψ = λ0ψ. In general, the mean deviation ∆ψ(A) := ‖Aψ − Eψ(A)ψ‖ of A in the
state ψ will not vanish. We have just seen that precisely the eigenvalues occur as sharp
measurements (i.e., with zero deviation).

Recall from linear algebra that two self-adjoint operators A and B on a finite-dimensional
Hilbert space are simultaneously diagonalizable if and only if they commute, i.e., [A,B] :=
AB − BA = 0. Considering now the infinite-dimensional case and interpreting the eigen-
values as the possible sharp measurements of observables, one can generalize this and
ask to what extent simultaneous measurements Eψ(A), Eψ(B) can be achieved at least
with small mean deviations. There is a general lower bound, which in the example
A = Xj, B = Pj of the position and momentum operators (in the same coordinate)
implies the famous Heisenberg uncertainty principle from the fact [Xj, Pj] = i~I: If
ψ ∈ {ϕ ∈ dom(A) ∩ dom(B) | Bϕ ∈ dom(A) and Aϕ ∈ dom(B)}, then

∆ψ(A) ∆ψ(B) ≥ 1

2
|〈[A,B]ψ, ψ〉|.

Proof: Let A′ := A−Eψ(A) and B′ := B−Eψ(B). Since I commutes with every operator,
we have1

〈[A,B]ψ, ψ〉 = 〈(AB −BA)ψ, ψ〉 = 〈(A′B′ −B′A′)ψ, ψ〉 = 〈A′B′ψ, ψ〉 − 〈ψ, (B′A′)∗ψ〉
= 〈A′B′ψ, ψ〉 − 〈ψ,A′B′ψ〉 = 〈A′B′ψ, ψ〉 − 〈A′B′ψ, ψ〉 = 2i Im〈A′B′ψ, ψ〉.

Therefore, we deduce

|〈[A,B]ψ, ψ〉| ≤ 2 |〈A′B′ψ, ψ〉| = 2 |〈B′ψ,A′ψ〉| ≤ 2 ‖B′ψ‖‖A′ψ‖ = 2 ∆ψ(A) ∆ψ(B).

1boldly using the relation (ST )∗ = T ∗S∗ for unbounded operators here without proof
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The dynamical aspect of the quantum mechanical particle in Rd as introduced above is
in the t-evolution of the wave function ψ(., t) ∈ L2(Rd). The model assumption is that
ψ(., t) = U(t)ψ(., 0), where U(t) is linear (superposition principle) and maps states into
states, thus ‖U(t)ψ(., 0)‖2 = ‖ψ(., 0)‖2. Hence it is plausible to suppose that U(t) is
a unitary operator for every t. Moreover, it is natural to suppose that the evolution of
duration t starting at time s gives the same result as the evolution of duration t+s starting
at time 0, i.e., to require U(t)U(s)ψ(., 0) = U(t)ψ(., s) = ψ(., t + s) = U(t + s)ψ(., 0), or,
U(t)U(s) = U(t + s) on the level of operators. Thus, t 7→ U(t) is a group homomorphism
from (R,+) to the group of unitary operators on L2(Rd). Finally, we will expect a certain
continuity property of the evolution, at least along each trajectory of a given initial state,
i.e., continuity of the map t 7→ U(t)ψ(., 0), R→ L2(Rd).

In abstract terms, we implement the dynamical aspect of a quantum mechanical model
on the Hilbert space H of states by a so-called strongly continuous (s-continuous) unitary
group of operators U(t) (t ∈ R), which means that U(t) ∈ L(H) is unitary for every t,
U(t)U(s) = U(t + s) holds for all s, t ∈ R, and for every ψ ∈ H and t0 ∈ R we have
limt→t0 U(t)ψ = U(t0)ψ. (We see that the term ‘strong continuity’ here simply refers to the
pointwise continuity of the map t 7→ U(t), since the convergence U(t)→ U(t0) is tested pointwise
on H; the topology on L(H) describing this pointwise convergence is usually called the strong
operator topology, hence the notion of s-continuity.)

We can obtain a strongly continuous unitary group on H from any self-adjoint operator
S via functional calculus. We may simply put U(t) := exp(itS) and check, basically as
an exercise, that all the required properties hold (cf. [Con10, Chapter X, Theorem 5.1] or
[Kab14, Satz 16.16] or [Wei00, Satz 7.4]). Moreover, it is not difficult to see that dom(S)
is invariant under U(t) and

∀ψ ∈ dom(S) :
d

dt

(
U(t)ψ

)
:= lim

h→0

U(t+ h)ψ − U(t)ψ

h
= iS U(t)ψ,

i.e., ϕ(t) := U(t)ψ satisfies the initial value problem

(3.3)
d

dt
ϕ(t) = iSϕ(t), ϕ(0) = ψ.

By the famous theorem of Stone (see [Con10, Chapter X, Theorem 5.6] or [Kab14, Satz
16.18] or [Wei00, Satz 7.3]), every s-continuous unitary group U(t) (t ∈ R) is given in
the above form U(t) = exp(itS), where S is a unique self-adjoint operator. In fact, S
may be constructed on dom(S) := {ψ ∈ H | ∃ limh→0(U(h)ψ − ψ)/h} by the assignment
Sψ := −i · limh→0(U(h)ψ − ψ)/h.

Therefore, the dynamics of the quantum mechanical system is determined by this self-
adjoint operator S. In terms of physics, S corresponds to the energy of the system and
is called the Hamiltonian and the differential equation in (3.3) is called the Schrödinger
equation. Observe that in case the initial value ψ happens to be an eigenvector for S
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with eigenvalue λ ∈ R, i.e., Sψ = λψ, then the solution to (3.3) is given by ϕ(t) =
eiλtψ, which corresponds to a bound state in physics, since ϕ(t) ∈ span{ψ} for all times
t ∈ R; in particular, the expectation values of observables remain constant: Eϕ(t)(A) =
〈Aϕ(t), ϕ(t)〉 = eiλte−iλt〈Aψ,ψ〉 = Eψ(A).
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Part II.

Locally convex vector spaces
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4. Vector space topologies

In this second part of the lecture notes, X will denote a vector space with scalar field
K = R or K = C.

4.1. Definition: A seminorm on X is a map p : X → [0,∞[ such that ∀λ ∈ K, x, y ∈ X:

(a) p(λx) = |λ| p(x),

(b) p(x+ y) ≤ p(x) + p(y).

Note that p(x) ≥ 0 and that p(0) = 0 (by (a)), but p(x) = 0 does not imply x = 0.

4.2. Example: Let X = C[0,1] = {x : [0, 1]→ C} and for every t ∈ [0, 1] let pt : X → [0,∞[
be defined by pt(x) := |x(t)|. Then pt is a seminorm on X and we see that pt(x) = 0 for
any function x with x(t) = 0. The set of seminorms P := {pt | t ∈ [0, 1]} can be used
to describe the pointwise convergence of functions in the sense that xn → x pointwise on
[0, 1], if and only if

∀t ∈ [0, 1] : pt(xn − x)→ 0 (n→∞),

written in more abstract terms: ∀p ∈ P we have p(xn − x)→ 0 as n→∞.
The statement for the pointwise convergence of a net (xj)j∈J to x in X is completely
analogous: It is equivalent to the fact that, for every p ∈ P , the net (p(xj − x))j∈J
converges to 0 in C, i.e., for every ε > 0 there is some j0 ∈ J such that p(xj − x) < ε, if
j ≥ j0.
(Recall that (J,≤) is a directed set, if ≤ is a reflexive and transitive relation on J such that
for any j1, j2 ∈ J we can find j3 ∈ J with j1 ≤ j3 and j2 ≤ j3.)

We will show how to define vector space topologies with good properties from seminorms.
The very basic notion is as follows.

4.3. Definition: Let X be a vector space over the field K and τ be a topology on X.
Then (X, τ) is a topological vector space, if addition X × X → X, (x, y) 7→ x + y, and
scalar multiplication K ×X → X, (λ, x) 7→ λx, are continuous maps with respect to the
product topologies on X ×X and K×X.

The requirements for a topology τ on X to turn (X, τ) into a topological vector space are
not trivial, as the example of the discrete topology on X 6= {0} illustrates: The scalar
multiplication then cannot be continuous K×X → X, since with any x 6= 0 and λn = 1/n
we have (λn, x) → (0, x) and 0 · x = 0, but 0 6= λn · x does not converge to 0 in X with
respect to the discrete topology.
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As a preparation for the study of the so-called locally convex vector space topologies we
need the following notions describing properties of subsets of A ⊆ X. Recall that A is
convex, if for every x, y ∈ A and for every λ ∈ R, 0 ≤ λ ≤ 1 we have λx+ (1− λ)y ∈ A.

4.4. Definition: Let A ⊆ X, then A is called

(a) balanced, if for every x ∈ A and every λ ∈ K, |λ| ≤ 1, we have λx ∈ A,

(b) absolutely convex, if A is convex and balanced,

(c) absorbing, if for every x ∈ X there is a number cx > 0 such that for all λ ∈ K,
0 ≤ λ ≤ cx, we have λx ∈ A. (Since x ∈ 1

λA, if 0 < λ ≤ cx, we may say: “Any point in
X is swallowed by appropriate dilations of the subset A.”) [Slightly different definition in [MV92, Tre67].]

4.5. Lemma: A subset A ⊆ X is absolutely convex, if and only if it satisfies

x, y ∈ A and λ, µ ∈ K with |λ|+ |µ| ≤ 1 =⇒ λx+ µy ∈ A.

Proof: Suppose that A is absolutely convex and let x, y, λ, µ be as specified above. If λ = 0
or µ = 0, the implication holds, since A is balanced. Let λ 6= 0 and µ 6= 0, then both λ

|λ|x

and µ
|µ|y belong to A, since A is balanced. We obtain

λx+ µy = (|λ|+ |µ|)︸ ︷︷ ︸
≤1

·
(

|λ|
|λ|+ |µ|

· λ
|λ|
x+

|µ|
|λ|+ |µ|

· µ
|µ|
y

)
︸ ︷︷ ︸

convex combination of λ
|λ|x and µ

|µ|y

∈ A,

since A is convex and balanced.

Suppose the implication in the statement of the lemma holds. Clearly, convex combinations
are a special case of its premise, thus A is convex. To see that A is also balanced, let x ∈ A
and ν ∈ K with |ν| ≤ 1. Then νx = νx+ 0x ∈ A.

4.6. Neighborhood systems from seminorms: Let P be a set of seminorms on X.
For any finite subset F ⊆ P and any ε > 0 we define

UF,ε := {x ∈ X | ∀p ∈ F : p(x) ≤ ε}.

We collect all of these subsets in the family U := {UF,ε | ε > 0, F ⊆ P finite} and list its
basic properties:

(1) ∀U ∈ U we have 0 ∈ U .

This is clear, since p(0) = 0.

(2) ∀U1, U2 ∈ U there exists U ∈ U such that U ⊆ U1 ∩ U2.

Let Uj = UFj ,εj (j = 1, 2) and put F = F1 ∪ F2, ε := min(ε1, ε2), then U := UF,ε
fulfills the requirement, since UF,ε ⊆ UF1,ε1 ∩ UF2,ε2 .
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(3) ∀U ∈ U ∃V ∈ U such that V + V ⊆ U .

If U = UF,ε we may put V := UF,ε/2, since UF,ε/2 + UF,ε/2 ⊆ UF,ε.

(4) Every U ∈ U is absorbing.

Let U = UF,ε and x0 ∈ X. Put αx0 := maxp∈F p(x0). If αx0 = 0, then x0 ∈ UF,ε. If
αx0 > 0, then we put cx0 := ε/αx0 and obtain for every p ∈ F and every λ ∈ K with
0 ≤ λ ≤ cx0 that p(λx0) = λ p(x0) ≤ cx0αx0 ≤ ε, i.e, λx0 ∈ UF,ε.

(5) ∀U ∈ U ∀λ ∈ K, λ > 0, there is some V ∈ U with λV ⊆ U .

Let U = UF,ε, λ > 0, and note that λ · UF,ε/λ = UF,ε, thus V := UF,ε/λ does the job.

(6) Every U ∈ U is balanced.

This is clear here from the seminorm properties.

(7) Every U ∈ U is absolutely convex.

This is also clear here from the seminorm properties.

4.7. Proposition: If U is a non-empty system of subsets of X satisfying (1)-(6) as in 4.6,
we obtain a topology τ on X by specifying for any O ⊆ X that

O ∈ τ ⇐⇒ ∀x ∈ O ∃U ∈ U : x+ U ⊆ O.

Then U is a basis of τ -neighborhoods at 0 and (X, τ) is a topological vector space.

(Moreover, then clearly {x+ U | U ∈ U} is a basis of neighborhoods at x, for every x ∈ X.)

Proof: We show that τ is a topology on X: Clearly, X ∈ τ and ∅ ∈ τ (the latter as a “formality”).
If O1, O2 ∈ τ and x ∈ O1 ∩ O2, then choose U1, U2 ∈ U such that x + Uj ⊆ Oj (j = 1, 2).
By (2), we find U ∈ U with x+U ⊆ x+U1 ∩U2 ⊆ O1 ∩O2. Thus O1 ∩O2 ∈ τ . Finally, if
M is some set, Oq ∈ τ for every q ∈M , and x ∈

⋃
q∈M Oq, then x ∈ Oq0 for some q0 ∈M .

There exists some U ∈ U such that x+ U ⊆ Oq0 ⊆
⋃
q∈M Oq. Thus,

⋃
q∈M Oq is open.

Every U ∈ U is a τ -neighborhood of 0: Let O := {x ∈ U | ∃W ∈ U : x + W ⊆ U}. By
construction, 0 ∈ O ⊆ U and it remains to show that O is open. Let x ∈ O andW ∈ U with
x+W ⊆ U . By (3), there is some V ∈ U such that V +V ⊆ W . We show that x+V ⊆ O,
which implies then that O is open. If y ∈ x+ V , then y + V ⊆ x+ V + V ⊆ x+W ⊆ U ,
hence y ∈ O.

U is a basis of neighborhoods at 0: If B ⊆ X is a τ -neighborhood of 0, then there is
some O ∈ τ with 0 ∈ O ⊆ B. By construction of τ , there is some U ∈ U such that
U = 0 + U ⊆ O ⊆ B.

