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Abstract This paper extends the SQP-approach of the well-known bundle-Newton method for
nonsmooth unconstrained minimization to the nonlinearly constrained case. Instead of using a
penalty function or a filter or an improvement function to deal with the presence of constraints,
the search direction is determined by solving a convex quadratically constrained quadratic pro-
gram to obtain good iteration points. Furthermore, global convergence of the method is shown
under certain mild assumptions.
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1 Introduction

Nonsmooth optimization addresses to solve the optimization problem

min f(x)

st. Fi(x) <0 foralli=1,...,m,

(1)

where f, F; : R™ — R are locally Lipschitz continuous. Since Fj(x) < 0 for all i = 1,...,m if
and only if F(z) := max;=1,__m ¢;Fi(z) < 0 with constants ¢; > 0 and since F is still locally
Lipschitz continuous (cf., e.g., MIFFLIN [@, p. 969, Theorem 6 (a)|, we can always assume m = 1
in (). Since we do not take scaling problems of the constraints into account in this paper, we

choose ¢; =1 for all i = 1,...,m and therefore we always consider the nonsmooth optimization
problem with a single nonsmooth constraint
min f(x)

s.t. F(x) <0, @

where F': R® — R is locally Lipschitz continuous, instead of ().
Since locally Lipschitz continuous functions are differentiable almost everywhere, both f and

F may have kinks and therefore already the attempt to solve an unconstrained nonsmooth
optimization problem by a smooth solver (e.g., by a line search algorithm or by a trust region
method) by just replacing the gradient by a subgradient, fails in general (cf., e.g., ZOWE [@,
p. 461-462]): If g is an element of the subdifferential df(z), then the search direction —g does
not need to be a direction of descent (contrary to the behavior of the gradient of a differentiable
function). Furthermore, it can happen that {x} converges towards a minimizer &, although the
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sequence of gradients {V f(zx)} does not converge towards 0 and therefore we cannot identify
Z as a minimizer. Moreover, it can happen that {z)} converges towards a point &, but & is not
stationary for f. The reason for these problems is that if f is not differentiable at z, then the
gradient V [ is discontinuous at = and therefore V f(x) does not give any information about the
behavior of V f in a neighborhood of x.

Not surprisingly, like in smooth optimization, the presence of constraints adds additional
complexity, since constructing a descent sequence whose limit satisfies the constraints is (both
theoretically and numerically) much more difficult than achieving this aim without the require-
ment of satisfying any restrictions.

Methods that are able to solve nonsmooth optimization problems are, e.g., bundle algorithms

which force a descent of the objective function by using local knowledge of the function, the R-
algorithm by SHOR @] or stochastic algorithms that try to approximate the subdifferential. In
the following we will present a few implementations of these methods.
Bundle algorithms. Bundle algorithms are iterative methods for solving nonsmooth optimiza-
tion problems. They only need to compute one element g of the subdifferential df(x) per itera-
tion, which in practice is easily computable by algorithmic differentiation (cf., e.g., GRIEWANK &
CORLISS [@]) For computing the search direction, they collect information about the function
(e.g., subgradients) from previous iterations. This collected information is referred to as “the
bundle”.

As in smooth optimization, convex nonsmooth optimization is much easier than nonconvex
nonsmooth optimization as well in theory as in practice because convex functions only have
global minimizers and the cutting plane approximation of a convex function always yields an
underestimation which in particular simplifies convergence analysis. A good introduction to non-
smooth optimization which treats the convex, unconstrained case in great detail is BONNANS
et al. E, p. 106 ff]. Moreover, very detailed standard references for nonsmooth nonconvex opti-
mization are KIWIEL [35] and MAKELA & NEITTAANMAKI [5(], which both in particular discuss
constrained problems extensively.

Now we give a brief overview over a few bundle algorithms. We start this overview with
the following bundle algorithms that support nonconvex constraints: The multiobjective prox-
imal bundle method for nonconvex nonsmooth optimization (MPBNGC) by MAKELA [49] is
a first order method that uses the improvement function hy, (z) := max (f(z) — f(zx), F(z))
for the handling of the constraints. Further details about the proximal bundle method can be
found in MAKELA & NEITTAANMAKI [@] The algorithms in MIFFLIN lﬁ, @, @] support a
nonconvex objective function as well as nonconvex constraints (cf. Remark Bl). NOA by KiwitL
& STACHURSKI [@] is a nonsmooth optimization algorithm that handles nonconvex constraints
by using a penalty function or an improvement function, while in the special case of convex
constraints it offers an alternative treatment by the constraint linearization technique by Ki-
WIEL @] The limited memory bundle algorithm for inequality constrained nondifferentiable
optimization by KARMITSA et al. [34] combines LMBM by HAARALA [20] with the feasible di-
rections interior point technique by HERSKOVITS [23], HERSKOVITS & SANTOS [24] for dealing
with the constraints. The search direction is determined by solving a linear system.

In addition a few bundle algorithms can only handle convex constraints: The bundle trust
algorithm by SCHRAMM [@], SCHRAMM & ZOWE @], which also supports a nonconvex objective
function, handles the constraints by using the constraint linearization technique by KIWIEL
@] The bundle filter algorithm by FLETCHER & LEYFFER IE] is only applicable to convex
optimization problems and it computes the search direction by solving a linear program. The
bundle-filter method for nonsmooth convex constrained optimization by KARAS et al. é] is based
on the improvement function. The infeasible bundle method for nonsmooth convex constrained
optimization by SAGASTIZABAL & SOLODOV [@] is also based on the improvement function, but
it uses neither a penalty function nor a filter.

Moreover, there are some bundle algorithms that support at most linear constraints: The
variable metric bundle method PVAR by LUKSAN & VLCEK [46], VLCEK & LUKSAN [72] can
solve nonsmooth linearly constrained problems with a nonconvex objective function. The imple-
mentation PBUN of the proximal bundle method by LUKSAN & VLCEK [43, [47], VicEk [71]
optimizes a nonconvex objective function, where the feasible set is given by linear constraints.
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The proximal bundle method by KIWIEL lﬁ], which is based on a restricted step concept, can
handle a nonconvex objective function and linear constraints. The focus of the limited memory
bundle method LMBM by HAARALA [20], HAARALA et al. [21, 27] is the treatment of large-scale
nonsmooth nonconvex unconstrained optimization problems. This is done by combining ideas
from the variable metric bundle method LUKSAN & VLCEK m, VLCEK & LUKSAN [72] and
limited memory variable metric methods by, e.g, BYRD et al. [11]. Its bound constraint version
is presented in KARMITSA & MAKELA [@, @]

