
Interval Propagation on Directed Acyclic Graphs

Interval Propagation and Search on Directed Acyclic Graphs

for Numerical Constraint Solving

Xuan-Ha Vu ha.vu@4c.ucc.ie

Cork Constraint Computation Centre,
University College Cork,
14 Washington Street West, Cork, Ireland

Hermann Schichl hermann.schichl@univie.ac.at

Faculty of Mathematics,
University of Vienna,
Nordbergstr. 15, A-1090 Wien, Austria

Djamila Sam-Haroud jamila.sam@epfl.ch

Artificial Intelligence Laboratory,

Ecole Polytechnique Fédérale de Lausanne (EPFL),

Batiment IN, Station 14, CH-1015 Lausanne, Switzerland

Abstract

The fundamentals of interval analysis on directed acyclic graphs (DAGs) for global
optimization and constraint propagation have recently been proposed by Schichl and Neu-
maier [2005]. For representing numerical problems, the authors use DAGs whose nodes are
subexpressions and whose directed edges are computational flows. Compared to tree-based
representations [Benhamou et al. 1999], DAGs offer the essential advantage of more accu-
rately handling the influence of subexpressions shared by several constraints on the overall
system during propagation.

In this paper we show how interval constraint propagation and search on DAGs can
be made practical and efficient by : 1) flexibly choosing the nodes on which propagations
must be performed, and 2) working with partial subgraphs of the initial DAG rather than
with the entire graph.

We propose a new interval constraint propagation technique which exploits the influence
of subexpressions on all the constraints together rather than on individual constraints. We
then show how the new propagation technique can be integrated into branch-and-prune
search to solve numerical constraint satisfaction problems.

This algorithm is able to outperform its obvious contenders, as shown by the experi-
ments.1

1. Introduction

A constraint satisfaction problem (CSP) consists of a finite set of constraints specifying
which combinations of values from given domains of variables are admitted. A CSP is said
to be numerical if its domains are continuous. Numerical CSPs, such as systems of nonlinear
equations and inequalities, arise in many applications and form a difficult problem class since

1. A short version of this paper has been published in [Vu et al. 2004b]

1



Xuan-Ha Vu et al.

they are NP-hard. In practice, numerical constraints are usually expressed in factorable form
which means that they are composed of elementary operators or functions (e.g., +, ∗, ÷,√

and sin) and standard relations (e.g., ≤, <, 6=, >, and ≥). Many solution techniques
exploit the factorability of such numerical constraints to efficiently solve numerical CSPs.
To achieve full mathematical rigor when performing operations on floating-point numbers,
most techniques are based on interval arithmetic or its variants.

The most commonly used complete strategy for finding the solutions of a numerical
CSP is branch-and-prune, which interleaves branching steps with pruning steps. Roughly
speaking, a branching step divides the problem into subproblems whose union is equivalent
to the initial one in term of the solution set, and a pruning step reduces/simplifies the
problem in some measure. The most well-known pruning technique is domain reduction,
which reduces the domains of variables without discarding any solution of the problem.

Over the last twenty years, many domain reduction techniques based on interval arith-
metic have been devised. In particular, an interesting approach in constraint programming,
called interval constraint propagation, was developed in the 1990s (see [Benhamou and Older
1992, 1997], [Van Hentenryck 1997] and [Jaulin et al. 2001]). This approach combines con-
straint propagation techniques, as defined in artificial intelligence, with interval-analytic
methods. The algorithm HC4 [Benhamou et al. 1999] is one of the most prominent repre-
sentatives of this family of domain reduction techniques. In HC4, each individual constraint
is represented by a tree whose nodes and edges stand respectively for subexpressions and
computational flows. Each node of the tree is associated with the (possible) range of the
corresponding subexpression.

In order to reduce the variables’ domains of a given constraint the technique recursively
performs forward evaluations and then backward projections on the whole tree representing
the constraint. These two steps compute the ranges of nodes based on the ranges of their
children’s and parents’ respectively. When several constraints are involved, HC4 performs
forward evaluations and backward projections individually on each constraint, and then
propagates the reduction of the variables’ domains from tree to tree by using a variant of
arc consistency, AC3 [Mackworth 1977].

The fact that each constraint is propagated individually is one of the main limitations
of this approach. The effects of the common subexpressions, shared by several constraints,
is only roughly taken into account.

Recently, a fundamental framework for interval analysis on directed acyclic graphs
(DAGs) has been proposed by Schichl and Neumaier [2005] which overcomes this limi-
tation. The authors suggested to replace trees with DAGs and showed how to perform
forward evaluations and backward projections using this particular representation. The
shift to DAGs potentially reduces the amount of computation on common subexpressions
shared by constraints, and explicitly relates constraints to constraints in the natural way
they are composed, thus enhancing the constraint propagation process.

The constraint propagation technique proposed by [Schichl and Neumaier 2005] is a
direct generalization of HC4 in the sense that all the nodes of the DAG are forward evaluated
then backward projected at once. In practice, and as the problems grow large, situations
often occur where only a small number of nodes is worth considering for forward or backward
inference as the other nodes leave the domain ranges unchanged after computation.

2



Interval Propagation on Directed Acyclic Graphs

This paper builds on this idea and presents a new constraint propagation technique
following the DAG-based framework [Schichl and Neumaier 2005]. The contribution is
twofold. Firstly, we show how the DAG-based framework can be made efficient and practical
by adaptively performing forward evaluations and backward projections on chosen nodes of a
DAG (see Section 4, Section 4.3 and Section 5). In our approach, switching from evaluations
to projections is made at the node level rather than at the tree or DAG level.

Secondly, we show how the new propagation technique can be integrated into a generic
branch-and-prune search without the necessity to create multiple DAGs (see Section 4.3,
Section 5 and Section 6). Our experiments carried out on impartially chosen benchmarks
show that the new technique outperforms previously available propagation techniques by
1 to 2 orders of magnitude or more in speed, while being roughly the same quality with
respect to enclosure properties (see Section 7).

The paper is organized as follows. Section 2 presents the necessary background and
definitions, including the basic concepts of factorability (Section 2.1), interval arithmetic
(Section 2.2), numerical constraint satisfaction (Section 2.3), and DAG representation of
numerical CSPs (Section 2.4). Section 3 describes a slight modification to standard interval
arithmetic that may reduce the amount of computation in constraint propagation. Forward
evaluation and backward propagation on DAGs as well as the notion of partial DAG rep-
resentation are presented in Section 4 and serve as basis for the core contributions of this
paper (Sections 5 and 6). Finally, Section 7 discusses the preliminary experimental results.

2. Background and Definition

2.1 Factorable Form

In practice, most functions for modeling real-world applications can be expressed using
elementary operations or functions such as +, −, ∗, /, sqr, exp, ln, and sin. If an expression
is recursively composed of standard elementary operations and functions, it is called an
arithmetic expression [Neumaier 1990, p. 13] or a factorable expression [McCormick 1976,
1983]. Factorable expressions play a significant role in algorithms for solving not only
numerical CSPs but also other numerical problems such as optimization problems and
automatic differentiation computations. For completeness, we recall in this section the
concepts of factorability.

Notation 1 (Elementary Operations). E1 denotes the set of standard elementary unary
functions, namely, E1 = {abs, sqr, sqrt, exp, ln, sin, cos, arctan}. E2 denotes the set of stan-
dard elementary binary operations, namely, E2 = {+,−, ∗, /,ˆ}.

In this paper, we extend the concept of an arithmetic expression to include other ele-
mentary operations.

Definition 2 (Factorable Expression). Let R be a nonempty set, {x1, . . . , xn} a set of
variables taking values in R, F a finite set of elementary operations of the form f : Rk → R.
An expression is said to be factorable in the (formal) variables x1, . . . , xn using operations
in F if it is a member of the minimal set F ≡ F(R,F ;x1, . . . , xn) satisfying the following
composition rules:

1. R ⊆ F ;

3



Xuan-Ha Vu et al.

2. xi ∈ F for all i = 1, . . . , n;

3. If f : Rk → R is in F and e1, . . . , ek ∈ F ; then f(e1, . . . , ek) ∈ F .

Notation 3. We denote E(x1, . . . , xn) ≡ F(R,E1 ∪ E2;x1, . . . , xn).

If an expression E is factorable in variables X ≡ {x1, . . . , xn} using operations in F as
in Definition 2 and if either F = E1 ∪ E2 ∧ R = R holds or F is known from the context,
then we say for short that E is factorable (in X).

The expression f(x, y) = 2xy + sinx is factorable using the elementary operations in
{+, ∗,ˆ, sin}. The composition is given as follows: f1 = xˆy (≡ xy), f2 = 2∗f1, f3 = sin(x),
and f = f2 +f3. The expression f(x, y) is also an arithmetic expression, namely, in E(x, y).

Definition 4 (Factorable Function). A function f is said to be factorable in variables
x1, . . . , xn using the operations in a finite set F of elementary operations if it can be ex-
pressed by an expression that is factorable in variables x1, . . . , xn using elementary opera-
tions in F . If F = E1 ∪E2 or F is known from the context, we could just say for short that
f is factorable (in variables x1, . . . , xn).

For example, the function f(x, y) = 2xy + sinx is factorable using the operations in
{+, ∗,ˆ, sin}, and is not factorable using only the operations in {+, ∗,ˆ}.

The factorability can be defined for constraints as follows.

Definition 5 (Factorable Constraint). A constraint is said to be factorable in variables
x1, . . . , xn using a finite set F of elementary operations if it can be expressed as a relation
involving expressions that are factorable in variables x1, . . . , xn using operations in F . In the
composition of a factorable constraint, each constraint representing an elementary operation
is called a primitive constraint.

In this paper, we restrict, for simplicity, the relation in a factorable constraint to be ≤,
<, ≥, >, = or 6=. For example, the constraint 2xy + sinx ≤ 0 is factorable in variables x
and y using the operations in {+, ∗,ˆ, sin}. Its primitive constraints are f1 = xˆy (≡ xy),
f2 = 2 ∗ f1, f3 = sin(x), and f2 + f3 ≤ 0; where x and y are initial variables, and f1, f2 and
f3 are auxiliary variables.

The factorability can also be defined for a CSP as follows.

Definition 6. A CSP is said to be factorable (using a set F of elementary operations) if
all its constraints are factorable (using operations in F ).

2.2 Interval Arithmetic

Let R∞ ≡ R∪{−∞,+∞}. The lower bound of a real interval x is defined as inf(x), and the
upper bound of x is defined as sup(x). Let denote x = inf(x) ∈ R∞ and x = sup(x) ∈ R∞.
There are four possible intervals x with these bounds:

• The closed interval defined as x ≡ [x, x] ≡ {x ∈ R | x ≤ x ≤ x};
• The open interval defined as x ≡ (x, x) ≡ {x ∈ R | x < x < x};
• The left-open interval defined as x ≡ (x, x] ≡ {x ∈ R | x < x ≤ x};
• The right-open interval defined as x ≡ [x, x) ≡ {x ∈ R | x ≤ x < x}.

4



Interval Propagation on Directed Acyclic Graphs

The set of all closed intervals is denoted by I and the set of all intervals is denoted by IR.
The interval hull of a subset S of R, denoted by ⊓⊔S, is the smallest interval (w.r.t. the
set inclusion) that contains S. For example, ⊓⊔((1, 2] ∪ {3, 4}) = (1, 4]. Given a nonempty
interval x, we define that

• The midpoint of x is mid(x) ≡ (inf(x) + sup(x))/2;

• The radius of x is rad(x) ≡ (sup(x) − inf(x))/2;

• The width of x is w(x) ≡ sup(x) − inf(x).

Note that the w, rad, and mid of the empty interval are undefined, as is mid for all un-
bounded intervals. A box is defined as the Cartesian product of a number of intervals. The
concepts of the midpoint, radius and width can be defined on boxes in a component-wise
manner. The set IR (hence the set I) admits the usual partial orders ⋄ ∈ {<,≤, >,≥} as
follows:

x ⋄ y ⇔ ∀x ∈ x, y ∈ y : x ⋄ y.

