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Abstract. Given a directed graph G, a feedback arc set of G is a subset of its edges containing at least one edge
of every cycle in G. Finding a feedback arc set of minimum cardinality is the minimum feedback arc set problem.
The minimum set cover formulation of the minimum feedback arc set problem is appropriate as long as all the simple
cycles in G can be enumerated. Unfortunately, even sparse graphs can have Ω(2n) simple cycles, and such graphs
appear in practice. An exact method is proposed for sparse graphs that enumerates simple cycles in a lazy fashion,
and extends an incomplete cycle matrix iteratively. In all cases encountered so far, only a tractable number of cycles
has to be enumerated until a minimum feedback arc set is found. Numerical results are given on a test set containing
computationally challenging sparse graphs, relevant for industrial applications.
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1. Introduction. A directed graph G is a pair (V,E) of finite sets, the vertices V and
the edges E ⊆V ×V . It is a simple graph if it has no multiple edges or self-loops (edges of
the form (v,v)). Let G = (V,E) denote a simple directed graph, and let n = |V | denote the
number of vertices (nodes), and m = |E| denote the number of edges. A subgraph H of the
graph G is said to be induced if, for every pair of vertices u and v of H, (u,v) is an edge of H
if and only if (u,v) is an edge of G.

A directed path from vertex v to w is an alternating sequence of vertices and edges of
G leading from v to w. A path that starts and ends at the same vertex is called a cycle. A
simple cycle is a cycle with no repeating edges and no repeating nodes in the cycle. Two
simple cycles are distinct if one is not a cyclic permutation of the other. Throughout this
paper, whenever simple cycles are mentioned, distinct simple cycles are meant.

A topological order of G is a linear ordering of all its nodes such that if G contains an
edge (u,v), then u appears before v in the ordering. The nodes in a directed graph can be
arranged in a topological order if and only if the directed graph is acyclic [20, Sec. 14.8].
The topological sort algorithm of [17, Sec. 22.4] runs in time Θ(n+m); it is a simple and
asymptotically optimal algorithm for checking whether a directed graph is acyclic.

A strongly connected component (SCC) of a directed graph G = (V,E) is a maximal
set of vertices C ⊆ V such that for every pair of vertices u and v in C, there is a directed
path both from u to v and from v to u (u and v are reachable from each other). The strongly
connected components of a directed graph can be found in linear time, that is, in Θ(n+m)
time, see [87] and [17, Sec. 22.5]; these algorithms are asymptotically optimal. A trivial
SCC consists of a single node. A trivial SCC must be acyclic, since we assume that G has no
self-loops.

A feedback vertex set of a simple directed graph G is a set of vertices whose removal
makes G acyclic; a feedback vertex set contains at least one vertex of every cycle in G. The
term feedback vertex set also appears as essential set in the literature. A feedback vertex set
S is minimal if no proper subset of S is a feedback vertex set.

A feedback edge set is a subset of edges containing at least one edge of every cycle in a
directed graph. In other words, removing the edges in the feedback edge set from the graph
makes the remaining graph a directed acyclic graph. A feedback edge set S is minimal if
reinsertion of any edge s ∈ S to the directed acyclic graph induces a cycle. If the edges in a
minimal feedback edge set are reversed rather than removed from the original graph, then the
graph also becomes acyclic.

1.1. Computational complexity. Given a directed graph G and an integer parameter k,
the (parameterized) feedback edge set problem is to either construct a feedback edge set
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of at most k edges for G, or to prove that no such edge set exists. This problem is called
the feedback arc set problem, and it was item 8 on the list of Richard M. Karp’s 21 NP-
complete problems [53]. We prefer the term feedback edge set to the term feedback arc set.
The feedback edge set problem is fixed-parameter tractable (FPT): an O(n44kk3k!) time
algorithm is given in [13], that is, this algorithm runs in polynomial time if k is bounded
above by a constant. The reader is referred to [22] regarding further details on parameterized
complexity and FPT.

The definition above is also referred to as the unweighted feedback edge set problem.
In the weighted feedback edge set problem, each edge has its associated weight; the un-
weighted version can be regarded as the weighted version with each edge having unit weight.
The cost refers either to the cardinality of the feedback edge set if the unweighted problem is
solved, or to the total weight of the feedback edge set if the weighted version of the problem
is solved.

Finding a feedback edge set of minimum cardinality is the minimum feedback arc set
problem; we will refer to it as the minimum feedback edge set problem hereafter. Similarly,
finding a feedback vertex set of minimum cardinality is the minimum (directed) feedback
vertex set problem. The reductions between the minimum feedback edge set problem and the
minimum feedback vertex set problem preserve feasible solutions and their cost; in general,
these problems are equally hard to approximate in polynomial time [27]. Hereafter we focus
on the minimum feedback edge set problem but we wanted to indicate that results for the
minimum (directed) feedback vertex set problem are also directly relevant.

The minimum feedback edge set problem is APX-hard [52]: Unless P = NP, the min-
imum feedback edge set problem does not have a polynomial-time approximation scheme
(PTAS). The minimum feedback edge set problem is approximation resistant: Conditioned
on the Unique Games Conjecture (UGC) [56], for every C > 0, it is NP-hard to find a C-
approximation to the minimum feedback edge set problem, see Corollary 1.2. in [39]. One
can construct a feedback edge set with cardinality of at most m/2 by taking either the forward
or backward edges (whichever has smaller cardinality) in an arbitrary ordering of the vertices
of G. A better upper bound, m/2−n/6, was derived in [25] by taking into account that edges
incident to sources or sinks cannot be part of a cycle; the algorithm runs in linear time and
space. An O(logn log logn) approximation algorithm was implicitly described by [82] in his
proof; the corresponding algorithm was explicitly given in [27].

The minimum feedback edge set problem is solvable in polynomial time for planar
graphs [62, 63], and for reducible flow graphs [73]. A tournament is a directed graph without
self-loops such that for every two distinct nodes u and v there is exactly one edge with end-
nodes u and v. A polynomial-time approximation scheme for minimum weighted feedback
edge sets on tournaments is presented in [55].