All algorithms mentioned above only use first order information of the objective function and
the constraints as input. Nevertheless, there are some very interesting bundle methods, since they
are Newton-like methods (at least in some sense) and which only support the handling of linear
constraints yet as far as I know (except for putting the objective function and the constraints
into a penalty function with a fixed penalty parameter and then applying the unconstrained
algorithm to the penalty function): The quasi-Newton bundle-type method for nondifferentiable
convex optimization by MIFFLIN et al. @] generalizes the idea of Quasi-Newton methods to
nonsmooth optimization and it converges superlinearly for strongly convex functions (and some
additional technical assumptions). The bundle-Newton method for nonsmooth unconstrained
minimization by LUKSAN & VLCEK IE] supports a nonconvex objective function, it is based on
an SQP-approach, and it is the only method for solving nonsmooth optimization problems that
I know which uses Hessian information. Furthermore, its rate of convergence is superlinear for
strongly convex, twice times continuously differentiable functions. Moreover, a description of the
implementation PNEW of the bundle-Newton method can be found in LUKSAN & VLCEK @])

In this paper we extend the bundle-Newton method to a second order bundle algorithm for
nonsmooth, nonconvex inequality constraints by using additional quadratic information: We use
second order information of the constraint (cf. ([2])). Furthermore, we use the SQP-approach of the
bundle-Newton method for computing the search direction for the constrained case and combine
it with the idea of quadratic constraint approximation, as it is used, e.g., in the sequential
quadratically constrained quadratic programming method by SoLoDOV @] (this method is not
a bundle method), in the hope to obtain good feasible iterates, where we only accept strictly
feasible points as serious steps. Therefore, we have to solve a strictly feasible convex QCQP
for computing the search direction (Note that this approach also yields a generalization of the
original bundle-Newton method in the unconstrained case). Using such a QCQP for computing
the search direction yields a line search condition for accepting infeasible points as trial points
(which is different to that in, e.g., MIFFLIN [55]). One of the most important properties of the
convex QP (that is used to determine the search direction) with respect to a bundle method is
its strong duality (e.g., for a meaningful termination criterion, for global convergence,...) which
is also true in the case of strictly feasible convex QCQPs (cf. Subsection E.2]).

For Numerical results we refer the reader to FENDL & SCHICHL M] Proofs that are presented
in this paper can be looked up in explicit detail in FENDL , p. 25 ff, Chapter 3].

Other algorithms for nonsmooth optimization. There exist several other methods for
solving nonsmooth optimization problems that are not based on the bundle approach or that
are no bundle algorithms in the sense as described on page 2l A few representatives of these
methods that support at most linear constraints are: The algorithm PMIN by LUKSAN & VLCEK
@], which is based on LUKSAN @], solves linearly constrained minimax optimization problems,
i.e. the objective function must be maximum of twice times continuously differentiable functions.
The robust gradient sampling algorithm for nonsmooth nonconvex optimization by BURKE et al.
IE] approximates the whole subdifferential at each iteration (cf. BURKE et al. E]) and does
not make null steps. The MATLAB-code HANSO by OVERTON @] combines ideas from BFGS
algorithms (cf. LEwIS & OVERTON [L4_l|]) and from the gradient sampling algorithm by BURKE
et al. [@] for solving nonsmooth unconstrained optimization problems. The derivative-free bundle
method (DFBM) by Bacirov [1], where “derivate-free” means that no derivate information
is used explicitly, can solve linearly constrained nonsmooth problems. The subgradients are
approximated by finite differences in this algorithm (cf. BAGIROV E]) DFBM is an essential part
of the programming library for global and non-smooth optimization GANSO by BAGIROV et al.

]. The discrete gradient method DGM for nonsmooth nonconvex unconstrained optimization by
BAGIROV et al. [5] is a bundle-like method that does not compute subgradients, but approximates
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them by discrete gradients. The quasisecant method QSM for minimizing nonsmooth nonconvex
functions by BAGIROV & GANJEHLOU M] combines ideas both from bundle methods and from
the gradient sampling method by BURKE et al. [@]

Furthermore, we want to mention the following solver for nonsmooth convex optimization
problems: The oracle based optimization engine OBOE by VIAL & SAWHNEY @] is based on
the analytic center cutting plane method by NESTEROV & VIAL [@], which is an interior point
framework.

Finally, we list a few algorithms that can also handle nonconvex constraints: The robust se-
quential quadratic programming algorithm extends the gradient sampling algorithm by CURTIS
& OVERTON [@ for nonconvex, nonsmooth constrained optimization. SolvOpt by KAPPEL &

KUNTSEVICH |28] is an implementation of the R-algorithm by SHOR [@] It handles the con-
straints by automatically adapting the penalty parameter. ralg by KROSHKO @] is another
implementation of the R-algorithm by SHOR [67] that is only available in (the interpreted pro-

gramming language) Python. The constraints are handled by a filter technique.

Remark 1 KARMITSA et al. l3__1|] gives a brief, excellent description of the main ideas (including
very good readable pseudo code) of many of the unconstrained methods resp. the unconstrained
versions of the methods which we mentioned above (for further information visit the online
decision tree for nonsmooth optimization software by KARMITSA [3(]).

The paper is organized as follows: In Section 2] we recall the basics of an SQP-method which is
a common technique in smooth optimization and we summarize the most important facts about
nonsmooth optimization theory. In Section [3] we give the theoretical foundation of our second
order bundle algorithm and afterwards we present the algorithm and the line search in detail.
Finally, we show the convergence of the line search and the global convergence of the algorithm
in Section [

Throughout the paper we use the following notation: We denote the non-negative real numbers
by R>g := {z € R: x> 0}. We denote the space of all symmetric n x n-matrices by R{". For
x € R" we denote the Euclidean norm of = by |z|, and for A € Sym(n) we denote the spectral
norm of A by |A|. Furthermore, we denote the smallest resp. the largest eigenvalue of a positive
definite matrix A € R™*™ by Apnin(A) resp. Amax(A). Therefore, if A is positive definite, we have

| Al = v/ Amax(4) 3)

(cf., e.g., GOLUB & VAN LOAN [18, p. 394, Follow up of Theorem 8.1.2]).

2 Optimization theory

In the following section we summarize the basics of an SQP-method, since we will approximate a
nonsmooth problem by a sequence of smooth problems to derive our algorithm in Section [ and
hence we will need some facts about smooth optimization, and we present the most important
facts about nonsmooth optimization theory.

2.1 Smooth optimality conditions & SQP

Theorem 1 Let f,F; : R" — R (with i =1,...,m) be continuously differentiable and & € R"
be a solution of the smooth optimization problem

min f(x)
st. Fi(x) <0 foralli=1,...,m.