Interval arithmetic maintains the inclusion property that the result of an operation
or function in interval arithmetic must enclose the exact range of its real-valued coun-
terpart. For example, the addition of two real intervals, x and y, can be defined as
x + y ≡ {x+ y | x ∈ x, y ∈ y}. Although the inclusion property characterizes the oper-
ations of interval arithmetic mathematically, the usefulness of interval arithmetic is due
to the operational definitions based on interval bounds. For example, let x = [x, x] and
y = [y, y] be two intervals, the standard interval arithmetic shows that the natural exten-
sions of the real operations can be computed as follows:

x + y ≡ [x+ y, x+ y]; (1a)

x − y ≡ [x− y, x− y]; (1b)

x ∗ y ≡ [min{xy, xy, xy, xy},max{xy, xy, xy, xy}]; (1c)

x ÷ y ≡ x ∗ (1/y) if 0 /∈ y, where 1/y ≡ [1/y, 1/y]. (1d)

One can compose arithmetic expressions with interval variables using these elementary
operations in the way arithmetic expressions with real variables are composed. In general,
one may wish to construct an interval form, f : IRn → IRm, of a real function f : D ⊆
Rn → Rm conforming to the inclusion property. That is, for all x ∈ IRn, we have ∀x ∈
x ∩D : f(x) ∈ f(x) or, for short, f(x ∩D) ⊆ f(x).

Let f : D ⊆ Rn → Rm be a factorable function with one of its realizations f as arithmetic
expression. The natural extension of f is an interval function ff : IRn → IRm constructed
from f in which each real variable is replaced by an interval variable and each elementary
real operation is replaced by the natural extension of this operation. It is easy to prove that
ff is an interval form of the function f . Therefore, it is called a natural interval form of f
and denoted by f . Note that f indeed depends on the arithmetic expression used to realize
f (see e.g. [Neumaier 1990, Chapter 1]), however, it is common usage to call every natural
extension of f the natural (interval) extension of f . For example, the natural interval form of
the real function f(x, y) = 2∗x+x∗y is the interval function f(x,y) = 2∗x+x∗y. However,
the same function f can be (better) represented by the interval function f(x,y) = x(2+y).

5



Xuan-Ha Vu et al.

Rigorous enclosures The finite nature of number systems in computers precludes an
exact representation of the real numbers. In practice, the real set R is hence approximated
by a finite set F, the set of floating-point numbers [Goldberg 1991], including the infinities.
The set of real intervals is then replaced with the set I⋄ of closed floating-point intervals
with bounds in F. The interval concepts are similarly defined on I⋄ such that the inclusion
property still holds. In addition, an interval in I⋄ (respectively, a box in In⋄ ) is said to be
canonical if and only if it does not contain two disconnected intervals in I⋄ (respectively, two
disconnected boxes in In⋄ ).2 Usually, operations on floating-point intervals are outwardly
rounded such that the floating-point result encloses the exact result. This interval arith-
metic, called outwardly rounded, allows us to compute rigorous enclosures for the ranges of
functions by using floating-point number systems.

The reader can find extended introductions to interval analysis in [Moore 1966, 1979;
Alefeld and Herzberger 1983], interval methods for systems of equations in [Neumaier 1990],
interval methods for optimization in [Hansen and Walster 2004], and some recent applica-
tions of interval arithmetic in [Jaulin et al. 2001].

2.3 Numerical Constraint Satisfaction

2.3.1 Numerical Constraint Satisfaction Problems

A constraint on a finite sequence of variables (x1, . . . , xk) taking values in respective domains
(D1, . . . ,Dk) is a subset of the Cartesian productD1×· · ·×Dk, where k is a natural number,
that is, in N. The concept of a constraint satisfaction problem is defined as follows.

Definition 7. A constraint satisfaction problem, abbreviated to CSP, is a triple (V,D, C) in
which V is a finite sequence of variables (v1, . . . , vn), D is a finite sequence of the respective
domains of the variables, and C is a finite set of constraints (each on a subsequence of V).
A solution of this problem is an assignment of values from D to V respectively such that all
constraints in C are satisfied. The set of all solutions is called the solution set.

In this paper, we only focus on numerical CSPs defined as follows.

Definition 8. A numerical constraint is a constraint on a sequence of variables whose
domains are continuous, where a domain is called a continuous domain if it is a real interval.
If all the constraints of a CSP are numerical, this CSP is called a numerical constraint
satisfaction problem (abbreviated to NCSP).

In practice, a NCSP can often be represented in the following form:

f(x) ∈ b, (2)

where x is a vector of n real variables taking values in a box x ∈ In, b ≡ (b1,b2, . . . ,bm)T

is an interval vector in Im, and f = (f1, f2, . . . , fm)T is a factorable function from D ⊆ Rn

to Rm. For each j = 1, . . . , n, the interval bj is called the constraint range of the constraint
fj(x) ∈ bj.

Since more than thirty years ago, constraint satisfaction techniques, such as arc con-
sistency [Waltz 1972, 1975; Montanari 1974] and path consistency Montanari [1974], have

2. Two intervals (or boxes) are disconnected if and only if their union is not an interval (a box, respectively).

6



Interval Propagation on Directed Acyclic Graphs

been devised to solve CSPs with discrete domains. Those techniques perform reasoning
procedures on constraints and explore the search space by intelligently enumerating solu-
tions. In order to solve NCSPs by means of constraint satisfaction, continuous domains have
often been converted into discrete domains by using progressive discretization techniques
[Sam-Haroud 1995; Lottaz 2000]. Later on, many mathematical computation techniques
for continuous domains have been integrated into the framework of constraint satisfaction
in order to solve NCSPs more efficiently. Nowadays, these techniques are often referred
to as constraint programming, which implies the combination of computing and reasoning
aspects.

Most techniques for solving NCSPs follow the branch-and-prune framework, which in-
terleaves branching steps with pruning steps. A branching step divides a problem into
subproblems whose union is equivalent to the initial problem in term of the solution set,
and a pruning step reduces a problem. Pruning steps are usually performed by using
domain reduction techniques, which reduce the domains of variables without discarding
any solution of the problem. Inspired by the classical constraint satisfaction techniques,
an interesting approach in constraint programming, called interval constraint propagation,
was developed in 1990s (see [Benhamou and Older 1992, 1997], [Van Hentenryck 1997]
and [Jaulin et al. 2001]). This approach combines constraint propagation techniques in
constraint satisfaction with interval-analytic methods in mathematics. The idea is that
one cannot exactly achieve consistency properties such as arc consistency for numerical
constraints under floating-point number systems, therefore replaces the consistencies with
relaxations that are tractable under floating-point number systems. For example, given a
constraint c on variables (x1, . . . , xk) with respective domains (D1, . . . ,Dk), arc consistency
reduces each Di to the projection of c on xi, denoted c[xi]. The interval variant of arc con-
sistency only reduces each Di to the smallest union of intervals that contains c[xi]. However,
this is still intractable in practice. One may wish to replace it with a weaker property that
each Di is the smallest interval containing c[xi]. This introduces a new concept of consis-
tency: hull consistency [Benhamou and Older 1992, 1997]. Other concepts of consistency
such as kB-consistency [Lhomme 1993] and box consistency [Benhamou et al. 1994] have
also been introduced. In constraint programming, achieving those consistency properties
has often been implemented by a search or interval constraint propagation technique in
combination with mathematical tools such as interval arithmetic.

2.3.2 Achieving Hull Consistency by Constraint Propagation

Let be given a factorable numerical constraint and one of its compositions. Benhamou and
Older [1992, 1997] have proposed to achieve hull consistency for the initial constraint by
achieving that for the primitive constraints of the initial constraint in the given composition
(Definition 5). Benhamou et al. [1999] proposed a faster propagation algorithm to achieve
hull consistency for a single constraint. To reduce the domains of the variables of a number of
constraints, the technique, called HC4, achieves hull consistency for individual constraints,
and then propagates the reduction of the variables’ domains from constraint to constraint
by using a variant of arc consistency, AC3 [Mackworth 1977].

To solve a NCSP of the form (2), the HC4 algorithm represents each constraint of the
problem as a tree that defines a way to compose the constraint, where each node of the

7



Xuan-Ha Vu et al.

tree represents a primitive constraint (Definition 5). Each node N of the tree is associated
with two intervals, called the forward and backward node ranges, denoted Nf and Nb,
respectively. The exact value, hence the exact range, of the subexpression represented by a
node must be contained in both the node ranges.

Example 9. The tree representation of the following NCSP is depicted in Figure 1:
{√x+ 2

√
xy + 2

√
y ≤ 7, 0 ≤ x2√y − 2xy + 3

√
y ≤ 2, x ∈ [1, 16], y ∈ [1, 16]}.

Figure 1: The tree representation of the NCSP in Example 9

The HC4 algorithm is presented as Algorithm 1. It invokes another algorithm,
HC4revise, to achieve hull consistency for a constraint. HC4revise performs two main
processes: recursive forward evaluation (RFE) and recursive backward projection (RBP).
HC4revise is presented concisely in Algorithm 2, where TN denotes the tree rooted at node
N. At Line 1 of RBP, an elementary operation ψ(N1, . . . ,Nq) represented by node N
defines a relation ψ∗ on the sequence (N,N1, . . . ,Nq); where N,N1, . . . ,Nq play the role
of variables taking values in Nb,Nf

1, . . . ,N
f
q, respectively. Since ψ is an elementary oper-

ation, ψ∗ is very simple and can be projected on its variables by using simple formulas in
[Benhamou et al. 1999].

Algorithm 1: The HC4 algorithm – hull consistency on primitive constraints

Input: a NCSP P ≡ (V ≡ (x1, . . . , xn),D, C), a domain box x ⊆ D.
Output: new domains x′ ∈ In of V .
x′ := x; WaitingList := C;
while WaitingList 6= ∅ and x′ 6= ∅ do

Take a constraint C from WaitingList;
y := HC4revise(TC ,x

′); ◭ On page 9.1

if y 6= x′ then
Put into WaitingList the constraint C and every constraint C′ sharing with C at
least one variable whose domain has been reduced at Line 1;
x′ := y;

8



Interval Propagation on Directed Acyclic Graphs

Algorithm 2: The HC4revise algorithm

Input: a tree TC ; domains x ∈ In of variables (x1, . . . , xn).
Output: new domains x ∈ In of (x1, . . . , xn).
RFE(TC , x); ◭ On page 9.

Cb := the constraint range of C;
RBP(TC , x); ◭ On page 9.

Procedure RFE(in/out: a tree TN; in: x ∈ In)

if N is a variable xi then Nf := xi;
else if N is an expression ψ(N1, . . . ,Nq) then

Nf := ψ(RFE(TN1
,x), . . . ,RFE(TNq

,x));

Procedure RBP(in/out: a tree TN, x ∈ In)

if N is a variable xi then xi := xi ∩Nb;
else if N is an expression ψ(N1, . . . ,Nq) then

Nb := Nb ∩ Nf;
Let ψ∗ be the relation N = ψ(N1, . . . ,Nq) on interval vector (Nb,Nf

1, . . . ,N
f
q)

T;1

for i := 1, . . . , q do
Nb

i := Nf
i ∩ ψ∗[Ni]; ◭ Intersected with the projection of ψ∗ on Ni.

RBP(TNi
, x);

2.4 DAG Representations for Numerical CSPs

2.4.1 Directed Acyclic Graphs

For completeness, we recall hereafter some fundamental concepts in graph theory related to
the concept of a DAG representation [Schichl and Neumaier 2005] of a constraint system.

Definition 10. A directed multigraph G ≡ (V,E, f) consists of a finite set V of vertices
(also called nodes), a finite set E of edges (also called arcs), and a mapping f ≡ (fs, ft)

T :
E → V × V such that for all e ∈ E we have fs(e) 6= ft(e). For every edge e ∈ E, we define
the source of e as fs(e) and the target of e as ft(e).