Addition a : X × X → X, a(x, y) := x + y, is continuous: Given O ∈ τ , we prove that
a−1(O) is open in X ×X. Let (x, y) ∈ a−1(O), i.e, x+ y ∈ O. By construction of τ , there
is some U ∈ U with (x + y) + U ⊆ O. Choose V ∈ U according to (3) with V + V ⊆ U .
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Then (x+ V )× (y+ V ) is a neighborhood of (x, y) and (x+ V )× (y+ V ) ⊆ a−1(O), since
(x+ V ) + (y + V ) = x+ y + V + V ⊆ x+ y + U ⊆ O.

Scalar multiplication m : K × X → X, m(λ, x) := λx, is continuous: Given O ∈ τ , we
prove that m−1(O) is open in K ×X. Let (λ, x) ∈ m−1(O), i.e, λx ∈ O. By construction
of τ , there is some U ∈ U with λx + U ⊆ O. Our aim is to find some ε > 0 and W ∈ U

such that m(Dε(λ)× (x+W )) ⊆ O, where Dε(λ) = {µ ∈ K | |µ− λ| < ε}.

Choose V ∈ U with V + V ⊆ U (by property (3)) and then 1 ≥ ε > 0 such that εx ∈ V
(by property (4)). Since V is balanced, by (6), we have (µ− λ)x ∈ V for every µ ∈ Dε(λ).
Finally, we employ (5) to choose W ∈ U such that (|λ|+ ε)W ⊆ V ; by (6), we further have
µW ⊆ V , if |µ| ≤ |λ|+ ε. We obtain, for every µ ∈ Dε(λ) and for every w ∈ W ,

µ(x+ w) = λx+ (µ− λ)x+ µw ∈ λx+ V + V ⊆ λx+ U ⊆ O.

4.8. Remark: It is not difficult to see that every topological vector space possesses a
basis of neighborhoods at 0 satisfying properties (1)-(6). Clearly, (1) and (2) hold for any
neighborhood basis at 0. Properties (3)-(5) hold for the system of all neighborhoods at
0: Property (3) follows from continuity of addition at (0, 0). Property (4) follows from
continuity of λ 7→ λx at 0 ∈ K for any x ∈ X, and (5) from continuity of the map
x 7→ λx at 0 ∈ X for any λ. Finally, every neighborhood U of 0 contains a balanced
0-neighborhood W : By continuity of scalar multiplication at (0, 0) ∈ K ×X, we can find
ε > 0 and a neighborhood V of 0 such that λV ⊆ U , if |λ| ≤ ε; setting W := {λv | |λ| ≤
ε, v ∈ V } =

⋃
|λ|≤ε λV we clearly obtain a balanced subset, which is also a 0-neighborhood,

since each λV with λ 6= 0 is one (as the image of V under the homeomorphism x 7→ λx).
In conclusion, the set of all balanced neighborhoods at 0 satisfies (1)-(6).

We learn from 4.6 and 4.7 that a family of seminorms generates a topology for a topological
vector space. In this topology, the basic neighborhoods UF,ε have the additional property
(7) of being absolutely convex, which has not been used in Proposition 4.7. As it turns
out, this additional property is crucial, for example, to guarantee a rich theory of linear
functionals. Moreover, most of the topological vector spaces arising in applications are
built from seminorms and it can be shown that topologically this is equivalent to the
existence of a basis of neighborhoods at 0 consisting of (absolutely) convex subsets (see,
e.g., [MV92, Lemmata 22.2 und 22.4] or [Tre67, Proposition 7.6], and [Wer18, Satz VIII.1.5]
for a sketch of the proof). The key ingredient in constructing seminorms from absolutely
convex neighborhoods of 0 is the Minkowski functional, pU(x) := inf{λ > 0 | x ∈ λU} (see
also a corresponding lemma in 5.10).

4.9. Definition: A topological vector space is said to be locally convex, if it possesses a
basis of neighborhoods at 0 consisting of convex sets.

From the discussion and the references given above, we have the following statement.
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4.10. Proposition: A topological vector space (X, τ) is locally convex, if and only if τ is
defined by a family of seminorms as in 4.6 and 4.7.

In particular, every normed vector space is a locally convex space, which happens to be
metrizable as well and thus also a Hausdorff space. In general, locally convex or topological
vector spaces need not be Hausdorff as the example of the chaotic topology (corresponding
to the single seminorm x 7→ 0) illustrates. However, there are the following useful criteria.
(We note that the equivalence (i) ⇔ (iii) holds in general topological vector spaces).

4.11. Lemma: Let P be a set of seminorms on X generating the locally convex vector
space topology τ . Then the following are equivalent:

(i) (X, τ) is a Hausdorff space,

(ii) for every x ∈ X, x 6= 0, there is a p ∈ P such that p(x) 6= 0,

(iii) there is a neighborhood basis U of 0 such that
⋂
U∈U

U = {0}.

Proof: (i) ⇒ (ii): Let x ∈ X, x 6= 0. The neighborhoods at x are of the form x+U , where
U is a neighborhood of 0. By the Hausdorff property, we can separate x and 0, hence we
find two neighborhoods U and V of 0 such that (x + U) ∩ V = ∅. We may suppose that
V = UF,ε = {y ∈ X | p(y) ≤ ε, p ∈ F} with a finite subset F ⊆ P and ε > 0. Since x 6∈ V ,
there is some p ∈ F such that p(x) > ε > 0.

(ii) ⇒ (iii): We only have to note that p(x) = 0 for every p ∈ P , if and only if x ∈ UF,ε for
every finite subset F ⊆ P and every ε > 0.

(iii)⇒ (i): Let x, y ∈ X, x 6= y, hence x−y 6= 0 and there has to be some U ∈ U such that
x− y 6∈ U . The map (x, y) 7→ x− y is continuous (being the composition of addition with
scalar multiplication by −1 in the second component), thus, there are neighborhoods V and
W of 0 such thatW−V ⊆ U . Therefore x−y 6∈ W−V , which means (x+V )∩(y+W ) = ∅,
i.e., we have found disjoint neighborhoods of x and y.

4.12. Examples: 1) Topology of pointwise convergence: Let T be a set and X be a
subspace of the K-vector space of functions T → K, e.g., T = [0, 1] and X = C([0, 1]). For
every t ∈ T , consider the seminorm pt(x) = |x(t)| (x ∈ X). The family P = {pt | t ∈ T}
defines a locally convex Hausdorff topology on X.

2) Topology of uniform convergence on compact sets : Let T be a topological space and X
be a subspace of C(T,K) = C(T ). For every compact subset K ⊆ T , we put pK(x) :=
supt∈K |x(t)| (x ∈ X). The family of seminorms P = {pK | K ⊆ T compact} generates a
locally convex Hausdorff topology on X.

3) Let Ω ⊆ Rn be open and E (Ω) be the vector space C∞(Ω) equipped with the following
seminorms: For m ∈ N0 and K ⊂ Ω compact, define

pK,m(x) := max
α∈Nn0 ,|α|≤m

sup
t∈K
|∂αx(t)| (x ∈ E (Ω)).
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The family of seminorms P = {pK,m | m ∈ N0, K ⊂ Ω compact} generates a locally convex
Hausdorff topology on E (Ω).

4) The so-called Schwartz space S (Rn) is the set of functions ϕ ∈ C∞(Rn) such that
every derivative ∂βϕ, β ∈ Nn

0 , is rapidly decreasing, i.e., for every α ∈ Nn
0 , the function

x 7→ xα∂βϕ(x) is bounded on Rn. We define seminorms on S (Rn) for any m ∈ N0 and
α ∈ Nn

0 by
pα,m(ϕ) := sup

x∈Rn
(1 + |x|m) |∂αϕ(x)| (ϕ ∈ S (Rn)),

or occasionally also pl,m(ϕ) := max|α|≤l pα,m(ϕ) (l,m ∈ N0). The corresponding families of
seminorms define a locally convex Hausdorff topology on S (Rn).

5) Let Ω ⊆ Rn be open, K ⊂ Ω compact, and DK(Ω) denote the set of all functions
ϕ ∈ C∞(Ω) with supp(ϕ) ⊆ K.
(Recall that supp(ϕ) is the closure, in the trace topology of Ω, of the set {x ∈ Ω | ϕ(x) 6= 0}.
Equivalently, it is the complement, within Ω, of the largest open set, where ϕ vanishes. I suppose
that the existence of nonzero functions ϕ ∈ C∞(Ω) with compact support has been shown in your
second or third semester Analysis course; if not, a reference is [Wer18, Beispiel zwischen Definition
V.1.9 und Lemma V.1.10]. Clearly, if K◦ = ∅, then DK(Ω) = {0}.)
We equip DK(Ω) with the structure of a locally convex Hausdorff space generated by the
family of seminorms

pm(ϕ) := max
|α|≤m

sup
x∈Ω
|∂αϕ(x)| (m ∈ N0, ϕ ∈ DK(Ω)).

6) Let Ω ⊆ Rn be open. The space of test functions D(Ω) is the set of all functions
ϕ ∈ C∞(Ω) with compact support, i.e., D(Ω) =

⋃
K⊂Ω

K compact

DK(Ω).

We could consider seminorms pm (m ∈ N0) as above also on D(Ω), the only difference is
that the functions now do not have their support inside some fixed compact set K. But
it turns out that the corresponding topology is not appropriate to reflect the structure
of D(Ω) as a union of the spaces DK(Ω) with their topology τK defined in the previous
example. Such a structural feature is desirable to obtain a function space with good
localization properties and convenient approximation procedures being concentrated on
bounded regions. Therefore, we consider the set P of seminorms p on D(Ω) such that
the restriction p |DK(Ω) is continuous with respect to τK for every compact set K ⊂ Ω.
The locally convex topology on D(Ω) generated from P is a special case of the so-called
inductive limit topologies from the general theory of topological vector spaces. It is also
Hausdorff, which we will show later in the section on distribution theory.

7) If (X, ‖.‖) is a normed space, then the locally convex topology generated by P = {‖.‖}
is the norm topology on X.
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8) Let X be a normed space with dual space X ′ (i.e., the space of all continuous linear
functionals X → K). Then the family of seminorms P = {px′ | x′ ∈ X ′}, where

px′(x) := |x′(x)| (x ∈ X),

generate the weak topology σ(X,X ′) on X, which is locally convex and Hausdorff (due to
the theorem of Hahn-Banach).

9) Let X ′ be the dual space of the normed space X and consider for every x ∈ X the
following seminorm px on X ′:

px(x
′) := |x′(x)| (x′ ∈ X ′).

The set of seminorms P = {px | x ∈ X} generates the weak* topology σ(X ′, X) on X ′. It
coincides with the topology of pointwise convergence for the subspace of continuous linear
functions X → K. In general, σ(X ′, X) is different from the weak topology σ(X ′, X ′′).

10) Let X and Y be normed spaces. Apart from the (operator) norm topology on L(X, Y ),
the following two locally convex topologies are also of interest in operator theory: The
strong operator topology is generated by the seminorms

px(T ) := ‖Tx‖ (T ∈ L(X, Y ), x ∈ X),

and the weak operator topology, which is defined by the seminorms

px,y′(T ) := |y′(Tx)| (T ∈ L(X, Y ), x ∈ X, y′ ∈ Y ′).

Both are Hausdorff topologies, which in case of the weak operator topology follows by ap-
pealing to the Hahn-Banach theorem. Recall that we have used the notions of (sequential)
convergence with respect to these topologies already implicitly while discussing the mea-
surable functional calculus of self-adjoint operators on Hilbert spaces (with X = Y = H
and y′(x) corresponding to an inner product).

11) The notion of weak topology in probability theory: Let Ω be a metric space and M(Ω)
be the space of regular signed or complex Borel measures on Ω. For every f in the space
of bounded continuous functions Cb(Ω) we define the seminorm

pf (µ) := |
∫
Ω

f dµ|

on M(Ω). The family of seminorms P = {pf | f ∈ Cb(Ω)} generates a locally convex
topology on M(Ω), which in case of compact Ω corresponds to the weak* topology due to
the Riesz representation theorem (since we then have Cb(Ω) = C(Ω) and C(Ω)′ ∼= M(Ω)).
This “probabilistic weak topology” always has the Hausdorff property, the proof is based
on the regularity of the measures (cf. [Els11, Kapitel VIII, §1, Satz 4.6]).
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5. Continuous linear maps and
functionals

Some of the locally convex spaces of functions have been introduced essentially in order to
provide a setting for linear functionals on these spaces, which are considered as generalized
functions or distributions. It is the property of local convexity that guarantees the existence
of continuous linear functionals via the Hahn-Banach theorem. Moreover, we have seen in
the definition of the test function space D(Ω) that seminorms with continuous restrictions
to any DK(Ω) are used to define the locally convex topology on D(Ω).

5.1. Lemma: Let (X, τ) be a locally convex vector space and P be a family of seminorms
generating the topology.

(a) If q : X → [0,∞[ is a seminorm, then the following are equivalent:

(i) q is continuous,

(ii) q is continuous at 0,

(iii) the set Uq,1 := {x ∈ X | q(x) ≤ 1} is a neighborhood of 0.

(b) Every p ∈ P is continuous.

(c) A seminorm q on X is continuous, if and only if there is a finite subset F ⊆ P and
a real number M > 0 such that

∀x ∈ X : q(x) ≤M max
p∈F

p(x).

Proof: (a): The implications (i) ⇒ (ii) ⇒ (iii) are immediate. Suppose that (iii) holds.
We show that then (i) follows, which completes the proof of (a): Let x ∈ X and ε > 0;
we set U := ε · Uq,1 = {y ∈ X | q(y) ≤ ε} and note that x + U is a neighborhood of x; if
y ∈ U , then1

|q(x+ y)− q(x)| ≤ q((x+ y)− x) = q(y) ≤ ε,

thus, q(x+ U) ⊆ [q(x)− ε, q(x) + ε], proving continuity of q at x.

1Here, we simply use the “reverse triangle inequality”: q(w) = q((w − z) + z) ≤ q(w − z) + q(z) and
q(z) = q((z − w) + w) ≤ q(z − w) + q(w) = q(w − z) + q(w) implies |q(w)− q(z)| ≤ q(w − z).
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(b): This follows from (a),(iii), since by definition of τ , the sets {x ∈ X | p(x) ≤ 1} with
p ∈ P are neighborhoods of 0.

(c): By definition of τ and (a), (iii), the continuity of q is equivalent to the existence of
a finite set F ⊆ P and ε > 0 such that UF,ε ⊆ Uq,1. Recalling UF,ε = {x ∈ X | ∀p ∈
F : p(x) ≤ ε}, the inclusion relation UF,ε ⊆ Uq,1 is equivalent to

(∗) ∀x ∈ X :
1

ε
max
p∈F

p(x) ≤ 1 ⇒ q(x) ≤ 1.