Then there exist kK > 0 and A > 0 with

/{Vf(i")T—i—ZVFZ-(i)T)\i =0, NFi(z)=0foralli=1,...,m,x=1o0r (k=0,A#0). (5)
i=1
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If all occurring functions are convex, then the existence of a strictly feasible x (i.e. F(x) < 0)
always guarantees k = 1, and the conditions [Bl) are sufficient (for a feasible & being a minimizer

of @)).

Proof Combine, e.g., SCHICHL & NEUMAIER @, p. 19, 4.1 Theorem| and BoyD & VANDEN-
BERGHE [E, p. 243, 5.5.3 KKT optimality conditions].

One possibility to find a solution of the optimization problem () is using an SQP-method
(sequential quadratic programming). An SQP-method minimizes the quadratic approximation
of the Lagrangian L : R" x RZ — R given by L(z,\) := f(z) + >_.", F;(x)\; subject to
linearizations of the constraints and then it uses the obtained minimizer as the new iteration
point (or it performs a line search between the current iteration point and the obtained minimizer
to determine the new iteration point). Since quadratic information is necessary for this approach,
we demand f, F; : R — R (with i = 1,...,m) to be C? in this subsection.

Proposition 1 Let the matriz VF(z) € R™*" (gradient of the constraints) have full rank (“Con-
straint qualification”) and let the Hessian of the Lagrangian with respect to the x-components
V2, L(z,\) = V2f(z) + > i, V2F;(z))\; be positive definite on the tangent space of the con-
straints, i.e. dT'NV2 L(x,\)d > 0 for all d € R™ with d # 0 and VF(x)d = 0 (c¢f. NOCEDAL &
WRIGHT @, p. 531, Assumption 18.1]). Then the SQP-step for optimization problem () is
given by the solution of the QP

f(z) +min Vf(z)d+ 3d"V2,L(z,\)d
st. Fi(z) + VE(z)d<0 foralli=1,...,m.

(6)

Proof Straightforward calculations.

Remark 2 A difficulty of an infeasible SQP-method (e.g., SNOPT by GILL et al. lﬁ]) — i.e. in-
feasible iteration points x; may occur — is that the linear constraints of the QP (B) can be
infeasible (cf., e.g, NOCEDAL & WRIGHT |59, p. 535, 18.3 Algorithmic development]). Note that
this difficulty does not arise for a feasible SQP-method (e.g., FSQP by LAWRENCE & TITS [@])
— i.e. only feasible iteration points xj are accepted — as then d = 0 is always feasible for the
QP ([@). Nevertheless, in this case it can be difficult to obtain feasible points that make good
progress towards a solution (cf. Remark @).

2.2 Nonsmooth Optimality conditions

We gather information on the optimality conditions of the nonsmooth optimization problem ()
with locally Lipschitz continuous functions f, F; : R® — R for ¢ = 1,..., m. For this purpose,
we closely follow the exposition in BORWEIN & LEWwIS [7].

Definition 1 Let U C R” be open and f : R" — R. We define the Clarke directional
derivative in x € U in direction d € R™ by

fo(m d) := limsup flz+h+ td) — f(x +h)
7 h—0,£10 t

and we define the subdifferential df(x) C R” of f in x € U by
Of(z) :=ch{g e R": gTd < f%(x,d) for all d € R"} ,

where ch denotes the convex hull of a set. The elements of df(x) are called subgradients. We
define the set 92 f(x) C R of the substitutes for the Hessian of f at x by
2 [ {G} if the Hessian G of f at x exists
)= { 1oh, 0 )

sym
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We summarize the most important properties of the Clarke directional derivative and the
subdifferential. The following two results are taken from BORWEIN & LEWIS ﬂ]

Proposition 2 The subdifferential Of(x) is non-empty, convex and compact. Furthermore, Of :
R™ — P(R™), where P(R™) denotes the power set of R™, is locally bounded and upper semicon-
tinuous.

Theorem 2 (First order nonsmooth optimality conditions) Let & be a local minimizer
of @) and f,F; : R™ — R (with i = 1,...,m) be Lipschitz continuous in a neighborhood of i.
Then there exists k > 0 and X\ > 0 with

0 € rIf(&)+ > NOF(2) , \iFi(2) =0foralli=1,...,m,k=1or (k=0,A#0).
=1

Furthermore, if there exists a direction d € R™ that satisfies the (nonsmooth) constraint qualifi-
cation

FP(2,d) <0 forall j € {1,...,m} with F;(2) =0, (8)

then we can always set k = 1.

Corollary 1 Let the constraint qualification ([8) be satisfied for @), then the optimality condition
for @) reads as follows: There exists X > 0 with

0€0f(&)+NOF(2), AF(2)=0, F(&)<0. (9)
Proof Inserting into Theorem [2] with m = 1.

Remark 3 The algorithms in MIFFLIN [53, 54, [55] (for solving nonlinearly constrained nonsmooth
optimization problems) use a fixed point theorem about certain upper semicontinuous point to
set mappings by MERRILL [@] as optimality condition which is different to an approach with
the optimality conditions in Theorem 2] or Corollary [Il

3 Derivation of the method

In this section we discuss the theoretical basics of our second order bundle algorithm and we
give a detailed presentation of the algorithm and the line search.

3.1 Theoretical basics

We assume in this section that the functions f, F': R" — R are locally Lipschitz continuous,
95 € 0f(y;), §; € OF (y;) and G; € 0*f(y;), G; € O°F(y;) (cf. @).
Our goal is to determine a local minimizer for the nonsmooth optimization problem (2

min f (z)

s.t. F(x) <0,

and therefore we want to find a point that satisfies the first order optimality conditions (@I).
To attain this goal, we will propose an extension to the bundle-Newton method for nonsmooth
unconstrained minimization by LUKSAN & VLCEK M] If we are in the optimization problem (2))
at the iteration point xp € R™ (with iteration index k), we want to compute the next trial point
(i.e. the search direction) by approximating both the objective function f and the constraint
F at x; by a piecewise quadratic function and then perform a single SQP-step, as defined in
Proposition [l to the resulting optimization problem.
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Definition 2 Let J;, C {1,...,k}. We define a quadratic approximation of f resp. F in y; € R"
with damping parameter p; resp. p; € [0,1] for j € Ji by

Fi@) = fly;) + 9] (v — ;) + 2pi(z — y)) " Gi(z — y)) (10)
Fi(x) = Fly;) + 3] (v = y;) + 35 (x — )" G, (2 — )

and the corresponding gradients by
gh@) = V@) = g; +p;Gjla —y;) . Gi(x) = VFH )T =g+ p;Gile —y;) . (11)
We define the piecewise quadratic approximation of f resp. F' in x; € R™ by

F@) = max fh(a) , FP(@) = max Fé(a) (12)

Hence we approximate the objective function f at xj by ka and the constraint F' at xj by
FE in the optimization problem (2)) and then we perform a single SQP-step to the resulting
optimization problem

.0
min fi~ ()
zER™ (13)
sit. FP(x) <0 .