In the above definition, if we replace f with a function that maps each edge to an
unordered pair of vertices, we then obtain the definition of a multigraph. In addition to
that, if we allow the source and target of an edge be the same, then the obtained one is
called a pseudograph. We can also obtain the concept of a directed pseudograph in the same
way.

Definition 11. Using the notations in Definition 10, we define the set of all in-edges of a
vertex v ∈ V as in-edges(v) ≡ {e | ft(e) = v}. Similarly, we define the set of all out-edges
of a vertex v ∈ V as out-edges(v) ≡ {e | fs(e) = v}.

In other words, in-edges(v) is the set of all edges having v as their target and out-edges(v)
is the set of all edges having v as their source. Similarly to a tree, the concepts of a leaf
and a root in a directed multigraph are defined as follows.

9



Xuan-Ha Vu et al.

Definition 12. Consider a directed multigraph G. A vertex v of G is called a leaf (or local
source)of G if in-edges(v) = ∅. A vertex v of G is called a root (or local sink) of G if
out-edges(v) = ∅.

Unlike a (directed) tree, a directed multigraph may have many roots (and many leaves
as well).

Definition 13. Consider a directed multigraph G ≡ (V,E, f), where f ≡ (fs, ft)
T. A

directed path from a vertex v1 ∈ V to a vertex v2 ∈ V is a sequence (ei)
n
i=1 of edges, where

n ≥ 2, such that v1 = fs(e1), v2 = ft(en), and ft(ei) = fs(ei+1) for all i = 1, . . . , n − 1.
This directed path is called a cycle if v1 = v2. G is called a directed acyclic multigraph if it
does not contain any cycle.

Definition 14 (Parent, Child, Ancestor, Descendant). Consider a directed acyclic multi-
graph G ≡ (V,E, f). Let v1 and v2 be two vertices in V . We say that v2 is a parent of
v1 and that v1 is a child of v2 if there exists an edge e ∈ E such that f(e) = (v1, v2)

T.
The set of all parents (respectively, all children) of a vertex v ∈ V is denoted by parents(v)
(respectively, children(v)). We say that v2 is an ancestor of v1 and that v1 is a descendant
of v2 if there exists a directed path from v1 to v2. The set of all ancestors (respectively, all
descendants) of a vertex v ∈ V is denoted by ancestors(v) (respectively, descendants(v)).

The following result is fundamental, which illustrates the precedence relationship of
nodes in a directed acyclic multigraph.

Theorem 15. For every directed acyclic multigraph (V,E, f), there exists a total order �
on the vertices V such that for every v ∈ V and every u ∈ ancestors(v), we have v � u.

Proof. See Procedure NodeLevel on page 23, which is is a simple algorithm for assigning
a level to each node such that any sorting in descending order of the obtained levels will
result in a required order. �

Definition 16 (Directed Multigraph with Ordered Edges). A directed multigraph with
ordered edges is a quadruple (V,E, f,≤) such that (V,E, f) is a directed multigraph and
(E,≤) is a totally ordered set.

2.4.2 DAG Representation

As proposed by Schichl and Neumaier [2005], a directed acyclic multigraph with ordered
edges, abbreviated to DAG, can be used to represent the factorable NCSP (2). Since the
problem (2) is factorable, the function f can be composed of a sequence of elementary
operations/functions such as +, ∗, /, log, exp, sqr, and sqrt. In this composition, each
variable is represented by a leaf. Each elementary operation/function φ : D ⊆ Rk → R
that takes as input k subexpressions x1, . . . , xk is represented by a node N with k edges,
each runs from the node representing xi to the node N, where 1 ≤ i ≤ k. These k
edges represent the computational flow in the natural composition of the operation φ. The
obtained representation is called the DAG representation of the considered problem.

Notation 17. Each node N in the DAG representation is associated with an interval,
denoted as τN and called the node range of N, in which the exact range of the associated

10



Interval Propagation on Directed Acyclic Graphs

+ *

a1

xi

ai ak

a0

xkx1 xi

a0

xkx1

(a) (b)

? ? ? ?

Figure 2: A node and its computational flows in a DAG representation.

subexpression must lie. N is also associated with a real variable, denoted by ϑN, that
represents the value of the subexpression represented by N.

For efficiency and compactness, the standard elementary operations in the
DAG representation are replaced with more general operations. For exam-
ple, multiple applications of binary elementary operations of the forms in
{x+ y, x− y, x+ a, a+ x, x− a, a− x, ax} are replaced with a k-ary operation
a0 + a1x1 + · · · + akxk, which is interpreted as a k-ary operation + (see Figure 2a), where
1 ≤ k ∈ N. Similarly, multiple applications of the binary multiplication x ∗ y are replaced
with a k-ary multiplication (or product) a0 ∗ x1 ∗ · · · ∗ xk, which is interpreted as the
k-ary operation ∗ (see Figure 2b), where 2 ≤ k ∈ N. In general, each edge of a DAG
representation is associated with a respective coefficient of the operation represented by
its target. When not specified in figures, this coefficient equals to 1. The other constants
involving an operation are stored at the node representing the operation (see Figure 2). At
a result, the DAG representation no longer have nodes representing constants as in the tree
representation (see Section 2.3.2). Much more detailed descriptions of DAG representations
can be found in Section 4.1 and Section 5.3 of [Schichl 2003].

We need to use multigraphs, for efficiency, instead of simple graphs for DAG representa-
tions because some special operations can take the same input more than once. For example,
the expression xx can be represented by the binary power operation xy without introducing
a new unary operation xx. In all cases, a normal directed acyclic graph is sufficient to
represent a numerical CSP (NCSP), provided that we introduce new elementary operations
such as the unary operation xx. The ordering of edges is needed for non-commutative op-
erations like the division. For convenience, a ground node, called G, is added to each DAG
representation to be the parent of all nodes that represents the constraints. In fact, the
ground node can be interpreted as the logical AND operation.

Example 18. Consider the following constraint system






√
x+ 2

√
xy + 2

√
y ≤ 7,

0 ≤ x2√y − 2xy + 3
√
y ≤ 2,

x ∈ [1, 16], y ∈ [1, 16],

which can be written into the form (2) as follows






√
x+ 2

√
xy + 2

√
y ∈ [−∞, 7],

x2√y − 2xy + 3
√
y ∈ [0, 2],

x ∈ [1, 16], y ∈ [1, 16].
(3)

11



Xuan-Ha Vu et al.

Figure 3: The DAG representation of the constraint system (3).

The DAG representation of the constraint system (3) is depicted in Figure 3. Two con-
straints of (3) are represented by two nodes N9 and N10. Two variables, x and y, are
represented by two nodes N1 and N2, respectively. The sequence (N1,N2, . . . ,N10) of nodes
given in Figure 3 is an example of an ordering as stated in Theorem 15.

For the same constraint system, the DAG representation is clearly more concise than
the tree representation described in Section 2.3.2.

3. Modification to Standard Interval Arithmetic

Expressions that are only defined on subsets of Rn are often encountered in practice. For
example, a division by zero, such as 1÷ 0, is not defined. Consequently, the division of two
intervals is not defined in (standard) interval arithmetic when the denominator contains
zero. In such cases, many implementations of interval arithmetic give, by convention, the
universe interval [−∞,∞] as result. This is an extension of (standard) interval arithmetic
for all purposes, in order to conform to the inclusion property. If we use this implementa-
tion to evaluate the range of a function f : D ⊂ Rn → Rm, we will often get unnecessarily
overestimated bounds of the form [−∞,∞] in case the denominators of the divisions in
f contain zero. In order to avoid such over-estimations, we have to extend functions de-
pending on their use in specific computations. In this section, building on the concept of
a multifunction, we propose a way to extend functions that are only defined on subsets of
Rn.

12



Interval Propagation on Directed Acyclic Graphs

3.1 Extending Domains of Functions

We start by recalling the definition of a multifunction from [Singh et al. 1997, p. 34].

Definition 19 (Multifunction). Let X and Y be two sets. A multifunction F from X to
Y (a relation on X×Y ), denoted as F : X → Y , is a subset F ⊆ X×Y . The inverse of F
is a multifunction F−1 : Y → X defined by the rule: (y, x) ∈ F−1 ⇔ (x, y) ∈ F . We define
the values of F at x to be F (x) ≡ {y ∈ Y | (x, y) ∈ F}, and the fibers of F for y ∈ Y to be
F−1(y) ≡ {x ∈ X | (x, y) ∈ F}.

In Definition 19, if for some x ∈ X there is no y ∈ Y such that (x, y) ∈ F , we have that
F (x) = ∅. ¿From Definition 19 we can see that a function is, in fact, a special multifunction
that is single-valued.

The concepts of image and inverse image (of a set) under a multifunction are similar to
those for functions :

Definition 20 (Image, Inverse Image). Let X and Y be two sets, F : X → Y a multifunc-
tion. The image of a subset A ⊆ X under F is defined and denoted by

F (A) ≡
⋃

x∈A

F (x) = {y ∈ F−1 | F−1(y) ∩A 6= ∅}. (4)

The inverse image of a subset B ⊆ Y under F is defined and denoted by

F−1(B) ≡
⋃

y∈B

F−1(y) = {x ∈ F | F (x) ∩B 6= ∅}. (5)

Next, we define a special class of multifunctions.

Definition 21 (Extended Function). Let f be a function from a set X to a set Y , X ′ a
superset of X, and Z a set of some subsets of Y possibly including ∅. A Z-extended function
over X ′ of f is a multifunction F : X ′ → Y such that

∀x ∈ X : F (x) = {f(x)}, (6)

∀x ∈ X ′ \X : F (x) ∈ Z. (7)

Note 22. When we do not care about Z in Definition 21, we just call F an extended
function over X ′ of f .

Notation 23. For simplicity, in Definition 21, for all x ∈ X we write F (x) = f(x) when
no confusion can arise.

A Z-extended function F , as defined in Definition 21, corresponds to a function g :
X ′ → Y ∪ Z defined as

g(x) ≡
{

f(x) if x ∈ X,
F (x) otherwise.

(8)

If X ′ = X, then f(x) = g(x) for all x in X. By Definition 21, it is easy to prove the
following theorem.

13



Xuan-Ha Vu et al.

Theorem 24. Let f , F and other notations be as in Definition 21. Then, for every subset
S of X ′, we have

f(S) ≡ {f(x) | x ∈ S ∩X} ⊆ F (S). (9)

Consider the case X = D ⊆ Rn, Y = Rm. It is easy to see that, for any function
f : D ⊆ Rn → Rm, there is only one Z-extended function from Rn to Rm if Z has only one
element, for example, when Z is either {∅} or {R}.

Example 25. The domain of the standard division x ÷ y is D÷ = {(x, y) ∈ R2 | y 6= 0}.
The unique {∅}-extended function over R of the standard division is defined as

÷∅(x, y) ≡ x÷∅ y ≡
{

x/y if y 6= 0,
∅ otherwise.

(10)

The unique {R}-extended function over R of the standard division is defined as

÷R(x, y) ≡ x÷R y ≡
{

x/y if y 6= 0,
R otherwise.

(11)

The following is a {∅,R}-extended function over R of the standard division:

÷⋆(x, y) ≡ x÷⋆ y ≡







x/y if y 6= 0,
∅ if x 6= 0, y = 0,
R otherwise.

(12)

Example 26. The domain of the standard square root
√
x is the interval [0,+∞]. The

unique {∅}-extended function over R of the square root is defined as

√
x
∅ ≡

{ √
x if x ≥ 0,

∅ otherwise.
(13)

The unique {R}-extended function over R of the square root is defined as

√
x

R ≡
{ √

x if x ≥ 0,
R otherwise.

(14)

3.2 Extending Interval Forms

We now define the concept of an interval form for a multifunction. This definition also
holds for extended functions which are special cases of multifunctions.

Definition 27. Let F : D ⊆ Rn → Rm be a multifunction. A function [F ] : In → Im is
called an interval form of F if the following inclusion property holds:

∀x ∈ D,∀x ∈ In : x ∈ x ⇒ F (x) ⊆ [F ](x). (15)

The natural interval form of f is an instance of an interval form. The following theorem
states the inclusion property of interval forms of multifunctions.