If the inequality stated in (c) holds, then (∗) follows upon putting ε := 1/M . Conversely,
suppose (∗) holds and let x ∈ X. If we had q(x) > maxp∈F p(x)/ε, then we could choose
µ > 0 with q(x) > µ > maxp∈F p(x)/ε and obtain a contradiction to (∗) for y := x/µ,
since q(y) = q(x)/µ > 1 and maxp∈F p(y)/ε = maxp∈F p(x)/(εµ) < 1. Thus, the inequality
stated in (c) holds with M := 1/ε.

5.2. Corollary: Let (X, τ) be a locally convex vector space and P be a family a seminorms
generating the topology. If Q ⊇ P is a family of τ -continuous (!) seminorms on X, then
Q also generates the topology τ .

Proof: Clearly, the topology generated by Q ⊇ P is finer than τ , but by the above lemma
and the continuity of each q ∈ Q it is also coarser than τ .

We can now provide simple criteria for the continuity of linear maps between locally convex
vector spaces.

5.3. Theorem: Let (X, τP ) and (Y, τQ) be two locally convex vector spaces, where τP is
generated by the family P of seminorms on X and τQ by the family of seminorms Q on Y .
Let T : X → Y be a linear map, then the following are equivalent:

(i) T is continuous,

(ii) T is continuous at 0,

(iii) if q is a continuous seminorm on Y , then q ◦ T is a continuous seminorm on X,

(iv) for every q ∈ Q there is a finite subset F ⊆ P and a real number M > 0 such that

∀x ∈ X : q(Tx) ≤M max
p∈F

p(x).

Proof: (i) ⇒ (ii) is clear and (ii) ⇒ (i) is easy: Let x ∈ X; a neighborhood of Tx is of the
form Tx + V , where V is a τQ-neighborhood of 0 in Y ; choose a τP -neighborhood U of 0
in X such that T (U) ⊆ V , then clearly T (x+ U) = Tx+ T (U) ⊆ Tx+ V .

(ii) ⇒ (iii): The composition q ◦ T is continuous at 0 and clearly defines seminorm on X.
Hence, by (a) in the lemma above, q ◦ T is a continuous seminorm.

(iii)⇒ (iv): This follows from (b), applied to q ∈ Q, and (c), applied to q◦T , in the lemma
shown previously.

68



(iv) ⇒ (ii): Let V be a τQ-neighborhood of 0 in Y . We may suppose that V is given by
finitely many seminorms q1, . . . , qn ∈ Q and ε > 0 in the form V = {y ∈ Y | qj(y) ≤ ε (j =
1, . . . , n)}. For every j = 1, . . . , n, choose Fj ⊆ P and Mj > 0 according to (iv) with qj
in place of q. We put F :=

⋃n
j=1 Fj, M := maxnj=1Mj, and consider the τP -neighborhood

U := UF,ε/M of 0 in X. If x ∈ U and j ∈ {1, . . . , n}, then

qj(Tx) ≤Mj max
p∈Fj

p(x) ≤M max
p∈F

p(x) ≤M
ε

M
= ε,

hence Tx ∈ V . Therefore, we have shown that T (U) ⊆ V , i.e., T is continuous at 0.

The most important special case Y = K (with the Euclidean topology, generated from the
single norm |.|) deserves an explicit statement.

5.4. Corollary: Let X be a locally convex vector space and P be a family a seminorms
generating the topology. A linear functional l on X is continuous, if and only if there are
finitely many seminorms p1, . . . , pm ∈ P and a constant M > 0 such that

∀x ∈ X : |l(x)| ≤M max
j=1,...,m

pj(x).

5.5. Definition: (i) Let (X, τ) be a locally convex vector space. Then its dual space X ′,
or (Xτ )

′, is the vector space of continuous linear functionals on X.
(ii) Let (X, τ1) and (Y, τ2) be locally convex vector spaces, then L(X, Y ), or L(Xτ1 , Yτ2),
denotes the vector space of continuous linear maps X → Y .

Note that we have X ′ = L(X,K) and the fact that L(X, Y ) is a vector space follows from
Theorem 5.3.

Recall that a topology τ1 on a set X is finer than τ2, if τ2 ⊆ τ1, or, equivalently, the identity
map on X is continuous as a map id : (X, τ1) → (X, τ2). If τ1 and τ2 are locally convex
topologies on the vector space X, then the latter is equivalent to id ∈ L(Xτ1 , Xτ2). The
topologies are equal, if both id ∈ L(Xτ1 , Xτ2) and id ∈ L(Xτ2 , Xτ1) hold.

5.6. Examples: 1) Let (X, ‖.‖) be a normed space and τ denote the topology induced by
the norm, then τ is finer than the weak topology σ(X,X ′), since for any x′ ∈ X ′ we have

∀x ∈ X : px′(x) = |x′(x)| ≤ ‖x′‖‖x‖,

which shows that id ∈ L(Xτ , Xσ(X,X′)).

2) Let X = C(Rn) and denote by τ1 the topology of uniform convergence on compact sets,
by τ2 the topology of pointwise convergence. Then τ1 is finer than τ2, since for any t ∈ Rn

we may take K = {t} as compact set and obtain

∀x ∈ C(Rn) : pt(x) = |x(t)| = sup
t∈K
|x(t)| = pK(x).
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We briefly study convergence of nets in locally convex vector spaces. Recall that in gen-
eral, sequences are not sufficiently powerful to characterize continuity of maps or closures
of subsets (cf. Example 5.8 below) in topological spaces that are non-metrizable. (More
precisely, the “barrier” are the first countable, or AA1, spaces).

5.7. Proposition: Let the locally convex topology τ on X be generated by the family
of seminorms P . Then a net (xj)j∈I converges to x in X with respect to τ , if and only if
lim p(xj − x) = 0 for every p ∈ P .

Proof: The net (xj) converges to x, if and only if the net (xj − x) converges to 0. Thus,
we may suppose that x = 0.

If (xj) converges to 0, then lim p(xj) = 0 for every p ∈ P due to continuity of p (Lemma
5.1(b)).

Now suppose that lim p(xj) = 0 for every p ∈ P and let U = UF,ε be a typical neighborhood
of 0 with F ⊆ P finite and ε > 0. In particular, lim p(xj) = 0 for every p ∈ F . Choose
jp ∈ I such that p(xj) ≤ ε for every j ≥ jp. Since (I,≤) is a directed set (and F is finite),
there is some j′ ∈ I such that j′ ≥ jp for every p ∈ F . We obtain p(xj) ≤ ε for every
j ≥ j′, hence xj ∈ U if j ≥ j′. Thus, we have shown xj → 0 in (X, τ).

5.8. Example: Let X = l2, equipped with its weak topology σ := σ(l2, l2), and consider
the subset

A := {em +men | 1 ≤ m < n} ⊆ l2,

where ek ∈ l2 denotes the vector with k-th component 1 and all other components 0.

Claim 1: 0 ∈ A (weak closure).

Let U be a typical σ-neighborhood of 0, i.e., U = {x ∈ l2 | |〈x, yj〉| ≤ ε (j = 1, . . . , r)}
with ε > 0 and y1, . . . , yr ∈ l2. Choose m such that |yj(m)| ≤ ε/2 for j = 1, . . . , r. Then
choose n > m such that |yj(n)| ≤ ε/(2m) for j = 1, . . . , r. We obtain

|〈em +men, yj〉| ≤ |yj(m)|+m |yj(n)| ≤ ε

2
+m

ε

2m
= ε (j = 1, . . . , r),

i.e., em +men ∈ A ∩ U . We have therefore shown that V ∩A 6= ∅ for every neighborhood
V of 0.

Claim 2: There is no sequence in A that converges weakly to 0.

Suppose (emk +mk enk)k∈N is a sequence in A that converges weakly to 0. By Proposition
5.7, we conclude that

∀y ∈ l2 : lim
k→∞
|y(mk) +mk y(nk)| = lim

k→∞
|〈emk +mk enk , y〉| = 0.

If (mk)k∈N is bounded, there is some q ∈ N such that mk = q infinitely often. Choosing
y = eq and recalling nk > mk, then produces the contradiction that y(mk) +mk y(nk) = 1
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infinitely often and converges to 0 as k →∞.
If (mk)k∈N is unbounded, we may suppose that both (mk) and (nk) are strictly increasing.
Let y ∈ l2 be given by y(j) := 1/k, if j = nk, and y(j) := 0 otherwise. Then y(mk) +
mk y(nk) ≥ mk/k ≥ 1 for every k ∈ N, which also contradicts y(mk) +mk y(nk)→ 0.

Remark: We can obtain a net in A converging weakly to 0 as follows. The set of all typical
neighborhoods UF,ε of 0 becomes a directed set, if we introduce the relation UF1,ε1 ≤ UF2,ε2

meaning UF1,ε1 ⊇ UF2,ε2 . To the index set element UF,ε we assign the element aUF,ε :=
em +men constructed as in the proof of Claim 1 for F = {y1, . . . , yr} and ε > 0.

5.9. Examples: 1) The dual space of the Schwartz space S (Rn), Example 4.12.4), is
denoted by S ′(Rn) and called the space of temperate (or tempered) distributions. The
locally convex topology on S (Rn) is generated by the seminorms pα,m(ϕ) := supx∈Rn(1 +
|x|m) |∂αϕ(x)| (m ∈ N0, α ∈ Nn

0 ). We show that every f ∈ Lp(Rn) (1 ≤ p ≤ ∞) provides
an element in S ′(Rn), in the sense that the map Tf : S (Rn)→ C,

Tf (ϕ) :=

∫
Rn

f(x)ϕ(x) dx (ϕ ∈ S (Rn)),

defines a continuous linear functional. Recall Hölder’s inequality, which states that for any
g ∈ Lq(Rn), 1

p
+ 1

q
= 1 with the convention 1

∞ = 0, we have ‖fg‖L1 ≤ ‖f‖Lp‖g‖Lq . Since
S (Rn) ⊆ Lq(Rn) (1 ≤ q ≤ ∞), we obtain for any ϕ ∈ S (Rn),

|Tf (ϕ)| ≤
∫
Rn

|f(x)ϕ(x)| dx = ‖fϕ‖L1 ≤ ‖f‖Lp‖ϕ‖Lq .

If p = 1, then q =∞ and we have 2‖ϕ‖L∞ = p0,0(ϕ), thus, |Tf (ϕ)| ≤ ‖f‖L1 p0,0(ϕ) proves
the continuity of Tf .
If p > 1, then 1 ≤ q <∞ and

‖ϕ‖Lq =

 ∫
Rn

|ϕ(x)|q dx

1/q

=

 ∫
Rn

1

(1 + |x|n+1)q
∣∣(1 + |x|n+1)ϕ(x)

∣∣q︸ ︷︷ ︸
≤ p0,n+1(ϕ)q

dx


1/q

≤
∥∥∥∥ 1

1 + |.|n+1

∥∥∥∥
Lq
· p0,n+1(ϕ) =: Mq · p0,n+1(ϕ),

which implies |Tf (ϕ)| ≤ ‖f‖LpMq p0,n+1(ϕ) and proves the continuity of Tf .

2) Let X be a normed space, τ denote the topology induced by the norm on X, and
σ := σ(X,X ′). As noted above, τ is finer than σ. Thus, if µ : X → K is a weakly continuous
linear functional, then µ is also norm continuous, i.e., we have (Xσ)′ ⊆ (Xτ )

′ = X ′.
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If x′ ∈ X ′, then |x′(x)| = px′(x) for every x ∈ X, therefore x′ is also weakly continuous by
Corollary 5.4; hence, also X ′ = (Xτ )

′ ⊆ (Xσ)′ holds. To summarize, we have shown that

(Xσ(X,X′))
′ = X ′.

3) Let X and Y be normed spaces and consider the strong operator topology on L(X, Y ),
described in Example 4.12.10) and generated by the seminorms px(T ) := ‖Tx‖ (T ∈
L(X, Y ), x ∈ X). We denote this locally convex space by Lst(X, Y ) and claim that a
linear functional Φ on L(X, Y ) belongs to Lst(X, Y )′, if and only if Φ is of the following
form: There are n ∈ N, x1, . . . , xn ∈ X, and µ1, . . . , µn ∈ Y ′ such that

Φ(T ) =
n∑
j=1

µj(Txj) (T ∈ L(X, Y )).

Clearly, any Φ of the above form is continuous with respect to the strong operator topology
by Corollary 5.4, since |Φ(T )| ≤ nmaxnj=1 ‖µj‖‖Txj‖ ≤ (nmaxnj=1 ‖µj‖) ·maxnl=1 pxl(T ).
Suppose Φ ∈ Lst(X, Y )′, then Corollary 5.4 implies that there are n ∈ N, M > 0, and
x1, . . . , xn ∈ X such that

(∗) |Φ(T )| ≤M max
1≤j≤n

pxj(T ) = M max
1≤j≤n

‖Txj‖.

Let l∞n (Y ) denote the K-vector space Y n equipped with the norm ‖(y1, . . . , yn)‖∞ :=
maxnj=1 ‖yj‖. We claim that any norm continuous linear functional µ ∈ l∞n (Y )′ is given in
the form

(∗∗) µ((y1, . . . , yn)) =
n∑
j=1

µj(yj)

with certain µ1, . . . , µn ∈ Y ′: In fact, define µj(z) := µ((0, . . . , z, 0, . . .)) (here, z is in the
jth component; j = 1, . . . , n), then µj : Y → K is linear and continuous, since |µj(z)| ≤
‖µ‖‖(0, . . . , z, . . . , 0)‖∞ = ‖µ‖‖z‖; finally, (y1, . . . , yn) = (y1, 0, . . . , 0) + . . .+ (0, . . . , 0, yn)
yields µ((y1, . . . , yn)) =

∑n
j=1 µj(yj).