Proposition 3 The SQP-step (d,9) € R** for () is given by the solution of the QP

fly) +mind + Ld"whd

st. — (flzr) — f]’-“) + ang;-c < for all j € Jg (14)
F(xy) — (F(ax) — Ff) +d"gf <0 forallj € Jp ,
where
fF= i) s gf = gh(an) T g+ 0iGia — uy)
Ff o= Fiar) . g} = gi(an) TG+ 56 —wy) (15)
Wk .= Z )x?f_lijj + Z uf_lﬁjé’j

J€Jk—1 JE€Jk—1

and /\?_1 resp. uf_l denote the Lagrange multipliers with respect to f resp. ' at iteration k — 1
forje Jy_1.

Proof We rewrite ([[3]) as a smooth optimization problem by using ([Z). If we are at the iteration
point (xg,ur) € R™ x R with uy := f(2x) in this smooth reformulation, then, according to (B
as well as using ([[H)), the SQP-step for this problem is given by the solution of the QP (I4).

Since fjﬁ resp. F ju are only global underestimators for convex f resp. F' and p; = p; = 0 and

since ka resp. F) kD approximate f resp. F only well for trial points close to xy, we decrease the
activity of non local information (e.g., non local subgradients) by the following definition.

Definition 3 We define the localized approximation errors of f resp. F' by

a? ‘= max (|f(33k) - ka|771(3§)“”) ) A? ‘= max (|F($k) - ng|772(8§)“’2) ) (16)
where
k—1
Sf = |y —x; + Z |zip1 — x4 (17)
=]

denotes a locality measure for j = 1,..., k with fixed parameters y; > 0 and w; > 1 for ¢ = 1, 2.
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Proposition 4 The locality measure sf has the following properties

s?—&—\mkﬂ—xﬂ:s?“, s?2|yj—xk| forallj=1,...,k. (18)

Proof Straightforward calculations.

Like the bundle-Newton method by LUKSAN & VLCEK @], our algorithm uses a convex
search direction problem and therefore we modify (4] in the following sense.

Proposition 5 If we generalize (I4)) by using the localized approximation errors ([8) and re-
placing W* by a positive definite modification Wlf (e.g., the Gill-Murray factorization by GILL
& MURRAY [16]), then the generalized version of ([[4)) reads

f(ax) +mind + $d"Wrd

st. —al+d gl <0 for all j € Ji (19)
F(xy) — Ay +d"gy <0 forall j € Jy .

Proof Replace f(xx) — f} by of, F(xy) — F} by A% and W* by W) in (I4).

Remark 4 The standard SQP approach for smooth optimization problems suffers from the Maratos
effect MARATOS I£1_1|], which, in general, prevents infeasible SQP-methods from getting a descent
in the merit function and feasible SQP-methods from finding (good) feasible points (cf. T1TS
@, p. 1003] and Example [[). Some well known techniques for avoiding the Maratos effect are
replacing the merit function by an augmented Lagrangian, using second order corrections, usin
a watchdog technique (which is a non-monotone line search) (cf., e.g., NOCEDAL & WRIGHT @g,
p. 440, 15.5 The Maratos effect]), or a quadratic approximation of the constraints (cf. SoLoDOV

). We will choose the quadratic constrained approximation approach to avoid the Maratos
effect, which makes the search direction problem slightly more difficult to solve than a QP, but,
as we will see, still guarantees strong duality which is necessary for proving convergence of our
bundle method.

Example 1 Consider the optimization problem @) with f, F' : R> — R, where f(x) := x5 and
F(z) := 23 — x5. Then this problem has the (global) minimizer # = 0. Furthermore, it is smooth
and consequently its SQP-direction, which is obtained by solving the QP (@), at the iteration
k = 0 at the iteration point (zy, Ay) := (—1,1 4 1078, 1), which implies that x; is close to the
boundary, is given by di = (1,—2). Since we have for ¢ € [0,1] that F(xy + td) < 0 if and
only if ¢+ < 107%, a feasible SQP-method can only make a tiny step towards the solution # on
the standard SQP-direction in this example, and similar observations can be made for any other
point x; with k # 0 that is close to the boundary (Note that the objective function f has no
impact on the Hessian of the Lagrangian in the QP (@) in this example).

Remark [ leads to the following idea: Let é;‘-', GT;“ € ngxn? be positive definite (e.g., positive

definite modifications of G; € 8%f(y;) resp. G; € 8*F(y;); also cf. Remark [I0). Then we can try
to determine the search direction by solving the convex QCQP

flxg) + r%n@ +3d"Whd
st. —af +d"gf + 3d"Gid <o for all j € Jj, (20)

Flaoy) — Ab+d"gF + 1d"Grd <0 for all j € Jy

instead of the QP (Id), i.e. instead of just demanding that the first order approximations are
feasible, we demand that the first order approximations must be the more feasible, the more we
move away from xy.
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Ezample 2 We consider the optimization problem @) with f(z) := 22, and F(z) := max (min (Fy(x), Fa(x)), F5(x)),
where Fy(x) := 23 + 23, Fy(x) := —x1 + 23, and F3(z) := 1 — 2, and we assume that we are at
the iteration point xj := 0.

Since F'(z) := max (Fy(z), F3(x)) is convex, and since an easy examination yields that F'(z) <
0 < F (x) < 0, the feasible set of our optimization problem () is convex. Therefore, the
linearity of f implies that our optimization problem has the unique minimizer & := (2, —v/2).

The quadratic approximation of F with respect to z in the QCQP 20) reads Fy(x;+d) <0,
i.e. d = 0 is the only feasible point for the QCQP ([20) and therefore its solution, although z; = 0
is not a stationary point for our optimization problem (for this consider f), resp. much less a
minimizer (since & is the unique minimizer of our optimization problem). As it can be seen, e.g.,
from considering the restriction of F' to x5 = 0, the reason for the occurrence of d = 0 at xj is
the nonconvexity of F' (which is a result of the presence of the min-function in F'), although the
feasible set is convex.

Notice that if we substitute F by F in the constraint of our optimization problem, which
yields the same feasible set, the difficulty which we described above does not occur.

Remark 5 It F(xy) <0, ([ as well as) 20) is always feasible and therefore we do not have to
deal with infeasible search direction problems as they occur in infeasible SQP-methods (cf. Re-
mark [2]). Nevertheless, we have to demand F'(z) < 0, since otherwise it can happen that d, =0
is the only feasible point and therefore the solution of [20)), but 2} is not stationary for [2)) as
Example Pl showed. This is similar to difficulties arising in smooth problems at saddle points of
the constraints.

