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Abstract
We consider square, sparse nonlinear systems of equations whose Jacobian is structurally
nonsingular, with reasonable bound constraints on all variables. We propose an algorithm
for finding good approximations to all well-separated solutions of such systems. We assume
that the input system is ordered such that its Jacobian is in bordered block lower triangular
form with small diagonal blocks and with small border width; this can be performed fully
automatically with off-the-shelf decomposition methods. Five decades of numerical experi-
ence show that models of technical systems tend to decompose favorably in practice. Once
the block decomposition is available, we reduce the task of solving the large nonlinear sys-
tem of equations to that of solving a sequence of low-dimensional ones. The most serious
weakness of this approach is well-known: It may suffer from severe numerical instability.
The proposed method resolves this issue with the novel backsolve step. We study the effect
of the decomposition on a sequence of challenging problems. Beyond a certain problem size,
the computational effort of multistart (no decomposition) grows exponentially. In contrast,
thanks to the decomposition, for the proposed method the computational effort grows only
linearly with the problem size. It depends on the problem size and on the hyperparameter
settings whether the decomposition and the more sophisticated algorithm pay off. Although
there is no theoretical guarantee that all solutions will be found in the general case, increasing
the so-called sample size hyperparameter improves the robustness of the proposed method.
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1 Introduction

1.1 Aims

We consider square nonlinear systems

F(x) = 0,
x ≤ x ≤ x,

(1)

where F : R
n �→ R

n is a continuously differentiable vector-valued function, and whose
Jacobian is structurally nonsingular; x and x denote the vector of lower and upper bounds,
respectively on the components of x . The task we pose is to find a reasonably small set of
points such that every solution of (1) is close to one of the points in this set. An algorithm
solving this task finds in particular good approximations to all well-separated solutions. Even
for problems with an infinite number of solutions, only a finite number of points need to be
generated.

The task that we just posed is computationally intractable in general; we have to make
further assumptions. We assume that (1) has already been ordered such that its Jacobian is
in bordered block lower triangular form with small blocks and with small border width; the
formal definition of bordered block lower triangular forms is given in Sect. 1.3. In Sect. 1.4
we give references how (1) can be ordered to the desired bordered block lower triangular form
fully automatically and efficiently.We argue in Sect. 1.5 why the models of technical systems
tend to decompose favorably in practice, and why the proposed method is expected to be
useful across many engineering fields, e.g., mechanical, electrical, chemical, and aerospace
engineering. Further (less limiting) assumptions are given in Sect. 1.6. The last one of our
assumptions is given in Sect. 3, after the overview of the proposed method; this is necessary
for better understanding of this particular assumption.

1.2 Terminology

We refer to the number dim x of components of a vector x as its dimension. The structural
rank of a matrix A is the maximum number of nonzero entries that can be permuted onto
the diagonal with suitable row and column permutations. (It is also known as the maximal
size of a transversal, of a maximum assignment, or of a maximum matching in the bipartite
sparsity graph of A.) The structural rank is an upper bound on the numerical rank of A. A
is nonsingular for some numerical values of its nonzero entries if and only if it is possible
to permute the rows and columns of A in such a way that the diagonal is zero free. Such a
matrix is called structurally nonsingular.

In an engineering application it is usually not meaningful to distinguish two solutions that
are too close due to the intrinsic uncertainty of every real-life model. We therefore call a set
P of points well-separated if, for any distinct points p, q ∈ P , the distance ‖p − q‖2 is
above a small threshold δ specified by the user, for example δ = 10−4.

Array slicing notation. The shorthand p:q is used for the ordered index set p, p +
1, . . . , q , where p ≤ q . When forming the subvector vp:q of a vector v, p:q is cropped
appropriately if necessary; that is, invalid indices are ignored. The index set p:q is considered
empty if p > q , and the expression vp:q is a valid subvector of v that has no components. In
case of block vectors, the shorthand vi :k is used for a block vector with consecutive blocks
v j ( j = i : k).

A point cloud is a set of scattered points, intended to approximate a manifold.
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1.3 Bordered block lower triangular forms

The so-called bordered block lower triangular form is illustrated in Fig. 1, and formally
defined as follows. The variables in (1) are partitioned as

x =
⎛
⎜⎝

x1
...

xN+1

⎞
⎟⎠ (2)

into subvectors xi ∈ R
di (i = 1 . . . N + 1), so that n = d1 + · · · + dN+1. For notational

convenience, let
x0 := xN+1. (3)

Similarly to the variables, F is partitioned as

F(x) =
⎛
⎜⎝

F1(x)
...

FN+1(x)

⎞
⎟⎠ (4)

into subfunctions Fi (x) ∈ R
di (i = 1 . . . N +1). The Jacobian of the diagonal blocks, F ′

i (xi )
(see Fig. 1) are required to be structurally nonsingular.

For any bordered block lower triangular matrix, only variables from subvectors x0, . . . , xi
(i ≤ N ) can appear in Fi (x):

Fi (x) = Fi (x0, x1, . . . , xi ) for i = 1, . . . , N . (5)

The motivation behind requiring a bordered block lower triangular form is that we can
decompose the input system of equations (1) into a cycle-free sequence of subproblems,
where the sequence is given by (5).

By construction, the diagonal blocks are structurally nonsingular. We refer to the set S
of arguments where some block is singular as the singular set of the system. The structural
nonsingularity implies that S hasmeasure zero. For arguments x outside this set, all blocks are
nonsingular, and F1:i (x0:i ) = 0 (i = 1, . . . , N ) implicitly defines a (possibly disconnected)
d0-dimensional manifold in R

di , where di = dim x0:i . We refer to the full solution set of this
subsystem for arguments within the original bounds as the solutionmanifold associated with
the bordered block lower triangular form. (If the singular set S is nonempty, this is a manifold
only in a generalized sense since it has singularities at the points of S, e.g. self-crossings and
cusps.) In our algorithm we resolve this manifold through a coarse discretization by a point
cloud.

