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Abstract— The foundational paper of H. SCHICHL and
A. NEUMAIER [1] has given the fundamentals of interval analysis
on directed acyclic graphs(DAGs) for global optimization and
constraint propagation. We show in this paper how constraint
propagation on DAGs can be made efficient and practical by:
(i) working on partial DAG representations; and (ii) enabling
the flexible choice of the interval inclusion functions during
propagation. We then propose a new simple algorithm which co-
ordinates constraint propagation and exhaustive search for solv-
ing numerical constraint satisfaction problems. The experiments
carried out on different problems show that the new approach
outperforms previously available propagation techniques by an
order of magnitude or more in speed, while being roughly the
same quality w.r.t. enclosure properties.

I. I NTRODUCTION

Many real world problems require solving numerical con-
straint satisfaction problems (NCSPs). An NCSP is a triple
(V,D, C) which consists of a finite setV of variables taking
their values in domainsD over real numbers subject to a finite
setC of numericalconstraints. A tuple of values assigned to
the variables such that all the constraints are satisfied is called
a solution. The set of all solutions is called the solution set.

In practice, numerical constraints are often equalities or
inequalities expressed infactorableform (that is, they can be
recursively composed of elementary functions such as+, −,
×, ÷, log, exp, sqr, sin, cos, . . . ). In other words, such an
NCSP can be expressed as

F (x) ∈ b, x ∈ x, (1)

whereF : Rn → Rm is a factorable function,x is a vector of
n real variables,x andb are two interval vectors of sizesn
andm respectively.

Many solution techniques have been proposed inConstraint
Programmingand Mathematical Programmingto solve NC-
SPs. To achieve full mathematical rigor when dealing with
floating-point numbers, most solution techniques have been
based oninterval arithmeticor its variants. During the last ten
years, a lot of work has been done to deviseinclusion tests
andcontractorsby using interval arithmetic (see the book by

JAULIN et al. [2]). The role of an inclusion test is to check
whether the domain of a variable is included in the solution
set. A contractor, also called anarrowing operator [3], [4]
or contracting operator[5], [6], [7], is a method that reduces
variable domains such that no solution is lost. Various basic
inclusion tests and contractors have been described in [2]. In
particular, an interesting approach calledinterval constraint
propagation [4], [8], [9] was developed, which associates
constraint propagation/local consistencytechniques, as de-
fined in artificial intelligence, with interval analytic methods.
Advanced contractors, such as theforward-backward contrac-
tor [2], [4], result from the interval constraint propagation
approach. In brief, the forward-backward contractor, which
is first introduced asHC4 in [4], is a method to propagate
domain reductions forwards and backwards through the trees
which represent the composition of constraints. The method
is therefore referred to asforward-backward propagationin
this paper. More recently, a fundamental framework for in-
terval analysis on directed acyclic graphs (DAGs) has been
proposed bySCHICHL & N EUMAIER [1], which showed that
the forward-backward propagation can also be performed
on DAGs. Replacing trees by DAGs potentially reduces the
number of computations in the forward-backward propagation.

In practice, inclusion tests and contractors are interleaved
with exhaustive searchto compute a representation of the
solution set. Search bybisectionis the most commonly used
technique. However, advanced algorithms [6], [7] have also
been proposed to improve the search performance for prob-
lems with a continuum of solutions (e.g., inequalities), while
maintaining the same performance for problems with isolated
solutions (e.g., equalities).

The contribution of this paper is twofold. Firstly, we show
how the framework proposed bySCHICHL & N EUMAIER [1],
can be made efficient and practical for performing constraint
propagation on DAGs (SectionIII ). Secondly, we propose
a new algorithm to coordinate constraint propagation and
exhaustive search on DAGs (SectionIV). More precisely,
we propose a technique for performing forward-backward
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propagation on DAGs that is able to work onpartial DAG
representations. The algorithm restricts the work to relevant
subsets of constraintswhile keeping theinitial DAG represen-
tation for the problem. The other specificity of our forward-
backward propagation technique is that it makes it possible
to flexibly choose differentinclusion functions1 at different
stages of the propagation. We then propose a solving technique
which coordinates our partial forward-backward propagation
on DAGs with exhaustive search, in a branch-and-prune
framework. The experiments carried out on various problems
show that the new approach outperforms previously available
propagation techniques by an order of magnitude or more in
speed, while being roughly the same quality w.r.t. enclosure
properties for unbiasedly chosen benchmarks (SectionV).

II. BACKGROUND AND NOTATION

We start by presenting the necessary background and fun-
damental notations.

A. Fundamental Notations

The power set of a setA is denoted by2A, that is,2A ≡
{S | S ⊆ A}. The set of real numbers is denoted byR. The
set of floating-point numbers is denoted byF.

B. Factorable Functions

Hereafter, we recall thefactorable functionconcept, with
slight modifications, that appeared in [11], [12].

Definition 1 (Factorable Function):A function is called a
factorable function using a finite set,E, of elementary op-
erations if it is a recursive composition of operations inE,
variables, and constants.