Now we state the dual search direction problem which plays an important role for proving
the global convergence of the method (cf. Subsection .2l).

Proposition 6 The dual problem of the QCQP [20)) is given by

2
flaw) = Igin%‘Hk(A,u)( > Aigh +uj§}“)‘ Y Nas gAY = (D ) )
s jedn jedn jedn (21)
st.X; >0, ;>0 foralljeJy, » A=1,

JE€Jk

where Hi (A, 1) 1= (WT’,‘“ + ZjeJk )\jéé? + ujéf) %, If F(z) < 0, then the duality gap is zero,
and, furthermore, if we denote the minimizer of the dual problem (@) by (N\*, u¥), then the
minimizer (dy,0) of the primal QCQP [20) satisfies

dp = —(WE+ 30 NGE 4 b GH) 7 (S0 Nrgh + pgh)
J€Jk JE€Jk
o= (30 M) e = Y7 Nl + 3l (XD NG d
JEJk JE€Jk JE€Jk
T~ 3 (X MG G — Y Mk s — (3 ) (~ o)) <0
JjE€Tk J€Jk JE€Jk

Proof The Lagrangian of (20)) is given by L(d, 0, A\, p) := 0 + 1dTWkd + 2 jen N -1(d, 0) +
dien qujggd, 0), where F}(d, ) := —a? + dTg;-C + %dTGfd — v and FJ (d,0) == F(a:k) - A? +
dTg;»6 + %dTG;?d. Consequently, the equality constraint of the dual problem reads

(W,ﬂ“ + > NG +uj(§§)d+ S oNghtmigi=0, > Nn=1. (22)

JE€Jk JE€Jk JE€Jk

Rewriting 2dTWkd = %dTWZ?d + dTWIfd in L, scooping d in the latter summand and v, these
terms vanish according to ([22)). Now, expressing d in ([22]) and inserting it into L yield the desired
form of the dual objective function.
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Since the primal problem is convex and (because of the assumption F(zy) < 0) strictly
feasible, strong duality holds due to BoyD & VANDENBERGHE E, Section 5.2.3]. Therefore
the optimal primal and dual objective function values coincide and we can express 0 using
this equality. Using (22)), the optimality conditions for the QCQP [0) and straightforward
calculations yield the desired formulas for vy.

3.2 Presentation of the algorithm

The method described in Algorithm [3] works according to the following scheme: After choosing
a strictly feasible starting point x; € R™ and setting up a few positive definite matrices, we
compute the localized approximation errors. Then we solve a convex QCQP to determine the
search direction, where the quadratic constraints of the QCQP serve to obtain preferably feasible
points that yield a good descent. After computing the aggregated data and the predicted descent
as well as testing the termination criterion, we perform a line search (s. Algorithm M) on the
ray given by the search direction. This yields a trial point yx41 that has the following property:
Either yp41 is strictly feasible and the objective function achieves sufficient descent (serious
step) or yk1 is strictly feasible and the model of the objective function changes sufficiently (null
step with respect to the objective function) or yi41 is not strictly feasible and the model of the
constraint changes sufficiently (null step with respect to the constraint). Afterwards we update
the iteration point xj41 and the information stored in the bundle. Now, we repeat this procedure
until the termination criterion is satisfied.

Algorithm 3. 0. Initialization: Choose the following parameters, which will not be changed
during the algorithm:

TaBLE 1: Initial parameters

General Default Description
1 € R” Strictly feasible initial point
Y1 =T Initial trial point
>0 Final optimality tolerance
M>2 M =n+3 | Mazimal bundle dimension
to € (0,1) to = 0.001 | Initial lower bound for step size

of serious step in line search

= (0,1) to = 0.001 | Scaling parameter for tg
my, € (0, %) my = 0.01 | Descent parameter for serious step in line search

mpg € (mg,1), my €[0,1] | mr=0.5 | Parameter for change of model of objective function
for short serious and null steps in line search

mp € (0,1) mp = 0.01 | Parameter for change of model of constraint
for short serious and null steps in line search

¢ € (0, %) ¢=0.01 Coefficient for interpolation in line search

¥ >1 9 =1 Ezponent for interpolation in line search

Cs >0 Cs =10%° | Upper bound of the distance between xj and yy

Ca >0 Cq = 10%° | Upper bound of the norm of the damped
matrices {p;G;} (1p;G;| < Ca)

Ce>0 Ce=Cq Upper bound of the norm of the damped
matrices {p;G;} (1p;G5] < Co)

Ca>0 Cq =0Cg Upper bound of the norm of the matrices

. ) {G}} and {G*} (max (|G}, |G*]) < Cq)

Ca >0 Cao=Cq Upper bound of the norm of the matrices
{G}} and {G*} (max (|G}|,|G*)) < Cq)

i, >0 ip=3 Selection parameter for pg+1 (cf. Remark[6)

;>0 Line search selection parameter (cf. Remark[d)

Ty > 0 Matriz selection parameter (cf. Remark[d)

ir >0 Bundle reset parameter (cf. Remark[d)
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TaBLE 1: Initial parameters (continued)
General ‘ Default ‘ Description
v >0 v =1 Coefficient for locality measure for objective function
Y2 >0 Yo =1 Coefficient for locality measure for constraint
wp >1 wp =2 Ezxponent for locality measure for objective function
wo >1 wo = 2 Ezxponent for locality measure for constraint

Set the initial values of the data which gets changed during the algorithm:

in = 0 (# subsequent null and short steps)
is = 0 (# subsequent serious steps)
J1 = {1} (set of bundle indices) .

Compute the following information at the initial trial point

f; = f11 = f(y)

gp =91 = 9(y1) € 0f (1)
G,=G1=G(y) € f(n)
Fp1 =F! =F(y;) <0 (y is strictly feasible according to assumption)
gy =91 = 9(y1) € OF (y1)
G = Gy = ) € P ()

and set
§113 = 5113 = 51 = 0 (locality measure)
p1 = p1 = 1 (damping parameter)
&' =1 (Lagrange multiplier for optimality condition)
k =1 (iterator) .