Consider the subspace V := {(Tx1, . . . , Txn) ∈ Y n | T ∈ L(X, Y )} of l∞n (Y ). Note that by
(∗) we have Φ(T ) = 0, if (Tx1, . . . , Txn) = (0, . . . , 0), which shows that the linear functional
ν : V → K, ν((Tx1, . . . , Txn)) := Φ(T ) is well-defined. Moreover, (∗) also implies that
|ν((Tx1, . . . , Txn))| ≤ M‖(Tx1, . . . , Txn)‖∞, i.e., ν is a norm continuous linear functional
on the subspace V ⊆ l∞n (Y ). By the Hahn-Banach theorem (for normed spaces), there is
an extension µ ∈ l∞n (Y )′ of ν. Let µ be given by µ1, . . . , µn ∈ Y ′ according to (∗∗). Then
we obtain, putting (y1, . . . , yn) = (Tx1, . . . , Txn) with T ∈ L(X, Y ),

Φ(T ) = ν((Tx1, . . . , Txn)) = µ((Tx1, . . . , Txn)) =
n∑
j=1

µj(Txj).
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5.10. Hahn-Banach theorem(s) for locally convex vector spaces: Here, I suppose
that you have already seen at least a proof of the extension theorem for normed spaces.
Most likely, it was based on a so-called linear algebraic version as lemma, involving the
crucial “lemma of Zorn argument” and an upper bound of the linear functional in terms of
a seminorm or a convex function or a sublinear function (e.g., as in [Con10, Chapter III,
Section 6] or [Tes14, Theorem 4.11] or [Wer18, Sätze III.1.2, III.1.4 und Lemma III.1.3];
note that a seminorm is a convex function and also an example of a sublinear function).
Therefore, we “recall” the following statement without repeating a proof.

Linear algebraic version of Hahn-Banach’s extension theorem: Let V be a sub-
space of the K-vector space X and p : X → R be sublinear, i.e., p(λx) = λp(x), if λ ≥ 0,
and p(x+ y) ≤ p(x) + p(y). If l : V → K is a linear functional satisfying Re l(x) ≤ p(x) for
every x ∈ V , then there is a linear functional L : X → K such that L(x) = l(x), if x ∈ V ,
and ReL(x) ≤ p(x) for every x ∈ X.

Extension theorem: Let V be a subspace of the locally convex vector space X and
l ∈ V ′. Then there exists an extension L ∈ X ′ of l.

Proof: Suppose that the locally convex topology on X is generated by the family of
seminorms P . Then the subspace topology on V is generated by the set of restric-
tions {p|V | p ∈ P} as family of seminorms on V (since the basic neighborhoods of 0

in V are just obtained from those in X intersected with V ). By continuity of l, there are
M > 0 and p1, . . . pm ∈ P such that |l(x)| ≤ M maxmj=1 pj(x) for every x ∈ V . Define
p : X → [0,∞[ by p(x) := M maxmj=1 pj(x) (x ∈ X), then p is a continuous seminorm on
X and Re l(x) ≤ |l(x)| ≤ p(x) for every x ∈ V . By the linear algebraic extension theorem,
there is an extension L of l to X satisfying ReL(x) ≤ p(x) for every x ∈ X. Since p is
a seminorm we have p(λx) = p(x) for every λ ∈ K with |λ| = 1, hence we may conclude
that |L(x)| ≤ p(x) holds for every x ∈ X. This shows that L ∈ X ′ (strictly speaking, upon
calling on Lemma 5.1(c) and Corollary 5.4).

We turn now to so-called geometric versions of the Hahn-Banach theorem, which state
properties on separation of convex subsets by values of linear functionals.

Lemma on Minkowski functionals: LetW be a convex neighborhood of 0 in the locally
convex vector space X. Then the Minkowski functional pW : X → [0,∞],

pW (x) := inf{α > 0 | x ∈ αW},

has finite values and defines a sublinear function on X. If W is an absolutely convex
neighborhood of 0, then pW is a continuous seminorm on X.

Proof: Since W is absorbing2, we have pW (x) < ∞ for every x ∈ X. From the definition
of pW , we immediately obtain pW (λx) = λ pW (x), if λ ≥ 0.

2Recall: Any neighborhood of 0 is absorbing, since it contains an absorbing basic neighborhood defined
by finitely many seminorms.
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We show subadditivity of pW , i.e., that pW (x+ y) ≤ pW (x) + pW (y) holds for all x, y ∈ X:
Let x, y ∈ X and ε > 0 be arbitrary. By definition of pW as an infimum, there are λ, µ > 0
such that λ < pW (x) + ε

2
, µ < pW (y) + ε

2
and x

λ
∈ W , y

µ
∈ W . By convexity of W ,

x+ y

λ+ µ
=

λ

λ+ µ
· x
λ

+
µ

λ+ µ
· y
µ
∈ W,

which implies pW (x + y) ≤ λ + µ < pW (x) + pW (y) + ε. Since ε > 0 was arbitrary, we
obtain pW (x+ y) ≤ pW (x) + pW (y).

If, in addition, W is balanced, then λW = W holds whenever |λ| = 1, thus pW (λx) =
pλW (λx) = pW (x) in this case. Therefore, we obtain for any λ 6= 0,

pW (λx) = pW (
λ

|λ|
|λ|x) = pW (|λ|x) = |λ| pW (x) (x ∈ X),

and may conclude that pW is a seminorm. The continuity of pW on X now follows from
Lemma 5.1(a)(iii), since {x ∈ X | pW (x) ≤ 1} = W is a neighborhood of 0.

Separation lemma: Let V be a nonempty convex open subset of the locally convex vector
space X. If 0 /∈ V , then there exists x′ ∈ X ′ such that Rex′(x) < 0 for every x ∈ V .

Proof: Let x0 ∈ V and U := −x0 + V . Then U is convex, open, 0 ∈ U , and −x0 6∈ U .
There is an absolutely convex neighborhood W of 0 such that W ⊆ U . By the lemma on
Minkowski functionals, we have that pU is sublinear and pW is a continuous seminorm.

Let Y := R-span{−x0} and define the R-linear functional l : Y → R by l(t(−x0)) :=
t pU(−x0). We claim that l(y) ≤ pU(y) for every y ∈ Y : If t > 0, then l(t(−x0)) =
tpU(−x0) = pU(t(−x0)); if t ≤ 0, then l(t(−x0)) = t pU(−x0) ≤ 0 ≤ pU(t(−x0)). By real
linear algebraic extension, there is an R-linear extension L : X → R such that L(x) ≤ pU(x)
for every x ∈ X. By W ⊆ U we have also L(x) ≤ pU(x) ≤ pW (x), i.e., |L(x)| ≤ pW (x) for
every x ∈ X, since pW is a seminorm. Thus, L is a continuous R-linear functional on X,
since pW is a continuous seminorm (again employing Lemma 5.1(c) and Corollary 5.4)).

Let x ∈ V = x0 + U , say x = x0 + u with u ∈ U . We claim that pU(u) < 1: In fact, if
pU(u) ≥ 1, then u

t
∈ X \ U for every 0 < t < 1; since X \ U is closed, u = limt<1,t→1

u
t
∈

X \ U , a contradiction. Furthermore, note that pU(−x0) ≥ 1, since −x0 6∈ U . Therefore,
we obtain

L(x) = L(u) + L(x0) = L(u) + l(x0) ≤ pU(u) + l(x0) = pU(u)− pU(−x0) < 0.

Finally, in the case of a complex vector space we obtain a C-linear continuous functional
x′ ∈ X ′ with Rex′ = L by setting x′(x) := L(x) − iL(ix) (direct computation shows x′((a + ib)x) = . . . =

(a + ib)x′(x)), which clearly satisfies Rex′(v) = L(v) < 0 for every v ∈ V .
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Separation theorem I: Let V1 and V2 be convex subsets of the locally convex vector
space X. If V1 is open and V1 ∩ V2 = ∅, then there exists x′ ∈ X ′ such that

∀v1 ∈ V1,∀v2 ∈ V2 : Rex′(v1) < Rex′(v2).

Proof: Let V := V1 − V2, then V is convex (a convex combination of differences is a
difference of convex combinations) and open (write V =

⋃
x∈V2

(V1 − x) as union of open
subsets; translation by −x is a homeomorphism!). Since V1 ∩ V2 = ∅, we have 0 6∈ V . By
the lemma we may find x′ ∈ X ′ such that Rex′(v1)−Rex′(v2) = Re x′(v1− v2) < 0 for all
v1 ∈ V1 and v2 ∈ V2.

Separation theorem II: Let V be a closed convex subset of the locally convex vector
space X. If x ∈ X \ V , then there exist x′ ∈ X ′ and ε > 0 such that

∀v ∈ V : Rex′(x) + ε ≤ Rex′(v).

If, in addition, V is absolutely convex, then there exist y′ ∈ X ′ and ε > 0 such that

∀v ∈ V : |y′(v)|+ ε ≤ Re y′(x).

Proof: Choose an absolutely convex open neighborhood U of 0 such that (x+U)∩ V = ∅.
By the separation theorem I there exists x′ ∈ X ′ such that

(∗) ∀u ∈ U,∀v ∈ V : Rex′(x) + Re x′(u) < Rex′(v).

Since U is absorbing, there is some u0 ∈ U with x′(u0) 6= 0 (for otherwise, we had x′ = 0,
which contradicts the above inequality). Being also a balanced subset, U contains every
multiple λu0 with |λ| ≤ 1, hence there is some u1 ∈ U with Rex′(u1) > 0. Therefore
ε := sup{Rex′(u) | u ∈ U} is positive. Picking an arbitrary v0 ∈ V , the inequality in (∗)
implies Rex′(u) ≤ Rex′(v0) − Rex′(x) for every u ∈ U , hence Rex′(u) is bounded above
and ε < ∞. We have thus shown that Rex′(x) + ε ≤ Rex′(v) for every v ∈ V , which
proves the first part of the statement.

Note that, running through the reasoning above with y′ := −x′, we obtain Re y′(x)− ε ≥
Re y′(v) for every v ∈ V . If V is absolutely convex, then V = λV for every λ ∈ K with
|λ| = 1, hence we may conclude that Re y′(x)− ε ≥ |y′(v)| holds for every v ∈ V .

Corollary: If X is a Hausdorff locally convex vector space, then X ′ separates points, i.e.,
for any x, y ∈ X with x 6= y, there is x′ ∈ X ′ such that x′(x) 6= x′(y).

Proof: Apply the separation theorem II to V := {y}, which is convex and also closed (by
the Hausdorff property).

Remark: The proofs of the Hahn-Banach theorems of extension and separation II do rely
in a crucial way on basic properties of locally convex topological vector spaces, since they
employ seminorms or nontrivial convex open neighborhoods of 0. In general topological
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vector spaces the extension theorem may fail and it may happen that convex open 0-
neighborhoods are trivial. Both is illustrated by the following example: Consider Lp([0, 1]),
but with 0 < p < 1. Then it is easy to see that d(f, g) :=

∫ 1

0
|f(t) − g(t)|p dt defines a

metric on Lp([0, 1]), which provides the topology of a topological vector space. However,
one can show the following properties (cf. [Wer18, Aufgabe VIII.8.3] or [Con10, Chapter
IV, Example 3.16]):

• If U is a convex neighborhood of 0, then U = Lp([0, 1]).

• There is no nonzero continuous linear functional on Lp([0, 1]), i.e., Lp([0, 1])′ = {0}.

The separation theorem I does hold in topological vector spaces, though the one convex
subset which is supposed to be open might be a trivial subset (cf. [Con10, Chapter IV,
Theorem 3.7.; see also the paragraph preceding Example 3.16]).

5.11. An application of Hahn-Banach separation—the Krein-Milman theorem:
An extreme point x0 in a convex set K in a K-vector space X is a point x0 ∈ K that cannot
be part of a non-degenerate line segment inside K, i.e.,

∀x1, x2 ∈ K, ∀λ ∈ R, 0 < λ < 1: x0 = λx1 + (1− λ)x2 ⇒ x1 = x2 = x0.

The Krein-Milman theorem states that a nonempty compact convex subset of a locally
convex space is the closed convex hull of its extreme points. Before stating and proving
this theorem we clarify or introduce some of the relevant notation.

If B is a subset of a vector space let coB denote its convex hull (i.e., the intersection of all
convex subsets containing B), and, in case of a topological vector space, let coB denote
the closure of the convex hull. The latter is a convex set: Let x, y ∈ coB and 0 ≤ λ ≤ 1;
there are nets (xj) and (yj) in coB with x = limxj and y = lim yj; by continuity of the
vector space operations, we obtain λx+ (1−λ)y = lim(λxj + (1−λ)yj) ∈ coB. Therefore,
coB is the smallest closed convex set containing B and is called the closed convex hull of
B.

As a generalization of the notion of extreme points, a nonempty subset F of a convex set
K is called a face of K, if F is convex and satisfies

∀x1, x2 ∈ K, ∀λ ∈ R, 0 < λ < 1: λx1 + (1− λ)x2 ∈ F ⇒ x1, x2 ∈ F.

Thus, x0 is an extreme point of K, if and only if F := {x0} is a face of K. We denote by
exK the set of extreme points of K.

As an interesting example we may mention, without proof, the case X = C(Ω)′ ∼= M(Ω),
where Ω is a compact metric space (and M(Ω) denotes the space of signed or complex regular
Borel measures, cf. the Riesz representation theorem 0.17). LetK denote the subset of all Borel
probability measures on Ω. Then clearly K 6= ∅ and K is convex. Particular elements in
K are the Dirac measures δω concentrated at ω ∈ Ω and it turns out that (cf. [Wer18,
Beispiel (f) in VIII.4])

exK = {δω | ω ∈ Ω}.
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Lemma: Let K be a non-empty compact convex subset of a Hausdorff locally convex
vector space X and ρ ∈ X ′. Let c := max{Re ρ(x) | x ∈ K} (making use of the continuity of
Re ρ : X → R and of the compactness of K), then F := {x ∈ K | Re ρ(x) = c} is a compact
face of K.

Proof: Clearly, F is nonempty, convex, and closed, hence also compact. If x1, x2 ∈ K,
0 < λ < 1, and λx1 + (1 − λ)x2 ∈ F , then Re ρ(xj) ≤ c (j = 1, 2) and c = Re ρ(λx1 +
(1 − λ)x2) = λRe ρ(x1) + (1 − λ) Re ρ(x2), hence Re ρ(x1) = Re ρ(x2) = c, which implies
x1, x2 ∈ F .

Theorem (Krein-Milman): If K is a nonempty compact convex subset of a Hausdorff
locally convex vector space X, then exK 6= ∅ and K = co (exK).