The complementary problem to the minimum feedback edge set problem is the maxi-
mum acyclic subgraph problem. The problem was proved to be APX-complete in [70].
The algorithm of [8] finds an acyclic subgraph with (1/2+Ω(1/

√
dmax))m edges, where

dmax is the maximum vertex degree in the graph; the algorithm runs in O(mn) time. This
lower bound on the number of edges is sharp in the sense that an infinite class of directed
graphs is exhibited in [8] realizing this bound. The previously cited algorithm of [25] pro-
vides an acyclic graph with at least m/2+ n/6 edges and runs in O(m) time. Note that in
sparse graphs, i.e., m = Θ(n), this bound achieves the same asymptotic performance bound
as the one in [8]. A polynomial time approximation scheme (running in nO(1/ε2) time) was
given in [3] for dense graphs, i.e., when m = Ω(n2).

The more recent results regarding the maximum acyclic subgraph problem concern in-
approximability. The best known approximation factor is 1/2+Ω(1/logn) from [12], which
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is a slight improvement over 1/2+Ω(1/(logn log logn)) that follows from [27, 82]. The
problem is approximation resistant: Conditioned on the UGC, it is NP-hard to approximate
the maximum acyclic subgraph problem within 1/2+ ε for every ε > 0 [39, 40]. Without
assuming the UGC and subject only to P 6= NP, the best known inapproximability result is
14/15+ ε , derived in [5].

The linear ordering problem can be defined as searching in a complete weighted di-
rected graph for an acyclic tournament with a maximal sum of edge weights, see e.g. [65]
for further details. The maximum acyclic subgraph problem and the linear ordering problem
can be transformed into each other by a simple construction [33]; furthermore, the minimum
feedback edge set problem is complementary to the maximum acyclic subgraph problem.
Therefore, a good algorithm for one problem usually yields a good algorithm for the other.

1.2. Connection to tearing in chemical engineering. We define the task of tearing as
follows. Given a bipartite graph B, we first orient it, that is, we assign a direction to each edge
so that B becomes a directed graph D. Then, we compute the minimum feedback edge set F
of D. In our terminology, the task of tearing is to find an orientation such that the cardinality
of F is minimal among all possible orientations of B. If the edges of B are weighted, then the
total weight of F should be minimal, and not its cardinality. It is obvious that tearing and the
minimum feedback edge set problem are related, although they are not equivalent problems.

Unfortunately, the term tearing is used in three different ways in the chemical engineering
literature: It is sometimes used (1) exclusively for the (weighted) minimum feedback edge
set problem, e.g., [7, 21, 31, 36, 57, 68, 72, 74, 88, 89, 92], and [9, Ch. 8], (2) for both the
minimum feedback edge set problem and for tearing as in our terminology as defined above,
see e.g. [43, 64, 67, 78], and (3) primarily in our sense, e.g., [10, 15, 37, 42, 58, 84–86, 90].
This issue seems to be specific to the chemical engineering literature: For example, in the
electrical engineering literature, tearing is used in our sense.

The reason why the (weighted) minimum feedback edge set problem has received consid-
erable attention in the field of chemical engineering is that it provides means to find favorable
computation sequences in process flowsheet calculations. These computation sequences are
referred to as the sequential-modular approach, and they can be faster to evaluate than solv-
ing the whole model simultaneously (equation-oriented approach). The sequential-modular
approach can increase the robustness of the equation-oriented approach significantly: The
steady-state solution found with the sequential-modular can be used for initializing equation-
oriented models, see e.g. [4].

2. Heuristics. The literature on the various heuristics for the minimum feedback edge
set, minimum feedback vertex set, maximum acyclic subgraph, and the linear ordering prob-
lem is overwhelming. Only a few of the published heuristics are presented here, since a
proper review of the them would require a monograph.

Apart from the tractable special cases (e.g., planar graphs, reducible flow graphs), all
known heuristics must obey the fact that the minimum feedback edge set problem is approx-
imation resistant. In practice, it usually means that the difference between the solution found
by a heuristic and the optimal solution can be as large as O(n).

The minimum set cover problem approach. The greedy heuristic of [57] tends to give
good results in our numerical experience if enumerating all simple cycles happens to be
tractable for the input graph; for an enumeration algorithm see [49]. We gradually build
the feedback edge set by always picking that edge as the next element that, when removed,
destroys the most of the remaining simple cycles. Ties are broken arbitrarily. This heuristic
(i.e. pick that edge that breaks the most cycles), is a well-known greedy heuristic for the
minimum set cover problem, with an O(1+ logd) approximation factor guarantee, where d
is the maximum cardinality of any subset [16, 48, 61, 76]. Simplification rules can be applied
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to reduce the graph in each iteration step, before removing an edge or edges, see [30, 57, 72],
[9, p. 279], or [22, p. 114]. Sophisticated tie-breaking rules are also proposed in [57].

Unfortunately, the weakness of this heuristic is that even sparse graphs can have Ω(2n)
simple cycles [81], and such graphs appear in practice, see Section 5.4.

Greedy local heuristics. Other heuristics that do not require enumerating all simple cy-
cles are often based on local information only, and make greedy choices. (By local informa-
tion we mean that, e.g., only the in-degree and out-degree of the individual nodes are taken
into account but not global properties of the input graph.) A common pattern in these greedy
heuristics is described in the following.

The feedback edge set is built up iteratively. The input graph is simplified in each step
before removing an edge or edges; this simplification can include splitting into SCCs, and
then dropping the trivial SCCs (a trivial SCC consists of a single node), breaking two-cycles
appropriately, etc. Further simplification examples with figures are given in Appendix A.3.
After the simplification, the algorithm looks for a node in the remaining graph where many
simple cycles are likely to be destroyed when one or a few edges of that node are removed.
For example, a node in an SCC with a single in-edge but with many out-edges is a good
candidate: Removing its single in-edge breaks all the cycles that pass through that node, and
the number of destroyed simple cycles is at least the out-degree of that node (each out-edge
must participate in at least one simple cycle in an SCC by definition). This is the intuition
behind the greedy score functions: A node gets a higher score if it is more “asymmetric”
regarding its in- and out-degrees. Such score functions are, for example,

(1) score(i) = |din
i −dout

i |,
and

(2) score(i) = max
(

din
i

dout
i

,
dout

i

din
i

)
,

where score(i) is the score of node i; din
i and dout

i are the in- and out-degree of node i, respec-
tively. (The weighted variants of these score functions can be used if the input is a weighted
graph.) The node with the highest score is selected (breaking ties arbitrarily), then all of its in-
or its out-edges removed, whichever edge set is of smaller cardinality. The algorithm contin-
ues with the simplification. The heuristic terminates when there are no edges left. This pattern
can be recognized, for example, in [24, 25, 36, 77], but this list is by no means complete.