Equations (2)–(5) describe the block sparsity pattern shown in Fig. 1. This decomposition
exists for any structurally nonsingular matrix. As we will see in Sect. 3, the usefulness of a
particular block decomposition depends primarily on the border width

d := d0 = dN+1, (6)

and secondarily on the largest block size

b := max d1, . . . , dN , (7)

from the point of view of the proposed method.
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Fig. 1 Bordered block lower
triangular form with structurally
nonsingular square blocks on the
diagonal, see Eqs. (1)–(5). The
square blocks along the diagonal
(dark gray squares) must be
structurally nonsingular. This
decomposition can be computed
fully automatically for any matrix
that is structurally nonsingular,
see Sect. 1.4. In engineering
applications, the light gray area is
typically sparse, and the border
width and block sizes tend to be
small, see Sect. 1.5

F1
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.
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FN
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1.4 Creating the desired block decomposition automatically

Sparsematrix ordering algorithms are awell-researched subject with a vast literature; we only
mention some key points and references here. Both the Jacobian of (1) and the square blocks
along the diagonal are required to have full structural row rank. The structural rank is revealed
by theDulmage–Mendelsohn decomposition (Dulmage andMendelsohn [18–20], Johnson et
al. [30],Duff et al. [17,Ch. 6], Pothen andFan [43], andDavis [11,Ch. 7]). This decomposition
is a standard procedure, and efficient computer implementations are available, for example
HSL_MC79 from the HSL [29]. Practical ordering algorithms are applied next; these include
the Hellerman–Rarick family of ordering algorithms [17,21,27,28], and the algorithms of
Stadtherr andWood [45,46]. An efficient computer implementation of the Hellerman–Rarick
algorithms is MC33 from the HSL [29]. Although there are subtle differences among the
various ordering algorithms, they all fit the same pattern when viewed from a high level of
abstraction, see Fletcher and Hall [22].

1.5 Tearing heuristics to create bordered block lower triangular forms

Beside the references given in Sect. 1.4, the engineering literature is also rich in sparse matrix
ordering algorithms. Decomposing to bordered block lower triangular form has a long tradi-
tion in engineering applications: It is usually referred to as tearing, diakoptics, or sequential
modular approach, depending on the engineering discipline. When dealing with distillation
columns, tearing is called stage-to-stage or stage-by-stage calculations. Tearing dates back
to the 1930’s [34,48], and has been widely adapted across many engineering fields since:
State-of-the-art steady-state and dynamic simulation environments all implement some vari-
ant of tearing, see for example Aspen Technology, Inc. [1], MOSAICmodeling [9], Dymola
[10], JModelica [37], or OpenModelica [40]. The applicability of tearing is not limited to
a particular engineering discipline: It is generic, and it is used in all state-of-the-art Model-
ica simulators to model “complex physical systems containing, e.g., mechanical, electrical,
electronic, hydraulic, thermal, control, electric power or process-oriented subcomponents”
[36].
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The various tearing heuristics are concerned with selecting a minimal subset of variables
called the torn variables; when these torn variables are moved to the border of the matrix, and
the Dulmage–Mendelsohn decomposition is applied to the rest of the matrix, the blocks of
the resulting bordered block lower triangular form correspond to the devices (or machines)
of the technical system. The block sizes therefore tend to be O(1), that is, they are typically
bounded by a small constant. More than five decades of practical experience and the wide-
spread usage of tearing show that the tearing heuristics also tend to produce a narrow border
when applied to technical systems.

1.6 Further assumptions

Our algorithm assumes that the variables are adequately scaled. This allows us to use one of
the standard norms to measure distances; unless otherwise indicated, we use the Euclidean
norm (�2-norm).

We also assume that the bound constraints x ≤ x ≤ x are finite and reasonable; this
is needed to allow an adequate sampling of the search space. Therefore, our method may
not work well when a variable is unbounded or its upper bound is not known, and the user
circumvents this by specifying a huge number such as 1020 as upper bound. Finite bound
constraints are also important from an engineering perspective: These bounds often exclude
those solutions of F(x) = 0 that either have no physical meaning or lie outside the validity
of the model.

2 Overview of the proposed algorithm

The algorithm builds up a point cloud sequentially, satisfying

F1:i (x0:i ) ≈ 0 for i = 1, . . . , N ,

x ≤ x ≤ x .
(8)

The algorithm startswith a scattered set of points S(0) for x0, then eliminates the square blocks
one-by-one along the diagonal in order i = 1, . . . , N , see Eq. (5) and Fig. 1. Solving (8) for
xi will be referred to as forward solve.

If we applied forward solve only, the algorithm would be similar to Gaussian elimination
without pivoting, which can give arbitrarily poor results even for well-conditioned linear
problems [24, Ch. 3.3]. In the nonlinear case, and when propagating the point cloud within
the variable bounds, the numerical issues manifest themselves in two ways:

(a) Many or all points become bound infeasible.
(b) The xi component of many points in the point cloud accumulate around one point or

around a particular subspace. In this case, the remaining part of the feasible region is no
longer adequately represented by the other points.

In both cases, the point cloud is no longer a proper approximation of the solution set
of (8). Fig. 2a illustrates both issues on the test problem of Sect. 5: Some of the points are
outside the feasible region (outside the so-called composition simplex), and many points
have accumulated along the (0, 0)–(0, 1) line, while the interior part of the feasible region is
poorly covered.

