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Abstract—The foundational paper of H. ScHicHL and JAULIN et al. [2]). The role of an inclusion test is to check
A.NEUMAIER [1] has given the fundamentals of interval analysis hether the domain of a variable is included in the solution
on directed acyclic graphgDAGSs) for global optimization and set. A contractor, also called marrowing operator([3], [4]
constraint propagation. We show in this paper how constraint . ’ . '
propagation on DAGs can be made efficient and practical by: or (_:ontractlng _operator[5], (61, [7], is a mt_athod that _reduces .
(i) working on partial DAG representationsand (ii) enabling Vvariable domains such that no solution is lost. Various basic
the flexible choice of the interval inclusion functions during inclusion tests and contractors have been described in [2]. In
propagation. We then propose a new simple algorithm which co- particular, an interesting approach callederval constraint
ordinates constraint propagation and exhaustive search for solv- propagation [4], [8], [9] was developed, which associates

ing numerical constraint satisfaction problems. The experiments traint tiohocal ist hni d
carried out on different problems show that the new approach constraint propagatiofocal consistencytechniques, as de-

outperforms previous|y available propagation ’[echniques by an fined in artificial inte”igence, with interval analytic methods.
order of magnitude or more in speed, while being roughly the Advanced contractors, such as fleeward-backward contrac-

same quality w.rt. enclosure properties. tor [2], [4], result from the interval constraint propagation
approach. In brief, the forward-backward contractor, which
is first introduced agiC4 in [4], is a method to propagate
Many real world problems require solving numerical condomain reductions forwards and backwards through the trees
straint satisfaction problems (NCSPs). An NCSP is a triplghich represent the composition of constraints. The method
(V,D,C) which consists of a finite sef of variables taking s therefore referred to a®rward-backward propagatiorin
their values in domain® over real numbers Subject toa f|n|tqh|s paper. More recenﬂy, a fundamental framework for in-
setC of numericalconstraints. A tuple of values assigned t@gryal analysis on directed acyclic graphs (DAGs) has been
the variables such that all the constraints are satisfied is callgdposed byScHicHL & N EUMAIER [1], which showed that
a solution. The set of all solutions is called the solution setthe forward-backward propagation can also be performed
In practice, numerical constraints are often equalities gf DAGs. Replacing trees by DAGs potentially reduces the
inequalities expressed fiactorableform (that is, they can be nymper of computations in the forward-backward propagation.

I. INTRODUCTION

recursively composed of elementary functions suchtas-, In practice, inclusion tests and contractors are interleaved
X, =+, log, exp, sqr, sin, cos, ...). In other words, such anyjith exhaustive searctio compute a representation of the
NCSP can be expressed as solution set. Search blyisectionis the most commonly used

) technique. However, advanced algorithms [6], [7] have also

been proposed to improve the search performance for prob-
whereF' : R” — R™ is a factorable functiony is a vector of lems with a continuum of solutions (e.g., inequalities), while
n real variablesx andb are two interval vectors of sizes maintaining the same performance for problems with isolated
andm respectively. solutions (e.g., equalities).

Many solution technigues have been propose@adnstraint The contribution of this paper is twofold. Firstly, we show
Programmingand Mathematical Programmingo solve NC- how the framework proposed I§CHICHL & N EUMAIER [1],
SPs. To achieve full mathematical rigor when dealing witban be made efficient and practical for performing constraint
floating-point numbers, most solution techniques have bepropagation on DAGs (Sectiofl). Secondly, we propose
based orinterval arithmeticor its variants. During the last tena new algorithm to coordinate constraint propagation and
years, a lot of work has been done to deviiselusion tests exhaustive search on DAGs (Sectidd). More precisely,
and contractorsby using interval arithmetic (see the book bywe propose a technique for performing forward-backward
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propagation on DAGs that is able to work @artial DAG intervals, then the four elementary operations idealized
representationsThe algorithm restricts the work to relevaninterval arithmeticobey the rule

subsets of constrainishile keeping thénitial DAG represen-
tation for the problem. The other specificity of our forward-
backward propagation technique is that it makes it possibigus, the results of the four elementary interval arithmetic
to flexibly choose differeninclusion function’ at different operations are exactly the ranges of their real-valued coun-
stages of the propagation. We then propose a solving techniggiparts. Although the rul¢2) characterizes these operations
which coordinates our partial forward-backward propagatiqiathematically, the usefulness of interval arithmetic is due to
on DAGs with exhaustive search, in a branch-and-prurige operational definitiondased on interval bounds [19]. For
framework. The experiments carried out on various probleragample, letx = [z,7] andy = [y,7], interval arithmetic
show that the new approach outperforms previously availalgows -

propagation techniques by an order of magnitude or more in

xoy={axoylzexyecy},Voe{+ -, x,=}. (2

speed, while being roughly the same quality w.r.t. enclosure< Y = [z2+47+7],
properties for unbiasedly chosen benchmarks (Seftipn X-y = [z-7,T—yl,
y _ . L o
[I. BACKGROUND AND NOTATION xxy [mm{@’,@’% xy}’max{gg’gy’aig’ 1,
x+y = xx1/yif 0¢y, wherel/y =[1/7,1/y].
We start by presenting the necessary background and fun- ) -
damental notations. Elementary operationg : D C R — R can also be extended
to intervals, and usually this is done by defining
A. Fundamental Notations
P(x) = {Y(x) |z € x}, @)

The power set of a set is denoted by24, that is,24 = ) )
{S | S C A}. The set of real numbers is denoted Ry The wheneverx C D. For a deeper discussion of elementary func-

set of floating-point numbers is denoted By tions, especia_lly for the cases whelle# R, see Secti0|lill-
Bl Moreover, if such operations and elementary functions are
B. Factorable Functions composedpounds on the rangesf factorable real functions

can be obtained.