Sorting heuristics. Given an arbitrary ordering of the nodes of G, one can unambigu-
ously categorize all the edges as either forward or backward edges depending on whether
the terminal node of the edge (head) appears after the initial node (tail) of the same edge or
before. In the former case the edge is a forward edge (it is pointing forward in the ordering);
in the latter case it is a backward edge. We select the set of backward edges as the feedback
edge set.

The sorting heuristics view the minimum feedback edge set problem as an ordering prob-
lem: They try to find the minimum cost ordering by sorting the nodes appropriately. Various
sorting heuristics have been reviewed and new ones have been proposed in [11]. Numerical
results are reported on both sparse and dense random graphs where n ranges from 100 to
1000, and also for tournaments that have been reported to trigger particularly poor perfor-
mance for certain heuristics. The authors also report promising results for their novel hybrid
sorting heuristics.

A heuristic based on depth-first search and local search. A heuristic that does not re-
semble any of the above mentioned ones is given in [71]. Beside the common simplifications
(removing self-loops, sources, and sinks, then partitioning into SCCs), the SCCs are also par-
titioned into biconnected components at the articulation points. (A node v is an articulation

4



point if the removal of v causes the graph to become disconnected.) After these simplifi-
cations, a depth-first search is performed on each component to identify a (hopefully large)
acyclic subgraph D; the edges not in D form a feedback edge set F . The cardinality of F is
further reduced by a local search heuristic that works on consecutive subgraphs.

Heuristics for the closely related linear ordering problem. Finally, the reader is referred
to the heuristics for the linear ordering problem, which are discussed in great detail in [65].

3. Exact methods. The published exact methods include (a) dynamic programming,
e.g., [80, 88], (b) custom branch and bound methods (or smart enumeration with special
exclusion rules), e.g., [28, 34, 50, 69, 72], and (c) integer programming formulations. The
latter will be reviewed in the following subsections in detail, since the present paper focuses
on an approach based on integer programming.

3.1. Integer programming formulation with triangle inequalities. We seek a mini-
mum cost ordering π∗ of the nodes of G = (V,E). Let ci, j denote the cost associated with the
directed edge (i, j) ∈ E, and let ci, j = 0 if (i, j) /∈ E. If the cardinality of the feedback edge
set is to be minimized, then for each (i, j) ∈ E we have ci, j = 1. If the weighted minimum
feedback edge set problem is to be solved, then all ci, j associated with a directed edge equal
the weight of the corresponding edge (i, j). Furthermore, let the binary variables yi, j associ-
ated with a given ordering π encode the following: Let yi, j = 0 if node i precedes j in π , and
let yi, j = 1 otherwise. Any ordering π uniquely determines a corresponding y. This results in
the following integer programming formulation:

(3)

min
y

n

∑
j=1

(
j−1

∑
k=1

ck, jyk, j +
n

∑
`= j+1

c`, j(1− y j,`)

)
subject to

yi, j + y j,k− yi,k ≤ 1, 1≤ i < j < k ≤ n
−yi, j− y j,k + yi,k ≤ 0, 1≤ i < j < k ≤ n

yi, j = {0,1}, 1≤ i < j ≤ n.

Any y that satisfies the triangle inequalities (3) must correspond to an ordering [33, 59, 66].
Note that there are O(n2) binary variables, and O(n3) constraints in (3). Custom-tailored
cutting plane algorithms have been developed to solve this integer program efficiently (and
the linear ordering problem in general), see e.g., [33, 66], and [65, Ch. 5].

3.2. Integer programming formulation as minimum set cover. An alternative to the
formulation of the previous section is the minimum set cover formulation, see for exam-
ple [72, Eq. (1)] or [9, Sec. 8.4].

(4)

min
y

m

∑
j=1

w jy j

s.t.
m

∑
j=1

ai jy j ≥ 1 for each i = 1,2, . . . , `

y j is binary

Here, m denotes the number of edges; w j are nonnegative weights (often integer); y j is 1 if
edge j is in the feedback edge set, and 0 otherwise; ai j is 1 if edge j participates in cycle i,
and 0 otherwise; ` denotes the number of simple cycles. The matrix A = (ai j) is called the
cycle matrix.

In practice, the cycle matrix can often be significantly reduced in a presolve phase
[30, 57, 72], [9, p. 279], or [22, p. 114] (e.g., by iteratively removing dominating rows and
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dominated columns of the cycle matrix, and by removing columns that intersect a row with a
single nonzero entry). These simplifications were also referenced in the minimum set cover
approach in Section 2 on heuristics. State-of-the-art integer programming solvers such as
Gurobi [38] or SCIP [2] implement these simplifications (and other simplifications as well).
After the presolve phase, further specialized methods are available for handling the set cov-
ering constraints of (4) efficiently in a branch and bound solver, see e.g. [1].

The weakness of this formulation has already been discussed in Section 2: even sparse
graphs can have Ω(2n) simple cycles [81], and such graphs appear in practice, see Section 5.4.

4. An integer programming approach with lazy constraint generation. The tradi-
tional set covering formulation is used in our implementation; the reader is referred back
to Section 3.2 regarding the notation. If enumerating all simple cycles of G happens to be
tractable (see [49] for enumerating all simple cycles), the integer program (4) with the com-
plete cycle matrix A can be fed to a general-purpose integer programming solver such as
Gurobi [38] or SCIP [2]. These state-of-the-art integer programming solvers usually do not
have any difficulty solving (4) to optimality in reasonable time, even with 105 cycles in A. In
practice, the real challenge is enumerating all simple cycles: It is often intractable in practice,
and the proposed method addresses exactly such situations.