Example 1:The function f(x, y) = sin x + 2xy is a
factorable function using elementary operations in{+,×, sin}.
The recursive composition is given as follows.

f = f1 + f2

f1 = sin x

f2 = 2× f3

f3 = x× y

C. Interval Arithmetic

Interval arithmeticis an extension of real arithmetic defined
on the set of real intervals, rather than the set of real numbers.
According to a survey paper byR. B. KEARFOTT [13], a
form of interval arithmetic perhaps first appeared in [14].
Modern interval arithmetic was developed independently in
late 1950s by several researchers, includingM. WARMUS [15],
T. SUNAGA [16], and R. E. MOORE [17], with MOORE

finally setting the firm foundation for the field in his many
publications, including the foundational book [18]. Since then,
interval arithmetic has been used to solve numerical problems
with guaranteed rigor. Fundamentally, ifx andy are two real

1Inclusion function is a well-known concept in interval analysis [2], [10]
for enclosing the ranges of real-valued functions

intervals, then the four elementary operations foridealized
interval arithmeticobey the rule

x ¦ y = {x ¦ y | x ∈ x, y ∈ y},∀¦ ∈ {+,−,×,÷}. (2)

Thus, the results of the four elementary interval arithmetic
operations are exactly the ranges of their real-valued coun-
terparts. Although the rule(2) characterizes these operations
mathematically, the usefulness of interval arithmetic is due to
the operational definitionsbased on interval bounds [19]. For
example, letx = [x, x] and y = [y, y], interval arithmetic
shows

x + y = [x + y, x + y],
x− y = [x− y, x− y],
x× y = [min{xy, xy, xy, xy}, max{xy, xy, xy, xy}],
x÷ y = x× 1/y if 0 /∈ y, where1/y = [1/y, 1/y].

Elementary operationsψ : D ⊆ R→ R can also be extended
to intervals, and usually this is done by defining

ψ(x) = {ψ(x) | x ∈ x}, (3)

wheneverx ⊆ D. For a deeper discussion of elementary func-
tions, especially for the cases whereD 6= R, see SectionIII-
B. Moreover, if such operations and elementary functions are
composed,bounds on the rangesof factorable real functions
can be obtained.

The finite nature of computers precludes an exact repre-
sentation of the real numbers. In practice, the real setR
is approximated by a finite setF∞ = F ∪ {−∞, +∞},
whereF is the set offloating-point numbers[20]. The set of
real intervals is then approximated by the setI of intervals
with bounds inF∞. The power of interval arithmetic lies
in its implementation on computers. In particular,outwardly
roundedinterval arithmetic allowsrigorous enclosuresfor the
ranges of operations and functions. This makes a qualitative
difference in scientific computations, since the results are now
intervals in which the exact result must lie. Interval arithmetic
can be carried out for virtually any expression that can be
evaluated in floating-point arithmetic. Readers are referred to
[2], [19], [10], [21] for more details on basic interval methods.

The Cartesian product of intervals is calledinterval box, or
box for short. An interval is said to becanonicalif its bounds
are equal or adjacent inF∞. A box is said to becanonicalif
all of its intervals are canonical.

D. Interval Constraint Propagation

1) Tree Representation:The tree representationof con-
straint systems has been proposed byBENHAMOU et al. [4].
Therein each factorable constraintr(t1, . . . , tk) is represented
by an attribute tree whose root node represents thek-ary
relation symbolr, and the termsti are composed of nodes
representing either a variable, a constant, or an elementary
operation. Moreover, each node but the root is associated with
two intervals, one for forward evaluation and the other for
backward propagation. The exact range of the corresponding
expression at a node must lie in the intervals associated with
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Fig. 1. This is the tree representation of the problem in Example3. The
two variables,x and y, are represented by grey nodes which are pointers
to two domains of the two variables. The roots of the trees representing the
constraints. Each node representing a real constant is associated with the
smallest interval that contains the constant. If not specified, the domains of
other nodes are initialized to[−∞, +∞]

the node. In order to represent the inequalities of(1) without
introducing special root nodes, intermediate variables are used
to represent theconstraint ranges(i.e. the components ofb
in (1)).

Example 2:The tree representation of the system(4) is
depicted in Figure1.

2) Forward Evaluation and Backward Propagation on
Trees:The constraint propagation algorithm namedHC4 in [4],
also referred to as the forward-backward contractor (see [2]), is
based on the following two main processes. The first one is the
forward evaluationwhich is recursively performed by a post-
order traversal of the tree representation from leaves to roots in
order to evaluate the ranges of sub-expressions represented by
the tree nodes using the so-callednatural interval extension.
The second one is thebackward propagationon the tree
representation which is recursively performed by a pre-order
traversal of the tree representation of each constraint from
root to leaves in order to prune the corresponding interval
associated with each node of the tree by using theprojection
narrowing operatorassociated with the father of the node.
Readers are referred to [4] for more details.

III. N UMERICAL CONSTRAINT PROPAGATION ONDAGS

In this section, we show how the forward-backward propa-
gation defined in [4], that works on tree representations, can
be extended to work on DAGs. We start by recalling the
basic concepts on DAGs (SectionIII-A ). We notably show that
several inclusion functions can be flexibly chosen during the
forward-backward propagation (SectionIII-B ), which might
improve the tightening of the variable domains as shown in
SectionIII-C. We finally present in detail how the forward-
backward propagation can be performed on DAGs (SectionIII-
C).

We will consider a constraint system of the form(1);
the constraints can be equalities or inequalities depending on
whether the corresponding components ofb, calledconstraint
ranges, are thin intervals (i.e. of the form[bi, bi]).

Example 3:Consider the following parametric constraint
system 




√
x + 2

√
xy + 2

√
y ≤ 7,

x2√y − 2xy + 3
√

y ∈ [p, q],
x ∈ [1, 16], y ∈ [1, 16].

(4)

The first constraint is an inequality with the constraint range
[−∞, 7]. The second constraint can be either an equality or an
inequality depending on the parameters(p, q). For instance,
the second constraint is an equality if(p, q) = (0, 0) and a
two-sided inequality if(p, q) = (0, 2). Throughout this paper,
we will use (p, q) = (0, 2).