The finite nature of computers precludes an exact repre-
sentation of the real numbers. In practice, the real Ret
is approximated by a finite sef, = F U {—o0,+0c0},
whereF is the set offloating-point number$20]. The set of
real intervals is then approximated by the $etf intervals
with bounds inF,,. The power of interval arithmetic lies
in its implementation on computers. In particulagtwardly
roundedinterval arithmetic allowsigorous enclosuresor the
ranges of operations and functions. This makes a qualitative
f o= fith difference in scientific computations, since the results are now

intervals in which the exact result must lie. Interval arithmetic

Hereafter, we recall théactorable functionconcept, with
slight modifications, that appeared in [11], [12].

Definition 1 (Factorable Function)A function is called a
factorable function using a finite sef, of elementary op-
erations if it is a recursive composition of operationsAn
variables, and constants.

Example 1:The function f(z,y) = sinz + 2zy is a
factorable function using elementary operation§-n x, sin}.
The recursive composition is given as follows.

h = sz can be carried out for virtually any expression that can be
fa = 2xfs evaluated in floating-point arithmetic. Readers are referred to
f3 = xxy [2], [19], [10], [21] for more details on basic interval methods.
The Cartesian product of intervals is calliederval box or
C. Interval Arithmetic box for short. An interval is said to beanonicalif its bounds

Interval arithmeticis an extension of real arithmetic definedi’® equal or adjacent ... A box is said to becanonicalif
on the set of real intervals, rather than the set of real numbe$.of its intervals are canonical.
According to a survey paper biR. B._KEARFOTT [13], a8 D. Interval Constraint Propagation
form of interval arithmetic perhaps first appeared in [14]. 0T R ionTh iorof
Modern interval arithmetic was developed independently in ) ree eprisenlt)atlon. e tree drepresentatlom IC(:'.n-
late 1950s by several researchers, includihgVARMUS [15], straln'g systems has been propose BEWHAM_OU et al.[4].
T. SUNAGA [16], and R. E. MOORE [17], with MOORE Therein egch factorable constraitity, . . ., tx) is represented
finally setting the firm foundation for the field in his man)pyl an attrlbutt)eltree v(\j/h?]se root node represen;s t:kearg
publications, including the foundational book [18]. Since theﬁ,e ation symbolr, and the termsg; are composed of nodes

interval arithmetic has been used to solve numerical probleﬁ’?@res.emmg either a variable, a constant, or an eI_ementa_lry
with guaranteed rigor. Fundamentallyifandy are two real operation. Moreover, each node but the root is associated with
' two intervals, one for forward evaluation and the other for

Linclusion function is a well-known concept in interval analysis [2], [1OPaCkward propagation. The _eX_aCt range of the corrgspondl_ng
for enclosing the ranges of real-valued functions expression at a node must lie in the intervals associated with



We will consider a constraint system of the for(a);
the constraints can be equalities or inequalities depending on
whether the corresponding componentdotalledconstraint
ranges are thin intervals (i.e. of the forrb;, b;]).

Example 3:Consider the following parametric constraint
system

[1,16] [1,16] [1,16] [1,16]

VI + 2Ty +2,/y <7,
22y — 2zy + 3\/y € [p, q], 4

z € [1,16], y € [1,16].

The first constraint is an inequality with the constraint range
[—o0, 7]. The second constraint can be either an equality or an
inequality depending on the parametéfsq). For instance,
the second constraint is an equality(if,¢) = (0,0) and a
two-sided inequality if(p, ¢) = (0, 2). Throughout this paper,
we will use (p, q) = (0,2).

A. DAG Representation

Fig. 1. This is the tree representation of the problem in Exan@ld@he
two variables,z and y, are represented by grey nodes which are pointers FOr completeness, we recall hereafter some fundamental

to two domains of the two variables. The roots of the trees representing encepts in graph theory related to the representation of a

constraints. Each node representing a real constant is associated with : : ;
smallest interval that contains the constant. If not specified, the domains(%aﬁs‘tr_a'_n_t systen_1, which wa§ prOposed_'n [1]. )
other nodes are initialized to-o0, +c] Definition 2 (Directed Multigraph):A directed multigraph

(V,E, f) consists of a finite seV’ of vertices (also called

node}y, a finite sett of edgesand a mapping : £ — VxV
the node. In order to represent the inequalitiegigfwithout such thatve € E : fs(e) # f:(e), where f = (fs, f). For
introducing special root nodes, intermediate variables are useery edge: € E we define thesourceof ¢ as f,(e) and the
to represent theonstraint rangegi.e. the components db target of e asf;(e).

in (1)). Definition 3 (Directed Multigraph with Ordered Edges):
Example 2: The tree representation of the systdd) is A directed multigraph with ordered edgds a quadruple
depicted in Figurél. (V,E, f,=) such that(V, E, f) is a directed multigraph and