We propose the following procedure to mitigate the numerical issues. In each iteration
step, after having solved (8) for xi , new points are inserted for a subset of xi uniformly at
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(a) After forward solve (b) After backsolve

Fig. 2 Illustrating how the backsolve step introduces new points on the test problem of Sect. 5 (N = 60).
a The scattered set of points after the forward solve in a particular iteration i , projected to 2D; z1, z2 are
components of xi ; solid lines: boundaries of the feasible region, the so-called composition simplex. b The set
of points after the backsolve step in the same iteration i . The three gray dots show the solutions

random, let (x̃i )J denote this subset where |J | = d and d was defined at (6). (The (x̃i )J
denotes those components of the vector x̃i whose index is in the index set J .) Both the index
set J and the values for (x̃i )J come from a random number generator. We use the tilde to
distinguish between xi and x̃i : The former values come from the forward solve, the latter
from a random number generator. These newly inserted (x̃i )J points are still lacking the
components of x0:i that are not covered by (x̃i )J . Therefore, for a given (x̃i )J , and for each
point x0:i−h−1 in the scattered set of points S(i), we solve the following NLPs:

minimize
yi−h:i

‖Fi−h:i (x0:i−h−1, yi−h:i )‖
subject to (yi )J = (x̃i )J

xi−h:i ≤ yi−h:i ≤ xi−h:i

(9)

to determine the missing components, where h is a hyper-parameter of the algorithm (h
stands for history, and it is typically a small integer). The missing components will partly
come from the old point (the x0:i−h−1 part), and the rest is the solution of the NLP above
(the yi−h:i part); the (x̃i )J part from the random number generator remains unchanged. The
procedure of solving (9) will be referred to as backsolve. The new points are forcibly inserted
in the backsolve step, it is therefore expected that there will be some amount of constraint
violation in Fi−h:i (x0:i−h−1, yi−h:i ), which has to be tolerated. Figure 2 illustrates how the
backsolve introduces new points.

The last subproblem at i = N + 1 is different from (8) in that it is an overdetermined
system, while all the other subproblems (8) are square. At i = N + 1 the algorithm skips the
forward solve step (since there is no square block to eliminate), and performs a backsolve-
like step: It solves (9) with J = ∅, and with xi−h:N as starting points for yi−h:N . (For the
variables, the variable slices i − h : i are truncated to i − h : N , see Sect. 1.2.)

The output of the proposed (main) algorithm, after finishing the last subproblem i = N+1,
is a point cloud approximating the solution set of (1). The implementation details of the
algorithm will be discussed in Sect. 4. The algorithm of the present paper is a significant
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improvement over older algorithms discussed in [3,4], both algorithmically and on the imple-
mentation level. The entire algorithm has been redesigned and rewritten from scratch, and in
particular, the backsolve step is radically different. Our numerical results show several orders
of magnitude improvements in speed, while achieving better robustness at the same time.

3 Exponential worst-case time complexity in the border width

As discussed at (8), the proposed method builds up a point cloud lying approximately on the
implicitly defined solution manifold of

F1:i (x0:i ) = 0 for i = 1, . . . , N ,

x ≤ x ≤ x,
(10)

and aims at a point distribution such that every point on the manifold is close to a point of the
cloud. (We refer back to Sect. 1.3 regarding the singular points.) For reasons of efficiency,
the point cloud is constructed in a heuristic way, guided by theory.

Let N (s) denote the number of boxes intersecting the solution manifold when uniformly
covering the bound constraint box by a grid of boxes of side s > 0.We call e := lims→0 e(s),
where e(s) := log N (s)/ log s, the effective dimension of the solution manifold. As a con-
sequence, the size of a cloud with the property that every point on the manifold has distance
at most s to a point of the cloud grows for small s proportionally to se. In other words,
constructing the point cloud will have a time complexity that is exponential in the effective
dimension e. Creating the point cloud is therefore computationally tractable only for small
effective dimensions e; how small depends on the resolution s needed, which fortunately is
not high when (as usual) the total number of solutions of the original system is small, and
the solutions are well-separated. Thus a small effective dimension e is the main assumption
under which our new method can operate efficiently.

If the Jacobian of (10) has full rank then (since d equations are “missing” from the square
system) the solution manifold has dimension d , the d-dimensional volume of the solution
manifold is finite, and thus the effective dimension is e = d . But in general, pathological
cases might be possible, such as Peano-like curves (d = 1) that come close to every point in
the box and then have large e. Excluding such pathological cases, which do not arise in most
applications of interest, the border width d agrees with the effective dimension e.

In engineering applications, the presence of important bounds further decreases the effec-
tive dimension of the manifold. For example, we have the natural non-negativity bound on
many variables. Each such bound will be active at many solutions, effectively amounting to
an additional equation, typically decreasing the effective dimension by one. In addition, if
the lower and upper bound on some variable differs by significantly less than the threshold s,
this variable is effectively constant and also decreases the effective dimension. Such strong
specifications are fairly common since the designer wants the system to perform something
useful and therefore pushes the system to its limits (for example to create almost pure chem-
icals). We give numerical examples in Sects. 5 and 6 showing that the method is practical for
certain difficult engineering applications.

To locate the solution manifold, i.e., to construct the approximating point cloud, we need
to sample function values without knowing beforehandwhere the useful points lie that should
go into the point cloud. To achieve this efficiently is the main reason why the bordered block
triangular decomposition is needed. Indeed,we could sample the solution set of F1:N (x0:N ) =
0 within the bound constraints directly, without decomposition. However, the volume to be
sampled then grows exponentially with the dimension p := dim x0:i , which gets larger
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and larger (ultimately p = n). This makes good sampling in this naive way prohibitively
expensive. The proposed method avoids this scalability trap by sampling only at the square
blocks along the diagonal (see Fig. 1): The volume to be sampled grows exponentially
only with the largest block size, which is assumed to be reasonably small. In engineering
applications, this assumption is usually satisfied since typically the largest block corresponds
to the largest device/machine in the technical system being modeled.