A. DAG Representation

For completeness, we recall hereafter some fundamental
concepts in graph theory related to the representation of a
constraint system, which was proposed in [1].

Definition 2 (Directed Multigraph):A directed multigraph
(V, E, f) consists of a finite setV of vertices (also called
nodes), a finite setE of edges, and a mappingf : E → V ×V
such that∀e ∈ E : fs(e) 6= ft(e), wheref = (fs, ft). For
every edgee ∈ E we define thesourceof e asfs(e) and the
target of e asft(e).

Definition 3 (Directed Multigraph with Ordered Edges):
A directed multigraph with ordered edgesis a quadruple
(V, E, f,¹) such that(V,E, f) is a directed multigraph and
(E,¹) is a totally ordered set.

Definition 4 (Directed Path):Let G = (V, E, f) be a di-
rected multigraph. Adirected pathfrom v1 ∈ V to v2 ∈ V
is a sequence,{ei}n

i=1, of edges such thatv1 = fs(e1),
v2 = ft(en), and ∀i ∈ {1, . . . , n − 1} : ft(ei) = fs(ei+1).
The directed path is called acycle if v1 = v2. G is called
acyclic if it does not contain a cycle.

Definition 5: Let (V, E, f) be a directed multigraph. For
any two verticesv1, v2 ∈ V we say thatv1 is a parent of v2

and v2 is a child of v1 if ∃e ∈ E : fs(e) = v2 ∧ ft(e) = v1.
We call v1 an ancestorof v2 and v2 a descendantof v1 if
there exists a directed path fromv2 to v1.

Theorem 1:For every directed acyclic multigraph(V, E, f)
there exists a total order¹ on the verticesV such that∀v ∈
V : if u is an ancestor ofv, thenv ¹ u.

We use a directed acyclic multigraph, whose edges are
totally ordered, together with an ordering on the vertices, as
obtained in Theorem1, to represent the constraint system
(1), for short we call it adirected acyclic graph(DAG). In
the DAG representation, every node represents a variable or
an elementary operation (such as+, ×, ÷, log, exp, . . . )
and every edge represents the computational flow associated
with a coefficient. In practice, we have to use multigraphs
instead of simple graphs for the representation because some
special operations can take the same input more than once. For
example, when the expressionxx is represented by the power
operationxy, thus, we do not need a new univariate operation



SQR

x y

SQRT

2

&

3

[1, 16]

[0, 2][5, 7]

+

SQRT

×

×

1
1

SQRT

2

-2

+

[1, 16]

(b)

N6(2) N7(2) N8(2)

N1(4) N2(4)

N3(3) N4(3) N5(3)

N10(1)N9(1)

G(0)

SQR

x y

SQRT

2

&

3

[1, 16]

[0, 2]
+

SQRT ×

×1

1

SQRT

2

-2

+

[1, 16]

(a)

G

[1, 256] [1, 256] [1, 4]

[1, 4] [1, 16] [1, 1024]

[-∞, 7]

Fig. 2. The DAG representation (a) before and (b) after performing node
ordering and recursive forward evaluation

for xx. The ordering of edges is needed for non-commutative
operations like the division, but not for commutative opera-
tions. For convenience, a virtual ground node,G, is added to
the DAG to be the parent of all the nodes representing the
constraints. In fact, the ground node can be interpreted as the
logical ANDoperation. Each nodeN in the DAG is associated
with an interval, denotedI(N), in which the exact range of
the associated sub-expression must lie.

Example 4:The DAG representation of(4) is depicted in
Figure 2. The sequence of nodes{N1,N2, . . . ,N10} is an
ordering of the nodes which satisfies Theorem1.

B. Extended Functions

In practice, we often see functions of the formf : D ⊂
Rn → Rm. For example, the division by zero is not defined.
As a consequence, in standard interval arithmetic the division
of two intervals is not defined if the denominator contains zero.
In such cases, many implementations of interval arithmetic
give, by convention, the interval[−∞, +∞] as result. If we
use these implementations to evaluate the ranges of functions,
we usually get unnecessarily overestimated ranges such as
[−∞, +∞]. In order to avoid such overestimations, we have
to extend functions in a consistent way for use in different
computations which use inclusion functions. Hereafter, we
give a way to extend functions which are only defined on
subsets ofRn.

Definition 6 (Extended Function):Let f : D ⊆ Rn → Rm

be a function andS a subset of2R. A function g : Rn →
Rm ∪ Sm is called anS-extended functionof f if

g(x) =
{

f(x) if x ∈ D,
y ∈ Sm otherwise

(5)

It is easy to see that there is only oneS-extended function
if S has only one element, for instance, whenS is either{∅}
or {R}.

Example 5:The domain of the standard divisionx/y is
D÷ = {(x, y) ∈ R2 | y 6= 0}. The unique{∅}-extended

function of the standard division is defined as

x÷∅ y =
{

x/y if y 6= 0,
∅ otherwise

(6)

The unique{R}-extended function of the standard division is
defined as

x÷R y =
{

x/y if y 6= 0,
R otherwise

(7)

The following is a{∅,R}-extended function of the standard
division:

x÷? y =





x/y if y 6= 0,
∅ if x 6= 0, y = 0,
R otherwise

(8)

In the next definition, we extend the inclusion function
concept of [2] by using the notion of extended-function to
guarantee the consistency and correctness.

Definition 7 (Inclusion Function):Let S be a subset of2R,
andg : Rn → Rm ∪Sm anS-extended function of a function
f : D ⊆ Rn → Rm. A function [g] : In → Im is called an
inclusion functionof g (and then off ) if the inclusion property
holds, that is,

∀x ∈ In : g(x) ⊆ [g](x),

where2

g(x) ≡ {g(x) | x ∈ x ∩D} ∪
⋃

x∈x\D
g(x).