2) Forward Evaluation and Backward Propagation on(E, =) is a totally ordered set.
Trees: The constraint propagation algorithm nankgd in [4], Definition 4 (Directed Path):.Let G = (V, E, f) be a di-
also referred to as the forward-backward contractor (see [2])fécted multigraph. Adirected pathfrom vy € V to vy, € V
based on the following two main processes. The first one is isea sequence{e;}7_,, of edges such that; = fs(e1),
forward evaluationwhich is recursively performed by a postwy = fi(en), andVi € {1,...,n — 1} : fi(e;) = fs(eit1).
order traversal of the tree representation from leaves to rootsline directed path is called eycle if v; = v2. G is called
order to evaluate the ranges of sub-expressions representeddyclic if it does not contain a cycle.
the tree nodes using the so-calledtural interval extension  Definition 5: Let (V, E, f) be a directed multigraph. For
The second one is theackward propagationon the tree any two vertices;,ve € V we say that; is a parentof v,
representation which is recursively performed by a pre-ordand v, is achild of vy if Je € E : fs(e) = va A fi(e) = vs.
traversal of the tree representation of each constraint fraie call v; an ancestorof v, and v, a descendanof v, if
root to leaves in order to prune the corresponding intervdilere exists a directed path from to v;.
associated with each node of the tree by usingpitogection Theorem 1:For every directed acyclic multigradfy, E, f)
narrowing operatorassociated with the father of the nodethere exists a total order on the verticed/” such thatvv
Readers are referred to [4] for more details. V . if u is an ancestor of, thenv < u.

We use a directed acyclic multigraph, whose edges are
totally ordered, together with an ordering on the vertices, as
In this section, we show how the forward-backward prop@btained in Theoreni, to represent the constraint system

gation defined in [4], that works on tree representations, cét), for short we call it adirected acyclic graph(DAG). In

be extended to work on DAGs. We start by recalling théhe DAG representationevery node represents a variable or
basic concepts on DAGs (SectiiitA). We notably show that an elementary operation (such as x, =, log, exp, ...)
several inclusion functions can be flexibly chosen during tlend every edge represents the computational flow associated
forward-backward propagation (Sectidt-B)), which might with a coefficient. In practice, we have to use multigraphs
improve the tightening of the variable domains as shown instead of simple graphs for the representation because some
SectionlllI-Cl We finally present in detail how the forward-special operations can take the same input more than once. For
backward propagation can be performed on DAGs (Selttion example, when the expressiefi is represented by the power

Q). operationz?, thus, we do not need a new univariate operation

I1l. NUMERICAL CONSTRAINT PROPAGATION ONDAGS



function of the standard division is defined as

Loy if y#0,

Tey= { 0 otherwise ©6)
The unique{R}-extended function of the standard division is
defined as

Ly if y#0,
ToRY= { R otherwise ()
The following is a{(, R}-extended function of the standard
division:
xfy iy #0,
@ ® rey=4¢ 0 if 2#0,y=0, (8)
R otherwise

Fig. 2. The DAG representation (a) before and (b) after performing node

ordering and recursive forward evaluation In the next definition, we extend the inclusion function

concept of [2] by using the notion of extended-function to
guarantee the consistency and correctness.

e . o "
for 2*. The ordering of edges is needed for non-commutative Def'”'t:?” 7 (J:clusy:lon Function)'Let 5 be a subset o,
operations like the division, but not for commutative operd@nd¢ : R" — R™ U S™ an S-extended function of a function

tions. For convenience, a virtual ground no@g, is added to / : D & R" — R™. A function [g] : I" — I™ is called an

the DAG to be the parent of all the nodes representing tfFlusion functiorof g (and then off) if the inclusion property
constraints. In fact, the ground node can be interpreted as fifds: that is,
logical ANDoperation. Each nodl in the DAG is associated

with an interval, denoted(IN), in which the exact range of \yher&

the associated sub-expression must lie.

Vx el :g(x) C [9](x),

Example 4:The DAG representation d#) is depicted in 9(x) ={g(z) |z exnD}u J g(a).
Figurel2. The sequence of nodgdN;,Ns,..., Ny} is an zex\D
ordering of the nodes which satisfies Theoi&m The natural inclusion functiorof f (see [2]), denoted by,
is an instance of inclusion functions which is constructed as
B. Extended Functions follows: in the factorable form off each real variable (resp.

) ) constant) is replaced by an interval variable (resp. constant)
In practice, we often see functions of the forfn: D C  anq each operation is replaced by its interval counterpart.
R™ — R™. For example, the division by zero is not defined. Example 6:Letx = [z,7],y = [y,7] . We give as example

As a consequence, in standard interval arithmetic the divisigflee natural inclusion functions for the divisions defined by
of two intervals is not defined if the denominator contains zergs) (7) and (8), respectively.

In such cases, many implementations of interval arithmetic

give, by convention, the intervdl-oo, +00] as result. If we 0 if y = 1[0,0],

use these implementations to evaluate the ranges of functions, [0, 0] else !fX = [0,0],

we usually get unnecessarily overestimated ranges such as Xy else !fo ¢y,

[—00, +00]. In order to avoid such overestimations, we have X[+ _ /7, +00] else ifz >0 Ny =0, ©)

to extend functions in a consistent way for use in different / [—o0, z/y] else ifz > 0Ay =0,

computations which use inclusion functions. Hereafter, we [—00, /7] else ifz <0OAy =0,

give a way to extend functions which are only defined on [Z/y,+oc]  elseifz <OAF=0,

subsets ofR™, [—00, +00] otherwise

Definition 6 (Extended Function)Let f : D C R* — R™ . X+y if 0¢y,
be a function andS a subset oR2®. A function g : R* — x[+ely = { [—o0, +o0] otherwise (10)
R™ U S™ is called anS-extended functiowf f if ‘ B x[+gly if0¢xV0¢y, 11
f(z) if zeD, Xy = { [—o0,4+00]  otherwise (11)