Proof: Let F denote the set of all compact faces of K, which is nonempty since K ∈ F
and partially ordered by the inclusion relation. If F0 ⊆ F is totally ordered, then we may
conclude that F0 :=

⋂
F∈F0

F is nonempty (by the finite intersection property for compact sets)
and certainly compact and a face of K. Thus, F0 is a lower bound of F0. We may therefore
apply Zorn’s lemma and deduce that there exists F ∈ F that is minimal with respect to
inclusion.

We will show that F consists of a single point x ∈ K, i.e., F = {x} and hence x is an
extreme point of K, which then implies that exK 6= ∅.

Recall that as a face of K, the set F is nonempty. We prove the above assertion by
contradiction. Suppose there are two distinct elements x1 and x2 of F . By the corollary
to the Hahn-Banach theorems there is some ρ ∈ X ′ such that Re ρ(x1) 6= Re ρ(x2).

Applying the above lemma to F in place of K we may conclude that there is some c ∈ R
such that G := {x ∈ F | Re ρ(x) = c} is a compact face of F . It follows easily from the
definition that G is also a face of K, hence G ∈ F. Since it cannot be that both x1 and
x2 belong to G, we obtain that G is a compact face proper subset of F , contradicting the
minimality of F .

It remains to show that K = co (exK). The relation K ⊇ co (exK) is obvious and we will
prove K ⊆ co (exK) by contradiction. Denote E := co (exK) and suppose x0 ∈ K \ E.
By (an obvious variant of) Hahn-Banach separation II there exist ρ ∈ X ′ and a real number
a such that

(∗) ∀y ∈ E : Re ρ(x0) > a ≥ Re ρ(y).

Let c1 := max{Re ρ(x) | x ∈ K}, then c1 > a and the set F1 := {x ∈ K | Re ρ(x) = c1} is a
compact face ofK by the previous lemma. Since F1 is also nonempty, compact, and convex,
the first part of the proof shows that F1 has an extreme point x1, which is then3 also an
extreme point of K. In particular, x1 ∈ E, while Re ρ(x1) = c1 > a, which contradicts
(∗).

3It is easy to see that an extreme point of a face of K is an extreme point of K as well.
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Corollary: Let K be a non-empty compact convex subset of a Hausdorff locally convex
vector space X. If ρ ∈ X ′, then there is an extreme point x0 of K such that Re ρ(x) ≤
Re ρ(x0) holds for all x ∈ K.

Proof: We may put c := max{Re ρ(x) | x ∈ K} and obtain from the above lemma that
F := {x ∈ K | Re ρ(x) = c} is a compact face of K. By the Krein-Milman theorem the
nonempty compact convex subset F has an extreme point x0. It follows from the definition
that an extreme point of a face of K is an extreme point of K, thus x0 is an extreme point
of K and, since x0 ∈ F , we have Re ρ(x0) = c ≥ Re ρ(x) for every x ∈ K.

Remark: One can also show the following related result (cf. [Wer18, Theorem VIII.4.4(c)]
or [Con10, Chapter V, Theorem 7.8] or [KR, Theorem 1.4.5]): If K is a nonempty compact
convex subset of a Hausdorff locally convex vector space X and B is a closed subset of K
such that K = coB, then B contains the extreme points of K, i.e., B ⊇ exK.
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6. Weak and weak* topologies

6.1. Dual pairs: Let X, Y be K-vector spaces and (x, y) 7→ 〈x, y〉 be a bilinear map
X × Y → K. We call (X, Y ) a dual pair, if

(6.1) ∀x ∈ X, x 6= 0, ∃y ∈ Y : 〈x, y〉 6= 0 and ∀y ∈ Y, y 6= 0, ∃x ∈ X : 〈x, y〉 6= 0.

For any y ∈ Y , we have the induced linear functional ly(x) := 〈x, y〉 on X and the map
y 7→ ly is linear from Y into the algebraic dual X∗ of X. The requirement above says that
the latter is an injective map, and the same holds for the assignment x 7→ 〈x, .〉, X → Y ∗.
In this sense, we have Y ↪→ X∗ and X ↪→ Y ∗ for any dual pair (X, Y ). Note that the
ranges of these injective maps are point separating subspaces in the respective duals.

For any y ∈ Y we have the seminorm py(x) := |〈x, y〉| on X and the set P of these semi-
norms generates a locally convex vector space topology on X, which we call the σ(X, Y )-
topology (or weak topology) on X. The σ(Y,X)-topology on Y is defined analogously. It
follows from the definition of a dual pair and Lemma 4.11 that the σ(X, Y )-topology and
the σ(Y,X)-topology are always Hausdorff. By Proposition 5.7, a net (xj)j∈I in X con-
verges to 0 in the σ(X, Y )-topology, if and only if 〈xj, y〉 → 0 for every y ∈ Y . Considering
xj (j ∈ I) as elements in Y ∗, this translates into pointwise convergence of the net (xj).

Examples: 1) Let X be a locally convex Hausdorff vector space and Y = X ′, then (X,X ′)
is a dual pair with respect to the bilinear map (x, x′) 7→ x′(x), since the second part in
(6.1) follows from the definition of maps X → K and the first part from the corollary of the
Hahn-Banach theorem stated in 5.10. The corresponding topology σ(X,X ′) is also called
the weak topology on X and this is consistent with the topology described in Example
4.12.8) in case of a normed space.

2) In the situation of 1), we also obtain a dual pair (X ′, X) and σ(X ′, X) is the topology
of pointwise convergence, which we call weak* topology as in the case of normed spaces
discussed in Example 4.12.9).

3) Coming back to Example 4.12.11), consider a metric space Ω, X = Cb(Ω) the space
of bounded continuous functions, and Y = M(Ω) the space of regular signed or complex
Borel measures on Ω. The bilinear map

(f, µ) 7→
∫
Ω

f dµ (f ∈ Cb(Ω), µ ∈M(Ω))
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defines the structure of a dual pair (the argument is again based on the regularity of
the measures, see [Els11, Kapitel VIII, §1, Satz 4.6]). The σ(M(Ω), Cb(Ω))-topology cor-
responds to the notion of weak topology of probability theory as indicated in Example
4.12.11).

4) On X = RR (the space of functions R → R) consider for any t ∈ R the evaluation
functional δt : RR → R, f 7→ f(t). Let Y := span{δt | t ∈ R} (a subspace of (RR)∗). We
obtain a dual pair by defining the bilinear map X × Y → R,

〈f,
m∑
k=1

λkδtk〉 :=
m∑
k=1

λkf(tk),

and σ(X, Y ) is the topology of pointwise convergence as in Example 4.12.1).

5) Let X and Y be normed spaces. We will describe the weak operator topology on
L(X, Y ) from Example 4.12.10) in terms of a σ-topology of a dual pairing as follows: The
(purely algebraic K-)tensor product X ⊗ Y ′ can be described equivalently as the set of
all linear maps u : X ′ → Y ′ of the form u(x′) =

∑m
j=1 x

′(xj)y
′
j with m ∈ N and xj ∈ X,

y′j ∈ Y ′ (j = 1, . . . ,m), i.e., u =
∑m

j=1 xj ⊗ y′j. We claim that we obtain a dual pair
(L(X, Y ), X ⊗ Y ′) via the bilinear map 〈., .〉 : L(X, Y )× (X ⊗ Y ′)→ K, given by〈

T,
m∑
j=1

xj ⊗ y′j

〉
:=

m∑
j=1

y′j(Txj).

To show that for any T 6= 0 there is a u ∈ X⊗Y ′ with 〈T, u〉 6= 0, first choose x0 ∈ X such
that Tx0 6= 0, then there is some y′0 ∈ Y ′ with y′0(Tx0) 6= 0 by the Hahn-Banach theorem;
thus, 〈T, x0 ⊗ y′0〉 6= 0. Furthermore, for given u =

∑m
j=1 xj ⊗ y′j 6= 0 we have to find

T ∈ L(X, Y ) such that 〈T, u〉 6= 0; there is some x′0 ∈ X ′ such that 0 6= u(x′0) ∈ Y ′; hence,
there is also some y0 ∈ Y such that u(x′0)(y0) 6= 0; we define T ∈ L(X, Y ) by Tx := x′0(x)y0

and arrive at

〈T, u〉 =
m∑
j=1

y′j(Txj) =
m∑
j=1

y′j(x
′
0(xj)y0) =

(
m∑
j=1

x′0(xj)y
′
j

)
(y0) = u(x′0)(y0) 6= 0.

Any of the seminorms pu(T ) = |〈T, u〉|, with u =
∑
xj ⊗ y′j, is obviously continuous

with respect to the weak operator topology. Therefore, Corollary 5.2 shows that the
σ(L(X, Y ), X ⊗ Y ′)-topology coincides with the weak operator topology.

6.2. The dual space of (X, σ(X, Y )): We need a preparatory result from linear algebra.

Lemma: Let l, l1, . . . , ln : X → K be linear functionals. Then the following are equivalent:

(i) l ∈ span{l1, . . . , ln},

(ii) ∃M > 0 such that |l(x)| ≤M maxnj=1 |lj(x)| holds for every x ∈ X,

(iii)
⋂n
j=1 ker(lj) ⊆ ker(l).
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Proof: (i) ⇒ (ii) ⇒ (iii) is clear. It remains to show (iii) ⇒ (i).
Let V := {(l1(x), . . . , ln(x)) ∈ Kn | x ∈ X}, then (iii) guarantees that the linear map
φ0 : V → K, φ0(l1(x), . . . , ln(x)) = l(x) is well-defined. Let φ : Kn → K be a linear extension
of φ0, then there are α1, . . . , αn ∈ K such that φ(ξ1, . . . , ξn) =

∑n
j=1 αjξj and we obtain

∀x ∈ X : l(x) = φ0(l1(x), . . . , ln(x)) = φ(l1(x), . . . , ln(x)) =
n∑
j=1

αjlj(x).

Corollary: Let (X, Y ) be a dual pair. A linear functional on X is σ(X, Y )-continuous, if
and only if it is of the form x 7→ 〈x, y〉 for some y ∈ Y . Therefore,

(Xσ(X,Y ))
′ = Y.

Proof: By Corollary 5.4, a linear functional l on X is σ(X, Y )-continuous, if and only
if it satisfies an estimate as in statement (ii) of the above lemma with lj(x) = 〈x, yj〉
and yj ∈ Y . Therefore, the σ(X, Y )-continuity of l is also equivalent to being a linear
combination l =

∑
αjli, i.e., l(x) = 〈x, y〉 with y =

∑
αjyj.

In particular, in case of a locally convex vector space (X, τ) with the dual pairs (X,X ′) or
(X ′, X), we obtain the following statements as direct consequences:

(a) A linear functional on X is weakly continuous, if and only if it is τ -continuous.
(Compare with Example 5.9.2), where this result has been noted for normed spaces.)

(b) A linear functional on X ′ is weak* continuous, if and only if it is of the form of an
evaluation functional x′ 7→ x′(x) with some x ∈ X, i.e., (X ′σ(X′,X))

′ = X.

6.3. Proposition: Let (X, Y ) be a dual pair. The weak topology σ(X, Y ) has the following
property: A map f from any topological space (T, τ) into (X, σ(X, Y )) is continuous, if
and only if the composition map y ◦ f : t 7→ 〈f(t), y〉 is continuous T → K for every y ∈ Y .

We may remark that, in fact ([Sch71, Sections II.5 and IV.1]), σ(X, Y ) is the coarsest
topology on X such that every y ∈ Y defines a continuous function and thus is the initial
or projective topology on X with respect to the linear functionals given by the elements
y ∈ Y .

Proof: Clearly, if f : (T, τ)→ (X, σ(X, Y )) is continuous, then y ◦f is continuous for every
y ∈ Y due to the corollary in 6.2.

To prove the converse, suppose y ◦ f is continuous for every y ∈ Y . Let t ∈ T and U be
a σ(X, Y )-neighborhood of 0 in X. We have to show that there is a τ -neighborhood W
of t in T such that f(W ) ⊆ f(t) + U . We may assume that U is a basis neighborhood of
the form U = {x ∈ X | |〈x, yj〉| ≤ ε (j = 1, . . . , n)} with y1, . . . , yn ∈ Y . Every function
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yj ◦ f (1 ≤ j ≤ n) is continuous, thus, there exist τ -neighborhoods Wj of t in T such that
|〈f(s)− f(t), yj〉| ≤ ε, if s ∈ Wj. Putting W := W1 ∩ . . . ∩Wn we obtain a neighborhood
of t such that f(W )− f(t) ⊆ U .

6.4. Polar subsets: Let (X, Y ) be a dual pair, A ⊆ X, and B ⊆ Y . The polar of A is

A◦ := {y ∈ Y | ∀x ∈ A : Re〈x, y〉 ≤ 1}

and the polar of B is

B◦ := {x ∈ X | ∀y ∈ B : Re〈x, y〉 ≤ 1}.

Note that A◦◦ := (A◦)◦ is defined and a subset of X.

Remark: (i) The following can be shown as an exercise: If X is a normed space and BX

denotes the closed unit ball, then the duality (X,X ′) yields (BX)◦ = BX′ . Furthermore, if
U is a subspace of X, then U◦ coincides with the annihilator U⊥ = {x′ ∈ X ′ | x′ |U = 0}.

(ii) In the literature, one often finds the definition of the polar of a subset A ⊆ X in the
form A◦ = {y ∈ Y | ∀x ∈ A : |〈x, y〉| ≤ 1}, which we would call here the absolute polar of
A.

For subsets of X or Y of the dual pair (X, Y ), closures shall always refer to the weak
topology σ(X, Y ) or σ(Y,X), unless stated otherwise. Let A and Aj (j = 1, 2 or j ∈ J)
denote subsets of X, then we collect the following list of properties1:

(a) A1 ⊆ A2 ⇒ A◦2 ⊆ A◦1,

(b) 0 ∈ A◦ and A ⊆ A◦◦,

(c) A◦ = co (A◦) and A◦ = (coA)◦,

(d) if A is balanced, then A◦ = {y ∈ Y | ∀x ∈ A : |〈x, y〉| ≤ 1} (absolute polar),

(e) if λ > 0, then (λA)◦ = 1
λ
A◦,

(f) (
⋃
j∈J Aj)

◦ =
⋂
j∈J A

◦
j ,

(g) (
⋂
j∈J Aj)

◦ ⊇ co
⋃
j∈J A

◦
j .

Proof: Properties (a), (b), and (d)-(f) are clear or very easily shown.