Theorem 28. Let f : D ⊆ Rn → Rm be a function and F : D′ ⊇ D → Rm an extended
function over D′ of f . Then every interval form of F is also an interval form of f .

14



Interval Propagation on Directed Acyclic Graphs

Proof. Let [F ] : In → Im be an interval form of F . Then for every x ∈ D and every box
x ∈ In containing x, we have f(x) ∈ {f(x) | x ∈ x} = F (x) ⊆ [F ](x). �

Definition 29 (Interval Division: [÷∅], [÷R], [÷⋆]). Let x = [x, x] and y = [y, y] be two
intervals. We define three natural interval forms of the division given by (10), (11) and
(12), respectively:

[÷∅](x,y) ≡ x[÷∅]y ≡















































∅ if y = [0, 0],
[0, 0] else if x = [0, 0],
x ÷ y else if 0 /∈ y (see (1)),
[x/y,+∞] else if x ≥ 0 ∧ y = 0,

[−∞, x/y] else if x ≥ 0 ∧ y = 0,

[−∞, x/y] else if x ≤ 0 ∧ y = 0,

[x/y,+∞] else if x ≤ 0 ∧ y = 0,

[−∞,+∞] otherwise;

(16)

[÷R](x,y) ≡ x[÷R]y ≡
{

x÷ y if 0 /∈ y,
[−∞,+∞] otherwise;

(17)

[÷⋆](x,y) ≡ x[÷⋆]y ≡
{

x[÷∅]y if 0 /∈ x ∨ 0 /∈ y,
[−∞,+∞] otherwise.

(18)

Some authors [Hickey et al. 2001] use the tightest range of the division of two intervals;
however, the result is not always an interval in that case.

Theorem 30. For any two intervals x and y in I, we have

x[÷∅]y ⊆ x[÷⋆]y ⊆ x[÷R]y.

Proof. This is obvious from Definition 29. �

Theorem 31. Let x, y, and z be three real numbers living in three intervals x, y, and z in
I, respectively. Then we have

x = y ∗ z ⇒ z ∈ x ⋄ y for all ⋄ ∈ {[÷⋆], [÷R]}, (19)

z = x/y ⇒ z ∈ x ⋄ y for all ⋄ ∈ {[÷∅], [÷⋆], [÷R]}. (20)

Proof. Notice that from a given equality x = y ∗ z we can deduce the following:

• If y 6= 0, then z = x/y;

• If y = 0, then x = 0, and z can take an arbitrary value.

The rest of the proof follows directly from Definition 29. �

On one hand, Theorem 31 shows that, when given the relation x = y ∗ z, it is safe to
use the domain reduction z := x ⋄ y for any ⋄ ∈ {[÷⋆], [÷R]}. On the other hand, if the
equality z = x/y is given, we can safely reduce the domain of z by the rule z := x ⋄ y for
any ⋄ ∈ {[÷R], [÷⋆], [÷∅]}, because the case y = 0 is not admitted by definition.

Theorems 30 and 31 show that the tightness of a natural interval form of a function
defined on a subset of Rn usually dependens on the underlying extended function. In

15



Xuan-Ha Vu et al.

turn, the extended function should be chosen based on the context of the computation.
Many interval implementations (e.g., [Walster et al. 2000]) use the division [÷R] in all
computations. However, from Theorem 31 we can see that it is safe to use the division [÷∅]
in computations such as forward evaluations and use the division [÷⋆] in computations such
as backward propagations, as described in Section 2.3.2 and Section 4.

4. Forward-Backward Propagation on DAG Representations

Schichl and Neumaier [2005] have adapted to DAGs the forward evaluations and backward
propagations defined on trees [Benhamou et al. 1999]. The forward and backward procedures
they propose work at the graph level, which means that all the nodes of the graph are forward
evaluated then backward propagated at once.

In this section we shift the original definitions to the node level. The goal is to make
it possible to run forward evaluation and backward propagation adaptively on particular
nodes only. As shown in Section 5, the nodes will be chosen depending on their ability to
cause changes in the domain ranges of their related expressions. This section also introduces
the notion of a partial DAG representation which will make it possible to perform branch-
and-prune search without creating multiple DAGs. This section uses Notation 17.

4.1 Forward Evaluation on DAG Representations

Forward evaluation at a node N is concerned with evaluating the range of the expression
represented by N on the basis of the node ranges of the children of N.

Consider the DAG representation of a factorable NCSP of the form (2). Let N be a node
that is not the ground node and that has k children: C1, . . . , Ck. Suppose the operation
represented by N is a function h : Dh ⊆ Rk → R. The relation between N and its children
is given by ϑN = h(ϑC1

, . . . , ϑCk
). We define the forward evaluation at node N as follows.

Definition 32 (Forward Evaluation). Consider a node N and its operation h as described
above. Let [h] be an interval form of the {∅}-extended function over R of h. The forward
evaluation at N using [h] is defined and denoted by

FE(N, [h]) ≡ (τN := τN ∩ [h](τC1
, . . . , τCk

)). (21)

Example 33. Consider the node N7 in Figure 3, h(z) ≡ √
z, where z ≡ ϑN5

. We can use

any interval form [h] of the {∅}-extended function over R of h, which is the function
√
z
∅

defined by (13), for the forward evaluation in (21). We can use, for example, the natural
interval form h(z) ≡ √

z in place of [h] in (21).

Remark 34. We can also replace [h] in (21) with an interval form of the recursive subex-
pression whose variables are the initial variables. For instance, we can replace the interval
form [h] of the node N7 in Figure 3 with the natural interval form of the recursive subex-
pression (

√
xy) composed of the nodes N7, N4, N1, and N2. That is, we can replace [h]

with the bivariate interval function
√

xy.

In our implementation, we use the natural interval form for simplicity. The natu-
ral interval form of the function h(x1, . . . , xk) = a0 + a1x1 + · · · + akxk is the function

16



Interval Propagation on Directed Acyclic Graphs

h(x1, . . . ,xk) = a0 +a1x1 + · · ·+akxk.
3 Similarly, the natural interval form of the function

h(x1, . . . , xk) = ax1 . . . xk is the function h(x1, . . . ,xk) = ax1 . . . xk. The division of two
reals has multiple natural interval forms because it is not defined when the denominator is
zero (see Section 3.1 and Section 3.2). In Definition 29, we have provided three versions
that can be called the natural interval forms of the real division: [÷∅], [÷⋆], and [÷R]. They
all can be used in the forward evaluation defined by (21) if h is the real division.

Theorem 35 (Correctness). Consider the DAG representation of a factorable numerical
CSP given in (2). The forward evaluation defined in Definition 32, when applied to any
node, never discards a solution of the considered problem.

Proof. For every solution of the considered problem, there exists an assignment of values
from the intervals τN, τC1

, . . . , τCk
to the variables ϑN, ϑC1

, . . . , ϑCk
, respectively, such

that ϑN = h(ϑC1
, . . . , ϑCk

). Because [h] is an interval form of the {∅}-extended function
over R of h, it follows from Theorem 28 that h(ϑC1

, . . . , ϑCk
) ∈ [h](τC1

, . . . , τCk
). Thus,

ϑN ∈ τN ∩ [h](τC1
, . . . , τCk

). The proof is, therefore, complete. �

4.2 Backward Propagation on DAG Representations

Backward propagation at a node N will reduce the node range of each child of N on the
basis of the node ranges of N and on the node ranges of its other children.

Consider the DAG representation of a factorable NCSP of the form (2). Let N be a node
that is not the ground node and that has k children: C1, . . . , Ck. The operation represented
by N is a function h : Dh ⊆ Rk → R. The backward propagation attempts to prune each
node range τCi

of Ci based on the node range τN of N and based on the node ranges of the
other children, where 1 ≤ i ≤ k. In other words, for each child Ci, the backward propagation
attempts to encloses the i-th projection of the relation ϑN = h(ϑC1

, . . . , ϑCk
) on the variable

ϑCi
in a tight interval. This procedure is called the i-th backward propagation at N and

denoted by BP(N,Ci). We define the following as the backward propagation at N:

BP(N) ≡ {BP(N,C1), . . . , BP(N,Ck)}. (22)

Although the exact projection of a relation is expensive, in general, an enclosure of the exact
projection of an elementary operation can often be obtained at low cost. Indeed, suppose
that we can infer from the relation ϑN = h(ϑC1

, . . . , ϑCk
) an equivalent relation

ϑCi
= gi(ϑN, ϑC1

, . . . , ϑCi−1
, ϑCi+1

, . . . , ϑCk
)

for some i ∈ {1, . . . , k}, where gi is a function from Dg ⊆ Rk to R such that

Dg ⊇ τN × τC1
× · · · × τCi−1

× τCi+1
× · · · × τCk

.

Let [gi] be an interval form of the {∅}-extended function over R of gi. The i-th backward
propagation, denoted BP(N,Ci), can then be defined as

BP(N,Ci) ≡ (τCi
:= τCi

∩ [gi](τN, τC1
, . . . , τCi−1

, τCi+1
, . . . , τCk

)). (23)

3. Note that if the coefficients a0, . . . , ak are real and we are working on the floating-point number system,
we can replace each ai in h with the smallest interval containing it, where 1 ≤ i ≤ k.

17



Xuan-Ha Vu et al.

In case we cannot infer such a function gi, more complicated rules have to be constructed
in order to obtain the i-th projection of the relation N = f(C1, . . . ,Ck) if the cost is low,
otherwise the relation can be ignored. Fortunately, we can tightly enclose such projections
at low cost for most elementary operations, as shown in Definition 38.

Remark 36. In general, the relation x = y ∗ z and the relation z = x/y are not equivalent
because the latter discards the case y = 0 while the former does not.

Example 37. Consider the node N10 in Figure 3. The relation given at N10 is ϑN10
=

h(ϑN5
, ϑN6

, ϑN8
), where the function h is defined as h(x1, x2, x3) ≡ −2x1+3x2+x3. There-

fore, we can infer three equivalent relations:

ϑN5
= g1(ϑN10

, ϑN6
, ϑN8

),

ϑN6
= g2(ϑN10

, ϑN5
, ϑN8

),

ϑN8
= g3(ϑN10

, ϑN5
, ϑN6

),

where the three functions g1, g2 and g3 are defined as follows:

g1(x1, x2, x3) ≡ (−x1 + 3x2 + x3)/2,

g2(x1, x2, x3) ≡ (x1 + 2x2 − x3)/3,

g3(x1, x2, x3) ≡ x1 + 2x2 − 3x3.

Definition 38 (Backward Propagation Rule). Let h be the elementary operation represented
by node N, as discussed above. We use the notation ⊘ to mean that either the division [÷⋆]
or the division [÷R] can be used at the place the notation ⊘ appears, but the former is better.
The rules for backward propagation are given as follows:

1. If h is a univariate function such as sqr, sqrt, exp, and log and if [h] is an interval
form of the {∅}-extended function of h, we define

BP(N,C1) ≡
(

τC1
:= τC1

∩ [h−1](τN)
)

,

where the notation of interval form, [h−1](x), shall denote the union of some intervals
that contains the inverse image h−1(x);

2. If h is defined as h(x1, . . . , xk) ≡ a0 + a1x1 + · · · + akxk, we define for i = 1, . . . , k:

BP(N,Ci) ≡



τCi
:= τCi

∩



(τN − a0 −
k

∑

j=1; j 6=i

aj ∗ τCj
) ⊘ ai







 ;

3. If h is defined as h(x1, . . . , xk) ≡ ax1 . . . xk, we define for i = 1, . . . , k:

BP(N,Ci) ≡



τCi
:= τCi

∩



τN ⊘ (a ∗
k

∏

j=1; j 6=i

τCj
)







 ;

18



Interval Propagation on Directed Acyclic Graphs

4. If h is defined as h(x, y) ≡ x/y, we define

BP(N,C1) ≡ (τC1
:= τC1

∩ (τN ∗ τC2
)) ,

BP(N,C2) ≡ (τC2
:= τC2

∩ (τC1
⊘ τN)) .