4.1. Informal overview of the proposed method. The proposed method enumerates
simple cycles in a lazy fashion, and extends an incomplete cycle matrix iteratively. In all
practical cases encountered so far, only a tractable number of simple cycles has to be enu-
merated until a minimum feedback edge set is found. Let us refer to problem (4) with the
complete cycle matrix as P, and let P̃(k) denote its relaxation in iteration k where only a sub-
set of simple cycles is included in the incomplete cycle matrix A(k). The first cycle matrix
A(1) can be initialized as follows. We call Algorithm 2 with all the edges of G as feedback
edge set, and with an empty cycle matrix; the algorithm returns the first cycle matrix for P̃(1).
(Other initialization procedures are also possible.)

In iteration k, the optimal solution to the relaxed problem P̃(k) gives a feedback edge
set, and we remove all the edges in this feedback edge set from G to get G(k). Since not all
simple cycles are included in the cycle matrix A(k) (only a relaxation is solved), G(k) is not
necessarily acyclic. Therefore we need to check acyclicity: Topological sort succeeds if and
only if G(k) is acyclic. If the topological sort succeeds, the algorithm has found an optimal
solution to P and the algorithm terminates.

If the topological sort on G(k) fails, then G(k) must have cycles. In this case, we first
create a feasible solution to P as follows. We identify a feedback edge set F(k) of G(k) using an
appropriate heuristic, see Section 2. The proposed algorithm is guaranteed to make progress
with any feedback edge set but the algorithm is likely to make better progress with an F(k) of
small cardinality. Removing the edges in F(k) makes G(k) acyclic, and therefore the associated
y yields a feasible solution to P. We keep track of the best feasible solution to P found
(incumbent solution).

After we have created a feasible solution to P, we improve the relaxation P̃(k) by adding
new rows to the cycle matrix A(k). The directed graph G(k) must have at least one cycle
because topological sort failed previously. The feedback edge set F(k) contains at least one
edge of every cycle in G(k) by definition; therefore, there must be at least one edge e ∈ F(k)

that participates in a cycle. For each edge e ∈ F(k) we compute the shortest path from the
head of e to the tail of e with breadth-first search (BFS). (Although it has not been observed,
this procedure based on BFS can potentially lead to poor performance if the edge weight
distribution is pathological. It is subject to future research to improve this procedure in such
pathological and not yet seen cases.) Such a shortest path exists if and only if e participates in
a cycle; we extended this shortest path with e which then gives a simple cycle (even without
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chords). A new row is appended to the cycle matrix for each simple cycle found. The cycle
matrix A(k) is guaranteed to grow at least by one row by the time we finish processing all the
edges in F(k). We then proceed with the next iteration step, starting with solving the next
relaxed problem P̃(k+1) with this extended cycle matrix A(k+1).

The algorithm terminates if G(k) is acyclic (as already discussed) or the objective at
the optimal solution of a relaxed problem equals the objective at the best known feasible
solution to P. A minimum feedback edge set has been found in both terminating cases. Finite
termination is guaranteed: The cycle matrix must grow by at least one row in each iteration,
and there is only a finite number of simple cycles in the graph.

On the implementation level, the Gurobi 6.5.1 [38] parameter LazyConstraints is set
to 1, and adding new rows to the cycle matrix is implemented in a callback function. For
further details, the reader is referred to the reference manual of Gurobi, and to the source
code at [6].

4.2. Pseudo-code of the proposed algorithm. The pseudo-code of the algorithm is
given as Algorithm 1 and at Algorithm 2; the Python implementation is available from [6].

Algorithm 1: Finding a minimum feedback edge set based on integer programming
and lazy constraint generation

Input: G, a directed graph with m edges and nonnegative edge weights w j ( j = 1,2, . . . ,m)
Output: A minimum weight feedback edge set
# P denotes the integer program (4) with the complete cycle matrix of G

1 Let ŷ denote the best feasible solution to P found at any point during the search (incumbent solution)
2 Compute a feedback edge set F(0) of G using e.g. any of the heuristics cited in Section 2
3 Set the solution associated with F(0) as the incumbent ŷ
4 Set the lower bound z and the upper bound z̄ on the objective to 0 and ∑w j ŷ j , respectively
5 Let A(i) denote the incomplete cycle matrix in (4), giving the relaxed problem P̃(i) (i = 1,2 . . . )
6 call Algorithm 2 with G, F(0), and an empty cycle matrix to get the first cycle matrix A(1)

7 for i = 1,2, . . . do
8 Solve the relaxed problem P̃(i); results: solution y(i), the associated feedback edge set S and objective

value z(i)

# Optional: When the integer programming solver is invoked on the line just above,
# ŷ can be used as a starting point

9 Set the lower bound z to max(z,z(i))
10 if z equals z̄ then
11 stop, ŷ is optimal

12 Let G(i) denote the graph obtained by removing all the edges of S from G
13 if G(i) can be topologically sorted then
14 stop, y(i) is the optimal solution to P as well

15 Compute a feedback edge set F(i) of G(i) using e.g. any of the heuristics cited in Section 2
16 Set those components of y(i) to 1 that correspond to an edge in F(i)

# y(i) is now a feasible solution to P
17 Let ẑ be the new objective value at y(i)

18 if ẑ < z̄ then
19 Set z̄ to ẑ
20 Set ŷ to y(i)

21 call Algorithm 2 with G(i), F(i), and A(i) to get the extended cycle matrix A(i+1)

# A(i+1) is guaranteed to have at least one additional row compared to A(i)

4.3. Novelties. The idea of building up an integer program incrementally, by adding
constraints to it in a lazy fashion, is not new, see for example Dantzig et al. [19] from 1954.
The well-known column generation approach corresponds to this idea but works on the dual
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Algorithm 2: Extending the cycle matrix given an arbitrary feedback edge set
Input: G, a directed graph; F , a feedback edge set of G; the incomplete cycle matrix A
Output: The extended cycle matrix A

1 foreach e ∈ F do
2 Find a shortest path p from the head of e to the tail of e with breadth-first search (BFS) in G
3 if such a path p exists then
4 Turn the path p into a simple cycle s by adding the edge e to p
5 Add a new row r to the cycle matrix corresponding to s if r is not already in the matrix

problem. Probably the first published paper applying column generation is from 1958 by Ford
and Fulkerson [29]. Not surprisingly, state-of-the-art integer programming solvers have high-
level API support for implementing such algorithms, see for example LazyConstraints in
Gurobi 6.5.1 [38].