9(x) :{ yeSsm otherwise ) It is easy to see thatx,y € I : x[+yly C x[+]y C

. hat th . | ; . x[+gr]y. Unfortunately, some interval implementations use the
_Itis easy to see that there is only ofeextended function i igion [+], while it is safe to use the divisioft-¢] in some
if 5 has only one element, for instance, wheris either{0} ., tations such as forward evaluation and use the division

or {R}. ) o _ [+s] in some computations such as backward propagation,
Example 5:The domain of the standard divisian/y is

D. = {(z,y) € R? | y # 0}. The unique{(}-extended  2The set union of vectors is performed in component-wise fashion.



as described in Sectichl-Cl In some interval libraries the that from the relationN = f(Cy,...,Cy) we can infer
extended interval division as defined in [22] is implementedn equivalent relatiorC; = g¢;(IN, {Cj};?:l_#i) for some
which is the tightest all-purpose interval division, bey] and i € {1,...,k}, whereg; is a function fromR¥ to R. Let [g;]
[+«] both provide a bit better bounds than that for forward arise an inclusion function of;. Thei-th backward propagation,

backward propagation, respectively. denotedBP(N, C;), can then be defined as
C. Forward Evaluation and Backward Propagation on DAGSP(N, C;) = {I(C;) :=I(C;) N [g:](L(N), {I(C;) }j—1.;2:) }-

As in [4], the aim of theforward evaluationphase is to In case that we cannot infer such a functign more
evaluate the range of a node based on the ranges of its children. 9

: . - ; complicated rules to obtain theth projection of the relation
The backward evaluatiophase is concerned with pruning the [ (C C,) have to be constructed if the cost is low
intervals associated with the children based on that of taﬁ_ Lo 2k '

. . .alternatively the relation can be ignored. Fortunately, we can
considered node. The existing forward-backward propagation N .
; . . . ; evaluate those projections for most elementary operations at
scheme in [4] only allows using natural inclusion functions f

. : Yow, cost.
both phases. We show how this propagation can be enhanceBefinition 8: Let f be the elementary operation represented

by enabling the use of several types of inclusion functions g}tl N as discussed above. We will use the notatioto mean

different propagation phases. . L L
. _ ., that either the divisioff+,] or the division[+g] can be used at
In the DAG representation ofl), let N be a node which the place the notatiom appears, but the former is better. The

: : ok
s not the ground_node and has ch|Id_ren {CZ}ZZ.T The rules for the forward evaluation and the backward propagation
elementary operation represented Dy is a function f : . )

are given as follows:

D; C R¥ — R. Hence, the relationship betwed and its

children can be written a® = f(C,...,Cy)2 Let [f] be 1) If f is a univariate function such as sqr, sqrt,

an inclusion function of the}-extended function off. The exp, log,...and[f] is defined as in(12); we define

forward evaluation at nod®& using the inclusion functio

forward evaluation a g y FE(NL[/]) = {I(N):= I(N) 0 [f)(I(C)},
BP(N,Ci) = {I(Cy):=1(Cy)N[f(IN))},

FE(N, [/]) = () = IMN)N(AAC), - K(Cw))}- (12) where we abuse the notation of inclusion function,

This forward evaluation computes the range of a node based [f~!](x), to denote some intervals containing the pre-
on the ranges of its children by using an inclusion function  image f~'(x).

of the elementary operation represented by this node. Fop) If f is defined asf(z1,...,zx) = o + Zle o, We

example, considering the no@®&; in Figure2, we can use any define

inclusion function of the{()}-extended function of the square N

root operation. In the implementation, we use the natural _ L 4 _

inclusion for simplicity. FEN.E) = {I(N) :=IN) N (o + ; ail(Ci))}
Remark 1:We can also replace the inclusion functipf 1

in (12) by an inclusion function of the recursive subexpres- ~ BP(N,C;) = {I(C;) :=1(C;) N —(I(N) — o —

sion whose variables are user’s ones. For instance, we can % ’

replace[f] of the nodeN; by the natural inclusion function Z o I(C)} (i=1,...,k).

of the recursive subexpression composed of the nodes in

{N~,Ny, Ny, Ny}, that is, by the bivariate interval function

VXY. 3) If fisdefined asf(x1,...,2x) = oz]_[f:1 x;, we define
The backward propagatiorprunes the intervals associated

J=15#i

k
with children based on the constraint range of their parents. In _ . '
other words, for each chil@; the backward propagation eval- FE(Nf) = {IN):=I(N)Na Hl]l(c‘)}’
uates thei-th projection of the relatiolN = f(Cy,...,Cy) BP(N.C.) = {I(C.):=I(C.)N l]I_N
on the variable represented ;. It is then called thei- (N, €)= Il ’,)C' (C)n{IN) @
th backward propagation @& and denoted byP(N, C;). (@ H I(C)))} (i =1 k)
For convenience, we define the following sequence as the Pt ! s

backward propagation at nodé

4) If fis defined asf(x,y) = z/y, i.e. k = 2, we define
BP(N) = {BP(N, C,)}L.,. ay " ey =ty
Although the exact projection of relations is expensive in FE(N.£) = {I(N) == IN) NE(I(C1), [(C2))},
general, an evaluation of the exact projection of elementary BP(N,C1) = {I(Cy) :=I(C1) N (I(N) x [(C2)) },
operations can be obtained at low cost. Indeed, suppose BP(N,C2) = {I(C2):=1(Cz)N (I(C1) @ (N))},

3n this paper, we abuse the notation of a node for the real variable ~ Wheref € {[=ol, [=]s [+r]}
represented by it.