The natural inclusion functionof f (see [2]), denoted byf ,
is an instance of inclusion functions which is constructed as
follows: in the factorable form off each real variable (resp.
constant) is replaced by an interval variable (resp. constant)
and each operation is replaced by its interval counterpart.

Example 6:Let x = [x, x],y = [y, y] . We give as example
three natural inclusion functions for the divisions defined by
(6), (7) and (8), respectively.

x[÷∅]y =





∅ if y = [0, 0],
[0, 0] else if x = [0, 0],
x÷ y else if 0 /∈ y,
[x/y, +∞] else if x ≥ 0 ∧ y = 0,
[−∞, x/y] else if x ≥ 0 ∧ y = 0,
[−∞, x/y] else if x ≤ 0 ∧ y = 0,
[x/y, +∞] else if x ≤ 0 ∧ y = 0,
[−∞, +∞] otherwise

(9)

x[÷R]y =
{

x÷ y if 0 /∈ y,
[−∞, +∞] otherwise

(10)

x[÷?]y =
{

x[÷∅]y if 0 /∈ x ∨ 0 /∈ y,
[−∞, +∞] otherwise

(11)

It is easy to see that∀x,y ∈ I : x[÷∅]y ⊆ x[÷?]y ⊆
x[÷R]y. Unfortunately, some interval implementations use the
division [÷R], while it is safe to use the division[÷∅] in some
computations such as forward evaluation and use the division
[÷?] in some computations such as backward propagation,

2The set union of vectors is performed in component-wise fashion.



as described in SectionIII-C. In some interval libraries the
extended interval division as defined in [22] is implemented,
which is the tightest all-purpose interval division, but[÷∅] and
[÷?] both provide a bit better bounds than that for forward and
backward propagation, respectively.

C. Forward Evaluation and Backward Propagation on DAGs

As in [4], the aim of theforward evaluationphase is to
evaluate the range of a node based on the ranges of its children.
Thebackward evaluationphase is concerned with pruning the
intervals associated with the children based on that of the
considered node. The existing forward-backward propagation
scheme in [4] only allows using natural inclusion functions for
both phases. We show how this propagation can be enhanced
by enabling the use of several types of inclusion functions at
different propagation phases.

In the DAG representation of(1), let N be a node which
is not the ground node and hask children {Ci}k

i=1. The
elementary operation represented byN is a function f :
Df ⊆ Rk → R. Hence, the relationship betweenN and its
children can be written asN = f(C1, . . . ,Ck).3 Let [f ] be
an inclusion function of the{∅}-extended function off . The
forward evaluation at nodeN using the inclusion function[f ]
is defined as follows

FE(N, [f ]) ≡ {I(N) := I(N)∩[f ](I(C1), . . . , I(Ck))}. (12)

This forward evaluation computes the range of a node based
on the ranges of its children by using an inclusion function
of the elementary operation represented by this node. For
example, considering the nodeN7 in Figure2, we can use any
inclusion function of the{∅}-extended function of the square
root operation. In the implementation, we use the natural
inclusion for simplicity.

Remark 1:We can also replace the inclusion function[f ]
in (12) by an inclusion function of the recursive subexpres-
sion whose variables are user’s ones. For instance, we can
replace[f ] of the nodeN7 by the natural inclusion function
of the recursive subexpression composed of the nodes in
{N7,N4,N1,N2}, that is, by the bivariate interval function√

xy.
The backward propagationprunes the intervals associated

with children based on the constraint range of their parents. In
other words, for each childCi the backward propagation eval-
uates thei-th projection of the relationN = f(C1, . . . ,Ck)
on the variable represented byCi. It is then called thei-
th backward propagation atN and denoted byBP(N,Ci).
For convenience, we define the following sequence as the
backward propagation at nodeN

BP(N) = {BP(N,Ci)}k
i=1. (13)

Although the exact projection of relations is expensive in
general, an evaluation of the exact projection of elementary
operations can be obtained at low cost. Indeed, suppose

3In this paper, we abuse the notation of a node for the real variable
represented by it.

that from the relationN = f(C1, . . . ,Ck) we can infer
an equivalent relationCi = gi(N, {Cj}k

j=1;j 6=i) for some
i ∈ {1, . . . , k}, wheregi is a function fromRk to R. Let [gi]
be an inclusion function ofgi. Thei-th backward propagation,
denotedBP(N,Ci), can then be defined as

BP(N,Ci) ≡ {I(Ci) := I(Ci)∩ [gi](I(N), {I(Cj)}k
j=1;j 6=i)}.

In case that we cannot infer such a functiongi, more
complicated rules to obtain thei-th projection of the relation
N = f(C1, . . . ,Ck) have to be constructed if the cost is low,
alternatively the relation can be ignored. Fortunately, we can
evaluate those projections for most elementary operations at
low cost.

Definition 8: Let f be the elementary operation represented
by N as discussed above. We will use the notation® to mean
that either the division[÷?] or the division[÷R] can be used at
the place the notation® appears, but the former is better. The
rules for the forward evaluation and the backward propagation
are given as follows:

1) If f is a univariate function such as sqr, sqrt,
exp, log,. . . and[f ] is defined as in(12); we define

FE(N, [f ]) ≡ {I(N) := I(N) ∩ [f ](I(C1))},
BP(N,C1) ≡ {I(C1) := I(C1) ∩ [f−1](I(N))},

where we abuse the notation of inclusion function,
[f−1](x), to denote some intervals containing the pre-
imagef−1(x).