We are not aware of any published algorithm that would apply lazy constraint generation
in the context of the minimum feedback edge set problem. However, the real novelty is in
the way how the lazy constraint generation is carried out: (1) We apply a greedy heuristic to
find a feedback edge set, (2) we then find the tightest simple cycles with breadth-first search
that contain this feedback edge set, (3) and finally extend the cycle matrix with these simple
cycles found, that is, append them as new constraints. As the numerical evidence of the next
section suggests, this is an efficient approach on sparse graphs.

5. Computational results.
Pre-solve phase. In the pre-solve phase, we attempt to generate an equivalent but simpler

graph than the input. Only the following procedures were applied: splitting into nontrivial
SCCs, then iteratively removing runs and 3-edge bypasses, see Hand-coded procedures for
common patterns in Appendix A.3 and also Figure 4.

Hardware and software environment. The computations were carried out with the fol-
lowing hardware and software configuration. Processor: Intel(R) Core(TM) i5-4670S CPU at
3.10GHz; operating system: Ubuntu 14.04.3 LTS with 3.13.0-86-generic kernel; the state-of-
the-art integer programming solver Gurobi 6.5.1 [38] was called through its API from Python
2.7.11; the graph library NetworkX [41] 1.9.1 was used.

5.1. Cross-checking correctness. This set primarily serves for cross-checking the cor-
rectness of our implementation against both the published results and the integer program-
ming approaches of Section 3.1 and 3.2. The properties of these test graphs are given in
Table 1.

TABLE 1
Properties of the test graphs for cross-checking correctness. These graphs once used to be a benchmark.

ID Nodes Edges SCCs Cycles Optimum Original source

1 6 30 1 409 15 Complete graph
2 12 21 1 22 2 Pho and Lapidus [72]
3 15 35 3 27 6 Barkley and Motard [7]
4 19 31 1 20 6 Sargent and Westerberg [79]
5 25 32 1 10 3 Christensen and Rudd [14] (‘first’)
6 29 37 1 11 5 Jain and Eakman [47] (HF-alkylation)
7 30 42 1 31 3 Christensen and Rudd [14] (‘second’)
8 41 61 1 103 5 Shannon (Sulfuric acid), see [36]
9 50 79 1 22 8 Jain and Eakman [47] (Vegetable oil)

10 109 163 1 13746 12 Gundersen [35] (Heavy water)
11 32 52 1 187 6 See Appendix A.4
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The graphs were taken from Gundersen and Hertzberg [36]: The test problems with
ID=1..10 correspond to the problem with the same ID in [36]. (The self-loops were removed
from Problem 1 of [36].) Problem 11 was obtained by running the ILP-based edge removing
algorithm of Appendix A.3 on Problem 10 with very aggressive settings, as discussed in
Appendix A.4. The goal was to isolate the core of Problem 10 that makes this test graph
inherently difficult. The corresponding graphs are shown in Figures 6 and 7.

For each problem in Table 1, the initial cycle matrix was already sufficient for the pro-
posed method to prove that the solution found is optimal, meaning that line 15 of Algorithm 1
is not reached. Although these graphs once used to be a benchmark, they can be solved with-
out any significant difficulties with today’s computational power.

5.2. Sparse random graphs. In the G(n, p) Erdős–Rényi random graph model, each
edge of an order-n graph is included with probability p independently from every other
edge [26]. This model was introduced independently by Edgar Gilbert [32]. The Erdős–
Rényi random graph model plays an important role in the probabilistic method to prove the
existence of graphs satisfying various properties, or to provide a rigorous definition of what
it means for a property to hold for almost all graphs.

The computational results are shown in Figure 1. For a fixed (n,c), the median execution
time of the proposed method is consistently less than that of the method of Section 3.1. As
expected, the median execution time increases for both methods as the graph becomes denser,
i.e., increases with c = pn.

10−1

100

101

102

M
ed
ia
n
ex
ec
u
ti
on

ti
m
e
(s
)

40 50 60 70 80 90 100
n

c = 5

c = 7

c = 9

c = 5

c = 7
c = 9

Proposed method

Method of Sec. 3.1.

FIG. 1. Computing the minimum feedback edge set of random graphs, generated according to the Erdős-
Rényi model G(n, p) with edge probability p = c

n , where the number of nodes n and the parameter c are shown in
the figure. Each dot represents the median of the execution times over 101 random graphs. Solid lines: proposed
method; dashed lines: integer programming formulation of Section 3.1 using triangle inequalities.

5.3. Dense graphs for testing the worst-case behavior.
Random tournaments. As discussed in Section 1.1, a tournament is an orientation of an

undirected complete graph. Both a polynomial-time approximation scheme (see Sec. 1.1)
and custom-tailored cutting plane algorithms have been developed to solve tournaments effi-
ciently (see Sec. 3.1). The sole reason why random tournaments were included in our test set
is to examine, in some sense, the worst-case behavior of the proposed method since the algo-
rithm was meant to be used with sparse graphs, whereas tournaments stem from the complete
graph. The results are shown in Figure 2. The proposed method, despite being in a worst-case
scenario, performs better than the method of Section 3.1 for n < 33. As expected, the method
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of Section 3.1 eventually outperforms the proposed method for random tournaments of size
n≥ 33, since the method of Section 3.1 was tailored for tournaments.
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FIG. 2. Computing the minimum feedback edge set of random tournaments. Each dot represents the median
of the execution times over 101 random tournaments. The number of nodes is denoted by n. Solid line: proposed
method; dashed line: integer programming formulation of Section 3.1 using triangle inequalities.