4 Implementation details of the proposed algorithm

Ahigh-level overview of the algorithmwas already given in Sect. 2. In this section we discuss
the building blocks in more detail. These building blocks are mostly implementation-level
details, and there could be other ways to fill-in these low-level details that the high-level
overview left open.

4.1 The source code of the algorithm

Themost complete description of the algorithm is its source code, therefore the Python source
code of the algorithm is available on GitHub [2] under the very permissive 3-Clause BSD
License. For convenience the source code is distilled down to its essence, and it is given in
“Appendix A” as pseudo-code too. Algorithm 1 of “Appendix A” is the core of the algorithm.
We use the VA27 solver from HSL [29] to solve the equations and NLPs at each block. Since
this solver cannot handle variable bounds, we enforce them with Algorithm 2. The backsolve
step is given by Algorithm 3. The pseudo-code is less than 50 lines in total.

4.2 The farthest-first subsampling algorithm

The goal of the subsampling algorithm is to select a spatially well-distributed subset of a
given scattered set of points S. A greedy heuristic is implemented, based on the so-called
farthest-first traversal. The algorithm starts by choosing a point in S. We currently pick the
point closest to the mean of S; other choices are also possible, including the random choice.
Then, points are selected one-by-one, always picking that not yet chosen point next that is
the farthest away from the already chosen ones, breaking ties arbitrarily. The subsampling
algorithm stops when the desired sample size is reached.

4.3 Generating the new random points in the backsolve step

We refer back to Sect. 2, and to Fig. 2: After each forward solve we must insert new points
into the sample where the manifold is not approximated properly. One way of populating
such deserted areas would be inter- and extrapolation; this would assume that the spatial
distribution of the points is already appropriate for inter- and extrapolation tasks, and assumes
connectedness of the manifold. While this could be a viable approach, we chose a much
simpler and more robust approach. Essentially we propose brute-force oversampling at the
block level: We try to insert significantly more (x̃i )J points than what we need. We do not
know where to insert them, so we generate them uniformly at random within the variable
bounds (brute-force). Then, the NLPs (9) of the backsolve step are solved, and those points
whose objective (norm of the constraint violation) is above a user-defined threshold are
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discarded. Finally, we keep only the most distant ones of the remaining points by applying
the subsampling algorithm.

This approach for populating deserted areas of the manifold is very robust, and fairly
simple to implement. It does not assume connectedness, and it does not assume anything
about the spatial distribution of the already existing points in the sample. In fact, if we loose
all points in the forward solve, the backsolve may still succeed to insert new points, and
the algorithm can continue. In contrast, it is impossible to inter- and extrapolate if we have
lost all our points. Since we cannot assume connectedness of the manifold, some sort of
(block-level) global sampling is inevitable.

4.4 Efficient implementation of the backsolve step

A significant fraction of the execution time is spent in the backsolve step, solving (9). Three
improvements proved to be crucial to perform the backsolve step efficiently: (i) trying only
a small, carefully selected subset of all the possible combinations of the ((x̃i )J , x0:i−h−1)

matches in (9) instead of trying all of them, (ii) estimating a good starting point for (9),
and (iii) skipping those matches that are very likely to have above-threshold objective value
(constraint violation) at the optimum, and would most likely be discarded anyway.

As Sect. 2 is written, we try all the possible ((x̃i )J , x0:i−h−1) matches in a brute-force
manner. The previous implementation of the algorithm also worked [3] this way. Numerical
evidence shows that it can be very wasteful: If two distinct points in the point cloud are
close in their xi−h:i components, it is very likely that the ((x̃i )J , x0:i−h−1)matches will have
very similar objective value in (9) too; there is little to no benefit in trying both of them. An
optional heuristic that we propose is to apply the subsampling algorithm of Sect. 4.2 to the
points of the point cloud, considering their xi−h:i components only. We then try to match
the points (x̃i )J with this selected subset only. This heuristic can be disabled at the user’s
discretion.

We propose estimating a starting point yi−h:i for (9) with singular-value decomposition
(SVD, see [39, Ch. 10.2]). For simplicity, and since it seems to be adequate in practice, we
currently ignore during this estimation the variable bounds in (9), and we also assume that
a linear approximation to (9) around the optimum is appropriate. (This estimation is crude:
We set parts of Δxi to zero, although we let them change in (9) arbitrarily.)

We consider the submatrices of the Jacobian J of F(x) shown in Fig. 3, and defined as
follows. The rows of J11 are the row blocks i − h : i − 1 of J ; those of J21, and J22 is row
block i of J . The columns of J11 and J21 are the column blocks i−h : i−1 of J ; those of J22
is i column block i of J . The Jacobian is evaluated at x0:i (at the point x0:i that comes from
the forward solve). In terms of these submatrices, the following linear least-squares problem
is solved with SVD:

minimize
Δxi−h:i−1

∥∥∥∥
[
J11(xi−h:i−1)

J21(xi−h:i−1)

] [
Δxi−h:i−1

] −
[

0
J22(xi )Δxi

]∥∥∥∥
2

2
(11)

Informally speaking, (11) solves the linear approximation to (9) in which the variable bounds
are ignored, (Δxi )J = (x̃i )J − (xi )J , and all other components of Δxi that are not in the
index set J are set to zero. The solution to the linear least-squares problem (11) gives us
Δxi−h:i , and our estimate for yi−h:i is xi−h:i + Δxi−h:i .

The best match ((x̃i )J , x0:i−h−1) for each (x̃i )J is always tried. For those matches for
which the norm of ‖Fi−h:i (x0:i−h−1, yi−h:i )‖ at the starting point is below the pre-defined
threshold (hyperparameter), we select at most m − 1 additional candidate ((x̃i )J , x0:i−h−1)
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Fig. 3 Submatrices J11, J21, and
J22 used in the starting point
estimation for the backsolve step,
see (11)

matches with subsampling. For each candidate match, we launch the local solver from the
estimated yi−h:i to solve (9). The value of m is an arbitrary, used-defined value; in our
numerical experimentsm = 20 was used, and we did not attempt to tune this hyperparameter.