(c): A◦ =
⋂
x∈A{y ∈ Y | Re〈x, y〉 ≤ 1} is an intersection of closed convex sets, hence it is

itself convex and closed, and therefore A◦ = co (A◦). Since A ⊆ coA, we have (coA)◦ ⊆ A◦

by (a), hence it remains to show that any y ∈ A◦ belongs to (coA)◦. This follows upon
observing that Re〈λx1 + (1−λ)x2, y〉 = λRe〈x1, y〉+ (1−λ) Re〈x2, y〉 (for any real λ) and
Re〈limxj, y〉 = lim Re〈xj, y〉.

1The analogous properties hold for subsets of Y .
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(g): Put A :=
⋂
j∈J Aj, then A ⊆ Aj for every j ∈ J , hence A◦ ⊇ A◦j for every j ∈ J , and

therefore A◦ ⊇
⋃
j∈J A

◦
j . By (c), A◦ is convex and closed, thus also A◦ ⊇ co

⋃
j∈J A

◦
j .

Bipolar theorem: A◦◦ = co (A ∪ {0}).

Proof: By (b), 0 ∈ (A◦)◦ = A◦◦ and A ⊆ A◦◦, hence A ∪ {0} ⊆ A◦◦. By (c), A◦◦ is convex
and closed, hence co (A ∪ {0}) ⊆ A◦◦.

Let V := co (A ∪ {0}) and suppose x0 ∈ A◦◦ \ V . Since V is closed and convex, the Hahn-
Banach separation theorem II and Corollary 6.2 allow us to find some y0 ∈ Y and ε > 0
such that Re〈x0, y0〉+ ε ≤ Re〈v, y0〉 holds for every v ∈ V , or, as noted towards the end in
the proof of Hahn-Banach separation II, with y1 := −y0 we obtain Re〈x0, y1〉−ε ≥ Re〈v, y1〉
for every v ∈ V . Hence there is a real number α such that

∀v ∈ V : Re〈x0, y1〉 > α > Re〈v, y1〉.

Since 0 ∈ V , we have α > 0, and putting y2 := y1/α we obtain for every a ∈ A ⊆ V ,

Re〈x0, y2〉 > 1 > Re〈a, y2〉.

By the second inequality, y2 ∈ A◦. But then the first inequality implies x0 6∈ A◦◦, which
gives a contradiction. Thus, we also have A◦◦ ⊆ V and the theorem is proved.

Corollary: Let C ⊆ X be convex with 0 ∈ C, then we have:

C is σ(X, Y )-closed ⇐⇒ ∃B ⊆ Y : C = B◦.

Proof: The implication ‘⇐’ follows by (c), and ‘⇒’ follows upon setting B := C◦ and
appealing to the bipolar theorem.

6.5. Alaoglu-Bourbaki theorem: Let X be a Hausdorff locally convex vector space and
U be a neighborhood of 0 in X. Then U◦ (in the sense of the dual pair (X,X ′)) is weak*
compact.

Proof: Let τp denote the topology of pointwise convergence on the set KX of all functions
X → K. Recall that τp corresponds to the product topology on KX =

∏
x∈X K and

therefore we have Tychonoff’s theorem as a convenient criterion for compactness of product
sets in (KX , τp). We have X ′ ⊆ KX and τp |X′= σ(X ′, X) (as noted in 6.1, Example 1)
above).

We may suppose that U is absolutely convex, for we always have an absolutely convex
neighborhood V of 0 with V ⊆ U , which gives that U◦ ⊆ V ◦ and compactness of U◦
follows from that of V ◦. By property (d) in 6.4, we may thus suppose that

U◦ = {x′ ∈ X ′ | ∀x ∈ U : |x′(x)| ≤ 1}.
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For every x ∈ X, there is some λx > 0 with x ∈ λx ·U (since U is absorbing). If x ∈ U , we
choose λx ≤ 1 (e.g., λx = 1 is always possible). Since x/λx ∈ U by construction, we have
for all x′ ∈ U◦ and x ∈ X,

(∗) |x′(x)| = λx |x′(
x

λx
)| ≤ λx.

By Tychonoff’s theorem, the set

K :=
∏
x∈X

{λ ∈ K | |λ| ≤ λx}︸ ︷︷ ︸
=:Kx

= {f ∈ KX | ∀x ∈ X : f(x) ∈ Kx}

is τp-compact and (∗) shows that U◦ ⊆ K. It remains to show that U◦ is τp-closed in K.

If f ∈ K is in the τp-closure of U◦, then being a pointwise limit of a net of linear functionals
from U◦, f is a linear map. Due to our choice of λx ≤ 1 for x ∈ U and knowing that f ∈ K,
we have f(U) ⊆ {λ ∈ K | |λ| ≤ 1}, which implies that f is continuous2 at 0, hence f ∈ X ′.
Thus, we have shown that U◦ τp ⊆ X ′ and therefore deduce U◦ τp = U◦

σ(X′,X)
= U◦.

Applying the Alaoglu-Bourbaki theorem to the closed unit ball BX in a normed space X
and recalling from Remark (i) above that U := BX implies U◦ = (BX)◦ = BX′ , we obtain
the following special case (Alaoglu’s or Banach-Alaoglu theorem).

6.6. Corollary: Let X be a normed space, then the closed unit ball BX′ of X ′ is weak*
compact.

6.7. Remark: (i) IfX is a separable locally convex vector space, then the topology induced
by σ(X ′, X) on the polar of a 0-neighborhood is metrizable ([Sch71, Chapter IV, 1.7]) and
compactness means sequential compactness. Thus, in case of a separable normed space X,
bounded sequences in the dual X ′ always possess weak* convergent subsequences. Without
separability this is no longer true. An example of this failure is the following: Consider the
evaluation functionals δn ∈ l∞′ (n ∈ N) given by δn(x) := xn for every x = (xm)m∈N ∈ l∞.
We have δn ∈ Bl∞′ = (Bl∞)◦. Suppose we had a weak* convergent subsequence (δnk)k∈N of
(δn)n∈N. For every x ∈ l∞ put y(x) := limk→∞ δnk(x). Then y ∈ Bl∞′ , since Bl∞′ is weak*
closed (being a weak* compact subset). Let z = (zm)m∈N ∈ l∞ be defined by

zm :=


0, if ∀k ∈ N : m 6= nk,

1, if ∃l ∈ N : m = n2l,

0, if ∃l ∈ N0 : m = n2l+1.

We obtain δn2l
(z) = 1 for l ∈ N and δn2l+1

(z) = 0 for l ∈ N0 and therefore arrive at the
contradiction y(z) = limk→∞ δnk(z) = lim(0, 1, 0, 1, 0, 1, . . .).

(ii) Recall that a Banach space X is reflexive, if it is canonically isomorphic to X ′′ via
the map ι : X → X ′′, ι(x)(x′) := x′(x). Combining the bipolar and the Alaoglu-Bourbaki

2Since, e.g., for every ε > 0 we obtain f(εU) ⊆ {λ | |λ| ≤ ε} and εU is a neighborhood of 0 in X.
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theorem, one can obtain characterizations of reflexivity for Banach spaces (cf. [Wer18, Satz
VIII.3.18] or [Con10, Chapter V, Theorem 4.2]), e.g., in the following form: The Banach
space X is reflexive, if and only if BX is weakly compact.

6.8. Weak* compactness of convex sets and extreme points: Although we always
have plenty of convex sets in any locally convex space, the compactness of these subsets is
often true only in the weak or weak* topologies and the Alaoglu-Bourbaki theorem plays
an important part in many applications of the Krein-Milman theorem 5.11. A particular
case is again the closed unit ball in the dual of a normed space, where the Krein-Milman
theorem applies for the weak* topology and can be used, e.g., to show that the Banach
spaces c0 (the space of real or complex sequences converging to 0) and L1([0, 1]) cannot be
the dual of a normed space, since their closed unit balls do not have any extreme points
(cf. [Wer18, Korollar VIII.4.6]).
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7. Basic theory of distributions

The theory of distributions aims at an extension of the notion of scalar functions on an
open subset of Ω ⊆ Rn while maintaining a calculus of differentiation. The basic idea is to
consider linear functionals on function spaces and we can make the following observations:

(a) Functions can be considered as linear functionals (see also Example 5.9.1)): For exam-
ple, suppose f ∈ L1

loc(Ω), then1

Tf (ϕ) :=

∫
Ω

f(x)ϕ(x) dx

defines a linear functional Tf : Cc(Ω) → C. But now we are not tied up with functions
anymore in implementing such functionals. In particular, we have finite measures acting as
functionals (similarly as in the Riesz representation theorem). One of the most prominent
functionals is given by the Dirac measure δx0 concentrated at the point x0 ∈ Ω, acting by

δx0(ϕ) =

∫
Ω

ϕ(x) dδx0 = ϕ(x0).

(b) Differentiation of non-smooth functions can be implemented taking up the idea of
integration by parts (which is the concept of a weak derivative): On Ω = ]0, 1[, for example,
if f ∈ C1(]0, 1[) and ϕ ∈ C1

c (]0, 1[), then

Tf ′(ϕ) =

1∫
0

f ′(x)ϕ(x) dx = −
1∫

0

f(x)ϕ′(x) dx = −Tf (ϕ′).

However, if f is not differentiable and we have merely f ∈ L1
loc(]0, 1[), then we may still

define the linear functional Tf ′(ϕ) := −Tf (ϕ′) on C1
c (]0, 1[) and consider Tf ′ to be the

derivative of Tf . We observe that we may obtain definitions of derivatives up to order
k ∈ N, if we define the functionals instead on the smaller spaces Ck

c (Ω), or, to be prepared
for derivatives of arbitrary order, consider the space C∞c (Ω) = D(Ω) of test functions
known from Example 4.12.6).

1Recall that L1
loc(Ω) is the set of measurable functions that are integrable on every compact subset of Ω,

and Cc(Ω) denotes the space of continuous functions with compact support.
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7.1. The space of test functions: Recall from Examples 5) and 6) in 4.12, that we
defined the locally convex topology τ on D(Ω) via the family of seminorms P on D(Ω)
such that, for every p ∈ P , the restriction p |DK(Ω) is continuous (DK(Ω), τK) → [0,∞[
for every compact subset K ⊂ Ω. Here, DK(Ω) is the set of functions ϕ ∈ C∞c (Ω) with
supp(ϕ) ⊆ K and the locally convex topology τK is generated by the family of seminorms

pm(ϕ) := max
|α|≤m

sup
x∈Ω
|∂αϕ(x)| (m ∈ N0, ϕ ∈ DK(Ω)).

Note that pl ≤ pm, if l ≤ m, thus, any finite number of seminorms pm1 , . . . , pmr is bounded
by the single seminorm pm, if m ≥ mj (j = 1, . . . , r). Strictly speaking, we should indicate
the dependence on K in the notation for the seminorms pm, but we do not want to overload
the notation and it is convenient to think of pm as denoting the appropriate restriction to
DK(Ω) of a similar seminorm given on D(Ω).

By Lemma 5.1(c) and the monotonicity of pm with respect tom observed above, a seminorm
p on D(Ω) belongs to P , if and only if for every compact subset K ⊂ Ω there are c > 0
and m ∈ N0 such that

(7.1) ∀ϕ ∈ DK(Ω) : p(ϕ) ≤ c pm(ϕ).

Note that, in general, c and m will depend on K.

Lemma: (a) τ|DK(Ω) = τK .

(b) DK(Ω) is a τ -closed subspace of D(Ω).

(c) (D(Ω), τ) is a Hausdorff space.

(d) Let Y be a locally convex space and L : D(Ω)→ Y be linear. Then L is τ -continuous,
if and only if the restriction L |DK(Ω) is τK-continuous for every compact set K ⊂ Ω.

Proof: (a): The subspace topology τ |DK(Ω) is generated by the family of seminorms Q =
{p |DK(Ω)| p ∈ P} and we have by construction {pm | m ∈ N0} ⊆ Q and that Q consists of
τK-continuous seminorms, thus, Corollary 5.2 proves the claim.

(b): We have DK(Ω) =
⋂

x∈Ω\K
π−1
x ({0}), where every πx : D(Ω) → [0,∞[, πx(ϕ) := |ϕ(x)|,

is a seminorm belonging to P , since πx(ϕ) ≤ p0(ϕ) for every ϕ ∈ DM(Ω) and M ⊂ Ω
compact. Therefore, every subset π−1

x ({0}) is τ -closed.

(c): We appeal to Lemma 4.11 upon observing that for any D(Ω) 3 ϕ 6= 0 there is some
x ∈ Ω with ϕ(x) 6= 0 and hence πx as in (b) is a seminorm in P with πx(ϕ) 6= 0.

(d): If L is τ -continuous, then by (a) the restriction is τK-continuous. To prove the converse
we apply Theorem 5.3(iii): Let q be a continuous seminorm on Y , then by assumption
q ◦ (L |DK(Ω)) = (q ◦ L) |DK(Ω) is a continuous seminorm on DK(Ω), i.e., q ◦ L ∈ P , in
particular, q ◦ L is a τ -continuous seminorm on D(Ω).
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In applications of distribution theory it is extremely convenient that linear functionals on
D(Ω) are automatically τ -continuous, if they are sequentially continuous. We will prove
this fact in Theorem 7.3 below, where we will see that it is based essentially on property
(d) above. This is also the reason why we are content here with describing convergence of
sequences in D(Ω).

Proposition: Let (ϕl)l∈N be a sequence in D(Ω), then the following are equivalent:

(i) ϕl → 0 with respect to τ ,

(ii) there exists a compact set K ⊂ Ω such that supp(ϕl) ⊆ K for every l ∈ N and ϕl → 0
holds in DK(Ω),

(iii) there exists a compact set K ⊂ Ω such that supp(ϕl) ⊆ K for every l ∈ N and for
every α ∈ Nn

0 the sequence (∂αϕl)l∈N converges uniformly to 0.

Proof: Statement (iii) is just a reformulation of (ii) and the implication (ii) ⇒ (i) is clear
from the definition of τ (and (a) in the above lemma), hence it suffices to prove (i) ⇒ (ii).

Suppose (i) holds but (ii) were wrong, i.e., there is no compact subset K ⊂ Ω with the
properties stated. Then we can find an increasing sequence of compact sets K1 ⊂

◦
K2 ⊂

K2 ⊂
◦
K3 ⊂ K3 ⊂ . . . ⊂ Ω with

⋃
m∈N

◦
Km = Ω and a subsequence (ϕlm)m∈N such that

ϕlm ∈ DKm(Ω) \ DKm−1(Ω) for every m ∈ N (note that (i) and supp(ϕl) ⊆ K for every l ∈ N
would imply ϕl → 0 in DK(Ω)). Any compact subset of Ω is contained in some Km, since the
sets

◦
Km (m ∈ N) provide an increasing open cover of Ω. Therefore, D(Ω) =

⋃
m∈N DKm(Ω).