Proposition 1: The forward evaluation and backward propnodes corresponding to zeros of the vedtgr. An example of
agation rules given in DefinitioB never discard a solution of the partial DAG representation for the probl€#) is depicted
the problem represented by the corresponding DAG. in Figureld.

Proof: The proof directly follows the definitions in

Sectionlll-B] and Sectiorill-C}, and is therefore omitted for Procedure NodeOccurrences(in : N; out: Vo)
simplicity - for each child C of nodeN do

Voc[c] = VO(’[C] +1;

IV. COORDINATING PROPAGATION AND SEARCH J }\'Odeoccurrences(cv Voc);
enda-tor

We now tackle the issue of coordinating constraint propand
gation and search for solving NCSPs. It builds on the classical
branch-and-pruneframework, where the solving process ié:i_g. 3. If traversing all active constraints, tm@deoccgrrences procedure

. . . . will count the number of occurrences of each node in the factorable form of
performed by repeatedly interleavingpauning step with a the active constraints
branching step. The former uses local techniques such as
constraint propagation to reduce the variable domains, while
the latter splits a problem into subproblems.

At each branching step, a subproblem has to be solved
which consists of a subset of the original constraints called the
set ofactive constrain&in this paper. The active constraints
are defined on sub-domains of the initial variable domains.

If the pruning technique uses the DAG representatio
the DAG representation needs to be constructed for egq
subproblem. The simplest way, therefore, consists of explicitly
building a new DAG to represent each subproblem considered.
However, since there is often a huge number of branching steps
during a complete solving process, the total cost of creating ~
such DAGs is potentially high.

As an alternative, we propose to modify a piece of infor-
mation attached to the initial DAG in order to make the initial
DAG interpreted as the DAG representation of a subproblefiy. 4. The partial DAG representation of the problér) when (a) the first
without the necessity of creating new DAGs. Using thisonstraint, or (b) the second constraint is the unique active constraint. The
. . . . rey nodes are not counted, hence are ignored in computations. The dotted
information, it becomes possible to perform forward-backwagges are redundant. The node levels are not updated
evaluation onpartial DAG representationsof the original

problem without increasing much the time and space neededp) Partial Forward-Backward Propagation on Initial DAG:

In SectionlV-A}, we present how partial forward-backwardnspired by the original forward evaluation and backward
propagations can be performed on partial DAG representatigfigpagation in [4], we devise a new algorithm for numerical
of the original problem. We then devise in Secti®B| constraint propagation, that is based on the partial DAG
a detailed search algorithm based on the partial forwargpresentation instead of the tree representation. We call the
backward propagation on DAGs. new algorithm“Forward-Backward Propagation on a DAG”

A. Partial Forward-Backward Propagation on DAGs and denot.e it b}FBPD. In F|gure_5, we prgsent the main steps

1) Partial DAG R iorin ord h of FBPD. Like with theHC4 algorithm [4], in the main body of

) Partia 'Representationin order to represent the sety, , zppp g1gorithm there are two principal processes: forward
of active constraints without having to create new DAGS, W& aluation and backward propagation. However, unlikaite
use a vectorys., Whose Sizé !s_(_equal to the number of I"Odeélgorithm, theFBPD algorithm performs these processes for a
of the DAG representing the initial problem. For each ndde single node instead of all the nodes at once. Therefore, in
0]: the DAG, we uﬂie _thehentfrVOC[N]blto fcount ';hehnumb_er the FBPD algorithm, the choice of the next node for further
of occurrences OfiN in t € actora € form o the active rocessing can be adaptively made based on the results of
constraints. In Figur8, we give a recursive procedure, calle he previous processes. Moreover, in #BPD algorithm, the

that V,.[N] = 0 if and only if N is not in the representation evaluation and the backward propagation is not necessarily

of the active constraints. Therefore, by combining the initieerd' In the next paragraphs, we describe in detail the proce-
DAG with the vectorV,., we have a so-callegartial DAG dures that are not made explicit in Figiie

representatiorfor each subproblem. In the latter computations,
we can use the partial DAG representation in a way similar
using the (full) DAG representation, except that we ignore g

a) Recursive Forward EvaluationSimilar to the HC4
(?gorithm, we perform a recursive forward evaluation at the
itialization phase (lines 01-08) to evaluate the ranges of the

4Note that this notion differs from the meanimgtive constraintin the Nodes n the partial DAG representation. In Figéreve give
optimization literature. the details of a procedure, nameédrwardEvaluation, for



/* D(G) : a DAG with the groundG */ procedure NodeLevel(in : N; out: Vi)

/* D: variable domains¢ : active constraints */ for each child C of nodeN do

algorithm FBPD(in : D(G),C;infout : D) Viut[C] := max{Vii[C], Viui[N] + 1};
00: Reset all node ranges 8f(G) to [—oo, +00]; NodeLevel(C, Viw);

01: Set the node ranges of vars & constraintt& C, resp.; end-for

02: Ly:=0; Lp:=0; Vo :=(0,...,0); Ver, :=(0,...,0); end

03: Viw := (0, ...,0); /* can be made optional with line 06 */
04: for each node C representing an active constraint@ndo Fig. 7. This is a procedure assigning a node level to each node in a DAG.