5 Numerical results: the effect of decomposition

We give numerical results where the computational gains, if any, are thanks to the block
decomposition. The benchmark problems are coded in the AMPL modeling language [23],
and are available on GitHub [2] together with the source code of the algorithm.

5.1 Series of test problems

The steady-state simulation of distillation columns can be a major numerical challenge [13].
Our example is a series of challenging distillation columns; these columns have 3 solu-
tions, one of which is missed even with problem-specific methods, see Sect. 5.2. Distillation
columns consist of so-called stages. The natural order of the stages directly yields the desired
block structure (2) and (4) by virtue of the internal physical layout of distillation columns;
no preprocessing is necessary. (Even if it was not the case, we could use any of the ordering
algorithms referenced in Sect. 1.4 and 1.5 to create the block structure fully automatically.)
There is a one-to-one correspondence between the stages and the blocks.

In the engineering applications it is common to optimize the total cost by varying the
number of stages,whichmakes distillation columnsperfect test problems from the perspective
of the present paper: Distillation columns have a natural parameter, namely the number of
stages, for examining howdifferent numericalmethods scale as the number of blocks changes.
As the number of blocks is varied (within reasonable limits) each column is interesting from
an engineering point of view. Let N denote the number blocks. In our examples the size of
each block is 4× 4 except the first block which is 2× 2; the problem size is 4N ; the number
of nonzeros is 25N − 10. The manifold dimension d = 2, and it is independent of N .
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The model equations are the MESH equations: The component material balance (M),
vapor-liquid equilibrium (E), summation (S), and heat balance (H) equations are solved. The
liquid phase activity coefficient is computed from the Wilson equations. The model and its
parameters correspond to theAutomodel [25], except for the number of stages N and the feed
stage location NF . The specifications are the feed composition (methanol–methyl butyrate–
toluene), the reflux ratio, and the vapor flow rate.

There are three steady-state branches: two stable steady-state branches and an unsta-
ble branch; this was experimentally verified in an industrial pilot column operated at finite
reflux [16,25]. Multiple steady-states can be predicted by analyzing columns with infinite
reflux and infinite length [5,26,42]. These predictions for infinite columns have relevant
implications for columns of finite length operated at finite reflux.

5.2 Numerical results published in the literature

The published numerical results for our test problem indicate numerical difficulties. Both
the conventional inside-out procedure [8] and the simultaneous correction procedure [38]
were reported to miss the unstable steady-state solution, see Vadapalli and Seader [49] and
Kannan et al. [31] (all input variables specified; outputmultiplicity). However, all steady-state
branches were computed either with the AUTO software package [12] or with an appropriate
continuation method [25,31,49]. In both cases, the initial estimates were carefully chosen
with the ∞/∞ analysis [5,26], and special attention was paid to the turning points and
branch switching. Unfortunately, those papers do not include execution times, most likely
because the computations involved human interactions too (initial estimates, turning points
and branch switching).

5.3 The baseline for comparisons

As discussed in Sect. 5.2, the literature clearly indicates that our benchmark problems are
challenging, unfortunately the execution times are not available for comparisons; we have to
establish a baseline for comparisons.

5.3.1 Requirements for the baseline algorithm

In order to assess the quality of our new method within the prior state of the art we need to
compare against a suitable baseline method with similar capabilities. We use the following
criteria that such a baseline method should possess. It should be

(1) state-of-the-art;
(2) able to enumerate all solutions of large, sparse systems;
(3) able to handle transcendental equations and bound constraints,
(4) usable from an advanced modeling language without user-input beyond equations and

variable bounds;
(5) a generic algorithm not tailored to a specific class of problems;
(6) easy to use without any expert knowledge;
(7) publicly available as an off-the-shelf solver.

To our knowledge, there is currently no such solver. But the technology to create one based
on traditional techniques is available; so we wrote the baseline solver ourselves. We chose
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Table 1 Relative frequencies
(percentages) of IPOPT finding a
particular solution when starting
points are generated uniformly at
random between the variable
bounds

N Sol. 1 Sol. 2 Sol. 3 None

50 82.3 17.0 0.7 0.0

51 83.1 16.2 0.7 0.0

52 84.0 15.3 0.7 0.0

53 84.8 14.5 0.7 0.0

54 85.6 13.7 0.6 0.0

55 86.1 13.2 0.6 0.0

56 86.7 12.6 0.6 0.0

57 87.2 12.2 0.6 0.0

58 87.6 11.7 0.5 0.1

59 88.0 11.2 0.5 0.3

60 88.3 10.6 0.5 0.5

61 88.7 9.8 0.5 1.0

62 89.2 9.0 0.4 1.4

63 89.4 8.2 0.4 2.0

64 89.6 7.3 0.4 2.7

65 89.7 6.4 0.3 3.6

66 89.8 5.6 0.3 4.3

67 90.0 4.8 0.2 5.0

68 90.1 4.1 0.2 5.6

69 90.3 3.5 0.2 6.1

70 90.2 3.0 0.1 6.6

71 90.4 2.6 0.1 6.9

72 90.5 2.2 0.1 7.2

73 90.6 1.9 0.1 7.4

74 90.6 1.7 0.1 7.7

75 90.6 1.5 0.1 7.8

AMPL [23] as the modeling environment IPOPT [51] as local solver. Both are state-of-the-
art, and their highly polished implementation is among the fastest ones. To enumerate all
solutions, we implemented multistart with uniform random sampling between the variable
bounds. (Uniform sampling is adequate since all variables are scaled to be between 0 and 1.)