The following theorem states the correctness of the backward propagation rules given
in Definition 38.

Theorem 39 (Correctness). Consider the DAG representation of a factorable numerical
CSP given in (2). The backward propagation defined in Definition 38, when applied to any
node, never discards any solution of the considered problem.

Proof. By an argument similar to the proof of Theorem 35, we have that the first result is
due to the definition of h−1 in Definition 20, and the other results are due to Theorem 31
and the inclusion property of the operations +, −, and ∗ in (standard) interval arithmetic.
�

4.3 Partial DAG Representations

When solving NCSPs using a branch-and-prune scheme, the branching step splits the prob-
lem into subproblems, potentially easier to solve. Each subproblem often consists of the
following two components:

1. a subset of the initial constraints set, called the set of running constraints;

2. a sequence of subdomains for the involved variables.

If we use DAG representations in the pruning steps, we have to construct a DAG rep-
resentation for each subproblem. A simple way is to construct a new DAG explicitly to
represent each subproblem. However, the total cost of creating such DAGs for the whole
solving process is potentially high, because there are often a huge number of branching
steps during the solution process.

Alternatively, we propose to attach a piece of restriction information to the initial DAG,
which is the DAG representation of the initial problem, in order to interpret the initial DAG
as the DAG representation of a subproblem without having to create a new DAG. When
using such pieces of restriction information, it is possible to perform forward evaluations and
backward propagations on the DAG representation of the initial problem without increasing
the time and space for dealing with DAG representations. A combination of such a piece
of restriction information and the DAG representation of the initial problem is called the
partial DAG representation of a subproblem. It is also called, for convenience, a partial
DAG representation of the initial problem. For example, partial DAG representations of
the problem (3) are depicted in Figure 4. We use partial DAG representations instead of
DAG representations in our new propagation algorithm (Section 5).

In order to represent a subproblem with a set of running constraints without having
to create a new DAG, we use a vector Voc whose size equals the number of nodes in the
DAG representation DG of the initial problem. For each node N of DG, we use the entry
Voc[N] to count the number of occurrences of N in the recursive composition of the running

19



Xuan-Ha Vu et al.

SQR

x y

SQRT

2

&

3

[1, 16]

[0, 2]
+

SQRT

*

*

1
1

SQRT

2

-2

+

[1, 16]

(b)

N6(2) N7(2) N8(2)

N1(4) N2(4)

N3(3) N4(3) N5(3)

N10(1)N9(1)

G(0)

[1, 256] [1, 256] [1, 4]

[1, 1024]

SQR

x y

SQRT

2

&

3

[1, 16]

[5, 7]

+

SQRT

*

*

1
1

SQRT

2

-2

+

[1, 16]

(a)

N6(2) N7(2) N8(2)

N1(4) N2(4)

N3(3) N4(3) N5(3)

N10(1)N9(1)

G(0)

[1, 256] [1, 4]

[1, 16][1, 4]

Figure 4: The partial DAG representations of the problem (3) in the cases: (a) the first
constraint is the unique running constraint; and (b) the second constraint is the
unique running constraint. The grey nodes and dotted edges are ignored. The
node levels are given in parenthesis.

Procedure NodeOccurrences(in: a node N; in/out: a vector Voc)

foreach C ∈ children(N) do
Voc[C] := Voc[C] + 1;
NodeOccurrences(C, Voc);

constraints. We present a simple recursive procedure, called NodeOccurrences, to compute
such a vector.

If we invoke NodeOccurrences at all the nodes representing the running constraints,
then each entry Voc[N] will contains the number of occurrences of N in the recursive com-
position of the running constraints. In particular, we have Voc[N] = 0 if and only if N is
not in the representation of the running constraints. Therefore, by combining DG with a
vector Voc, we have the so-called partial DAG representation for a subproblem. In compu-
tations, we can use partial DAG representations in a way similar to the way we use DAG
representations, except that we ignore every node N correponding to Voc[N] = 0.

5. Constraint Propagation on Partial DAG Representations

This section presents our new algorithm, called FBPD which generalizes to DAGs the
HC4 algorithm originally proposed by [Benhamou et al. 1999] for tree representations of
constraints.

20



Interval Propagation on Directed Acyclic Graphs

Algorithm 6: The FBPD algorithm – a constraint propagation on DAGs

Input: a DAG, DG, with the ground G, domains D, running constraints C.
Output: new domains D.
Reset all node ranges of DG to [−∞,∞];
Set the node ranges of variables & constraints to D & the constraint ranges of C, resp.;
Lf := ∅; Lb := ∅; Voc := (0, . . . , 0); Vch := (0, . . . , 0);
Vlvl := (0, . . . , 0); ◭ This can be made optional together with Line 2.1

foreach node C representing a running constraint in C do
NodeOccurrences(C, Voc); ◭ On page 20.

NodeLevel(C, Vlvl); ◭ This can be made optional together with Line 1. On page 23.2

ReForwardEvaluation(C, Vch, Lb); ◭ A full recursive forward evaluation. On page 22.3

if the infeasible status was detected then return D := ∅;
while Lb 6= ∅ ∨ Lf 6= ∅ do

N := getNextNode(Lb,Lf);4

if N was taken from Lb then
foreach child C of N do

BP(N,C); ◭ See Definition 38.5

if τC = ∅ then return D := ∅; ◭ The infeasible status was detected.

if the change of τC is amenable to doing forward evaluations then6

foreach P ∈ parents(C) \ {N,G} do
if Voc[P] > 0 then Put P into Lf; ◭ P occurs in a running constraint.

if the change of τC is amenable to doing a backward propagation then7

Put C into Lb;

else ◭ N was taken from Lf.

FE(N, [h]); ◭ h is the operator at N, [h] is an interval form of h, see Definition 32.8

if τN = ∅ then return D := ∅; ◭ The infeasible status was detected.

if the change of τN is amenable to doing forward evaluations then9

foreach P ∈ parents(N) \ {G} do
if Voc[P] > 0 then Put P into Lf; ◭ P occurs in some running constraint.

if the change of τN is amenable to doing a backward propagation then10

Put N into Lb;

Update D with the node ranges of the variables;

We recall that, at each iteration, the HC4 algorithm invokes the HC4revise algorithm
(see Section 2.3.2), which in turn consists of two recursive propagation procedures: a recur-
sive forward evaluation (RFE) and a recursive backward propagation (RBP). In order to
reduce the node ranges and, in particular, the domains of variables, RFE performs forward
evaluations at all nodes of the tree representation of a constraint in the post-order and
then RBP performs backward propagations at all nodes of this tree representation in the
pre-order.

Consider a factorable NCSP. We propose in this section a new propagation algorithm
that enhances the HC4 algorithm by:

• working on (partial) DAG representations, instead of tree representations, of the con-
sidered problem;

21



Xuan-Ha Vu et al.

• exploiting the common subexpressions of the constraints as the influence of the con-
straints on each other;

• flexibly choosing nodes at which the forward evaluations and backward propagations
are performed.

Moreover, the nature of the new propagation algorithm makes it possible to use different in-
terval forms at different steps of the propagation. As discussed above, the new propagation
algorithm works on partial DAG representations of the initial problem to reduce time and
space when dealing with DAG representations. Since the main processes of the new algo-
rithm are forward evaluations and backward propagations, we call it the Forward-Backward
Propagation on DAGs (FBPD). The main steps of the FBPD algorithm are presented in
Algorithm 6.

The FBPD algorithm takes as input a subproblem that is represented by the DAG
representation DG of the initial problem, a sequence D of subdomains of variables, and
a set C of running constraints of the subproblem. Like the HC4 algorithm, the FBPD

algorithm relies on two types of processes: forward evaluation and backward propagation.
Unlike the HC4 algorithm, the FBPD algorithm, however, performs these processes on the
basis of one node at a time rather than all nodes at once. The choice of the next node
for the next process in the FBPD algorithm is adaptively made based on the results of the
previous processes. Moreover, in the FBPD algorithm the choice of the interval form [h] of
an operation h for forward evaluations and backward propagations is not necessarily fixed.
The interval form [h] can be chosen statically or dynamically based on the nature of h at
the current context.

In the next subsections, we describe in detail the procedures that are not made explicit
in Algorithm 6.

5.1 Initialization Phase

Similarly to the HC4 algorithm, the FBPD algorithm performs a recursive forward eval-
uation at the initialization phase (Line 3 in Algorithm 6) to evaluate the node ranges of
all nodes in the partial DAG representation of the subproblem. That is, FBPD computes
the node ranges of the nodes of DG that correspond to nonzero entries in Voc. Proce-
dure ReForwardEvaluation provides such an algorithm. In order to avoid evaluating the
same subexpressions multiple times, we use a vector, Vch, to mark the caching status of

Procedure ReForwardEvaluation(in: a node N; in/out: a vector Vch, a list Lb)

if N is a leaf or Vch[N] = 1 then return; ◭ N is a leaf or has been cached.

foreach C ∈ children(N) do
ReForwardEvaluation(C, Vch, Lb);

if N = G then return;
FE(N, [h]); ◭ This is similar to Line 8 in Algorithm 6.

Vch[N] := 1; ◭ The node range of N is cached.

if τN = ∅ then return infeasible;
if the change of τN is amenable to doing a backward propagation then11

Put C into Lb;

22



Interval Propagation on Directed Acyclic Graphs

node ranges. A node N is marked as “cached” by setting Vch[N] := 1 if its node range has
already been computed.

The result of the recursive forward evaluation of the NCSP given in (3) is depicted in
Figure 4 (in case only one constraint is running in the subproblem) and Figure 5 (in case
both constraints are running in the subproblem).

5.2 Getting the Next Node

The FBPD algorithm uses two waiting lists, Lf and Lb, to store the nodes waiting for further
processing. The first list, Lf, is a list of nodes that is scheduled for forward evaluation, that
is, for evaluating its node range based on the node ranges of its children. The second list,
Lb, is a list of nodes that is waiting for backward propagation, that is, for reducing the node
ranges of its children based on its node range. In general, the nodes in Lf should be sorted
such that the forward evaluation at a node is performed after the forward evaluations at its
children. Analogously, the nodes in Lb should be sorted such that the backward propagation
at a node is performed before the backward propagations at its children.

Procedure NodeLevel assigns to each node a node level such that the node level of an
arbitrary node is smaller than the node levels of its descendants (see Theorem 15). We
then sort the nodes of Lb and Lf in ascending order and descending order of node levels,
respectively, to meet the above requirements.

The call to Procedure NodeLevel at Line 2 in Algorithm 6 can be made optional as
follows. The first option is to invoke NodeLevel only at the first call to the FBPD algorithm.

SQR

x y

SQRT

2

&

3

[1, 16]

[0, 2][5, 7]
+

SQRT

*

*

1
1

SQRT

2

-2

+

[1, 16]

N6(2) N7(2) N8(2)

N1(4) N2(4)

N3(3) N4(3) N5(3)

N10(1)N9(1)

G(0)

[1, 256] [1, 256] [1, 4]

[1, 4] [1, 16] [1, 1024]

Figure 5: The DAG representation of the system (3) after a recursive forward evaluation.

Procedure NodeLevel(in: a node N; in/out: a vector Vlvl)

foreach child C of node N do
Vlvl[C] := max{Vlvl[C], Vlvl[N] + 1};
NodeLevel(C, Vlvl);

23



Xuan-Ha Vu et al.

The node levels of the initial DAG still meet the requirements on the ordering of the waiting
lists. The numbers in brackets following the node names in Figure 4 are the node levels
computed for the initial DAG representation. Figure 6 illustrates the second option that is
to invoke NodeLevel at Line 2 in Algorithm 6 each time the FBPD algorithm is invoked.

The getNextNode function at Line 4 in Algorithm 6 chooses one of the two nodes at the
beginning of Lb and Lf. The choosing strategy we use in our implementation is backward
propagation first, that is, taking the node at the beginning of Lb whenever Lb is not empty.
Of course, more involved strategies can also be considered.