05: NodeOccurrences(C, Vo.);

06: NodeLevel(C, Vi,,1); /* this can be made optional */

07: ForwardEvaluation(C, Ven, Lp);

08:  end-for e

09:  while £, #0V Ly # 0 do g

10: N := getNextNode(Ls, Lf); //[l.zsej

11; if I(N) was taken fromZ, then / >

12: for each child C of N do '

13: BP(N, C); /* see Definition8 */ "‘2’ o

14: if I(C) = 0 then return infeasible R S

15: if I(C) changed enough for doirig(.) then g

16: for each P € parent§C) \ {IN, G} do va

17: if Voc[P] > 0 then putP into Ly; . .

18: end-for Sl

19: end-if éo«»

20: if I(C) changed enough for doirgp(.) then

21: PutC into £p; @ ®

22: end-for Fig. 8. The node levels are updated at each call toRBRD algorithm

23: else/* N was taken fromC; */

24: FE(N, [f]); I* [ is the operator alN, see(12) */

25 if I(N) = {) then return infeasible b) Get the Next Node for Further Processirighe FBPD

26: if H(T) cha?]ged enough for dOIﬁ@E(d) then algorithm uses two waiting lists to store the nodes waiting for
g;j or ei?cvﬂff] zage?;§§%3t§%tooc , further processing. The first lis;, is a list of nodes that
29 end-for a is scheduled for forward evaluation, that is, for evaluating its
30: end-if range based on its children’s ranges. The seconddistis a

3L if I(N) changed enough for doirgp(.) then list of nodes that is waiting for backward propagation, that is,
gg ondit PutN into Ls; for pruning its children’s ranges based on its range. In general,

34 end-while when £, contains many nodes, the nodes should be sorted
35: UpdateD with the ranges of the nodes of the variables; such that the forward evaluation of a node is performed after
end the forward evaluation of its children. Analogously, the nodes
Fig. 5. FBPD — the partial Forward-Backward Propagation on DAG algorith In Ly Shou!d be sorted such that the backward propaga‘uon

" "4t a node is performed before the backward propagation at

procedure ForwardEvaluation(in : N; infout : Vo, £3) its children. TheNodeLevel procedure in Figurg assigns to

if N is a leafor V.,[N] = 1 then return; each node aode levekuch that the node level of an arbitrary

for each C € children(N) do node is smaller than the node levels of its descendants. We
ForwardEvaluation(C, Ven, Ly); then sort the nodes of, and £; in ascending order and

end-for descending order of node levels, respectively, to meet the

if N = G then return; b . t

FE(N, [f]); /* similar to line 24 in Figures */ above requirements. . L

V.n[N] := 1; /* the range of this node is cached */ The call to theNodeLevel procedure at line 06 in Figui®

if I(N) = 0 then return infeasible can be made optional as follows. The first option allows

if I(N) changed enough for backward propagatiben invoking NodeLevel only at the first call toFBPD. The node
PutC into Ly; levels of the initial DAG still meet the requirements on the

end-if

end ordering of the waiting lists. The numbers in brackets next

to the node names in Figu:are the node levels computed
Fig. 6. This is a procedure to do a recursive forward evaluation  for the initial DAG. Figure8 illustrates the second option that
allows invokingNodeLevel at line 06 in Figures every time
FBPD is invoked.
such a recursive evaluation. To avoid evaluating the same subThe getNextNode function at line 10 in Figur& chooses
expressions many times, we use a vecidy,, to mark the gne of the two nodes at the beginning 6f and £;. The
caching status of nodes. The results of the recursive forwayﬁategy that we use in our implementation is “backward
evaluation of(4) are depicted in Figur@b and Figured for propagation first”, that is, taking the node at the beginning

the case that both constraints are active and the case that @aly:, wheneverc, is not empty. Of course, other selection
one constraint is active, respectively. strategies can also be used.



. algorithm BnPSearch(in : V,D,C;out: Ly, L.)
¢) When Are the Changes of Node Ranges Enougo?: Construct a DAG,D(G), for the initial problem(V, D, C);

simplicity, in Figure5 (lines 15, 20, 26, 31) we only briefly FPBD(D(G),C, D); /* Prune the domains iD */
present the procedures to check whether the node ranges haveif infeasibleis detectecthen return infeasible
been changed enough for further processing. Hereafter, we will if domains inD are small enougtthen

detail them. LetM denote the nod€ at line 13 or the node 5st =L U{(D,C)};
N at line 24. In Figureb, the forward evaluation at line 24 &
and the backward propagation at line 13 are of form £h|: {E(D;,é%)é;
whnile [0}
I(M) == I(M) Ny, (14) Get a couplgDy, Co) from L;
. . . Split th blem(V, Dy, Co) int bprobl
wherey is the |nter\{al compute_d by the_ forward evaluation or i {(57 %ri C?T(_ o (({,7 7%1 "zkg}iuwﬂre?egir:; C Co
backward propagation before intersecting witfvI). for i:=1to k do ’
Let W4 andW,,.., be the widths ofi(M) andI(M) Ny, FPBD(D(G),Ci, D;); /* Prune the domains iD; */
respectively. In practice, the changel¢M) after performing !]f mfe_asq)lblr:as detectedhen continue for;
(14)) is considered enough for doing the forward evaluation at ' CZE i zn U{D:};
its parents if the condition®/,,c., < 7 Woiq aNdWi,ey+ds < an'tinuevfor; o
Woiq hold, wherery is a real number in(0,1) anddy is a end-if
small positive real number. The numbers and d; can be if domains inD; are small enouglthen
predefined or dynamically computed. Similarly, the change of | Le =L U{(Di,Ci)}
I(M) after performing(14) is considered enough for doing the eseﬁ — LU{(DsC):
backward propagation 8 if the conditionsW,,.., < 76Woid end-if R
and Wi,ew, + dp < Woq hold, wherer, is a real number in end-for
(0,1) andd, is a small positive real number. Moreoveryifis end-while