5.3.2 Results with the baseline algorithm

IPOPT was executed from 250,000 randomly generated points for N = 50..74, and 500,000
points were necessary for N = 75 to get consistent results. Table 1 shows the relative
frequencies of IPOPT finding a particular solution.

The points are partitioned into consecutive batches: The first batch starts with the first
point. A batch is completed when all 3 solutions are found, and then the next batch starts.
Only batches completed within the allocated point budget are considered (budget: 250,000
points for each N = 50..74, and 500,000 points for N = 75), that is, if the last batch is
unfinished, we ignore it. For a fixed N , the total number of iterations per completed batch
fits the exponential distribution, see Fig. 4 for N = 60. The growth rate of the expected
number of iterations in a batch fits equally well with exponential and linear correlation in
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Fig. 4 Histogram of the number of iterations per batch when the starting points are generated uniformly at
random between the variable bounds; N = 60. The counts are normalized to form a probability density, i.e.,
the area under the histogram will sum to 1. The fitted curve corresponds to the exponential distribution

the N = 50..63 regime, and it fits exponential growth rate between N = 64..75, see Fig 5.
The total number of iterations IPOPTmade in a batch correlates well with the total execution
time, and with the number of starting points in the same batch.

5.4 Results with the proposedmethod

5.4.1 Illustrating the point cloud computed with the proposed method

Figure 6 shows the intermediate point cloud in iteration i = 30 for N = 60, projected to 2D
with principal component analysis (PCA). We used Scikit-learn [41] to perform PCA and
to generate the plots. Fig. 7 shows the final output of the proposed method, the generated
starting points, projected to 2D with PCA. Higher principal components produce (as to be
expected) more wiggly projectors that do not represent true features of the point cloud.

5.4.2 Illustrating the point cloud with manifold learning

We also investigated the manifold structure using manifold learning. We tried each man-
ifold learning algorithm available in Scikit-learn: Isomap [47], locally linear embedding
(LLE) [44], modified locally linear embedding (MLLE) [53], Hessian Eigenmapping (also
known as Hessian-based LLE or HLLE) [15], Spectral Embedding (Laplacian Eigen-
maps) [6], local tangent space alignment (LTSA) [52], and multidimensional scaling
(MDS) [7,32,33]. (Although the t-distributed Stochastic Neighbor Embedding [35,50] algo-
rithm, or t-SNE, also proved to be robust, we did not use t-SNE for the present paper: It
was designed to artificially exaggerate structure in the data to reveal clusters, but that is
undesirable in our case.)

It is not uncommon that the embeddings show false structures that in reality are not
present in the data. Problem-specific knowledge was used to recognize any false structure
in the embeddings as follows. We colored each point: The mole fractions of the 3 chemical
components in the liquid phase on stage k of the distillation column are chosen as the
coordinates in the RGB color space, where the stage index k is a parameter. In short, the
color of the point corresponds to the chemical composition of the liquid phase on stage k. The
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Fig. 5 Computational effort of multistart with starting points generated uniformly at random between the
variable bounds. The effort is measured as the mean number of iterations per batch, averaged over 250,000
starting points. The effort growth rate fits equallywellwith exponential and linear correlation in the N = 50..63
regime, and it fits exponential growth rate between N = 64..75

theory of distillation – in particular the so-called residue curve map [14] of the mixture – tells
us that for a fixed k we should see a smooth color transition in the embeddings, similar to the
smooth shade transition in Fig. 6. Furthermore, the coloring of the points in the embeddings
should change only smoothly when k is increased or decreased by 1.

We inspected these color transitions for each algorithm offered by Scikit-learn. If the
manifold learning algorithm creates a wrong embedding or false structure, it is obvious at first
glance. In our numerical experience, among themanifold learning algorithms implemented in
Scikit-learn, onlymultidimensional scalingwas robust enough to consistently produce correct
embeddings without any hyperparameter tuning. A possible explanation for its robustness
could be that it randomly chooses the initial configuration; the other embedding techniques
that we listed are based on a nearest-neighbor search which can be fooled if the points happen
to have unfortunate distribution in the original high-dimensional space. The downside of
multidimensional scaling is that it was by far the most computationally expensive manifold
learning algorithm of all tried. Note, however, that multidimensional scaling is not part of
the proposed method; it is used only for visualization.
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Fig. 6 Representative sample of the 2D solution manifold of the leading subsystem F0:30(x) = 0, generated
with the proposed method (N = 60). The sample is projected to the planes of the principal components yi–y j

Multidimensional scaling seeks a low-dimensional representation of the data in which
the distances sensibly approximate the distances in the original high-dimensional space (the
between-points distances are preserved as well as possible). Using multidimensional scaling
from Scikit-learn, we unfolded the discretized 2D manifold formed by the generated starting
points into the 2D plane and found the embedding shown in Fig. 8.

5.4.3 Running a local solver from the output of the proposed algorithm

The subsampling algorithm of Sect. 4.2 selects the points in a specific order; the subsampling
procedure can be used to order the points in any set S. This order is the so-called greedy
permutation or the farthest-first traversal. When the main algorithm finishes, we propose that
a local solver for large-scale, sparse problems (like IPOPT) is launched from the points of
the final point cloud in this order. The numerical experiments suggest that this increases the
likelihood of finding all solutions early, because we always try that point next that is the
least similar to the already tried ones. As it is shown in Fig. 8, the first 3 points picked by
the farthest-first heuristic suffice to find all solutions in this case. Note that in Sect. 5.3 the
probability of finding the third solution was 0.5% for starting points generated uniformly at
random between the variable bounds; see in Table 1, row N = 60.