5.3 Is the Change of a Node Range Amenable to Further Processing?

For simplicity, at the lines 6, 7, 9 and 10 of Algorithm 6 we only briefly present the proce-
dures to check if the change of a node range is amenable to a forward evaluation or backward
propagation. Hereafter, we describe them in detail.

Let M denote the node C at Line 5 or the node N at Line 8 in Algorithm 6. The
backward propagation at Line 5 and the forward evaluation at Line 8 in Algorithm 6 have
the same form

τM := τM ∩ y, (24)

where y is the interval computed by the forward evaluation or backward propagation right
before intersecting with τM at the considered line. Let Wold and Wnew be the widths of τM
and τM ∩ y, respectively, right before the intersection.

In practice, the change of τM after performing (24) is amenable to doing forward eval-
uations at M’s parents if both conditions Wnew < rf ∗Wold and Wnew + df < Wold hold,
where rf ∈ (0, 1] and df ≥ 0 are real parameters.

Similarly, the change of τM after performing the intersection (24) is amenable to doing
a backward propagation at M if both conditions Wnew < rb ∗Wold and Wnew + db < Wold

SQR

x y

SQRT

2

&

3

[1, 16]

[0, 2]
+

SQRT *

1
1

SQRT

2 -2

+

[1, 16]

(b)

N6(2) N7(2) N8(2)

N1(4) N2(4)

N3(3)

N4(2)

N5(3)

N10(1)N9(1)

G(0)

[1, 256]

[1, 256]

[1, 4]

[1, 1024]

*

SQR

x y

2

&

3

[1, 16]

[5, 7]

+

SQRT

*

*

1
1

SQRT

2

-2

+

[1, 16]

(a)

N6(2) N7(2) N8(2)

N1(4) N2(4)

N3(3) N4(3)

N5(2)

N10(1)N9(1)

G(0)

[1, 256]

[1, 4][1, 16]

SQRT

[1, 4]

Figure 6: The node levels are updated at each call to the FBPD algorithm

24



Interval Propagation on Directed Acyclic Graphs

hold, where rb ∈ (0, 1] and db ≥ 0 are real parameters. In addition to that, the condition
y * τM must also hold if y has been computed by the forward evaluation (at Line 8).

The parameters rf, df, rb and db can be predetermined or dynamically computed. In
our implementation these parameters are predetermined.

5.4 Properties of the New Propagation Algorithm

The FBPD algorithm is contractive and correct in the following sense.

Theorem 40. Let Φ : In → In be a function representing the FBPD algorithm. This
function takes as input the domains of the input problem in the form of a box x ∈ In and
returns a box in In, denoted as Φ(x), that represents the domains of the output problem
of the FBPD algorithm. If the input problem contains only the operations h defined in
Definition 32 and Definition 38, then the FBPD algorithm terminates at a finite number of
iterations and the following properties hold:

(Contractiveness) Φ(x) ⊆ x, (25)

(Correctness) Φ(x) ⊇ x ∩ S, (26)

where S is the exact solution set of the input problem.

Proof. All the node ranges in the DAG representation of the considered problem are never
inflated at each step of the FBPD algorithm. Hence, the FBPD algorithm must terminate
at a finite number of iterations because of the finite nature of floating-point numbers. In
particular, the ranges of the nodes representing the variables are never inflated. Thus, the
property (25) holds. Moreover, the forward evaluations and backward propagations used
in the FBPD algorithm are defined in Definition 32 and Definition 38. It follows from
Theorem 35 and Theorem 39 that they never discard a solution. Therefore, the property
(26) also holds. �

Theorem 41. Let M be a node in the (partial) DAG representation of the output subproblem
of the FBPD algorithm.

• Suppose that the FBPD algorithm uses a fixed interval form [h] of the elementary
operation h presented by M at all steps. Let y be the interval computed right before
the last intersection in the forward evaluation FE(M, [h]) (Definition 32). Then the
following holds:

w(τM ∩ y) ≥ rf ∗ w(τM) ∨ w(τM ∩ y) + df ≥ w(τM).

• Suppose that N is a parent of M and that the FBPD algorithm uses fixed interval
forms of elementary operations in BP(N,M) at all steps. Let z be the interval com-
puted right before the last intersection in the backward propagation BP(N,M) (Defini-
tion 38). Then the following holds:

w(τM ∩ z) ≥ rb ∗ w(τM) ∨ w(τM ∩ z) + db ≥ w(τM).

Proof. This follows directly from the discussion in Section 5.3. �

25



Xuan-Ha Vu et al.

6. Coordinating Constraint Propagation and Search

Next, we consider the issue of coordinating constraint propagation and search for solving
NCSPs in the branch-and-prune framework – the most common framework for exhaustively
solving NCSPs. The most widely used search algorithm is based on the bisection of do-
mains, and is hence called bisection search. It is suitable for solving problems with isolated
solutions. However, it is often inefficient for solving problems with a continuum of solutions.
For such problems, therefore, we need more advanced search techniques. We consider the
issue of integrating the FBPD algorithm into a generic branch-and-prune search algorithm,
called BnPSearch, described in Algorithm 9.

Algorithm 9: The BnPSearch algorithm – a generic branch-and-prune search

Input: a CSP P ≡ (V ,D, C).
Output: L∀, Lε. ◭ Lists of inner and undiscernible boxes, respectively.

Construct the DAG representation, DG, of P ;
FPBD(DG, C,D); ◭ Prune the domains in D by using Algorithm 6.

if D = ∅ then return infeasible;
if the domains in D are small enough then

Lε := Lε ∪ {(D, C)};
return;

WaitingList := {(D, C)};
while WaitingList 6= ∅ do

Get a couple (D0, C0) from WaitingList; H/* D
i=1,k

⊆ D0, C
i=1,k

⊆ C0. */

Split the CSP (V ,D0, C0) into sub-CSPs {(V ,D1, C1), . . . , (V ,Dk, Ck)};
for i := 1, . . . , k do

if Ci = ∅ then
L∀ := L∀ ∪ {Di}; ◭ All points in Di are solutions.

continue for;

FPBD(DG, Ci,Di); ◭ Prune the domains in Di by using Algorithm 6.

if Di = ∅ then continue for;
if the domains in Di are small enough then

Lε := Lε ∪ {(Di, Ci)}; ◭ This CSP is not amenable to further splitting.

WaitingList := WaitingList∪ {(Di, Ci)};

The BnPSearch algorithm produces two lists: L∀, Lε. The first list, L∀, consists of
completely feasible domain boxes, called inner boxes or feasible boxes. That is, all points
of a box in L∀ are a solution of the problem. The second list, Lε, consists of subproblems,
each consisting of a domain box and a set of running constraints. Each domain box of a
subproblem in Lε is canonical or smaller than the required precision ε. These domain boxes
are called undiscernible boxes.

Owning to Theorem 40 and the finite nature of the floating-point number system, it
is easy to prove that the branch-and-prune search in Algorithm 9 terminates after a finite
number of iterations. Moreover, this search algorithm never discards any solution. Note
that the UCA6 and UCA6+ algorithms in [Silaghi et al. 2001; Vu et al. 2003] are specific
instances of this generic search.

26



Interval Propagation on Directed Acyclic Graphs

Table 1: A comparison of three constraint propagation techniques, FBPD, BOX and HC4,
in solving NCSPs. In the section (a), the averages of the relative time ratios are
taken over all the problems in the test cases T1, T2, T3; and the averages of the
other relative ratios are taken over the problems in the test case T1. In the section
(b), the averages of the relative ratios are taken over all the problems in the test
cases T4, T5.

(a) Isolated Solutions (b) Continuum of Solutions

Propagator
H

Relative
time
ratio

Relative
reduction

ratio

Relative
cluster
ratio

Relative
iteration

ratio

Relative
time
ratio

Inner
volume
ratio

Relative
cluster
ratio

Relative
iteration

ratio

FBPD 1.000 1.000 1.000 1.000 1.000 0.922 1.000 1.000

BOX 20.863 0.625 0.342 0.731 20.919 0.944 0.873 0.854

HC4 203.285 0.906 1.266 0.988 403.915 0.941 0.896 0.879

Table 2: The averages of the relative time ratios are taken over the problems in each test
case.

Propagator (a) Isolated Solutions (b) Continuum of Solutions

H Test case T1 Test case T2 Test case T3 Test case T4 Test case T5

FBPD 1.00 1.00 1.00 1.00 1.00

BOX 24.21 28.98 13.45 11.55 31.85

HC4 94.42 691.24 68.17 191.86 651.31

7. Experiments

We have carried out experiments on the FBPD algorithm and two other well-known state-
of-the-art interval constraint propagation techniques. The first propagation technique is a
variant of box consistency [Benhamou et al. 1994] implemented in a commercial product,
ILOG Solver (v6.0), hereafter denoted as BOX. The second constraint propagation technique
is the HC4 algorithm (see Section 2.3.2). The experiments are carried out on 33 problems,
which are impartially chosen and divided into five test cases, to analyze the empirical results:

• The test case T1 (see Section A.1) consists of eight easy problems with isolated so-
lutions. These problems are solvable in short time by the search using all three
propagators.

• The test case T2 (see Section A.2) consists of four problems of moderate difficulty
with isolated solutions. These problems are solvable by the search using FBPD and
BOX and cause the search using HC4 being out of time without reaching 106 splits.

27



Xuan-Ha Vu et al.

Table 3: The overrun ratios for the test case T1. (An overrun ratio greater than 1 would
satisfy the requirements of applications.)

Problem ◮ BIF3 REI3 WIN3 ECO5 ECO6 NEU6 ECO7 ECO8 Average

FBPD 1.626 1.360 2.075 1.711 1.676 3.198 1.513 1.455 1.827

BOX 2.957 1.974 3.080 1.579 1.660 6.748 1.521 1.485 2.625

HC4 2.229 1.914 1.492 1.647 1.679 4.949 1.488 1.449 2.106

• The test case T3 (see Section A.3) consists of eight hard problems with isolated so-
lutions. These problems cause the search using FBPD to stop due to running more
than 106 splits, cause the search using HC4 to be out of time without reaching 106

splits, and cause the search using BOX either to be out of time or to stop due to
running more than 106 splits.4

• The test case T4 (see Section A.4) consists of seven easy problems with a continuum
of solutions. These problems are solvable in short time at the predefined precision
10−2.

• The test case T5 (see Section A.5) consists of six hard problems with a continuum of
solutions. These problems are solvable in short time at the predefined precision 10−1.

The timeout value is set to 10 hours for all the test cases. The timeout values

will be used as the running time for the techniques that are out of time in the

next result analysis favor of slow techniques). For the first three test cases, the precision
is 10−4, and the search is done by bisection. For the last two test cases, the search is
performed using the UCA6 [Silaghi et al. 2001], algorithm for inequalities. The comparison
of the interval propagation techniques is based on the following measures:

• The running time: The relative ratio of the running time of each propagator to that
of FBPD is called the relative time ratio.

• The number of boxes: The relative ratio of the number of boxes in the output of each
propagator to that of FBPD is called the relative cluster ratio.

• The number of splits/iterations: The number of splits in search needed to solve the
problems. The relative ratio of the number of splits used by each propagator to that
of FBPD is called the relative iteration ratio.

4. FBPD essentially works at the node level. Evaluation/propagation procedures can therefore be run on
selected nodes rather than on the entire graph. This enables the use of different interval forms at different
steps of a propagation procedure. Such an approach was tested in [Vu et al. 2004a]. This extension of
FBPD was then able to solve 6 problems out of 8 in the test case T3

28



Interval Propagation on Directed Acyclic Graphs

• The volume of boxes (only for T1, T2, T3): We consider the reduction per dimension
d
√

V/D; where d is the dimension of the problem, V is the total volume of the output
boxes, D is the volume of the initial domains. The relative ratio of the reduction
gained by each propagator to that of FBPD is called the relative reduction ratio.

• The volume of inner boxes (only for T4, T5): The ratio of the volume of inner boxes
to the volume of all output boxes is called the inner volume ratio.

