Fact A: Let $s_{1}, s_{2} \in \mathbb{R}$ such that $s_{1}+s_{2} \geq 0$. Then $H^{s_{1}}\left(\mathbb{R}^{2}\right) \cdot H^{s_{2}}\left(\mathbb{R}^{2}\right) \subseteq H^{s_{0}}\left(\mathbb{R}^{2}\right)$, provided

$$
s_{0} \leq \begin{cases}\min \left(s_{1}, s_{2}, s_{1}+s_{2}-1\right), & \text { if } s_{1} \neq 1, s_{2} \neq 1, \text { and } s_{1}+s_{2}>0 \\ \min \left(s_{1}, s_{2}, s_{1}+s_{2}-1-\varepsilon\right), & \text { with } \varepsilon>0 \text { arbitrary, otherwise }\end{cases}
$$

(Special case of [1, Theorem 8.3.1]: Let $s_{1}, s_{2} \in \mathbb{R}, s_{1}+s_{2} \geq 0$, then $H^{s_{1}}\left(\mathbb{R}^{n}\right) \cdot H^{s_{2}}\left(\mathbb{R}^{n}\right) \subseteq H^{s_{0}}\left(\mathbb{R}^{n}\right)$, provided

$$
s_{0} \leq \begin{cases}\min \left(s_{1}, s_{2}, s_{1}+s_{2}-n / 2\right), & \text { if } s_{1} \neq n / 2, s_{2} \neq n / 2, \text { and } s_{1}+s_{2}>0 \\ \min \left(s_{1}, s_{2}, s_{1}+s_{2}-n / 2-\varepsilon\right), & \text { with } \varepsilon>0 \text { arbitrary }, \text { otherwise }\end{cases}
$$

The proof also shows that the following estimate holds $\forall w_{j} \in H^{s_{j}}\left(\mathbb{R}^{n}\right)$:

$$
\left\|w_{1} \cdot w_{2}\right\|_{H^{s_{0}}} \leq C\left(s_{1}, s_{2}, s_{0}, n\right)\left\|w_{1}\right\|_{H^{s_{1}}}\left\|w_{2}\right\|_{H^{s_{2}}}
$$

Therefore we obtain continuity of the multiplication $H^{s_{1}} \times H^{s_{2}} \rightarrow H^{s_{0}}$.
Corollary: (i) $s_{1}>s_{2}>n / 2 \Longrightarrow H^{s_{1}} \cdot H^{s_{2}} \subseteq H^{s_{2}}$. (ii) $\sigma>n / 2 \Longrightarrow H^{\sigma}\left(\mathbb{R}^{n}\right)$ is an algebra.)
Fact B: $\exists F \in \mathcal{C}^{\infty}(\mathbb{R})$ with $F(0)=0$, such that

$$
\frac{1}{c(x)}=\frac{1}{c_{0}}+F\left(c_{1}(x)\right), \quad \text { where } \quad F \circ c_{1} \in H^{r+1}\left(\mathbb{R}^{2}\right) \text {. }
$$

(To find F, simply set $F(y):=-y /\left(c_{0}\left(c_{0}+y\right)\right)$ when $y \geq-c_{0} / 2$ and extend it to a smooth function on \mathbb{R}. Since $r>0$ and $H^{1+r}\left(\mathbb{R}^{2}\right) \subseteq L^{\infty}\left(\mathbb{R}^{2}\right)$, we obtain $F \circ c_{1} \in H^{r+1}\left(\mathbb{R}^{2}\right)$ from [1, Theorem 8.5.1].)

Fact C: For any $v \in L^{2}\left(\mathbb{R}^{2}\right)$ the following equation holds in $\mathscr{S}^{\prime}\left(\mathbb{R}^{2}\right)$:

$$
\begin{equation*}
A v=\operatorname{div}(c \operatorname{grad} v)=\Delta(c v)-\operatorname{div}(v \operatorname{grad} c) \tag{C1}
\end{equation*}
$$

Proof is part of Blackboard discussion 1
(Under the stronger assumption $v \in H^{r+1}\left(\mathbb{R}^{2}\right)$ we have in addition

$$
\begin{equation*}
A v=\operatorname{grad} c \cdot \operatorname{grad} v+c \Delta v \tag{C2}
\end{equation*}
$$

in $\mathscr{S}^{\prime}\left(\mathbb{R}^{2}\right)$. (The meaning of the products on the right-hand side is as follows: since $\Delta v \in H^{r-1}$, Fact A applies and yields $c \Delta v \in H^{r-1}$; furthermore, $\operatorname{grad} c$ and $\operatorname{grad} v$ both lie in H^{r}, so that a repeated application of Fact A shows that their euclidean inner product belongs to $H^{\min (r, 2 r-1)}$.))

References

[1] L. Hörmander. Lectures on Nonlinear Hyperbolic Differential Equations. Springer-Verlag, Berlin Heidelberg, 1997.
[2] M. Oberguggenberger. Multiplication of distributions and applications to partial differential equations. Longman Scientific \& Technical, 1992.

[^0]
[^0]: ${ }^{\text {T }}$ Compare this with the dimension-independent statement [2, Proposition 5.2], which describes a duality-type continuous multiplication map $W_{\mathrm{loc}}^{m, q} \times W_{\mathrm{loc}}^{l, p} \rightarrow W_{\mathrm{loc}}^{k, r}$, where $k=\min (l, m)$ and $\frac{1}{r}=\frac{1}{q}+\frac{1}{p}$ under the conditions $l, m \in \mathbb{Z}, l+m \geq 0,1 \leq p, q \leq \infty, \frac{1}{q}+\frac{1}{p} \leq 1$.