2) If f is defined asf(x1, . . . , xk) = α +
∑k

i=1 αixi, we
define

FE(N, f) ≡ {I(N) := I(N) ∩ (α +
k∑

i=1

αiI(Ci))},

BP(N,Ci) ≡ {I(Ci) := I(Ci) ∩ 1
αi

(I(N)− α−
k∑

j=1;j 6=i

αjI(Cj))} (i = 1, . . . , k).

3) If f is defined asf(x1, . . . , xk) = α
∏k

i=1 xi, we define

FE(N, f) ≡ {I(N) := I(N) ∩ α

k∏

i=1

I(Ci)},

BP(N,Ci) ≡ {I(Ci) := I(Ci) ∩ (I(N)®

(α
k∏

j=1;j 6=i

I(Cj)))} (i = 1, . . . , k).

4) If f is defined asf(x, y) = x/y, i.e. k = 2, we define

FE(N, f) ≡ {I(N) := I(N) ∩ f(I(C1), I(C2))},
BP(N,C1) ≡ {I(C1) := I(C1) ∩ (I(N)× I(C2))},
BP(N,C2) ≡ {I(C2) := I(C2) ∩ (I(C1)® I(N))},
wheref ∈ {[÷∅], [÷?], [÷R]}.



Proposition 1: The forward evaluation and backward prop-
agation rules given in Definition8 never discard a solution of
the problem represented by the corresponding DAG.

Proof: The proof directly follows the definitions in
SectionIII-B and SectionIII-C, and is therefore omitted for
simplicity.

IV. COORDINATING PROPAGATION AND SEARCH

We now tackle the issue of coordinating constraint propa-
gation and search for solving NCSPs. It builds on the classical
branch-and-pruneframework, where the solving process is
performed by repeatedly interleaving apruning step with a
branching step. The former uses local techniques such as
constraint propagation to reduce the variable domains, while
the latter splits a problem into subproblems.

At each branching step, a subproblem has to be solved
which consists of a subset of the original constraints called the
set ofactive constraints4 in this paper. The active constraints
are defined on sub-domains of the initial variable domains.

If the pruning technique uses the DAG representation,
the DAG representation needs to be constructed for each
subproblem. The simplest way, therefore, consists of explicitly
building a new DAG to represent each subproblem considered.
However, since there is often a huge number of branching steps
during a complete solving process, the total cost of creating
such DAGs is potentially high.

As an alternative, we propose to modify a piece of infor-
mation attached to the initial DAG in order to make the initial
DAG interpreted as the DAG representation of a subproblem
without the necessity of creating new DAGs. Using this
information, it becomes possible to perform forward-backward
evaluation onpartial DAG representationsof the original
problem without increasing much the time and space needed.

In SectionIV-A , we present how partial forward-backward
propagations can be performed on partial DAG representations
of the original problem. We then devise in SectionIV-B
a detailed search algorithm based on the partial forward-
backward propagation on DAGs.

A. Partial Forward-Backward Propagation on DAGs

1) Partial DAG Representation:In order to represent the set
of active constraints without having to create new DAGs, we
use a vector,Voc, whose size is equal to the number of nodes
of the DAG representing the initial problem. For each nodeN
of the DAG, we use the entryVoc[N] to count the number
of occurrences ofN in the factorable form of the active
constraints. In Figure3, we give a recursive procedure, called
NodeOccurrences, to compute such a vector. It is easy to see
that Voc[N] = 0 if and only if N is not in the representation
of the active constraints. Therefore, by combining the initial
DAG with the vectorVoc, we have a so-calledpartial DAG
representationfor each subproblem. In the latter computations,
we can use the partial DAG representation in a way similar to
using the (full) DAG representation, except that we ignore all

4Note that this notion differs from the meaningactive constraintin the
optimization literature.

nodes corresponding to zeros of the vectorVoc. An example of
the partial DAG representation for the problem(4) is depicted
in Figure4.

procedure NodeOccurrences(in : N; out : Voc)
for each child C of nodeN do

Voc[C] := Voc[C] + 1;
NodeOccurrences(C, Voc);

end-for
end

Fig. 3. If traversing all active constraints, theNodeOccurrences procedure
will count the number of occurrences of each node in the factorable form of
the active constraints
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Fig. 4. The partial DAG representation of the problem(4) when (a) the first
constraint, or (b) the second constraint is the unique active constraint. The
grey nodes are not counted, hence are ignored in computations. The dotted
edges are redundant. The node levels are not updated

2) Partial Forward-Backward Propagation on Initial DAG:
Inspired by the original forward evaluation and backward
propagation in [4], we devise a new algorithm for numerical
constraint propagation, that is based on the partial DAG
representation instead of the tree representation. We call the
new algorithm“Forward-Backward Propagation on a DAG”
and denote it byFBPD. In Figure5, we present the main steps
of FBPD. Like with theHC4 algorithm [4], in the main body of
theFBPD algorithm there are two principal processes: forward
evaluation and backward propagation. However, unlike theHC4
algorithm, theFBPD algorithm performs these processes for a
single node instead of all the nodes at once. Therefore, in
the FBPD algorithm, the choice of the next node for further
processing can be adaptively made based on the results of
the previous processes. Moreover, in theFBPD algorithm, the
choice of the inclusion function[f ] to be used in the forward
evaluation and the backward propagation is not necessarily
fixed. In the next paragraphs, we describe in detail the proce-
dures that are not made explicit in Figure5.

a) Recursive Forward Evaluation:Similar to the HC4
algorithm, we perform a recursive forward evaluation at the
initialization phase (lines 01-08) to evaluate the ranges of the
nodes in the partial DAG representation. In Figure6, we give
the details of a procedure, namedForwardEvaluation, for