The lower the relative ratio is, the better the performance/quality is; and the higher the
inner volume ratio is, the better the quality is.

The overviews of results in our experiments are given in Table 1 and Table 2. In Table 3,
we give the overrun ratio of each propagator for the test case T1. The overrun ratio is defined
as ε/ d

√

V/N ; where ε is the required precision, d is the dimension of the problem, V is the
total volume of the output boxes, N is the number of output boxes.

Clearly, FBPD outperforms both BOX and HC4 by 1 to 2 orders of magnitude or more
in speed. For problems with a continuum of solutions, FBPD has roughly the same quality
with respect to enclosure properties. For isolated solutions, very narrow boxes are produced
by any technique in comparison to the required precision. However, the new technique is
about 1.1–2.0 times less tight than the other techniques in the measure of reduction per
dimension (which hardly matters in applications).

The gain in performance is more important for under-constrained problems than for
well-constrained ones.

8. Conclusion

We propose a new constraint propagation technique, called FBPD, which makes the fun-
damental framework of interval analysis on DAGs [Schichl and Neumaier 2005] efficient
and practical for numerical constraint propagation. We also propose a method to coordi-
nate constraint propagation (FBPD) and exhaustive search on partial DAG representations,
where only one DAG for each problem is needed for the whole solution process. The ex-
periments, carried out on various problems, show that the new approach can outperform
previously available propagation techniques by 1 to 2 orders of magnitude or more in speed,
while being roughly of same quality with respect to enclosure properties. Moreover, FBPD

essentially works at the node level. Evaluation and propagation procedures can therefore
be run on selected nodes rather than on the entire graph. This enables the use of differ-
ent enclosure techniques at different steps of the propagation process opens up promising
perspectives [Vu et al. 2004a].

29



Xuan-Ha Vu et al.

Acknowledgments

Support for this research was partially provided by the European Commission and the Swiss
Federal Education and Science Office (OFES) through the COCONUT project (MIST-2000-
26063). We would like to thank ILOG for the software licenses of ILOG Solver used in the
COCONUT project, and thank the COCONUT team of the University of Nantes for the
HC4 source code. We also thank Professor Arnold Neumaier at the University of Vienna
(Austria) for fruitful discussions and very valuable input.

References

Alefeld, G. and Herzberger, J. (1983). Introduction to Interval Computations. Academic
Press, New York, NY.

Benhamou, F., Goualard, F., Granvilliers, L., and Puget, J.-F. (1999). Revising Hull and
Box Consistency. In Proceedings of the International Conference on Logic Programming
(ICLP’99), pages 230–244, Las Cruces, USA.

Benhamou, F., McAllester, D., and Van Hentenryck, P. (1994). CLP(Intervals) Revisited.
In Proceedings of the International Logic Programming Symposium, pages 109–123.

Benhamou, F. and Older, W. J. (1992). Applying Interval Arithmetic to Real, Integer and
Boolean Constraints. Technical Report BNR Technical Report, Bell Northern Research,
Ontario, Canada.

Benhamou, F. and Older, W. J. (1997). Applying Interval Arithmetic to Real, Integer
and Boolean Constraints. Journal of Logic Programming, pages 32–81. Extension of a
technical report of Bell Northern Research, Canada, 1992.

Goldberg, D. (1991). What Every Computer Scientist Should Know About Floating-Point
Arithmetic. ACM Computing Surveys, 23(1):5–48.

Hansen, E. R. and Walster, G. W. (2004). Global Optimization Using Interval Analysis.
Marcel Dekker, second edition.

Hickey, T. J., Ju, Q., and Van Emden, M. H. (2001). Interval Arithmetic: from Principles
to Implementation. Journal of the ACM (JACM), 48(5):1038–1068.

Jaulin, L., Kieffer, M., Didrit, O., and Walter, E. (2001). Applied Interval Analysis.
Springer, first edition.

Lhomme, O. (1993). Consistency Techniques for Numeric CSPs. In Proceedings of the 13th
International Joint Conference on Artificial Intelligence (IJCAI-93), pages 232–238.

Lottaz, C. (2000). Collaborative Design using Solution Spaces. PhD thesis, Swiss Federal
Institute of Technology in Lausanne (EPFL), Switzerland.

Mackworth, A. K. (1977). Consistency in Networks of Relations. Artificial Intelligence,
8:99–118.

30



Interval Propagation on Directed Acyclic Graphs

McCormick, G. P. (1976). Computability of Global Solutions to Factorable Nonconvex
Programs: Part I – Convex Underestimating Problems. Mathematical Programming,
10:147–175.

McCormick, G. P. (1983). Nonlinear Programming: Theory, Algorithms and Applications.
John Wiley & Sons.

Montanari, U. (1974). Networks of Constraints: Fundamental Properties and Applications
to Picture Processing. Information Science, 7:95–132.

Moore, R. E. (1966). Interval Analysis. Prentice Hall, Englewood Cliffs, NJ.

Moore, R. E. (1979). Methods and Applications of Interval Analysis. SIAM Studies in
Applied Mathematics. Philadelphia.

Neumaier, A. (1990). Interval Methods for Systems of Equations. Cambridge Univ. Press,
Cambridge.

Sam-Haroud, D. (1995). Constraint Consistency Techniques for Continuous Domains. PhD
thesis, Swiss Federal Institute of Technology in Lausanne (EPFL), Switzerland.

Schichl, H. (2003). Mathematical Modeling and Global Optimization. Habilitation thesis,
Faculty of Mathematics, University of Vienna, Autralia.

Schichl, H. and Neumaier, A. (2005). Interval Analysis on Directed Acyclic Graphs for
Global Optimization. Journal of Global Optimization, 33:541–562.

Silaghi, M.-C., Sam-Haroud, D., and Faltings, B. (2001). Search Techniques for Non-linear
CSPs with Inequalities. In Proceedings of the 14th Canadian Conference on Artificial
Intelligence.

Singh, S., Watson, B., and Srivastava, P. (1997). Fixed Point Theory and Best Approxima-
tion: The KKM-map Principle. Kluwer Academic Publishers, Dordrecht.

Van Hentenryck, P. (1997). Numerica: A Modeling Language for Global Optimization. In
Proceedings of the 15th International Joint Conference on Artificial Intelligence (IJCAI-
97).

Vu, X.-H., Sam-Haroud, D., and Faltings, B. (2004a). Combining Multiple Inclusion Repre-
sentations in Numerical Constraint Propagation. In Proceedings of the 16th IEEE Inter-
national Conference on Tools with Artificial Intelligence (ICTAI 2004), pages 458–467,
Florida, USA. IEEE Computer Society Press.

Vu, X.-H., Sam-Haroud, D., and Silaghi, M.-C. (2003). Numerical Constraint Satisfaction
Problems with Non-isolated Solutions. In Global Optimization and Constraint Satisfac-
tion: First International Workshop on Global Constraint Optimization and Constraint
Satisfaction, COCOS 2002, volume LNCS 2861, pages 194–210, Valbonne-Sophia An-
tipolis, France. Springer-Verlag.

31



Xuan-Ha Vu et al.

Vu, X.-H., Schichl, H., and Sam-Haroud, D. (2004b). Using Directed Acyclic Graphs to
Coordinate Propagation and Search for Numerical Constraint Satisfaction Problems. In
Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelli-
gence (ICTAI 2004), Florida, USA. IEEE Computer Society Press.

Walster, G. W., Hansen, E. R., and Pryce, J. D. (2000). Extended Real Intervals and the
Topological Closure of Extended Real Relations. Technical report, Sun Microsystems.
http://wwws.sun.com/software/sundev/whitepapers/extended-real.pdf.

Waltz, D. L. (1972). Generating Semantic Descriptions from Drawings of Scenes with
Shadows. Technical report, Massachusetts Institute of Technology, USA.

Waltz, D. L. (1975). The Psychology of Computer Vision, chapter Understanding Line
Drawings of Scenes with Shadows, pages 19–91. McGraw Hill, New York.

32



Interval Propagation on Directed Acyclic Graphs

Appendix A. Numerical Benchmarks

A.1 Test Case T1: Problems with Isolated Solutions

A.1.1 Problem BIF3

A bifurcation problem:






5x9 − 6x5y2 + xy4 + 2xz = 0;
−2x6y + 2x2y3 + 2yz = 0;
x2 + y2 = 0.265625;

where x, y, z in [−108, 108].

A.1.2 Problem ECO5

An economic problem:























(x1 + x1x2 + x2x3 + x3x4)x5 − 1 = 0;
(x2 + x1x3 + x2x4)x5 − 2 = 0;
(x3 + x1x4)x5 − 3 = 0;
x4x5 − 4 = 0;
x1 + x2 + x3 + x4 + 1 = 0;

where x1, . . . , x5 in [−10, 10].

A.1.3 Problem ECO6

An economic problem:































(x1 + x1x2 + x2x3 + x3x4 + x4x5)x6 − 1 = 0;
(x2 + x1x3 + x2x4 + x3x5)x6 − 2 = 0;
(x3 + x1x4 + x2x5)x6 − 3 = 0;
(x4 + x1x5)x6 − 4 = 0;
x5x6 − 5 = 0;
x1 + x2 + x3 + x4 + x5 + 1 = 0;

where x1, . . . , x6 in [−10, 10].

A.1.4 Problem ECO7

An economic problem:







































(x1 + x1x2 + x2x3 + x3x4 + x4x5 + x5x6)x7 − 1 = 0;
(x2 + x1x3 + x2x4 + x3x5 + x4x6)x7 − 2 = 0;
(x3 + x1x4 + x2x5 + x3x6)x7 − 3 = 0;
(x4 + x1x5 + x2x6)x7 − 4 = 0;
(x5 + x1x6)x7 − 5 = 0;
x6x7 − 6 = 0;
x1 + x2 + x3 + x4 + x5 + x6 + 1 = 0;

where x1, . . . , x7 in [−10, 10].

33



Xuan-Ha Vu et al.

A.1.5 Problem ECO8

An economic problem:














































(x1 + x1x2 + x2x3 + x3x4 + x4x5 + x5x6 + x6x7)x8 − 1 = 0;
(x2 + x1x3 + x2x4 + x3x5 + x4x6 + x5x7)x8 − 2 = 0;
(x2 + x1x3 + x2x4 + x3x5 + x4x6)x7 − 2 = 0;
(x4 + x1x5 + x2x6 + x3x7)x8 − 4 = 0;
(x5 + x1x6 + x2x7)x8 − 5 = 0;
(x6 + x1x7)x8 − 6 = 0;
x7x8 − 7 = 0;
x1 + x2 + x3 + x4 + x5 + x6 + x7 + 1 = 0;

where x1, . . . , x8 in [−10, 10].

A.1.6 Problem NEU6

A neurophysiology problem:






















































x2
1 + x2

3 = 1;
x2

2 + x2
4 = 1;

x5x
3
1 + x6x

3
2 = 5;

x5x1x
2
3 + x6x

2
4x2 = 4;

x5x
3
3 + x6x

3
4 = 3;

x5x
2
1x3 + x6x

2
2x4 = 2;

x1 ≥ x2;
x1 ≥ 0;
x2 ≥ 0;

where x1, . . . , x6 in [−100, 100].

A.1.7 Problem REI3

A neurophysiology problem:














x2 − y2 + z2 = 0.5;
x3 − y3 + z3 = 0.5;
x4 − y4 + z4 = 0.5;
2xy + 6y2 + 2yz − 2x− 4y − 2z + 1 = 0;

where x, y, z in [−10, 10].

A.1.8 Problem WIN3

A neurophysiology problem:














4xz − 4xy2 − 16x2 − 1 = 0;
2y2z + 4x+ 1 = 0;
2x2z + 2y2 + x = 0;
2xy + 6y2 + 2yz − 2x− 4y − 2z + 1 = 0;

where x, y, z in [−105, 105].