Numerical experiments also show that the final constraint violations are non-distinctive
with respect to the goodness of the starting points: Below a certain threshold, the constraint
violations are due to the random perturbations applied in the backsolve step, and they do not
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Fig. 7 The starting points generated by the proposed method (N = 60). The points are projected to the planes
of the principal components yi–y j . There would be 3 well-separated clusters of points in the ideal case,
however, the last two equations FN+1(x) = 0 only trim the 2D solution manifold of the leading subsystem
F0:N (x) = 0 due to mild ill-conditioning. One cluster is nevertheless fairly small and well-separated

Fig. 8 The starting points (circles
and squares) generated by the
proposed method (N = 60),
embedded into the 2D with plane
with multidimensional scaling.
The 3 crosses show the 3
solutions. Each cluster of starting
points yields the solution it
surrounds when the IPOPT solver
is started from there. The first 3
points picked by the farthest-first
heuristic of Sect. 4.2 are marked
with 1, 2, 3; in this case, they
suffice to find all solutions. Note
that the farthest-first heuristic
measures distances in the original
high-dimensional space

convey any information regarding the goodness of the starting points. In other words, the
constraint violation is not a good metric for ordering the final starting points; we propose the
farthest-first traversal instead.
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5.5 Comparisons: The effect of decomposition

The effect of the decomposition (2)–(5) can be studied by requesting all solutions for a given
column length, and comparing the execution times of the proposed method with the baseline
multistart algorithm (no decomposition). As we discussed in Sect. 5.3, if the starting points
are generated uniformly at randomwithin the variable bounds, the computational efforts grow
exponentially for N ≥ 64. For the proposed method, the computational efforts grow linearly,
thanks to the decomposition. It depends on the problem size (column length) and on the
hyperparameter settings whether the decomposition, and the more sophisticated algorithm
pays off; see the left column of Fig. 9, comparing the execution times.

6 Numerical results: reusing shared substructure

A frequent task in engineering is to solve a series of related square systems F�(x) = 0, where
the number N� of blocks of the �th problem and hence the Jacobian varies, but the equations
in the first B� blocks of F� and F�+1 are identical; the remainder may deviate arbitrarily. If
B� is close to N�, the major part of the point cloud can be reused without any change.

We give numerical results where the computational gains, if any, are thanks to the reused
substructure. The benchmark problems and the baseline algorithm are the same as in Sect. 5.
The difference is that all solutions to 10 different columns with consecutive length are
required. The shared substructure can be reused with the proposed method. This results
in significant gains compared to our baseline multistart method, see the right column of
Fig. 9. As previously, it depends on the problem size, and on the hyperparameter settings
whether the decomposition, and the more sophisticated algorithm pays off.

7 Future work

Nonlinear programming with optionally varying N and � Another common application in
the field of engineering is to augment the leading subsystem of F1:N (x0:N ) = 0 of (1) with
an objective function and ask for all global optima.

min G(N ,�)(x0:N )

s.t. F1:N (x0:N ) = 0
x ≤ x ≤ x

(12)

The basic algorithm, sketched in Sect. 2, is applied to F1:N (x0:N ) = 0 up until and including
block N as before to obtain a point cloud, approximately satisfying the constraints of (12).
Then, a local solver is executed from the points of the point cloud, targeting the nonlinear
program (12). As for the computational savings with varying N and �, the same arguments
hold as in the previous paragraphs: Whether the leading underdetermined subsystem is aug-
mented with d additional equations (making it square), or with an objective function, the
point cloud for the shared leading subsystem F1:N (x0:N ) = 0 can be reused either way.

Chemical engineering use cases include the following scenarios. The steady-statemodel of
a distillation column is given without the reflux specification, that is, the system of equations
is underdetermined by one degree of freedom. First, we compute a point cloud, approximately
satisfying this system, with Alg. 1 halting at line 10. Then, the engineer can specify

– the reflux ratio, that is, provide one more equation, making the system square;
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Fig. 9 Comparing the execution times of the proposed method to multistart with randomly generated starting
points between the variable bounds. For multistart, the mean execution time for a batch is given, averaged over
250,000 starting points. The execution times for the proposed method are all-inclusive: IPOPT is launched
from the first 6 points picked by the farthest-first heuristic which suffices to find all 3 solutions. Left side:
All solutions are required for the given column lengths. Right side: All solutions to 10 different columns
with consecutive length are required; the execution times are plotted at the longest column. Rows from top to
bottom: Mkeep = 100, 200, 400; for the meaning of the algorithmic parameters h (history), Mkeep (at most
this many new points are inserted in each iteration) see the pseudo-code in “Appendix A”

– or the reflux molar flow rate, making the system square;
– or append an objective function, and look for the cost optimal reflux ratio.
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In each case, the engineer can (re)use the point cloud for free. There is still some additional
computational work left due to the newly added equation or objective function, but that work
is negligible compared to computing the point cloud. We expect significant computational
benefits where a precomputed point cloud can be reused several times at no additional cost
thanks to shared substructure.
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A Pseudo-code of the implemented algorithms

Algorithm 1: The proposed algorithm (top level, main algorithm)
Input: P: A problem instance as defined by (1), see also Fig. 1
Output: A set of starting points S(N+1) for a local solver
Parameters : M0: Number of points to generate for the initial set S(0)

Mkeep : We add at most this many new points in each iteration i
h: The number blocks to re-solve in backsolve
εlast : The acceptable constraint violation in the last step

1 Initialize the set of x0 points, S(0), uniformly at random with M0 points
2 for i = 1 to N do

// Forward solve, see Sect. 2:

3 foreach x0:i−1 ∈ S(i−1) do
// Square system solved from random starting point, variable bounds ignored:

4 Solve Fi (x0:i−1, xi ) = 0 for xi (with x0:i−1 fixed)

5 Add the resulting x0:i vector to S(i) (even if it is bound infeasible)

// Call backsolve to add more points, see Eq.(9) and Fig. 2 in Sect. 2:

6 Call Algorithm 3 with S(i); that algorithm returns a new set of points T

7 Append T to S(i)

// Try to repair the bound infeasible points by small perturbations:

8 Call Algorithm 2 with S(i), and then replace S(i) with the returned set

// All points in S(i) are bound feasible now; the too infeasible ones were discarded.
// Backsolve oversampled the search space (brute-force), discard the excess points:

9 Apply subsampling in xi to the points inserted by Alg. 3, keep at most Mkeep of them
// Only the xi components of the new points were considered in the subsampling.