/* D(G) : a DAG with the groundG */
/* D: variable domains;C : active constraints */
algorithm FBPD(in : D(G), C; in/out : D)
00: Reset all node ranges ofD(G) to [−∞, +∞];
01: Set the node ranges of vars & constraints toD & C, resp.;
02: Lf := ∅; Lb := ∅; Voc := (0, . . . , 0); Vch := (0, . . . , 0);
03: Vlvl := (0, . . . , 0); /* can be made optional with line 06 */
04: for each nodeC representing an active constraint inC do
05: NodeOccurrences(C, Voc);
06: NodeLevel(C, Vlvl); /* this can be made optional */
07: ForwardEvaluation(C, Vch,Lb);
08: end-for
09: while Lb 6= ∅ ∨ Lf 6= ∅ do
10: N := getNextNode(Lb,Lf );
11: if I(N) was taken fromLb then
12: for each child C of N do
13: BP(N,C); /* see Definition8 */
14: if I(C) = ∅ then return infeasible;
15: if I(C) changed enough for doingFE(.) then
16: for each P ∈ parents(C) \ {N,G} do
17: if Voc[P] > 0 then put P into Lf ;
18: end-for
19: end-if
20: if I(C) changed enough for doingBP(.) then
21: PutC into Lb;
22: end-for
23: else/* N was taken fromLf */
24: FE(N, [f ]); /* f is the operator atN, see(12) */
25: if I(N) = ∅ then return infeasible;
26: if I(N) changed enough for doingFE(.) then
27: for each P ∈ parents(N) \ {G} do
28: if Voc[P] > 0 then put P into Lf ;
29: end-for
30: end-if
31: if I(N) changed enough for doingBP(.) then
32: PutN into Lb;
33: end-if
34: end-while
35: UpdateD with the ranges of the nodes of the variables;
end

Fig. 5. FBPD – the partial Forward-Backward Propagation on DAG algorithm

procedure ForwardEvaluation(in : N; in/out : Vch,Lb)
if N is a leafor Vch[N] = 1 then return ;
for each C ∈ children(N) do

ForwardEvaluation(C, Vch,Lb);
end-for
if N = G then return ;
FE(N, [f ]); /* similar to line 24 in Figure5 */
Vch[N] := 1; /* the range of this node is cached */
if I(N) = ∅ then return infeasible;
if I(N) changed enough for backward propagationthen

Put C into Lb;
end-if

end

Fig. 6. This is a procedure to do a recursive forward evaluation

such a recursive evaluation. To avoid evaluating the same sub-
expressions many times, we use a vector,Vch, to mark the
caching status of nodes. The results of the recursive forward
evaluation of(4) are depicted in Figure2b and Figure4 for
the case that both constraints are active and the case that only
one constraint is active, respectively.

procedure NodeLevel(in : N; out : Vlvl)
for each child C of nodeN do

Vlvl[C] := max{Vlvl[C], Vlvl[N] + 1};
NodeLevel(C, Vlvl);

end-for
end

Fig. 7. This is a procedure assigning a node level to each node in a DAG.
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Fig. 8. The node levels are updated at each call to theFBPD algorithm

b) Get the Next Node for Further Processing:TheFBPD
algorithm uses two waiting lists to store the nodes waiting for
further processing. The first list,Lf , is a list of nodes that
is scheduled for forward evaluation, that is, for evaluating its
range based on its children’s ranges. The second list,Lb, is a
list of nodes that is waiting for backward propagation, that is,
for pruning its children’s ranges based on its range. In general,
when Lf contains many nodes, the nodes should be sorted
such that the forward evaluation of a node is performed after
the forward evaluation of its children. Analogously, the nodes
in Lb should be sorted such that the backward propagation
at a node is performed before the backward propagation at
its children. TheNodeLevel procedure in Figure7 assigns to
each node anode levelsuch that the node level of an arbitrary
node is smaller than the node levels of its descendants. We
then sort the nodes ofLb and Lf in ascending order and
descending order of node levels, respectively, to meet the
above requirements.

The call to theNodeLevel procedure at line 06 in Figure5
can be made optional as follows. The first option allows
invoking NodeLevel only at the first call toFBPD. The node
levels of the initial DAG still meet the requirements on the
ordering of the waiting lists. The numbers in brackets next
to the node names in Figure4 are the node levels computed
for the initial DAG. Figure8 illustrates the second option that
allows invokingNodeLevel at line 06 in Figure5 every time
FBPD is invoked.

The getNextNode function at line 10 in Figure5 chooses
one of the two nodes at the beginning ofLb and Lf . The
strategy that we use in our implementation is “backward
propagation first”, that is, taking the node at the beginning
of Lb wheneverLb is not empty. Of course, other selection
strategies can also be used.



c) When Are the Changes of Node Ranges Enough?:For
simplicity, in Figure5 (lines 15, 20, 26, 31) we only briefly
present the procedures to check whether the node ranges have
been changed enough for further processing. Hereafter, we will
detail them. LetM denote the nodeC at line 13 or the node
N at line 24. In Figure5, the forward evaluation at line 24
and the backward propagation at line 13 are of form

I(M) := I(M) ∩ y, (14)

wherey is the interval computed by the forward evaluation or
backward propagation before intersecting withI(M).