34



Interval Propagation on Directed Acyclic Graphs

A.2 Test Case T2: Problems with Isolated Solutions

A.2.1 Problem CYC5

A cyclic problem:






















a+ b+ c+ d+ e = 0;
ab+ bc+ cd+ de+ ea = 0;
abc+ bcd+ cde+ dea+ eab = 0;
abcd+ bcde+ cdea + deab+ eabc = 0;
abcde − 1 = 0;

where a, b, c, d, e in [−10, 10].

A.2.2 Problem GS5.1

A Gough Steward problem:























































x2
1 + y2

1 + z2
1 = 31,

x2
2 + y2

2 + z2
2 = 39,

x2
3 + y2

3 + z2
3 = 29,

x1x2 + y1y2 + z1z2 + 6x1 − 6x2 = 51,
x1x3 + y1y3 + z1z3 + 7x1 − 2y1 − 7x3 + 2y3 = 50,
x2x3 + y2y3 + z2z3 + x2 − 2y2 − x3 + 2y3 = 34,
−12x1 + 15y1 − 10x2 − 25y2 + 18x3 + 18y3 = −32,
−14x1 + 35y1 − 36x2 − 45y2 + 30x3 + 18y3 = 8,
2x1 + 2y1 − 14x2 − 2y2 + 8x3 − y3 = 20,

where x1 ∈ [0.00; 5.57], y1 ∈ [0.00, 2.70], z1 ∈ [0.00, 5.57], x2 ∈ [−6.25, 0.00], y2 ∈
[−2.00, 0.00], z2 ∈ [0.00, 6.25], x3 ∈ [−5.39,−1.00], y3 ∈ [−5.39, 0.00], z3 ∈ [0.00, 5.39].

A.2.3 Problem KOL2

Kolev’s benchmark:






























((4x3 + 3x6)x3 + 2x5)x3 + x4 = 0,
((4x2 + 3x6)x2 + 2x5)x2 + x4 = 0,
((4x1 + 3x6)x1 + 2x5)x1 + x4 = 0,
x4 + x5 + x6 + 1 = 0,
(((x2 + x6)x2 + x5)x2 + x4)x2 + (((x3 + x6)x3 + x5)x3 + x4)x3 = 0,
(((x1 + x6)x1 + x5)x1 + x4)x1 + (((x2 + x6)x2 + x5)x2 + x4)x3 = 0,

where x1 ∈ [0.0333, 0.2173], x2 ∈ [0.4000, 0.6000], x3 ∈ [0.7826, 0.9666], x4 ∈
[−0.3071,−0.1071], x5 ∈ [1.1071, 1.3071], x6 ∈ [−2.1000,−1.9000].

A.2.4 Problem YAM60

The Yama160 problem:

(n+ 1)2xi−1 − 2(n+ 1)2xi + (n+ 1)2xi+1 + exi = 0, (for i = 1, . . . , n),

where n = 60, x0 = xn+1 = 0, and xi ∈ [−10, 10] (for i = 1, . . . , n),

35



Xuan-Ha Vu et al.

A.3 Test Case T3: Problems with Isolated Solutions

A.3.1 Problem CAP4

A Caprasse problem:















y2z + 2xyt− 2x− z = 0;
−x3z + 4xy2z + 4x2yt+ 2y3t+ 4x2 − 10y2 + 4xz − 10yt+ 2 = 0;
2yzt+ xt2 − x− 2z = 0;
−xz3 + 4yz2t+ 4xzt2 + 2yt3 + 4xz + 4z2 − 10yt− 10t2 + 2 = 0;

where x, y, z, t in R.

A.3.2 Problem DID9

A Didrit problem:























































x2
1 + y2

1 + z2
1 = 31;

x2
2 + y2

2 + z2
2 = 39;

x2
3 + y2

3 + z2
3 = 29;

x1x2 + y1y2 + z1z2 + 6x1 − 6x2 = 51;
x1x3 + y1y3 + z1z3 + 7x1 − 2y1 − 7x3 + 2y3 = 50;
x2x3 + y2y3 + z2z3 + x2 − 2y2 − x3 + 2y3 = 34;
−12x1 + 15y1 − 10x2 − 25y2 + 18x3 + 18y3 = −32;
−14x1 + 35y1 − 36x2 − 45y2 + 30x3 + 18y3 = 8;
2x1 + 2y1 − 14x2 − 2y2 + 8x3 − y3 = 20;

where xi, yi, zi in [−10, 10] for i = 1, 2, 3.

A.3.3 Problem GS5.0

A Gough Steward problem:























































x2
1 + y2

1 + z2
1 = 31,

x2
2 + y2

2 + z2
2 = 39,

x2
3 + y2

3 + z2
3 = 29,

x1x2 + y1y2 + z1z2 + 6x1 − 6x2 = 51,
x1x3 + y1y3 + z1z3 + 7x1 − 2y1 − 7x3 + 2y3 = 50,
x2x3 + y2y3 + z2z3 + x2 − 2y2 − x3 + 2y3 = 34,
−12x1 + 15y1 − 10x2 − 25y2 + 18x3 + 18y3 = −32,
−14x1 + 35y1 − 36x2 − 45y2 + 30x3 + 18y3 = 8,
2x1 + 2y1 − 14x2 − 2y2 + 8x3 − y3 = 20,

where x1 ∈ [−2.00; 5.57], y1 ∈ [−5.57, 2.70], z1 ∈ [0.00, 5.57], x2 ∈ [−6.25, 1.30], y2 ∈
[−6.25, 2.70], z2 ∈ [−2.00, 6.25], x3 ∈ [−5.39, 0.70], y3 ∈ [−5.39, 3.11], z3 ∈ [−3.61, 5.39].

36



Interval Propagation on Directed Acyclic Graphs

A.3.4 Problem KAT8

A Katsura problem:














































−x1 + 2x2
8 + 2x2

7 + 2x2
6 + 2x2

5 + 2x2
4 + 2x2

3 + 2x2
2 + x2

1 = 0;
−x2 + 2x8x7 + 2x7x6 + 2x6x5 + 2x5x4 + 2x4x3 + 2x3x2 + 2x2x1 = 0;
−x3 + 2x8x6 + 2x7x5 + 2x6x4 + 2x5x3 + 2x4x2 + 2x3x1 + x2

2 = 0;
−x4 + 2x8x5 + 2x7x4 + 2x6x3 + 2x5x2 + 2x4x1 + 2x3x2 = 0;
−x5 + 2x8x4 + 2x7x3 + 2x6x2 + 2x5x1 + 2x4x2 + x2

3 = 0;
−x6 + 2x8x3 + 2x7x2 + 2x6x1 + 2x5x2 + 2x4x3 = 0;
−x7 + 2x8x2 + 2x7x1 + 2x6x2 + 2x5x3 + x2

4 = 0;
−1 + 2x8 + 2x7 + 2x6 + 2x5 + 2x4 + 2x3 + 2x2 + x1 = 0;

where x1, . . . , x8 in [−10, 10].

A.3.5 Problem KIN9

A kinematics problem:






















































z2
1 + z2

2 + z2
3 − 12z1 − 68 = 0;

z2
4 + z2

5 + z2
6 − 12z5 − 68 = 0;

z2
7 + z2

8 + z2
9 − 24z8 − 12z9 + 100 = 0;

z1z4 + z2z5 + z3z6 − 6z1 − 6z5 − 52 = 0;
z1z7 + z2z8 + z3z9 − 6z1 − 12z8 − 6z9 + 64 = 0;
z4z7 + z5z8 + z6z9 − 6z5 − 12z8 − 6z9 + 32 = 0;
2z2 + 2z3 − z4 − z5 − 2z6 − z7 − z9 + 18 = 0;
z1 + z2 + 2z3 + 2z4 + 2z6 − 2z7 + z8 − z9 − 38 = 0;
z1 + z3 − 2z4 + z5 − z6 + 2z7 − 2z8 + 8 = 0;

where z1, . . . , z9 in [−1000, 1000].

A.3.6 Problem REI4

A Reinmer system:














x2 − y2 + z2 − t2 = 0.5;
x3 − y3 + z3 − t3 = 0.5;
x4 − y4 + z4 − t4 = 0.5;
x5 − y5 + z5 − t5 = 0.5;

where x, y, z, t in [−10, 10].

A.3.7 Problem REI5

A Reinmer system:






















−1 + 2x2
1 − 2x2

2 + 2x2
3 − 2x2

4 + 2x2
5 = 0;

−1 + 2x3
1 − 2x3

2 + 2x3
3 − 2x3

4 + 2x3
5 = 0;

−1 + 2x4
1 − 2x4

2 + 2x4
3 − 2x4

4 + 2x4
5 = 0;

−1 + 2x5
1 − 2x5

2 + 2x5
3 − 2x5

4 + 2x5
5 = 0;

−1 + 2x6
1 − 2x6

2 + 2x6
3 − 2x6

4 + 2x6
5 = 0;

where x1, . . . , x5 in [−1, 1].

37



Xuan-Ha Vu et al.

A.3.8 Problem REI6

A Reinmer system:

〈−0.5 +

n
∑

i=1

(−1)i+1xki = 0 (k = 1, . . . , n); n = 6, xi ∈ [−1, 1] (for i = 1, . . . , n)〉

A.4 Test Case T4: Problems with Continuums of Solutions

A.4.1 Problem F2.2

Tricuspoid and Circle:
{

(x2 + y2 + 12x+ 9)2 ≤ 4(2x+ 3)3;
x2 + y2 ≥ 2;

where x, y in [−2, 2].

A.4.2 Problem F2.3

Foliumd, Circle, and Trifolium:






x3 + y3 ≥ 3xy;
x2 + y2 ≥ 0.1;
(x2 + y2)(y2 + x(x+ 1)) ≤ 4xy2;

where x, y in [−3, 3].

A.4.3 Problem S04

Circle:
〈x2 + y2 ≤ 1; x, y ∈ [−2, 2]〉

A.4.4 Problem S05

〈 x
√

(y − 5)2 + 1
≤ 1; x, y ∈ [1, 10]〉

A.4.5 Problem S06

〈 12y
√

(x− 12)2 + y2
≤ 10; x ∈ [−50, 50], y ∈ [0, 50]〉

A.4.6 Problem S07

〈x2 + y2 ≥ 20; x2 + y2 ≤ 50; x ∈ [−50, 50], y ∈ [0, 50]〉

A.4.7 Problem WP

A Kinematic Pair (of a wheel and a pawl):

〈20 ≤
√

x2 + y2 ≤ 50,
12y

√

(x− 12)2 + y2
≤ 10; x ∈ [−50, 50], y ∈ [0, 50]〉

38



Interval Propagation on Directed Acyclic Graphs

A.5 Test Case T5: Problems with Continuums of Solutions

A.5.1 Problem G1.1
{

x2
1 + 0.5x2 + 2(x3 − 6) ≥ 0;
x2

1 + x2
2 + x2

3 ≤ 25;

where x1, x2, x3 in [−8, 8].

A.5.2 Problem G1.1
{

x2
1 + 0.5x2 + 2(x3 − 3) ≥ 0;
x2

1 + x2
2 + x2

3 ≤ 25;

where x1, x2, x3 in [−8, 8].

A.5.3 Problem H1.1






x2
1 + x2

2 + x2
3 ≤ 9;

(x1 − 0.5)2 + (x2 − 1)2 + x2
3 ≥ 4;

x2
1 + (x2 − 0.2)2 ≥ x3;

where x1, x2, x3 in [−4, 4].

A.5.4 Problem P1.4
{

x2 + y2 + z2 <= 4;
(x− 2)2 + y2 + z2 >= 4;

where x, y, z in [−4, 4].

A.5.5 Problem P2






x2 ≤ y,
ln y + 1 ≥ z,
xz ≤ 1,

where x ∈ [0, 15], y ∈ [1, 200], z ∈ [−10, 10].

A.5.6 Problem P3














x2 ≤ y,
ln y + 1 ≥ z,
xz ≤ 1,

x3/2 + ln(1.5z + 1) ≤ y + 1,

where x ∈ [0, 15], y ∈ [1, 200], z ∈ [0, 10].

39