Choose xm ∈
◦
Km \Km−1 with αm := |ϕlm(xm)| > 0. We have seen in the previous proof

of the lemma that the seminorms πm : ϕ 7→ |ϕ(xm)|/αm are τ -continuous on D(Ω). We
note that πm |DKr (Ω)= 0, if m > r. Hence for every ϕ ∈ D(Ω) there are at most finitely
many m ∈ N such that πm(ϕ) 6= 0 and we may define the seminorm π on D(Ω) by
π(ϕ) =

∑∞
m=1 πm(ϕ). If M ⊂ Ω is compact, there is some N ∈ N such that M ⊆ KN ,

which implies π |DM (Ω)=
∑N

m=1 πm |DM (Ω) and shows τM -continuity of the restriction. Thus,
π ∈ P , in particular, π is τ -continuous.

Since ϕl → 0 by assumption, we have π(ϕlm)→ π(0) = 0 (m→∞), but at the same time
π(ϕlm) ≥ πm(ϕlm) = 1, a contradiction.

7.2. Definition: The dual space of (D(Ω), τ) is denoted by D ′(Ω) and called the space of
distributions on Ω.

7.3. Theorem: Let T : D(Ω)→ C be linear, then the following are equivalent:

(i) T ∈ D ′(Ω), i.e., T is continuous,

(ii) for every compact set K ⊂ Ω, the restriction T |DK(Ω) is continuous on DK(Ω),
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(iii) for every compact set K ⊂ Ω, there are m ∈ N0 and c > 0 such that

∀ϕ ∈ DK(Ω) : |T (ϕ)| ≤ c pm(ϕ) = c max
|α|≤m

sup
x∈Ω
|∂αϕ(x)|,

(iv) sequential continuity of T at 0, i.e., ϕl → 0 in D(Ω) implies Tϕl → 0 in C.

Proof: (i) ⇔ (ii) is a special case of (d) in Lemma 7.1.

(ii) ⇔ (iii) holds, because the seminorms pm generate the topology τK on DK(Ω).

(i) ⇒ (iv) is the general topological fact that continuity implies sequential continuity.

(iv) ⇒ (ii): We immediately obtain the sequential continuity of T |DK(Ω) on DK(Ω). The
locally convex topology τK on DK(Ω) is generated by the countable set of seminorms
{pm | m ∈ N0}. It is a routine exercise to show that, generally in a locally convex vector
space in these circumstances, we obtain a metric inducing the same topology by setting
(see, e.g., [Kab14, Satz 1.1])

d(ϕ, ψ) :=
∞∑
m=0

2−m
pm(ϕ− ψ)

1 + pm(ϕ− ψ)
(ϕ, ψ ∈ DK(Ω)).

(For the proof of the triangle inequality, it is advisable to make use of the fact that t 7→ t/(1 + t) is an increasing function [0,∞[→ R.

Thus, we have seen that (DK(Ω), τK) is a metrizable space, therefore sequential continuity
of T |DK(Ω) implies continuity.

7.4. Remark: The constant c as well as the nonnegative integer m in condition (iii) of the
above theorem depend, in general, on the compact setK. In case a uniformm can be found
for all K, then the minimum of these numbers m is called the order of the distribution.

7.5. Examples: 1) The linear functional Tf , defined for any f ∈ L1
loc(Ω) in observation

(a) of the introduction to the current section, is indeed a distribution. For every compact
K ⊂ Ω and ϕ ∈ DK(Ω), we have

|Tf (ϕ)| ≤
∫
Ω

|f(x)||ϕ(x)| dx ≤
∫
K

|f(x)| dx · sup
x∈Ω
|ϕ(x)| = ‖f |K‖L1 · p0(ϕ),

hence Tf ∈ D ′(Ω) (and of order 0).

Moreover, the map f 7→ Tf is linear and injective and the distributions in the image of
this embedding L1

loc(Ω) ↪→ D ′(Ω) are called regular distributions.
(Proof of the injectivity: If Tf = 0, then

∫
Ω
fϕ = 0 for every ϕ ∈ D(Ω). Let K ⊂ Ω be

a compact set, then we can apply standard approximation procedures2 to manufacture a
2The construction sketched in [Wer18, S. 461] is as follows: Consider the compact sets Kl := {x ∈ Ω |
d(x,K) ≤ 1/l}; we have K =

⋂∞
l=1Kl; choose ϕ0 ∈ D(Rn) with supp(ϕ0) ⊆ {|x| ≤ 1} and

∫
ϕ0 = 1

and put ϕl(x) :=
∫
Kl
lnϕ0(l(x−y)) dy for every x ∈ Ω; then ϕl is smooth (integration with parameters),

has supp(ϕl) ⊆ Kl + {|x| ≤ 1/l}, and satisfies ϕl(x) = 1, if x ∈ K.
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uniformly bounded sequence (ϕl)l∈N in D(Ω) with ϕl → χK pointwise, thus, dominated
convergence implies

∫
K
f =

∫
χKf = lim

∫
ϕlf = 0. Since K was arbitrary and the

compact sets generate the Borel sigma algebra B(Ω) (on the σ-compact Hausdorff space Ω,
[Els11, Kapitel 1, Folgerung 4.2]), we obtain3

∫
A∩K f = 0 for every A ∈ B(Ω) and every

compact set K ⊂ Ω. Therefore, f |K = 0 almost everywhere for every compact subset
K (by [Els11, Kapitel IV, Satz 4.4]), which implies f = 0 almost everywhere, since Ω is
σ-compact.)

2) Let µ be a complex Borel measure on Ω (recall that µ is a regular measure by Lemma
0.16). Then

µ(ϕ) :=

∫
Ω

ϕdµ

defines a distribution (of order 0), since |µ(ϕ)| ≤ |µ|(K) · p0(ϕ) for every ϕ ∈ DK(Ω). An
argument as in 1) shows that also here the map assigning the functional to each measure is
injective. A prominent example, mentioned already in observation (a) of the introduction,
is the Dirac distribution δx0 concentrated at the point x0 ∈ Ω, which is obtained from the
Dirac measure at x0 and acts by δx0(ϕ) = ϕ(x0).

We can easily show that δx0 is not a regular distribution: Suppose δx0 = Tf for some
f ∈ L1

loc(Ω), then Ω0 := Ω \ {x0} is an open subset of Rn and D(Ω0) ↪→ D(Ω), since
any smooth function with compact support in Ω0 can be extended by 0 outside to give an
element in D(Ω) (compact sets have finite distance to the boundary of any surrounding open
set). By slight abuse of notation, we have Tf |Ω0

= (Tf )|D(Ω0) = δx0|D(Ω0) = 0 and injectivity
of L1

loc(Ω0) 3 g 7→ Tg ∈ D ′(Ω0) yields that f |Ω0 = 0 almost everywhere. Therefore, we
obtain f = 0 almost everywhere, which would imply δx0 = 0, a contradiction, since there
are functions ϕ ∈ D(Ω) with ϕ(x0) = 1.

3) The linear functional T (ϕ) := ϕ′(0) is a distribution (of order 1) on R, i.e., T ∈ D ′(R),
since |T (ϕ)| ≤ p1(ϕ). (A proof that T is not of order 0 can be obtained from testing with
functions ϕn(x) := ϕ0(nx), where ϕ0 ∈ D(R) satisfies ϕ0(0) = 1, ϕ′0(0) = 1.)

4) The linear functional T (ϕ) :=
∑∞

n=0 ϕ
(n)(n) is defined on all of D(R) and continuous,

since with N ∈ N sufficiently large such that supp(ϕ) ⊆ [−N,N ], we obtain4 |T (ϕ)| ≤∑N−1
n=0 |ϕ(n)(n)| ≤ N · pN−1(ϕ). This distribution is not of finite order.

In observation (b) of the introductory paragraphs to the current section we have indicated a
way to extend (the linear operation of) differentiation from function spaces to distributions
by mimicking the integration by parts formula and “letting the derivatives fall on the test
function”. This can be described most systematically in terms of the general concept of an
adjoint to a linear map.

3Note that we may not suppose that
∫
A
f exists for every A ∈ B(Ω), since f need not be integrable on

non-compact sets.
4Note that ϕ vanishes of infinite order at the boundary of its support, hence ϕ(N)(N) = 0.
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7.6. Definition: Let X and Y be locally convex spaces and L : X → Y be a continuous
linear map. The adjoint of L is defined as the linear map L′ : Y ′ → X ′, given by L′(y′) :=
y′ ◦ L for every y′ ∈ Y ′.

7.7. Remark: Recall that (X ′σ(X′,X))
′ = X by Corollary 6.2. For every x ∈ X =

(X ′σ(X′,X))
′, the map x◦L′ : Y ′ → K is given by (x◦L′)(y′) = L′(y′)(x) = (y′◦L)(x) = y′(Lx)

and thus a σ(Y ′, Y )-continuous linear functional. Therefore, Proposition 6.3 implies that
L′ is continuous as linear map (Y ′, σ(Y ′, Y ))→ (X ′, σ(X ′, X)), i.e., adjoints of continuous
linear maps are always weak* continuous.

7.8. Differentiation of distributions: If α ∈ Nn
0 , then ϕ 7→ (−1)|α|∂αϕ defines a con-

tinuous linear map D(Ω)→ D(Ω), since pm(∂αϕ) ≤ pm+|α|(ϕ) shows continuity DK(Ω)→
DK(Ω) for every compact set K ⊂ Ω and Lemma 7.1(d) applies. We define ∂α : D ′(Ω) →
D ′(Ω) to be the adjoint of this map, i.e.,

(∂αT )(ϕ) := (−1)|α| T (∂αϕ) (ϕ ∈ D(Ω), T ∈ D ′(Ω)).

By the above remark, ∂α is weak* continuous, and the formula of integration by parts
(in several variables with iterated integrals and vanishing boundary terms due to compact
support of the test functions) shows that the new definition of ∂α is consistent when applied
to regular distributions stemming from functions that are sufficiently often continuously
differentiable, i.e., ∂αTf = T∂αf in these cases.

Examples: 1) The Heaviside function is H := χ[0,∞[ ∈ L∞(R) ⊂ L1
loc(R) ↪→ D ′(R). We

have

(TH)′(ϕ) = −TH(ϕ′) = −
∞∫

0

ϕ′(x) dx = ϕ(0) = δ0(ϕ) (ϕ ∈ D(R)).

Furthermore, (TH)′′(ϕ) = TH(ϕ′′) = −ϕ′(0) = −δ0(ϕ′) = δ′0(ϕ).

2) The (class of the) measurable function f , given by f(x) := log(|x|), belongs to L1
loc(R)

and we obtain, for every ϕ ∈ D(R),

(Tf )
′(ϕ) = −Tf (ϕ′) = −

∞∫
−∞

ϕ′(x) log(|x|) dx = −
∞∫

0

(ϕ′(x) + ϕ′(−x)) log(x) dx

= −
∞∫

0

(ϕ(x)− ϕ(−x))′ log(x) dx = − lim
ε>0,ε→0

∞∫
ε

(ϕ(x)− ϕ(−x))′ log(x) dx

= − lim
ε>0,ε→0

(
(ϕ(x)− ϕ(−x)) log x

)∣∣∞
ε

+ lim
ε>0,ε→0

∞∫
ε

ϕ(x)− ϕ(−x)

x
dx

= lim
ε>0,ε→0

∞∫
ε

ϕ(x)− ϕ(−x)

x
dx =

∞∫
0

ϕ(x)− ϕ(−x)

x
dx,
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since ϕ(x) − ϕ(−x) = 2xϕ′(0) + O(x2) near x = 0 and ϕ has compact support. The
distribution vp(1/x) := (Tf )

′ is called the Cauchy principal value of 1
x
, since its action on

a test function is equivalently given by

vp(
1

x
)(ϕ) = lim

ε>0,ε→0

∫
|x|>ε

ϕ(x)

x
dx.

Note that, with the classical pointwise derivative, we have (log(|x|))′ = 1/x on R \ {0}.

7.9. Fourier transform of temperate distributions: Finally, we will briefly discuss the
extension of the Fourier transform beyond L1(Rn) and L2(Rn). Our goal is to define it as the
adjoint of the classical Fourier transform on an appropriate test function space. As it turns
out, D(Rn) is not suitable for that purpose, since the Fourier transform Fϕ of a compactly
supported function ϕ is easily seen to define an entire function on Cn and thus Fϕ cannot
have compact support too, unless ϕ = 0. However, a good alternative is the Schwartz
space S (Rn) with seminorms pα,m(ϕ) := supx∈Rn(1+ |x|m) |∂αϕ(x)| (m ∈ N0, α ∈ Nn

0 ). Its
dual, the space of temperate distributions S ′(Rn), has been introduced already in Example
5.9.1), where we have also seen that Lp(Rn) ↪→ S ′(Rn) (1 ≤ p ≤ ∞) via the map f 7→ Tf ,
Tf (ϕ) =

∫
Rn fϕ. It is not difficult to show (see [Wer18, Satz VIII.5.11]) that the identical

embedding D(Rn) ↪→ S (Rn) is continuous with dense image and therefore has an injective
adjoint S ′(Rn) ↪→ D ′(Rn). Thus, every temperate distribution is a distribution.

Recall (or take for granted or look-up in [Wer18, Section V.2] or [Con16, Theorem 6.1] or
[Con10, Chapter X, §6]) that F, defined by

Fϕ(x) =
1

(2π)n/2

∫
Rn

e−ixξ ϕ(x) dx (ϕ ∈ S (Rn), x ∈ Rn),

is a bijective linear map S (Rn)→ S (Rn) with inverse given by

(F−1ψ)(x) =
1

(2π)n/2

∫
Rn

eixξ ψ(ξ) dξ = (Fψ)(−x).

Moreover, we have the so-called “exchange formulae”

∂α(Fϕ) = (−i)|α|F(xαϕ) and F(∂αϕ) = i|α|ξαFϕ

and, by a simple application of Fubini’s theorem, we obtain also

(∗)
∫
Rn

(Fψ)(ξ) · ϕ(ξ) dξ =

∫
Rn

ψ(x) · (Fϕ)(x) dx.