computed by the forward evaluation (at line 24), the addition&fd
conditiony ¢ I(M) must also hold.
The FBPD algorithm is contractiveand correct in the fol-
lowing meaning.
Proposition 2: We define a function” : I" x 25" — 1" for problems with a continuum of solutions we need more
to represent th&€BPD algorithm. This function takes as inputadvanced search techniques lik@46, UCA6 andUCA6+ (see
the variable domains (in form of an interval b&) and the [g], [7]). They all can be viewed as instances of the generic
exact solution set5, of the input problem. The functiod” pranch-and-prune search described in Fiirie general, the
returns an interval box, denoted Wy(B, 5), that represents search scheme produces two lists. The first fist, consists of
the variable domains of the output of tBPD algorithm. If feasible sub-domains. The second lit, consists of tuples
the input problem contains only the elementary operatifnsof tiny sub-domains, which are boxes either smaller than the
defined in Definitior, then theFBPD algorithm terminates at required resolutior or canonical, and the sets of constraints,
a finite number of iterations and the following properties holdhat are still active in the corresponding sub-domains.
(i) FB,S) < B (Contractiveness) It is easy to prove that, due to the finite nature of floating-
(i) F(B,S) 2 BnNS (Correctness) point numbers, the branch-and-prune search presented in Fig-
Proof: All the ranges of nodes in the DAG representatioH'® 9 can obtain a predefined positive resolutioni.e. £
of the problem are never inflated at each step of gaeD O€comes empty, after a finite number of steps. Moreover,
algorithm, then theBPD algorithm must terminate at a finiteth€ branch-and-prune search is a complete search technique
number of iterations due to the finite nature of floating-poirR€cause th&BPD algorithm is complete.
numbers. In particular, the ranges of the nodes representing
the variables are never inflated, hence, the propegityolds. V. EXPERIMENTS
Moreover, the forward evaluations and backward propagationSye nave carried out experiments on tABPD algorithm
used in theFBPD algorithm are defined in DefinitioB, they anq two other well-known state-of-the-art interval constraint
never discard a solution (due to the inclusion property Qfocessing techniques. The first one is an implementation of
inclusion functions). Therefore, the propexiy) holds. Box Consistency [23], [24] in a well-known commercial prod-
uct named ILOG Solver (v6.0, 11/2003), hereafter denoted by
) BOX. The second one is callert4 (Revised Hull Consistency)
Branch-and-Pruneis the most common framework forfom [4]. The experiments are carried out on 33 problems

exhaustively solving NCSPs. The most widely used algorithihich areunbiasedlychosen and divided into five test cases
for search is bisection, hence called thisection searchlt fq, analyzing the test resul®s:

is suitable for problems with isolated solutions. However,

it is often inefficient for problems with a continuum of sye have collected a set of problems from diverse sources including related
solutions, for instance, problems with inequalities. Thereforgapers and the Internet.

Fig. 9. A generic branch-and-prune search usiB®D for pruning.

B. Combining Propagation and Search Using a DAG



TABLE |
THE COMPARISON OF THE THREE CONSTRAINT PROPAGATION
TECHNIQUES IN SOLVINGNCSPs.

o The test cas#} consists of 8 easy problems with isolated
solutions that are solvable by the search using the three
propagators in short time.

« The test casel} consists of 4 average problems wit (a) Isolated Solutions [+ (b) Continuum of Solutions
isolated solutions that are solvable by the search usir‘:q RelativéRelative | Relative] Relative] Relativg Inner | Relative[Relative

. . op. time [reduction| cluster | iteration time | volume| cluster fteration
FBPD ar?dBOX,. and that Ca.use the S.e_arCh USH@ bemg v ratio | ratio ratio ratio ratio ratio ratio ratio
out of time without reaching0° splittings. FBPD| 1.000 1.000] 1.000] 1.000] 1.000 0.922| 1.000 1.000

o The test cas#j; consists of 8 hard problems with isolatedsox | 20.863 0.625] 0.342| 0.731] 20.919 0.944] 0.873| 0.854
solutions that cause the search usiBgD being stopped |Hc4 [203.285 0.906| 1.266| 0.988|403.915 0.941| 0.896| 0.879
due to running more tham0® splittings; that cause the

search usingiC4 being out of time without reaching TABLE II

109 splittings; and that cause the search usioy either  Tue avERAGES OF THE RELATIVE TIME RATIOS ARE TAKEN OVER THE
being out of time or being stopped due to running more PROBLEMS IN EACH TEST CASE

than 10° splittings.

o The test casely consists of 7 easy problems with a Prop. (a) Isolated Solutions (b) Continuum of Solution
continuum of solutions that are solvable at the predefined Y | Casel1 | CaseT; | Casels CaseTy CaseTs
resolution10-2 in short time. FBPD 1.00 1.00 1.00 1.00 1.00

« The test casel; consists of 6 hard problems with a2 2421| 2898 1345 11.55 31.85
continuum of solutions that are solvable at the predefinvgC4 9442 69124 68.17 191.86 65131
resolution10~! in short time.