Let Wold andWnew be the widths ofI(M) andI(M)∩ y,
respectively. In practice, the change ofI(M) after performing
(14) is considered enough for doing the forward evaluation at
its parents if the conditionsWnew < rfWold andWnew+df ≤
Wold hold, whererf is a real number in(0, 1) and df is a
small positive real number. The numbersrf and df can be
predefined or dynamically computed. Similarly, the change of
I(M) after performing(14) is considered enough for doing the
backward propagation atM if the conditionsWnew < rbWold

and Wnew + db ≤ Wold hold, whererb is a real number in
(0, 1) anddb is a small positive real number. Moreover, ify is
computed by the forward evaluation (at line 24), the additional
conditiony * I(M) must also hold.

The FBPD algorithm iscontractiveand correct in the fol-
lowing meaning.

Proposition 2: We define a functionF : In × 2R
n → In

to represent theFBPD algorithm. This function takes as input
the variable domains (in form of an interval boxB) and the
exact solution set,S, of the input problem. The functionF
returns an interval box, denoted byF (B, S), that represents
the variable domains of the output of theFBPD algorithm. If
the input problem contains only the elementary operationsf
defined in Definition8, then theFBPD algorithm terminates at
a finite number of iterations and the following properties hold:

(i) F (B, S) ⊆ B (Contractiveness)
(ii) F (B, S) ⊇ B ∩ S (Correctness)

Proof: All the ranges of nodes in the DAG representation
of the problem are never inflated at each step of theFBPD
algorithm, then theFBPD algorithm must terminate at a finite
number of iterations due to the finite nature of floating-point
numbers. In particular, the ranges of the nodes representing
the variables are never inflated, hence, the property(i) holds.
Moreover, the forward evaluations and backward propagations
used in theFBPD algorithm are defined in Definition8, they
never discard a solution (due to the inclusion property of
inclusion functions). Therefore, the property(ii) holds.

B. Combining Propagation and Search Using a DAG

Branch-and-Pruneis the most common framework for
exhaustively solving NCSPs. The most widely used algorithm
for search is bisection, hence called thebisection search. It
is suitable for problems with isolated solutions. However,
it is often inefficient for problems with a continuum of
solutions, for instance, problems with inequalities. Therefore,

algorithm BnPSearch(in : V,D, C; out : L∀,Lε)
Construct a DAG,D(G), for the initial problem(V,D, C);
FPBD(D(G), C,D); /* Prune the domains inD */
if infeasibleis detectedthen return infeasible;
if domains inD are small enoughthen

Lε := Lε ∪ {(D, C)};
return ;

end-if
L := {(D, C)};
while L 6= ∅ do

Get a couple(D0, C0) from L;
Split the problem(V,D0, C0) into subproblems

{(V,D1, C1), . . . , (V,Dk, Ck)}; whereCi=1,k ⊆ C0

for i := 1 to k do
FPBD(D(G), Ci,Di); /* Prune the domains inDi */
if infeasibleis detectedthen continue for;
if Ci = ∅ then

L∀ := L∀ ∪ {Di};
continue for;

end-if
if domains inDi are small enoughthen

Lε := Lε ∪ {(Di, Ci)}
else

L := L ∪ {(Di, Ci)};
end-if

end-for
end-while

end

Fig. 9. A generic branch-and-prune search usingFBPD for pruning.

for problems with a continuum of solutions we need more
advanced search techniques likeUCA6, UCA6 andUCA6+ (see
[6], [7]). They all can be viewed as instances of the generic
branch-and-prune search described in Figure9. In general, the
search scheme produces two lists. The first list,L∀, consists of
feasible sub-domains. The second list,Lε, consists of tuples
of tiny sub-domains, which are boxes either smaller than the
required resolutionε or canonical, and the sets of constraints,
that are still active in the corresponding sub-domains.

It is easy to prove that, due to the finite nature of floating-
point numbers, the branch-and-prune search presented in Fig-
ure 9 can obtain a predefined positive resolutionε, i.e. L
becomes empty, after a finite number of steps. Moreover,
the branch-and-prune search is a complete search technique
because theFBPD algorithm is complete.

V. EXPERIMENTS

We have carried out experiments on theFBPD algorithm
and two other well-known state-of-the-art interval constraint
processing techniques. The first one is an implementation of
Box Consistency [23], [24] in a well-known commercial prod-
uct named ILOG Solver (v6.0, 11/2003), hereafter denoted by
BOX. The second one is calledHC4 (Revised Hull Consistency)
from [4]. The experiments are carried out on 33 problems
which areunbiasedlychosen and divided into five test cases
for analyzing the test results:5

5We have collected a set of problems from diverse sources including related
papers and the Internet.



• The test caseT1 consists of 8 easy problems with isolated
solutions that are solvable by the search using the three
propagators in short time.

• The test caseT2 consists of 4 average problems with
isolated solutions that are solvable by the search using
FBPD andBOX, and that cause the search usingHC4 being
out of time without reaching106 splittings.

• The test caseT3 consists of 8 hard problems with isolated
solutions that cause the search usingFBPD being stopped
due to running more than106 splittings; that cause the
search usingHC4 being out of time without reaching
106 splittings; and that cause the search usingBOX either
being out of time or being stopped due to running more
than106 splittings.

• The test caseT4 consists of 7 easy problems with a
continuum of solutions that are solvable at the predefined
resolution10−2 in short time.

• The test caseT5 consists of 6 hard problems with a
continuum of solutions that are solvable at the predefined
resolution10−1 in short time.

The timeout value is set to10 hours for all the test cases.
The timeout values will be used as the running time for the
techniques which are out of time in the next result analysis
(i.e. we are in favor of slow techniques). For the first three
test cases, the resolution is10−4 and the search to be used is
the bisection search. For the last two test cases, the search to
be used is a search technique, calledUCA6,6 for inequalities
(see [6], [7]). The comparison of the interval propagation
techniques is based on the measures of

• The running time:The relative ratio of the running time
of each propagator to that ofFBPD is called therelative
time ratio.

