Familienname:	1
Vorname:	$\parallel \frac{1}{2}$
Matrikelnummer:	3
Studienkennzahl:	4
	$oxed{\mathbf{G}}$
□ A. Čap	
□ H. Schichl	

Note:

Prüfung über "Einführung in das mathematische Arbeiten" und den Schulstoff (18.1.2013)

- (1) (a) (Algebra) Definieren Sie den Begriff Ring, indem Sie, analog zu den Körperaxiomen, die einzelnen Gesetze aufzählen.
 - (4 Punkte)
 - (b) (Mengenlehre) Wann nennt man zwei Mengen A und B gleichmächtig? Beweisen Sie, dass \mathbb{N} und \mathbb{Z} gleichmächtig sind. (2 Punkte)
 - (c) (Logik) Verneinen Sie die Aussage

$$\forall r \in \mathbb{R} : \exists N \in \mathbb{N} : N > r.$$

(1 Punkte)

- (d) (Abbildungen) Definieren Sie die Begriffe bijektiv und Umkehrfunktion. Beweisen Sie, dass die Verknüpfung zweier surjektiver Abbildungen wieder surjektiv ist. (3 Punkte)
- (2) (a) (Analytische Geometrie) Gegeben sei die Strecke \overline{PQ} mit den Endpunkten P = (1,0,-1) und Q = (3,-1,2), sowie die Ebene $\varepsilon : x+2y-2z=4$.
 - (i) Bestimmen Sie die Endpunkte P' und Q' der Strecke, die durch Spiegeln von \overline{PQ} an ϵ entsteht.
 - (ii) Berechnen Sie den Flächeninhalt des Vierecks PP'Q'Q.

(5 Punkte)

(b) (Relationen) Sei M eine Menge. Was versteht man unter einer Ordnungsrelation auf M? Was bedeutet in diesem Zusammenhang vergleichbar? Wie ist der Begriff Supremum definiert? (3 Punkte)

WEITER AUF DER RÜCKSEITE!

(3) (Kurvendiskussion) Die Polynomfunktion vierten Grades $f : \mathbb{R} \to \mathbb{R}$ hat an der Stelle 1 den Wert $\frac{12}{25}$. Die erste Ableitung von f lautet

$$f'(x) = 4x^3 - \frac{27}{25}x.$$

- (a) Bestimmen Sie die Funktionsgleichung von f. (2 Punkte)
- (b) Bestimmen Sie die Nullstellen von f. (2 Punkte)
- (c) Berechnen Sie die Extremwerte, Wendepunkte, sowie die Wendetangenten von f. (4 Punkte)
- (d) Bestimmen Sie das asymptotische Verhalten gegen $\pm \infty$. (1 Punkt)
- (e) Berechnen Sie

$$\int_{-1}^{1} f(x) \, dx.$$

(1 Punkt)

(4) (a) (Induktion) Beweisen Sie mittels vollständiger Induktion, dass für alle $n \geq 1$

$$\sum_{j=1}^{n} \frac{1}{j(j+1)} = \frac{n}{n+1}$$

gilt. (4 Punkte)

- (b) (Beweise) Beweisen Sie, dass
 - (i) in einem Ring $(R, +, \cdot, 0)$ für jedes $r \in R$ gilt, dass r0 = 0. (1 Punkt)
 - (ii) in einem Monoid inverse Elemente eindeutig bestimmt sind. (1 Punkt)
 - (iii) für eine Abbildung $f: X \to Y$ und Teilmengen $A, B \subseteq Y$ gilt, dass $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$. (2 Punkte)
- (c) (Komplexe Zahlen) Bestimmen Sie die Nullstellen des Polynoms

$$z^3 - (2-5i)z^2 - (7-i)z$$

und geben Sie die Lösungen in der Form a + ib an. (4 Punkte)