1. Determination of the matrices for the QCQP:
if (step k —1 and k — 2 were serious steps) AN (\i "1 =1V iy >i, )
——

bundle reset
W =G + Rka

else

end

if in < im + i
W; = “positive definite modification of W”
else

Tk _ k-1
W, =W,

end

(32)

if in < im + 4 (i.e. # of subsequent null and short steps < the fized number i,, + i)

(G*, G*) = “positive definite modification of (G’;7 é’g)”

Gf, CT;;“) = “positive definite modification of (G;, éj)” for all j € Jg

—~

(33)
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else 1f ip = im + 1

(G*, ék) = “positive definite modification of (G’;, G";)”

(34)
(G, Gk) (G*,G*) for all j € Jy,

else (i.e. at least i, + i; subsequent null and short steps were execuled)

(GF,GF) = (GF=1, GF1y (G¥, Gk) (GF=1, GF=1) for all j € J; (35)
end
2. Computation of the localized approzimation errors:

ok = max (|f(ax) — L (s5)) L ak = max (|f(@x) — £, 71 (s)) (36)
Af = max (|F(zy) — Ff|,’72(8§)w2) , A]; :=max (|F(zy) — F]f|,'yg(§’;)“2) . (37)

3. Determination of the search direction: Compute the solution (dy,dr) € R of the (convex)

QCQP
r(ril%nﬁ + %dTWZ’fd ,
s.t. — a? + dTg;? + %dTéfd <9 for j € Ji
—ay+d'gh+3d"GFd < b if iy < i, (38)
Flay) — A¥ +d"gF + 1d"GEd <0 for j e Jy
Flag) — Ak +d"g5 + Ld"Grd <0 if i, <,

and its corresponding Lagrange multiplier (A, )\p,,u ,up) € R;%J’“Hl), i.€.

di = —HE( " Mgk + Mgk + > uhat + ubah) (39)
JE€EJTk J€Jk
O = —df Wy, — 3T (3 MEGE + MSGF 4 ub G 4 phGR ) — Y Mok — Ak
JEJk JE€Jk
= > kAL — kAR — (> 4 pb) (= Flaw) (40)
JjETk JE€Jk
where B B )
Hy = (WF+ S0 NGH + MGF 4 ub Gl 4 b G2 (41)
JEJk
Set -
(15 1p) k1
. k k E o ky._ ) = for RFTE >0
R = Z Wiy (K, ky) = {OnkJrl o (42)
j€Jk
if G5 > iy
is =0 (bundle reset)
end
4. Aggregation: We set for the aggregation of information of the objective function
(§p7 paGk+1 ~k ZAk gjv 37107 bRl j)+/\k(gp> kaG];7S];) (43)
JEJk
~k __ 7k ~k\w1 44
Q,, = 1nax (‘f(xk) fp|a’71(5p) ) ( )
and for the aggregation of information of the constraint
(GF, FF GETL 88 = > kb (o, FF, p,Gy, s%) + sb(ah, By, Gl 8%) (45)
JE€EJx

A5 = max (|F(x) — B}y (35)) (46)
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and we set
ve = —df Whdy, — 3di (Y NG+ MEGE 4+ b Gl 4 pEGR)dy, — af — RFTTAE — BRTY (= F(ay))
JEJk
(47)
wi = 3| Hi(gh + R0 17 + 6k + mFHTAE 4 BFPL (= F(ay)) (48)

5. Termination criterion:
if wy <€
stop
end
6. Line search: We compute step sizes 0 < th < t]f% <1 and t§ € (0,to] by using the line search
described in Algorithm [ and we set

Tpr1 = o +thdy  (is created strictly feasible by the line search) (49)
Ykt = ok + thdy (50)
frvr = Fyre1)) 5 gkt = 9(yke1) € 0f (ki) » Gryr = Glyrsr) € P flyryr) (51
Frsr = F(yri1) 5 Grir = 9Wki1) € OF (yet1) , Gryr = Gyky1) € O°F(yns) -

7. Update:
ifin <)
pr1 = min(1, 2) (52)
else
Pr+1 =0
end
We set
. . Co
Pk+1 = mln(17 |Gk+1‘) . (53)

if th >tk (serious step)
in =20
s =15+ 1
else (no serious step, i.e. null or short step)

iy =in +1 (54)
end

Compute the updates of the locality measure

sf“ = s;“ + |zpr1 —zx| for j € J (55)
sl,zﬂ = |Th41 — Yrt1] (56)
s’;H = §]; + |Thg1 — Tk (57)
§’;+1 = gl; + |Tp+1 — zi| - (58)

Compute the updates for the objective function approximation

ff“ = fF+ 9 (w1 — o) + 305 (@rg1 — 2) Gy (@pgr — ) for j € Jy,
FE = forr + g (@rg1 — k1) + 2ors1 (@rr1 — Y1) T Gt (Tng1 — Y1) (59)

=00 @ — @) + (@ — o) TGP (@ — ) (60)



14 Hannes Fendl, Hermann Schichl

and for the constraint

FIY=FF + 35 (wpp1 — o) + 355 (wrgr — 20) G (@rgr — ax)  for j € Ji

FE = Fropr + 951 (@01 — Y1) + 3041 (T — Y1) Grit (Tha1 — Y1) (61)
Fytt= F; + éﬁT(ka — k) + 5 (Th1 — wk)TGI;H(kaH — k) - (62)

Compute the updates for the subgradient of the objective function approximation

95T = gF + piGj(whar —ap)  for j € Ji

98 = gkt + Prr1Grr (Thgr — Y1) (63)

gyt =gy + GE (g1 — k) (64)
and for the constraint

T =3+ piGj(wkpr —xx)  for j € Ty (65)

It = Gee1 + e Gt (T — Yes) (66)

gt =08 + Gyt (e — ) - (67)

Choose Jp11 C{k—M+2,....k+1}n{1,2,...} withk+1€ Jyt1.
kE=k+1
Go to 1

Remark 6 Like in the original unconstrained bundle-Newton method by LUKSAN & VLCEK [@],
the parameters i, and i, as well as the additional parameter i; are only needed for proving
convergence. Since in practice we usually terminate an algorithm, if a maximal number of itera-
tions Nit_max is exceeded, we always choose i, = i, = 4; = Nit_max + 1 in our implementation
of Algorithm [Bl The case distinction for the choice of W according to [B0) resp. [BI)) is only
necessary for showing the superlinear convergence of the original unconstrained bundle-Newton
method for strongly convex, twice times continuously differentiable functions (cf. LUKSAN &
VLCGEK [45, p. 385, Section 4]). As the choice i, = 3 (cf. the initialization of Algorithm [) for
the case distinction 4, < i, for pp41 from (G2) is due to empirical observations in the original
unconstrained bundle-Newton method (cf. LUKSAN & VLCEK @, p. 378]), the fact that we make
no case distinction for pr41 from (B3] was also found out numerically. A numerically meaningful

choice of the matrices Cj?, éf and GF that occur in (@3) is discussed in FENDL & ScHicHL [14].

Proposition 7 We have for all k > 0

|Hi(gp + M2 = df (WF+ >0 NGE+ MEGE+ )7y Gl + pbGF) dy (68)
J€Jk J€Jk
WE = —%de;dk — Vg . (69)

Proof Because of H, > = Wf—l—ZjGJk )\?éf—i-)\lgéku";é’;—kuﬁék due to @) and d = —HZ (g5 +
Rk“ﬁ’;) due to (39), (#2)), @3) and ([E3]), easy calculations yield (68). Furthermore, (69) holds
due to @), @), and @1).