// We have |S(i)| ≤ M0 + i · Mkeep points at this line.

10 i = N + 1
// Reached the last d equations with no new variables; try to reduce

∥∥FN+1(x)
∥∥:

11 foreach x0:i−1 ∈ S(i−1) do
// Overdetermined system, xi−h:N as starting point, variable bounds ignored:

12 minyi−h:N
∥∥Fi−h:i (x0:i−h−1, yi−h:N )

∥∥
13 Let x∗

0:N := (x0:i−h−1, yi−h:N ) denote the optimal solution

14 Add x∗
0:N to S(i) if

∥∥Fi−h:i (x∗
0:N )

∥∥ ≤ εlast

// Try to repair the bound infeasible points by small perturbations:

15 Call Algorithm 2 with S(i), then replace S(i) with the returned set

16 return S(i)
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Algorithm 2: Repairing bound infeasibility; workaround due to VA27 from [29]

Input: P , h, i , and S(i) from Alg. 1
Output: Set of points W , all x0:i ∈ V are bound feasible and

∥∥Fi−h:i (x0:i )
∥∥ ≤ ε

Parameters : δ: Threshold above which we do not try to repair bound infeasibility
d: The manifold dimension in (1)
ε: Tolerated constraint violation

// If i = N + 1, x0:i is cropped to be x0:N .
// Keep only those points that have sufficiently small bound violations:

1 Compute the subset T of S(i) for which the L2-norm of bound violations is less then δ

// The already bound feasible points are temporarily ignored till line 8:
2 Split T into set U of the bound feasible points, and set V of the bound infeasible ones
3 Project each point in V back to the nearest boundary of the bound feasible region
// We now fix those components that changed the most during the projection,
// and try to reduce the constraint violations by changing the remaining components:

4 foreach x0:i ∈ V do
5 Minimize

∥∥Fi−h:i (x0:i )
∥∥ with the d most changed components fixed

// If less then d components changed during the projection,
// fix some at random until d components are fixed.

6 Save the resulting point in W

7 Project each point in W back to the nearest boundary of the bound feasible region
8 Merge U into W
9 For each x0:i ∈ W re-evaluate

∥∥Fi−h:i (x0:i )
∥∥

10 Discard all x0:i ∈ W for which
∥∥Fi−h:i (x0:i )

∥∥ > ε

11 return the remaining set of points W
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Algorithm 3: Backsolve

Input: P , h, i , and S(i) from Alg. 1
Output: New set of points T , see Fig. 2 for an example
Parameters : Mback : Number of (x̃i )J points to generate at random, see also Sect. 2

εlinear : Residual threshold for candidate matches
εnlp : Residual threshold after solving the nonlinear program (9)
m: 20 in our experiments, see Sect. 4.4

1 Generate the (x̃i )J points with a random number generator, Mback points in total
2 if i ≤ h then

// We get a square system after fixing (x̃i )J . We use random starting points,

// and we ignore the variable bounds and all the points in S(i):
3 Solve F1:i (x0:i ) = 0 for x0:i with (x̃i )J fixed (ignore variable bounds)
4 Add the results to the new set of points T (even if bound infeasible)

5 if i > h then
6 Optional: Compute a subsample Ŝ(i) of S(i) with farthest-first subsampling of Sect. 4.2 // When the

optional subsampling heuristic is disabled: Ŝ(i) := S(i).
// Fi−h:i (x0:i−h−1, xi−h:i ) = 0 is square before fixing (x̃i )J , overdetermined after that.

// Unlike when i ≤ h, here we compute starting points, and we use Ŝ(i) for that.
// For each ((x̃i )J , x0:i−h−1) pair we estimate the optimal solution of (9)
// by its linear approximation (11):

7 foreach x0:i ∈ Ŝ(i) do

8 Compute the pseudo-inverse of

[
J11
J21

]
, cf. (11) in Sec. 4.4

9 foreach (x̃i )J in the new randomly generated points do
10 Compute the starting point ŷi−h:i for (9) by solving (11), see in Sec. 4.4

11 Save the residual

∥∥∥∥
[
J11
J21

] [
Δxi−h:i−1

] −
[

0
J22Δxi

]∥∥∥∥
2

2
together with ŷi−h:i

// Select the candidate matches ((x̃i )J , x0:i−h−1):
12 foreach (x̃i )J in the new randomly generated points do

// We view x0:i−h−1 and ŷi−h:i as a function of (x̃i )J , as on line 10
13 Given (x̃i )J , always select the match (x0:i−h−1, ŷi−h:i ) with the smallest residual
14 From those matches whose residual is less then εlinear , select at most m − 1 points

// The additional m − 1 points are selected with farthest-first subsampling in xi
15 Add the selected matches to the candidate matches

// Solve the nonlinear programs (9) from their estimated starting point:
16 For each candidate match, solve (9) for yi−h,i starting from ŷi−h:i
17 Add the result to the set of points T if

∥∥Fi−h:i (x0:i−h−1, yi−h:i )
∥∥ ≤ εnlp at the optimum

// Try to repair the bound infeasible points:
18 Call Algorithm 2 with T , then replace T with the returned set

// All points in T are bound feasible now, and satisfy F1:i (x0:i ) ≈ 0
19 return T
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