Complete directed graph. Even though the complete directed graph has an analytic so-
lution, it may trigger the worst-case performance of certain algorithms. For example, the
complete graph is intractable with the minimum set cover approach of Sec. 3.2 for n > 10 (it
has more than 107 simple cycles), and the proposed method extends the minimum set cover
approach. Therefore it is reasonable to add the complete directed graph to the test set. How-
ever, both the proposed method and the integer programming approach of Sec. 3.1 solve the
complete graphs already in the presolve phase even for n > 10.

5.4. Challenging sparse graphs. The sparse graphs considered in this section are in-
tractable with the integer programming approaches of Section 3.1 and 3.2 due to the sheer
number of constraints in the integer programs. In particular, the formulation of Section 3.1,
when applied to a graph of n nodes, yields an integer program with

(n
2

)
binary variables and

2
(n

3

)
constraints. We consider this approach intractable for n≥ 100. For each graph we veri-

fied that there are more than 107 simple cycles in it: 107 +1 simple cycles were enumerated
with Johnson’s algorithm [49] before giving up on enumerating all of them. (It is very likely
that each of them has several orders of magnitude more simple cycles.) This rules out the in-
teger programming approach of Section 3.2. Finally, exploiting fixed-parameter tractability,
the O(n44kk3k!) time algorithm of [13] (Sec. 1.1), is not an option either due to the size of
the minimum feedback edge set.

The generalized de Bruijn graph B(n,d) is defined as follows [23]. The nodes are
labeled 0,1, . . . ,n−1, and the directed edge set consists of

(5) u→ u ·d + r mod n for each 0≤ u≤ n−1, 0≤ r ≤ d−1,

where d is the degree of the graph. The generalized de Bruijn graphs were first proposed
independently by S. M. Reddy and Kuhl [75] and Imase and Itoh [44]. Certain grid network
topologies are de Bruijn graphs [83, Sec. 5.6.1.2 and 5.6.2.2]. The distributed hash table
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protocol Koorde uses de Bruijn graphs [51]. In bioinformatics, de Bruijn graphs are used for
de novo assembly of (short) read sequences into a genome [91].

Kautz graphs are closely related to de Bruijn graphs. The directed Kautz graph K(d,k)
of degree d and diameter k is the graph defined as follows [54]. A node is labeled with a word
of length k, (x1, . . . ,xk), on the alphabet Σ = {0, . . . ,d}, |Σ| = d + 1, in which xi 6= xi+1 for
1 ≤ i ≤ k− 1. There is an edge from a node x = (x1, . . . ,xk) to all vertices y such that y =
(x2, . . . ,xk,z), z∈ Σ, z 6= xk. The Kautz graph is a good static topology to construct distributed
hash table (DHT) schemes [60], for fault-tolerant processor interconnection networks [46],
and for multi-OPS optical network topologies [18].

The definition of Kautz graphs cannot yield graphs of any size. Graphs by Imase and Itoh
are a generalization of Kautz graphs to obtain graphs of arbitrary size. The directed graphs
of Imase and Itoh of degree d and order n are defined as follows [45]: The nodes are labeled
0,1, . . . ,n−1, and there is a directed edge from node i to node j iff:

(6) j ≡ i ·d +α mod n, α = 0, . . . ,d−1.

The directed Kautz graph of degree d and diameter k is isomorphic to the directed graph
of Imase and Itoh of degree d and order dk−1(d + 1). The Imase and Itoh graphs have ap-
plications in the design of building-block switching systems, communication networks, and
distributed computer systems [45].

TABLE 2
Computational results on de Bruijn graphs with the proposed method. These graphs are considered intractable

with the methods of Sec. 3.1 and Sec. 3.2; exploiting fixed-parameter tractability is not an option either. Except the
parameter d, all the data are given for the graphs after the presolve phase, i.e., after removing self-loops.

Nodes Edges Parameter d Optimum Time (s)

100 296 3 58 22.39
100 396 4 91 1.08
100 492 5 116 1.22
100 590 6 158 8.39

110 326 3 63 1.11
110 436 4 97 34.96
110 544 5 134 3.77
110 650 6 172 2224.37

120 356 3 66 1.8
120 474 4 108 3.27
120 592 5 150 1.19
120 710 6 180 1479.63

6. Conclusions. We have proposed a novel method for solving the minimum feedback
edge set problem. In Section 5.2, the proposed method was compared to the alternative
integer programming approach of Section 3.1 on 3.7k sparse random graphs of varying size
and sparsity. These graphs, although still tractable, push the compared methods to their limits.
The proposed method shows significantly better scaling on these sparse random graphs than
the alternative approach.

Tournaments trigger, in some sense, the worst-case behavior of the proposed method
since the algorithm was meant to be used with sparse graphs, whereas tournaments are the
orientation of the undirected complete graph. Since the method of Section 3.1 was tailored
for tournaments, it eventually outperforms the proposed method for random tournaments of
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TABLE 3
Computational results on graphs of Imase and Itoh with the proposed method. These graphs are considered

intractable with the methods of Sec. 3.1 and Sec. 3.2; exploiting fixed-parameter tractability is not an option either.
Except the parameter d, all the data are given for the graphs after the presolve phase, i.e., after removing self-loops.

Nodes Edges Parameter d Optimum Time (s)

100 300 3 66 0.36
100 400 4 90 1.30
100 496 5 126 1.54
100 594 6 156 35.18
100 696 7 192 45.42

110 328 3 62 1.14
110 440 4 100 3.79
110 546 5 135 6.91
110 654 6 172 37.56
110 764 7 210 4785.70

120 360 3 72 0.98
120 480 4 114 3428.02

size n ≥ 33. Nevertheless, for random tournaments of size n < 33, the proposed method
is faster on average. Let us emphasize again that the proposed method is not meant to be
used with tournaments or dense graphs: As discussed in Section 1.1, specialized methods are
available for tournaments and dense graphs. The sole reason for testing on tournaments was
to study the worst-case behavior of the proposed method, and we consider this worst-case
performance satisfactory.