Remark 7 If we consider a nonsmooth unconstrained optimization problem (i.e. we drop the
constraint F'(z) < 0 in optimization problem (@) and if we choose G¥ = 0, then our formula
for vy from ({@T) reduces to the formula for v; in the unconstrained bundle-Newton method
(cf. LUKSAN & VLCEK [45, p. 377, formula (13)]), since vy, = —|Hygp|* — @y due to (@T) and
(8.
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3.3 Presentation of the line search

We extend the line search of the bundle-Newton method for nonsmooth unconstrained min-
imization to the constrained case in the line search described in Algorithm [l For obtaining
a clear arrangement of the line search, we compute data concerning the objective function in
ComputeObjectiveData and data concerning the constraint in ComputeConstraintData. Before
formulating the line search in detail, we give a brief overview of its functionality:

Starting with the step size t = 1, we check if the point xy, + tdj, is strictly feasible. If so and if
additionally the objective function decreases sufficiently in this point and ¢ is not too small, then
we take xj + td) as new iteration point in Algorithm [ (serious step). Otherwise, if the point
x) + tdy, is strictly feasible and the model of the objective function changes sufficiently, we take
xy + tdy, as new trial point (short/null step with respect to the objective function). If x + tdj
is not strictly feasible, but the model of the constraint changes sufficiently (in particular here
the quadratic approximation of the constraint comes into play), we take xy + tdy as new trial
point (short/null step with respect to the constraint). After choosing a new step size ¢ € [0, 1]
by interpolation, we iterate this procedure.

Algorithm 4 (Line search). 0. Initialization: Choose ¢ € (0, 3) as well as 9 > 1 and sett;, =0
as well ast =ty = 1.
1. Modification of either ty, or ty:

if F(xg +tdy) <0
if flxp +tdy) < f(ar) +mpvg -t
tr, =t
else if f(zp +tdy) > f(xr) +mpog -t
ty =t
end
else if F(xy +tdy) >0
ty =t
to = foty (70)
end
if tr >to
tp =1L,
return (serious step)

end
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2. Decision of return

if in < i)
if F(xp +tdy) <0
l9,G,...] = ComputeObjectiveDatal(t,...)
if Z = true
th =t
return (short/null step: change of model of the objective function)
end
else if F(xi+tdy) >0

[G,G,...] = ComputeConstraintDatal(t,...)
i 7 = true
th =t
return (short/null step: change of model of the constraint)
end
end
else if iy > 1
l9,G,...] = ComputeObjectiveDatal(t,...)
if F(rp+1tdy) <0 and Z = true
th =t
return (short/null step: change of model of the objective function)
end

end

3. Interpolation: Choose t € [t + ((ty —t1)?,tv — C(tv — t1)?].
4. Loop: Go to 1

function [g,G,...] =ComputeObjectiveDatal(t,...)

g = g(xk + tdy) € Of (i + tdy,)
G = G(ay, + tdi) € O f(xr + tdy,)
{min(l, &) for i, <3

S
Il

0 else

flan +tde) + (tr — t)g" di + 3p(tr, — t)2d] Gdy,

max(|f(zx + trd) — flonltr — ¢ |di|*)

“positive definite modification of G”

—B+d} (9+p(ty —t)Gdy,) > mpvg +my - (—3d] Gdy,) and (t —tr)|dy| < Cs

f
B
G
z



Title Suppressed Due to Excessive Length 17

function [§,G,...] =ComputeConstraintDatal(t,...)
§=g(xy +tdy) € OF (x4, + tdy)
G = Gy, + tdy) € O°F (xy, + tdy)
p = min(1, %)
F = F(ag +tdy) + (tr — )§"di + 2p(tr — t)*d} Gdy, (75)
6 = max(|F (zx + trdy) — Fl,yalt — t[**|dy*2) (76)
G = “positive definite modification of G” (77)
7 = F(ax + todi) — B+ dL (G + pltp, — )Gdy) > mp - (—1dTGdy) and (t —t1)|dy] < Cs

(78)

Remark 8 The parameter ¢; is only necessary for proving global convergence of Algorithm [ (to
be more precise, it is only needed to show that a short or null step which changes the model of
the objective function is executed in Lemma [I0)). If we choose i; = 0, then only a change of the
model of the objective function yields a short or null step. In fact we have i; steps in Algorithm
in which we can use any meaningful criterion for terminating the line search (even for the
unconstrained case as it is partially done in the implementation of the original unconstrained
bundle-Newton method anyway).

([T0) is due to the following observation: Consider the line search (Algorithm M) without (0]
(i.e. tp is fixed, e.g., to := 0.5 € (0, 1), where this large, but legal value for ¢y is only chosen to
obtain a better graphical illustration in Figure[Il). It can happen (in particular) at the beginning
of Algorithm [3] that the search direction dj is bad as we have no knowledge on the behavior of f
and F' yet. Consequently, the following situation can occur: The model of the objective function
f does not change (e.g., if f is linear on xy + td, with ¢ € [0,1]), and there are no step sizes
t > to which yield feasible xy, + td) (this is in particular possible, if we are near the boundary of
the feasible set).

(=)

0 o 1 \/
F(xy)

Fic. 1: Line search with fixed tg

In this situation the line search will not terminate for fixed ¢y (in particular in the case i, < 4;
the model of F' does not need to even satisfy ([8) for infeasible x, + td)). Therefore, we need
to decrease ty to have at least one feasible step in the line search for which a descent of f is
enough for terminating the line search (similar to the unconstrained case). As the convergence
analysis will show, this must not be done too often (cf. (IZ3)) and Remark [I0). Because we use
the quadratic terms in the constraint approximation to obtain as much feasibility as possible on
the search path ¢ — ) +tdy, with ¢ € [0, 1] (cf. the idea that leads to the QCQP (20))), we expect
that this should be true. Indeed, in practice ¢y turns out to be only modified at the beginning
of Algorithm [3] at least many examples of the Hock-Schittkowski collection by SCHITTKOWSKI
63, [64] (cf. FENDL & ScuicHL [14]). In particular, if F(zy, + tdy) < 0 for all ¢ € [0,1] (e.g., if
F is constant and negative on R™ which in fact yields an unconstrained optimization problem),
the case (70)) will never occur and therefore ¢y, will not get changed (this is the reason why ¢ is
constant in the bundle-Newton method for nonsmooth unconstrained minimization).

The step sizes which the line search returns correspond to the points z;41 = x) + t’de and
Yk+1 = Tk + tdp = xp + tlfzdk.
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Only strictly feasible iteration points are accepted in the line search
F(a, +thdy) <0. (79)
Nevertheless, trial points may be infeasible (if i,, < 7;).