An equivalent, technically convenient, family of seminorms on S (Rn) is given by

qα,Q(ϕ) := sup
x∈Rn
|Q(x)∂αϕ(x)|,

where Q is a polynomial function on Rn.
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Lemma: (a) For every α ∈ Nn
0 , the assignments ϕ 7→ xαϕ and ϕ 7→ ∂αϕ define continuous

linear maps S (Rn)→ S (Rn).

(b) There is a constant c > 0 such that

∀ϕ ∈ S (Rn)∀ξ ∈ Rn : |(Fϕ)(ξ)| ≤ c p0,n+1(ϕ).

Proof: (a): The Leiniz rule applied to ∂β(xαϕ(x)) yields an upper bound for pβ,m(xαϕ) in
the form of a finite sum with terms qβ,Qm+|α|−l (0 ≤ l ≤ max(|β|,m+ |α|)), where Qm+|α|−l
is a polynomial function of order at most m+ |α| − l. The continuity of ϕ 7→ ∂αϕ is even
more obvious, since pβ,m(∂αϕ) = pβ+α,m(ϕ).

(b): (2π)n/2|(Fϕ)(ξ)| = |
∫
Rn

e−ixξ ϕ(x) dx| ≤
∫
Rn

|ϕ(x)| dx ≤
∫
Rn

dx

1 + |x|n+1
· p0,n+1(ϕ).

By part (a) of this lemma and the embedding S ′(Rn) ↪→ D ′(Rn), we obtain differentiation
as linear map S ′(Rn) → S ′(Rn). Moreover, multiplication by polynomial functions is
obtained as linear map S ′(Rn) → S ′(Rn) as the transpose of the map in (a). For the
Fourier transform, we obtain the analogous result from the following

Theorem: Both F and F−1 are continuous linear maps S (Rn)→ S (Rn).

Proof: For any α ∈ Nn
0 and any polynomial function Q(ξ) =

∑
|γ|≤N aγξ

γ, we have to
give an upper bound of qα,Q(Fϕ) = supξ∈Rn |Q(ξ)∂α(Fϕ)(ξ)| in terms of finitely many
seminorms of ϕ. Let Q(−i∂) :=

∑
|γ|≤N aγ(−i)|γ|∂γ, then we have, by (b) in the above

lemma and the exchange formulae,

∀ξ ∈ Rn : |Q(ξ)(∂αFϕ)(ξ)| = |F(Q(−i∂)(xαϕ))(ξ)| ≤ c p0,n+1(Q(−i∂)(xαϕ)).

By part (a) in the above lemma, we have an upper bound for p0,n+1(Q(−i∂)(xαϕ)) in terms
of maxNj=1 pβj ,mj(ϕ), which completes the proof of continuity of F. Since (F−1ϕ)(x) =
(Fϕ)(−x), the continuity of F−1 follows as well.

Formula (∗) shows that on Schwartz functions, considered as regular temperate distribu-
tions, the Fourier transform is its own adjoint. Thus, we come up with the following

Definition: If T ∈ S ′(Rn), then its Fourier transform F T ∈ S ′(Rn) is defined by

(F T )(ϕ) := T (Fϕ) (ϕ ∈ S (Rn)),

i.e., as the adjoint of the Fourier transform on S (Rn).

The Fourier transform is a bijective5 linear map S ′(Rn)→ S ′(Rn) and it is easily verified
that the exchange formulae extend to S ′(Rn).

5It is easy to see that the adjoint of a bijective linear continuous map is bijective.
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Examples: 1) Let f ∈ L1(Rn) and ϕ ∈ S (Rn), then applying Fubini’s theorem we obtain

(F Tf )(ϕ) = Tf (Fϕ) =

∫
Rn

f(x) · (Fϕ)(x) dx =
1

(2π)n/2

∫
Rn

f(x)

∫
Rn

e−ixξϕ(ξ) dξ dx

=
1

(2π)n/2

∫
Rn

∫
Rn

e−ixξf(x) dxϕ(ξ) dξ =

∫
Rn

(Ff)(ξ) · ϕ(ξ) dξ = (TFf )(ϕ).

(Recall that, by the lemma of Riemann-Lebesgue, Ff is a continuous function [vanishing at
infinity], if f ∈ L1(Rn).) Similarly, one can show that also the classical Fourier-Plancherel
transform on L2(Rn) is consistently extended by the Fourier transform on S ′(Rn).

2) (Fδ0)(ϕ) = δ0(Fϕ) = (Fϕ)(0) =
1

(2π)n/2

∫
Rn

1 · ϕ(x) dx =
1

(2π)n/2
T1(ϕ).

3) (F T1)(ϕ) = (2π)n/2(F(Fδ0))(ϕ) = (2π)n/2δ0(FFϕ) and applying (Fϕ)(x) = (F−1ϕ)(−x)
we obtain

(F T1)(ϕ) = (2π)n/2δ0(FFϕ) = (2π)n/2ϕ(−0) = (2π)n/2ϕ(0) = (2π)n/2δ0(ϕ).
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Appendix

We restate and prove Lemma 0.13

Lemma: Let Ω ⊂ C be compact and (Bb(Ω), ‖.‖∞) be the Banach space of bounded
Borel measurable functions Ω→ C. Suppose U ⊆ Bb(Ω) has the following properties:

(a) C(Ω) ⊆ U ,

(b) fn ∈ U (n ∈ N), sup
n∈N
‖fn‖∞ <∞, and f(t) := lim

n→∞
fn(t) exists for every t ∈ Ω

=⇒ f ∈ U .

Then U = Bb(Ω).

Proof: Let S := {S ⊆ Bb(Ω) | S ⊇ C(Ω) and S satisfies (b)} and put V :=
⋂
S∈S S.

Clearly Bb(Ω) ∈ S , hence S 6= ∅ and C(Ω) ⊆ V ⊆ U . We will show that V = Bb(Ω).

Claim 1: V is a vector subspace.

For any f0 ∈ V put Vf0 := {g ∈ Bb(Ω) | f0 + g ∈ V }. Note that Vf0 possesses property (b).

If f0 ∈ C(Ω), then C(Ω) ⊆ Vf0 and Vf0 satisfies (b); hence Vf0 ∈ S and V ⊆ Vf0 , i.e.,

f0 ∈ C(Ω), g ∈ V =⇒ f0 + g ∈ V.

Thus, if g0 ∈ V , then f + g0 ∈ V for every f ∈ C(Ω); therefore C(Ω) ⊆ Vg0 and,
furthermore, Vg0 ∈ S ; this in turn implies V ⊆ Vg0 , i.e.,

g0 ∈ V, g ∈ V ⇒ g ∈ Vg0 ⇒ g0 + g ∈ V.

It remains to show that αg ∈ V , if α ∈ C and g ∈ V : Fix an arbitrary α ∈ C and put
Vα := {g ∈ Bb(Ω) | αg ∈ V }. Then C(Ω) ⊆ Vα and Vα satisfies (b), hence V ⊆ Vα, i.e.

g ∈ V =⇒ αg ∈ V.

Claim 2: The step functions are contained in V .

From Claim 1 we already know that V is a vector space, hence it suffices to show χE ∈ V
for any Borel set E ∈ B(Ω). Let ∆ := {E ∈ B(Ω) | χE ∈ V }.
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If E ⊆ Ω is open (in the subspace topology of Ω), then there is a sequence (fn) of functions
fn ∈ C(Ω) with 0 ≤ fn ≤ 1 and converging pointwise to χE. (Choose a compact exhaustion
E =

⋃
n∈NAn and let fn be an Urysohn function for the closed pair An and Ω\E.) Property (b)

applied to (fn) yields χE ∈ V , thus E ∈ ∆. Therefore ∆ contains the topology of Ω, which
is a generating system for the Borel sigma algebra B(Ω) stable under finite intersections.

By the theory of Dynkin systems from measure theory ([Els11, Kapitel I, §6.2] or [Bau01,
Chapter I, §2]), we obtain ∆ = B(Ω), if we prove the following two properties:
(1) E ∈ ∆ ⇒ Ω \ E ∈ ∆,
(2) if (En) is a sequence of pairwise disjoint sets in ∆, then E :=

⋃
n∈NEn ∈ ∆.

Property (1) holds, since 1 and χE belong to V and therefore also χΩ\E = 1 − χE. To
show (2) we simply note that χE =

∑
χEn in the sense of pointwise convergence, hence

(b) implies χE ∈ V .

It follows from Claims 1 and 2 that V is ‖.‖∞-dense in Bb(Ω). By property (b), every
S ∈ S is a closed subset of Bb(Ω), hence V is also closed and therefore V = Bb(Ω).

Sketch of the construction in 1.2 for compact normal operators

The unitary equivalence with a multiplication operator can be constructed along the fol-
lowing lines: There is an orthonormal (possibly finite) sequence of eigenvectors of T , say
W = {w1, w2, . . .} = {wj | j ∈ N}, where N = N or N = {1, . . . ,m} for some m ∈ N,
corresponding to the sequence d : N → C of all non-zero eigenvalues d(1), d(2), . . . (with
multiplicities) of T , which is either finite or converges to 0 ([Wer18, Theorem VI.3.2]),
such that H = ker(T ) ⊕ span(W ) (orthogonal direct sum). If ker(T ) 6= {0} extend W
by an orthonormal system K = {yr | r ∈ R} of ker(T ), where R ∩ N = ∅, to obtain an
orthonormal system B = W ∪ K of H and write B = {bs | s ∈ S}, where S = N ∪ R
and bs := wj, if s = j ∈ N , and bs := yr, if s = r ∈ R. Let es ∈ l2(S) be the complete
orthonormal system given by es(t) = 1, if t = s, and es(t) = 0 otherwise, and define U by
unique (uniformly continuous) extension of Ues := bs (s ∈ S) to l2(S) = span({es | s ∈ S).
Then TUes = 0, if s ∈ R, and TUes = d(s) bs, if s ∈ N , and therefore we have for any
x ∈ l2(S), (U−1TUx)(s) = 0 = 0x(s), if s ∈ R, and (U−1TUx)(s) = d(s)x(s), if s ∈ N ; in
other words, (U−1TUx)(s) = h(s)x(s), where h ∈ l∞(S) is given by h |R= 0 and h |N= d.

We restate and prove Theorem 1.5

Theorem (Continuous functional calculus): If T ∈ L(H) is self-adjoint, then there is
a unique map Φ: C(σ(T ))→ L(H) with the following properties:

(a) Φ(id) = T and Φ(1) = I,

(b) Φ is an involutive algebra homomorphism, i.e.,
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• Φ is C-linear,

• ∀f, g ∈ C(σ(T )): Φ(f · g) = Φ(f) · Φ(g),

• Φ(f̄) = Φ(f)∗,

(c) Φ is continuous with respect to the norm ‖.‖∞ on C(σ(T )), in fact, isometric,
i.e., ‖Φ(f)‖ = ‖f‖∞.

We write f(T ) instead of Φ(f) and call f 7→ f(T ) the continuous functional calculus of T .

Proof: Uniqueness: Because of (c) and thanks to the Stone-Weierstraß theorem applied to
the compact subset σ(T ) ⊆ R (cf., e.g., [Wer18, Satz VIII.4.7]), Φ is determined by the
values on polynomial functions; then by linearity, the knowledge of Φ(idn) suffices; finally,
by multiplicativity according to (b), this boils down to fixing Φ(id) and Φ(1), which are
determined by (a).

Existence: If f ∈ C(σ(T )) is the restriction of a polynomial function p(t) =
∑n

k=0 akt
k,

then we put Φ0(f) := p(T ) =
∑n

k=0 akT
k. Before we proceed, we have to show that Φ0

is well-defined6, i.e., if two polynomials p and q satisfy p |σ(T )= q |σ(T ), then p(T ) = q(T ).
This will be clarified once we have shown the following two claims for a polynomial p:

(i) σ(p(T )) = {p(λ) | λ ∈ σ(T )} = p(σ(T )),

(ii) ‖p(T )‖ = sup
λ∈σ(T )

|p(λ)| = ‖p |σ(T )‖∞.

Proof of (i): This is obvious for constant polynomials, hence we may suppose deg(p) ≥ 1.

Let λ ∈ σ(T ). We may write p(t) − p(λ) = (t − λ)h(t) with some polynomial h 6= 0 and
obtain p(T ) − p(λ) = (T − λ)h(T ). Due to the commutativity of λ − T with h(T ) and
p(T )− p(λ), continuous invertibility of p(T )− p(λ) would then imply the same for T − λ,
hence p(λ) ∈ σ(p(T )). Thus, p(σ(T )) ⊆ σ(p(T )).

Let µ ∈ σ(p(T )), then deg(p − µ) ≥ 1 and we have a polynomial factorization p(t) − µ =
c(t − λ1) · · · (t − λm) with λ1, . . . , λm ∈ C and c ∈ C \ {0}, which yields p(T ) − µ =
c(T − λ1) · · · (T − λm). If λj belonged to ρ(T ) for every j = 1, . . . ,m, then p(T )−µ would
be continuously invertible, a contradiction; hence λj ∈ σ(T ) for some j and therefore
µ = p(λj) ∈ p(σ(T )). Thus, σ(p(T )) ⊆ p(σ(T )).

Proof of (ii): Elementary calculations show that p 7→ p(T ) is an involutive algebra ho-
momorphism from polynomials into L(H). Note that p(T ) is normal, since p(T )∗p(T ) =
p(T )p(T ) = (pp)(T ) = (pp)(T ) = p(T )p(T )∗, and thus has norm equal to its spectral radius
([Wer18, Satz VI.1.7]). We obtain

‖p(T )‖ = sup{|µ| | µ ∈ σ(p(T ))} = sup{|p(λ)| | λ ∈ σ(T )} = sup
λ∈σ(T )

|p(λ)|.

6Note that σ(T ) can be a finite discrete subset of R.
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We have now shown that the map Φ0 is well-defined on the space V0 of polynomial functions
on σ(T ) and gives an involutive algebra homomorphism into L(H) which is isometric due
to Claim (ii), since ‖Φ0(f)‖ = ‖f‖∞ for any f ∈ V0; in particular, Φ0 is continuous. Let Φ
denote the unique continuous linear extension of Φ0 to C(σ(T )) (making use of the density of
V0 due to the Stone-Weierstraß theorem). That Φ is isometric follows directly from the density
of the polynomial functions and Claim (ii) above. It remains to show that Φ is involutive
and multiplicative, which follows from routine arguments using limits of polynomials and
the fact that Φ0 is already known to be involutive and multiplicative.
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