The highly structured sparse graphs of Section 5.4 are intractable with the alternative in-
teger programming approaches of Sections 3.1 and 3.2 due to the sheer number of constraints
in the integer program. Exploiting fixed-parameter tractability is not an option either due to
the size of the minimum feedback edge set of these challenging graphs. However, it is still
tractable to find the minimum feedback edge set of these graphs with the proposed method.

The 4468 test graphs used in this study, together with their minimum feedback edge set,
are available in electronic form at [6] as plain text files. The format of these text files is
simple and documented; it should be easy to parse them in any mainstream programming
language. The source of the proposed method is also available at [6]. This contribution aims
at establishing a benchmark for future exact algorithms.

Acknowledgement. The research was funded by the Austrian Science Fund (FWF):
P27891-N32. Support by the Austrian Research Promotion Agency (FFG) under project
number 846920 is gratefully acknowledged.

Appendix A. Safely removing edges. We say that a set of edges is safe to remove if
removing these edges from G, and adding them to the feedback edge set does not change the
minimum cost solution. In other words, there must be at least one minimum cost feedback
edge set in G that contains all the edges of an edge set that is safe to remove.

The goal of the algorithm is to find edges that can be safely removed. If the algorithm
fails to find such an edge set, no simplification takes place, nothing is removed from G.

Our original intent was to create an algorithm for the pre-solve phase of the proposed
method that generates an equivalent but simpler graph than the input. The algorithm presented
in this section turned out to be impractical for such purposes due to its high computational
costs. Nevertheless, certain pieces of it proved to be useful and are included in the proposed
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method (see Hand-coded procedures for common patterns in Appendix A.3), and it also pro-
vided us insights into the structure of Problem 10 by identifying a challenging subgraph of it
that has no edges that are safe to remove.

A.1. Intuition. We start with the following simple example. The input graph G is as-
sumed to be unweighted, that is, the cardinality of the feedback edge set is to be minimized
in this example. Furthermore, let us assume that the nodes u and v participate in a two-cycle,
and u has an additional in-edge and v has an additional out-edge, see Figure 3.

u v

FIG. 3. An example showing how the simplification works on a two-cycle.

This two-cycle has to be broken to make G acyclic, and there are exactly three possibilities to
break this two-cycle: We remove (i) the edge (u,v), or (ii) the edge (v,u), or (iii) both. The
third option is obviously not an optimal solution to break the two-cycle. We now discuss the
first two options.

The edge (v,u) cannot participate in any simple cycle other than the two-cycle shown
in Figure 3, because u has a single out-edge and that points to v, or alternatively, because v
has a single in-edge and that comes from u. However, the edge (u,v) can participate in other
simple cycles of G; let C denote the set of these simple cycles. The cycles in C still have to be
broken to make G acyclic. Therefore, we can conclude that removing the edge (v,u) cannot
yield a strictly lower cost solution than removing (u,v) since removing (u,v) breaks both the
two-cycle and all the other cycles in C (if any). The edge (u,v) can be safely removed; the
global optimum remains unchanged.

A.2. Rule to identify edges that are safe remove. Our observations made in the previ-
ous subsection generalize. We compute two costs:

• the exact minimum cost c1 of making an arbitrary induced subgraph G′ of (the
weighted or unweighted) G acyclic,

• the cost c2 of making both G′ acyclic and breaking also all those cycles of G that
can have an edge in G′ by removing edges in G′ only. Let F ′ denote such an edge
set; this edge set has cost c2.

If c1 = c2, then it is safe to remove F ′ from G and to add it to the feedback edge set of G. The
argument is the same as it was in the example. Making G′ acyclic alone is not cheaper than
the cost of F ′, and removing F ′ makes G′ acyclic and also breaks all those cycles of G that
have an edge in G′.

The algorithm reports failure if c1 < c2 and no simplification takes place. (Note that
c1 ≤ c2 must hold.) Only c1 has to be computed exactly (rigorously); it is sufficient to use a
heuristic to find an appropriate F ′.

A.3. Implementation.
Hand-coded procedures for common patterns. Although the edge removal rule of the

previous section can be implemented in a generic fashion, it proved to be fruitful to hand-
code certain common patterns (common induced subgraphs) and their simplified forms. The
primary reason is efficiency, but our simple algorithm for generating subgraphs of the input
graph also benefits from these simplifications as we will see shortly.

Common patterns such as runs, self-loops, two-cycles, three-cycles, 3-edge bypasses,
and their corresponding simplified forms are hand-coded, see Figure 4. We assume through-
out this paper that the input graph G does not have self-loops. However, self-loops are tem-
porarily allowed when the hand-coded rules are applied; self-loops are no longer present when
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the hand-coded simplifications finish. There is only one edge that can break a self-loop; this
edge is always removed and added to the feedback edge set. The other patterns were se-
lected by inspecting the graphs in our test set. One could derive rules for other patterns too,
depending on what is believed to be common in the expected input graphs.

Once all the hand-coded simplifications have been performed, and the graph cannot be
simplified any further with these rules, the remaining graph is split into nontrivial SCCs, and
the hand-coded simplification procedures are run again on each SCC. If neither the hand-
coded simplification procedures nor splitting into nontrivial SCCs result in any progress, we
continue with the computationally more expensive integer programming based simplification,
as discussed right below.

Selecting the induced subgraphs G′. In order to apply the rule of Appendix A.2, an
induced subgraph G′ must be selected. G′ can be an arbitrary induced subgraph of G, but
it is assumed that finding a minimum feedback edge set of G′ with an exact method is still
tractable. Furthermore, we assume that both G′ and G are nontrivial SCCs; the algorithm
would produce valid but mostly useless results otherwise.

The following procedure is used to construct G′. Depth first search (DFS) is started from
an appropriately chosen node n of G (more on this in the next paragraph) but the search is
limited in depth by a pre-defined constant d. The induced subgraph of the visited nodes is
created, and that nontrivial SCC (if any) is selected that contains n. This SCC is G′. The
algorithm reports failure if there is no such nontrivial SCC (and therefore no simplification
takes place). This procedure is rather plain: For example, in a complete graph, it produces
G′ ≡ G even with d = 1.

