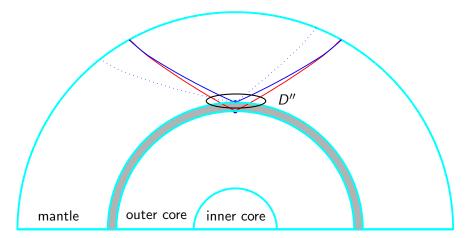
# One or two exotic aspects from our recent work on Schrödinger-type equations

#### Günther Hörmann

- A) de Hoop-Hörmann-Oberguggenberger: Evolution systems for paraxial wave equations of Schrödinger-type with non-smooth coefficients, Jour.Diff.Equs. 2008
- B) Hörmann: The Cauchy problem for Schrödinger-type partial differential operators with generalized functions in the principal part and as data, arXiv:0909.5672v1 [math.FA]

DIANA Seminar WS 2009

## Core reflected seismic waves in the earth



D'' layer above the core-mantle boundary (at approx. 2800km depth) core-reflected wave and two precursors locally near D''-layer: tangential direction of propagation z, radial-lateral coordinates  $x = (x_1, x_2)$  perpendicular to propagation.

## Model equations

basic seismic scattering: 2nd-order system of elastodymamics material properties ++++ regularity structure of the coefficients

<u>Remark</u>: (wavelet analysis of) measurements of sound speed [1998]: regularity in volcanic rock  $C_*^{r_1}$  and in sandstone  $C_*^{r_2}$ , where  $1 > r_1 > r_2 > 0$ .

 paraxial approximation ~→ Schrödinger-type equation (depth z as evolution variable and "ΨDO-parameter" time t)

$$\partial_z u - i \underbrace{\left( \partial_{x_1} \left( c_1(z, x, D_t) \partial_{x_1} u \right) + \partial_{x_2} \left( c_2(z, x, D_t) \partial_{x_2} u \right) \right)}_{A(z; x, D_x, D_t) u} = 0,$$

with  $c_1(z, x, \tau)$ ,  $c_2(z, x, \tau)$  positive symbols of order -1 in  $\tau$ ,  $C^1$  with respect to z, but *x*-regularity non-Lipschitz, typically  $H^{r+1}$  or  $C_*^r$  with r < 1.

# Wishes, questions, and aims

1. measure *u* 

?

] unique solvability of corresponding Cauchy problem for wave component  $\overset{z}{\downarrow} \qquad \overset{z}{\downarrow} \qquad \overset{$ 

with high(est possible)  $s \in \mathbb{R}$ . (assuming data are suff. reg.)



estimate bounds for (Hölder- or) Sobolev-regularity s in terms of the coefficient regularity r; e.g., in the form  $s \ge f(r)$ 



- intended Application: decision support
  - [seismograms]
- 2. estimate x-regularity  $\overline{s}$  [numerical wavelet analysis]
- 3. materials with  $C_*^r$  with  $\overline{s} < f(r)$  are ruled out



wider range of applications: discontinuous or distributional coefficients, initial data, and right-hand side

# Solution with spatial $H^2$ -regularity

• elliptic x-regularity for  $A(z; x, D_x, \tau)$  via "bootstrap" techniques based on duality products in Sobolev spaces

Blackboard discussion 1

• establish  $(A(z; x, D_x, \tau))_{z \ge 0}$  as a  $(\tau$ -parametrized) generating family of a strongly-continuous evolution system  $(U(\tau; z_1, z_2))_{z_1 \ge z_2 \ge 0}$  on  $L^2(\mathbb{R}^2)$  (with additional s-cont. dependence on frequency  $\tau$ )

**Thm. A:**  $J \subseteq [0, \infty[$  compact interval. The Cauchy problem

$$\begin{split} \partial_z u - \mathrm{i}\, A(z; x, D_x, D_t) u &= f \in \mathcal{C}^1(J, L^1(\mathbb{R}, L^2(\mathbb{R}^2))) \\ u \mid_{z=0} &= u_0 \in L^1(\mathbb{R}, H^2(\mathbb{R}^2)). \end{split}$$

has a unique solution  $u \in \mathcal{C}^1_w(J, H^{-1/2}(\mathbb{R}; H^2(\mathbb{R}^2)))$ .

More general coefficients and data, more general form of the operator, and in arbitrary space dimension n

$$\partial_t u - \mathrm{i} \sum_{k=1}^n \partial_{x_k} (c_k \partial_{x_k} u) - \sum_{k=1}^n a_k \partial_{x_k} u - V u = f, \quad u \mid_{t=0} = u_0.$$

**Regularization idea:** e.g.  $\mathcal{C}^{\infty} \ni u_{0\varepsilon} \to u_0$  ( $\varepsilon \to 0$ ) etc ... or, more generally, replace  $u_0$  by a net  $(u_{0\varepsilon})_{0 < \varepsilon \le 1}$  of  $\mathcal{C}^{\infty}$  functions, convergent or not, but with moderate asymptotics:

$$\forall k \exists m: \quad \|u_{0\varepsilon}\|_{H^k} = O(\varepsilon^{-m}) \quad (\varepsilon \to 0).$$

- similarly for right-hand side and coefficients. **Example:**  $u_0 = \mu$  probability measure on  $\mathbb{R}^n$  (quantum mechanics) ? construct  $u_{0\varepsilon}$  moderate  $\mathcal{C}^{\infty}$ -net with  $u_{0\varepsilon}^2 \to \mu$  ( $\varepsilon \to 0$ ) - in this sense  $(u_{0\varepsilon})_{0<\varepsilon \leq 1}$  represents a square root of  $\mu$ . Blackboard discussion 2

## Generalized function interpretation

Moderate net of solutions  $u_{\varepsilon}$  ( $0 < \varepsilon \leq 1$ ): constructed from variational methods (energy estimates, Galerkin approximation); smoothness shown step by step and using mild solution concept; asymptotic estimates of higher derivatives from differentiated PDE and corresponding energy inequalities imply moderateness,

provided  $\|\partial_t c_{j\varepsilon}\|_{L^{\infty}} = O(\log(\frac{1}{\varepsilon}))$  ( $\varepsilon \to 0$ ). [log-type condition]

Asymptotic uniqueness: negligible errors in data, i.e.,

$$\forall k \,\forall p: \quad \|u_{0\varepsilon} - \widetilde{u_{0\varepsilon}}\|_{H^k} = O(\varepsilon^p) \quad (\varepsilon \to 0)$$

(and similarly for right-hand side and coefficients)  $\sim$  negligible errors in solutions.

**Interpretation alias** Thm. B: There exists a unique generalized function solution, namely  $u = \text{class of } (u_{\varepsilon})_{0 < \varepsilon \le 1} \text{ modulo negligible nets}$ in the Colomboau algebra  $C_{\varepsilon}$ 

in the Colombeau algebra  $\mathcal{G}_{H^{\infty}}$ .

Coherence, convergence, and regularity

Prop:  $C^{\infty}$ -coefficients,  $u_0 \in H^1(\mathbb{R}^n)$ ,  $f \in C^1([0, T], L^2(\mathbb{R}^n))$ , unique "classical" solution  $w \in C([0, T], H^1(\mathbb{R}^n))$  [Lions-Magenes]

 $\implies$  (solution Thm. B)  $u \approx w$ , i.e.,  $u_{arepsilon} o w$  in  $\mathcal{D}'$  (arepsilon o 0)