• The number of boxes:The relative ratio of the number of
boxes in the output of each propagator to that ofFBPD is
called therelative cluster ratio.

• The number of splittings/iterations:The number of split-
tings in search needed to solve the problems. The relative
ratio of the number of splittings used by each propagator
to that ofFBPD is called therelative iteration ratio.

• The volume of boxes (only forT1, T2, T3): We consider
the reduction per dimensiond

√
V/D; where d is the

dimension of the problem,V is the total volume of the
output boxes,D is the volume of the initial domains. The
relative ratio of the reduction gained by each propagator
to that ofFBPD is called therelative reduction ratio.

• The volume of inner boxes (only forT4, T5): The ratio
of the volume of inner boxes to the volume of all output
boxes is called theinner volume ratio.

The overviews of results in our experiments are given in
Table I and TableII .

Note 1: In general, the lower the relative ratio is, the better
the performance/quality is; and the higher the inner volume

6The implementation ofUCA6 is downloadable athttp://www.mat.
univie.ac.at/coconut-environment/ (in the BCS module) under
the LGPL and GPL licenses.

TABLE I

THE COMPARISON OF THE THREE CONSTRAINT PROPAGATION

TECHNIQUES IN SOLVINGNCSPS.

(a) Isolated Solutions + (b) Continuum of Solutions

Prop.
H

Relative
time
ratio

Relative
reduction

ratio

Relative
cluster
ratio

Relative
iteration

ratio

Relative
time
ratio

Inner
volume

ratio

Relative
cluster
ratio

Relative
iteration

ratio

FBPD 1.000 1.000 1.000 1.000 1.000 0.922 1.000 1.000

BOX 20.863 0.625 0.342 0.731 20.919 0.944 0.873 0.854
HC4 203.285 0.906 1.266 0.988 403.915 0.941 0.896 0.879

TABLE II

THE AVERAGES OF THE RELATIVE TIME RATIOS ARE TAKEN OVER THE

PROBLEMS IN EACH TEST CASE.

Prop. (a) Isolated Solutions (b) Continuum of Solutions
H CaseT1 CaseT2 CaseT3 CaseT4 CaseT5

FBPD 1.00 1.00 1.00 1.00 1.00
BOX 24.21 28.98 13.45 11.55 31.85

HC4 94.42 691.24 68.17 191.86 651.31

TABLE III

THE OVERRUN RATIOS FOR THE TEST CASET1 . (AN OVERRUN RATIO

GREATER THAN 1 WOULD SUFFICE FOR APPLICATIONS.)

Prob.I BIF3 REI3 WIN3 ECO5 ECO6 NEU6 ECO7 ECO8 Average
FBPD 1.626 1.360 2.075 1.711 1.676 3.198 1.513 1.455 1.827
BOX 2.957 1.974 3.080 1.579 1.660 6.748 1.521 1.485 2.625
HC4 2.229 1.914 1.492 1.647 1.679 4.949 1.488 1.449 2.106

ratio is, the better the quality is. In the section(a) of TableI,
the average of the relative time ratios is taken over all the
problems in the test casesT1, T2, T3; and the averages of the
other relative ratios are taken over the problems in the test
caseT1, i.e. over the problems which are solvable by all the
techniques. In the section(b) of Table I, the averages of the
relative ratios are taken over all the problems in the test cases
T4, T5.

In Table III , we give theoverrun ratio of each propagator
for the test caseT1. The overrun ratio is defined asε/ d

√
V/N ;

whereε is the required resolution,d is the dimension of the
problem,V is the total volume of the output boxes,N is the
number of output boxes.

Clearly,FBPD outperforms bothBOX andHC4 by an order of
magnitude or more in speed, at least for the unbiasedly chosen
benchmarks, while being roughly the same quality w.r.t. en-
closure properties in case where the solution set to be enclosed
by boxes of macroscopic size (i.e. for continuum of solutions).
For isolated solutions, very narrow boxes are produced by any
technique in comparison to the required resolution. However,
the new technique is about 1.1–2.0 times less tight than the
other techniques in the measure on reduction per dimension
(which hardly matters in applications). In comparison withHC4
(we recall thatHC4 is a constraint propagation technique that
is similar toFBPD but works on the tree representation instead
of DAGs), FBPD is clearly more suitable for applications.

http://www.mat.univie.ac.at/coconut-environment/�
http://www.mat.univie.ac.at/coconut-environment/�


VI. CONCLUSION

We propose a constraint propagation technique,FBPD, which
makes the fundamental framework for constraint propagation
on DAGs [1] efficient and practical, and a method to coor-
dinate constraint propagation and exhaustive search using a
single DAG for each problem. The experiments carried out
on various problems show that the new approach outperforms
previously available propagation techniques by an order of
magnitude or more in speed for a set of unbiasedly chosen
benchmarks, while being roughly the same quality w.r.t. enclo-
sure properties. Moreover, the design nature ofFBPD is similar
to that of theHC4 algorithm. Therefore, we can use theFBPD
algorithm in many applications and combination techniques
which use theHC4 algorithm.

In other views,FBPD can be viewed as a special instance of
a generic combination scheme, calledCIRD, that was proposed
by VU et al. [25]. Moreover, our experiments show that the
strengths ofFBPD and CIRD[ai] (an instance of theCIRD
scheme, that usesaffine arithmeticand interval arithmetic)
are complementary when considering problems have isolated
or non-isolated solutions. Therefore, combining and unifying
the strengths ofFBPD and CIRD[ai] to solve problems with
either isolated or non-isolated solutions is a straightforward
direction in the near future.
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