Each node of G is probed in the edge removing algorithm, one after the other in an arbi-
trary sequence, and starting with d = 1 as depth limit for the DFS. If no safe edge set is found
at any of the nodes, d is increased by 1, and each node of G is probed again. The procedure
stops when d exceeds the user-defined limit dmax (= 5 by default in our implementation) with-
out finding any safe edge set. However, whenever a safe edge set is found, it is removed and
added to the feedback edge set. The remaining part of G is split into nontrivial SCCs, the runs
and the 3-edge bypasses are iteratively removed with the hand-coded simplifications, and the
resulting nontrivial SCCs are appended to the SCCs to be processed. This arrangement is not
ideal but it is easy to implement. Note that if the upper bound dmax is large enough, G′ will
be identical to G, that is, we get back the original minimum feedback edge set problem. The
constant dmax will be referred to as cutoff in DFS.

Computing c1. The computation of c1 must be exact; any exact method (including the
proposed method of Section 4) can be applied. In our implementation, c1 is computed by
solving (4) with the complete cycle matrix. Therefore, G′ is assumed to be small enough so
that all of its simple cycles can be enumerated. One way to enforce this is a naive trial and
error approach: Johnson’s algorithm [49] for enumerating simple cycles can be implemented
in a lazy fashion [41], that is, it can be aborted after a pre-defined number of simple cycles
(e.g. 100 or 1000) have been found. If an induced subgraph G′ has more simple cycles than
this pre-defined threshold, the algorithm gives up, and reports failure. This user-defined limit
for the number of simple cycles will be referred to as cycle budget per SCC.

If enumerating all simple cycles in G′ finishes within the pre-defined limit for the number
of simple cycles, the corresponding integer program (4) is solved. This gives the cost c1 of
making G′ acyclic alone.

Computing c2. We create a graph H in which any edge of G′ that can possibly participate
in a simple cycle in G, necessarily participates in a simple cycle in H too. We could select
G as H, but it would not be practical: We do not want to unnecessarily introduce new simple
cycles in H.

A node is on the boundary of G′ if it has either an in- or an out-edge whose other
14



endpoint is not in G′; let B denote this set of nodes. Let us consider those simple cycles in G
that have at least an edge in G′ but not all of their edges; let C denote the set of these simple
cycles. The cycles in C must enter and leave G′ at distinct nodes (possibly multiple times),
and these nodes must be in B. We create a new graph H in which each node in B necessarily
participates in at least one simple cycle that has edges outside G′. This will ensure that any
edge in G′ that appears in a cycle in C, will also be involved in a simple cycle in H that has
edges outside G′.

The reader is referred to Figure 5 before reading the explanation that follows. We extend
G′ by adding two fake nodes u and v to it, together with the following fake edges. For each
edge in G that has its initial node (tail) t in G′ but its terminal node (head) not in G′ (edges
“sticking out” of G′), we add the edge (t,u) to G′. Similarly, for each edge that has its terminal
node (head) h in G′ but its initial node (tail) not in G′, we add the edge (v,h) to G′. Finally,
we add the edge (u,v). Let H denote the graph that we obtained; G′ is obviously an induced
subgraph of H.

H ensures that all the nodes on the boundary of G′ participate in at least one simple cycle
that has an edge outside G′: This is the cycle that goes through the edge (u,v). Therefore, if
we compute a feedback edge set F ′ of H such that it only contains edges that were present
in G′ (no edges incident to u or v), then this edge set, when removed from G, will make G′

acyclic and breaks all the cycles in C as well.
There is a corner case in the above construction of H which is currently not handled by

the algorithm: If a cycle of G has exactly one node in G′, then it is not possible to make H
acyclic by removing edges from G′ only. If this corner case is encountered, the algorithm
gives up and reports failure. This is obviously a missed opportunity and should be handled in
the future, but the correctness is not affected.

A.4. Edge removal experiments. In Table 4 we give the minimum cycle budget and
the minimum cutoff that are necessary to solve the test problems exclusively with the edge
removal algorithm of Appendix A.3. Although it is inefficient to solve these problems with

TABLE 4
The minimum cycle budget and minimum cutoff to solve the test problems with the edge removal algorithm

only. Problem 1 is the complete graph and has no safe to remove edges. Problem 11 has no safe to remove edges as
expected, see in the text.

Problem ID Optimum Cycles Cycle budget Cutoff

1 15 409 409 1

2 2 22 3 1

3 6 27 9 1

4 6 20 8 2

5 3 10 3 1

6 5 11 3 1

7 3 31 18 3

8 5 103 41 3

9 8 22 13 2

10 12 13746 187 5

11 6 187 187 4

the edge removal algorithm only, the numbers nevertheless show that Problems 2–10 can be
simplified, Problem 10 even by a factor of 73 with respect to the number of simple cycles.
Problem 11 is the SCC (G′) with the most simple cycles that occurred during solving Prob-
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lem 10 with the edge removal algorithm only. Accordingly, Problem 11 does not have a
proper subgraph that has safe to remove edges. See also Figures 6 and 7.
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FIG. 4. Common patterns whose simplification is hand-coded mainly for efficiency reasons. The left column
shows the induced subgraphs of G, the right column shows the corresponding simplified form. From top to bottom:
(1) removing self-loops, (2) breaking 2-cycles where b has out-degree 1 in G, (3) breaking 2-cycles where b has
in-degree 1 in G, (4) removing runs, (5) rewriting 3-edge bypasses, (6) rewriting 3-cycles. In cases (4)–(6), the node
b must have in-degree 1 and out-degree 1 in G.
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G′ G′

u

v

FIG. 5. Left: The nodes on the boundary of the induced subgraph G′ are shown as black dots, together with
their edges not in G′. Right: The extended G′, the H graph. The nodes u and v, and their edges are fake (not in G).
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FIG. 6. Problem 10, origin: Gundersen [35] (Heavy water). This graph has 109 nodes, 163 edges, 13746
simple cycles, and the cardinality of the minimum feedback edge set is 12.
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