TABLE Il

The timeout value is set thd0 hours for all the test cases.
The timeout values will be used as the running time for the
techniques which are out of time in the next result analysis
(i.e. we are in favor of slow techniques). For the first threes, ;ST siF3[ REB[WINT ECO3 ECO NEUG ECOT ECO8| Average
test cases, the resolutioni®~* and the search to be used iSrgpp | 1.626| 1.360] 2.075 1.711 1.676 3.198 1.513 1.455| 1.827
the bisection search. For the last two test cases, the searcgg®@ |2.957/1.974| 3.080 1.579 1.660 6.748 1.521 1.485 2.625
be used is a search technique, caltEhé.® for inequalities [Hca |2.229)1.914] 1.492 1.647 1.679 4.949 1.488 1.449] 2.106
(see [6], [7]). The comparison of the interval propagation
techniques is based on the measures of

« The running timeThe relative ratio of the running time ratjo is, the better the quality is. In the sectior) of Tablel,
of each propagator to that 6BPD is called therelative the average of the relative time ratios is taken over all the
time ratia problems in the test caség, T», Ts; and the averages of the

« The number of boxedhe relative ratio of the number of other relative ratios are taken over the problems in the test
boxes in the output of each propagator to thaFBFD is  caseT, i.e. over the problems which are solvable by all the
called therelative cluster ratio techniques. In the sectiofb) of Tablell, the averages of the

« The number of splittings/iterationg:he number of split- ye|ative ratios are taken over all the problems in the test cases
tings in search needed to solve the problems. The relatiye 7,

ratio of the number of splittings used by each propagator Tablelll
to that of FBPD is called therelative iteration ratio '

« The volume of boxes (only far, T, T3): We consider
the reduction per dimensiod/V/D; where d is the
dimension of the problemy is the tpt_a_l volume_ of the number of output boxes.
output boxesp is the volume of the initial domains. The

relative ratio of the reduction gained by each propagatordef':rlg' FBPD outpe rforms dbOETOX ??dHt? by S_n orgler 0;
to that of FBPD is called therelative reduction ratio magnitude or more in speed, at least for the unbiasedly chosen

« The volume of inner boxes (only f@t,, 75): The ratio blenchmarks, Vt\{h”e. being rohughlyt/hthe Tatr_ne qutatlltybw.r.t. Ien-d
of the volume of inner boxes to the volume of all outpug ozure profper €S In case where fe o t'.on =€ ? elepc 0se
boxes is called thinner volume ratio y boxes of macroscopic size (i.e. for continuum of solutions).

] ) ] ) For isolated solutions, very narrow boxes are produced by any

The overviews of results in our experiments are given . nique in comparison to the required resolution. However,

Tablel ar'ld Tablell. , o the new technique is about 1.1-2.0 times less tight than the

Note 1: In general, the lower the relative ratio is, the bett€fer techniques in the measure on reduction per dimension

the performance/quality is; and the higher the inner volunm,hich hardly matters in applications). In comparison Vit

N _ _ (we recall thatiC4 is a constraint propagation technique that

The implementation ofiCA6 is downloadable ahttp://www.mat. . imil b K h . K d

univie.ac.at/coconut-environment/ (in the BCS module) under 'S SImiiar tOFBPD_ ut works on the _tree represenFathn Instea
the LGPL and GPL licenses. of DAGS), FBPD is clearly more suitable for applications.

THE OVERRUN RATIOS FOR THE TEST CASH7. (AN OVERRUN RATIO
GREATER THAN 1 WOULD SUFFICE FOR APPLICATIONS)

we give theoverrun ratio of each propagator
for the test casé. The overrun ratio is defined ag {/V/N;
wheree is the required resolution] is the dimension of the
problem,V is the total volume of the output boxe®, is the


http://www.mat.univie.ac.at/coconut-environment/�
http://www.mat.univie.ac.at/coconut-environment/�

VI. CONCLUSION [9]

We propose a constraint propagation techniggep, which [10]
makes the fundamental framework for constraint propagation
on DAGs [1] efficient and practical, and a method to coof1l
dinate constraint propagation and exhaustive search using a
single DAG for each problem. The experiments carried oyt2]
on various problems show that the new approach outperforms
previously available propagation techniques by an order
magnitude or more in speed for a set of unbiasedly choses
benchmarks, while being roughly the same quality w.r.t. enclol-s]
sure properties. Moreover, the design natur8B¥D is similar
to that of theHC4 algorithm. Therefore, we can use tABPD [16]
algorithm in many applications and combination techniques
which use theiC4 algorithm. 7]

In other views FBPD can be viewed as a special instance of
a generic combination scheme, cal&xkD, that was proposed [18]
by Vu et al. [25]. Moreover, our experiments show that thé!®!
strengths ofFBPD and CIRD[ai] (an instance of thecIRD
scheme, that useaffine arithmeticand interval arithmeti¢ [20]
are complementary when considering problems have isolated
or non-isolated solutions. Therefore, combining and unifyinga]
the strengths of BPD and CIRD[ai] to solve problems with
either isolated or non-isolated solutions is a straightforwa%Z]
direction in the near future.
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