Proposition 8 Let

Ak _ k_k k_k Ak . k Ak k Ak

Op = Z )‘jaj + /\pap ’ AP T Z KjAj + 'ipAp (80)
jeJk JjeJk

Wi = L He(GE + RGP+ af + &FPLAR 4 RMT (- Fag)) (81)

(Note: wy, is the optimal function value of the dual problem (ZII)). Then we have at iteration k
of Algorithm

U <wvp <0< wp <wy . (82)

Proof For v > 0 and w > 1 the functions £ — v|¢| and (&,&2) — max (§1,&) are convex
and therefore we have (5, t;]a,) < S8 ti(v]2]%) and max (X0, tiws, Y, tiyi) <
Zle t; max (z;,y;). Since )\f > 0forj € J, and )\’; > 0 holds for the solution of the dual problem
@I) of the QCQP [BY), we have 1 =3, ;. A%+ AE which implies f(zx) = dica AP () +
AL f(x), and hence af < af follows from @), @3), B0) and @Q). If ' > 0, we have
L=> e K% 4+ Kk due to @) which implies F(xy) = > ied K5 F(xy) + kEF(21), and hence
Al < A% follows from (@G), @X), (B7) and B). Consequently, we have REFLAR < ghH1AK for
RF+1 > 0, which yields 0 < d’; + Rk“A’; < d’; + Rk“A’; due to (), [@2) and {@G). Now, we
obtain the wy-estimate of (82)) due to (), [I]) and {@2). Because of (80) and ([@2) we have
0> —ay —rM1AN > — > e Aok — Arak — > e pk A% — kA% and, therefore, we obtain

the vj-estimate of (B2) by using @7), @2), @), [B), the positive definiteness of W) and (B2).

Proposition 9 If the line search is entered at iteration k of Algorithm Bl then
v < 0. (83)

Furthermore, if there occurs a step size t with F(xy + tdy) > 0 in the line search, then

*%dexk—&-tdkdk <0. (84)

Proof If the line search is entered at iteration & (cf. step 6 of Algorithm [B]), then no termination
occurred at step 5 of Algorithm [B at iteration k, and therefore we have wy > 0, which yields (83])
due to ([@9) and the positive definiteness of Wi.

Now we show (84]) by deducing a contradiction: Suppose ([84)) does not hold, i.e. di = 0 due to
(). Then, since all iteration points xj, are strictly feasible due to ([79)), we obtain F'(zj +tdy) =
F(x1) < 0, which is a conradiction to the assumption F(zj + tdy) > 0.

Proposition 10 1. If the line search (Algorithm[) terminates with condition ([(4), then the old
search direction dy, and the old predicted descent vy, (of iteration k) are sufficiently infeasible
for the new QCQP BY) (at iteration k + 1) in Algorithm Bl (i.e. the old search direction dy,
cannot occur as search direction at iteration k + 1 and therefore we obtain a different search
direction at iteration k 4+ 1 and consequently a “meaningful extension of the bundle”.

2. If the line search (Algorithm H) terminates with condition (I8]), then the old search direction
di (of iteration k) is sufficiently infeasible for the new QCQP BY) (at iteration k+ 1) in
Algorithm B (i.e. using a QCQP also yields a “meaningful extension of the bundle” in the
constrained case).

3. The condition (t —tr)|dg| < Cs in (I8) resp. [(d) corresponds to

[yr+1 — 1| < Cs . (85)
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Proof Because of f = f,fill = ffgk‘i’tdk (2 +trdg) due to [, (BI) and [I0) as well as 8 = O‘ZE
due to (72), (&8) and (B4l), we obtain —aiiﬁéj’“—i—d{g;’:ﬂg:lk > MRUg +mf-(—%dkéwk+tdkdk) by
using ([(4)), (63) and (). Due to the initialization of Algorithm Bl we have 0 < mp < 1 and 0 <
my < 1. Now, (83) resp. ([3) imply mpvy > vy and my - (_%deack+tdkdk) > —%dexk—i-tdkdk
Since the line search (Algorithm @) terminates with condition (74) due to assumption, we obtain
that dj, is sufficiently infeasible for the new QCQP ([B8) (with respect to the approximation of
the objective function) at iteration k + 1 due to (82]).

Because of F = Ff'f! = F! . (z+trdy) due to (75), 1) and () as well as f = A¥T] due

to (Z8), G8) and @), we obtain F(wy +tpdy) — AL TN 4 dl g HEde > mp (= 2diGy, s1a,di)
by using ([8), (G8) and (). Due to the initialization of Algorithm Bl we have 0 < mp < 1.
Now, (84) implies mp - (—%dkézk+tdk di) > —%dkéngthdk dj.. Since the line search (Algorithm M)
terminates with condition (78)) due to assumption, we obtain that dy, is sufficiently infeasible for
the new QCQP ([B8) (with respect to the approximation of the constraint) at iteration k + 1.

&8 follows from (74]) and (78]).

4 Convergence

In the following section we prove the convergence of the line search and we show the global
convergence of the algorithm.

4.1 Convergence of the line search

For proving the convergence of the line search (Algorithm[]) we have to identify a large subclass of
locally Lipschitz continuous functions, which is the class of weakly upper semismooth functions
(that contains, e.g., functions that are the pointwise maximum of finitely many continuously
differentiable functions due to MIFFLIN [@, p. 963, Theorem 2|).

Definition 4 A locally Lipschitz continuous function f : RN — R is called weakly upper semis-
mooth, if
limsup g7 d > lim inf M (86)

i—00 1—00

holds for all x € RN, d € RV, {g;}; ¢ RN with g; € 0f(z + t;d) and {t;}; C Ry with ¢; \, 0.

i

Proposition 11 Let f : RN — R be weakly upper semismooth, then the line search (Algorithm
d) terminates after finitely many steps with t§ = tr, t% =t and t§ > 0.

Proof If F(xy + td;) < 0 for all ¢ € [0,1], then this is exactly the same situation as in the
line search of the unconstrained bundle-Newton method which terminates after finitely many
iterations due to LUKSAN & VLCEK [@, p. 379, Proof of Lemma 2.3]. Otherwise, since F is
continuous and F(zy) < 0, there exists a largest > 0 with F(z; +dit) = 0 and F(z +dis) <0
for all s < . Therefore, after sufficiently many iterations in the line search (Algorithm []) (Note
that the interval [tr,, tyy] is shrinking at each iteration of the line search), there only occur ¢, to, ty
with 0 < t; <ty <tand 0 <ty < ty <t (i.e. from now on all zy + tdy with t € {ty,ty} are
feasible) and consequently ¢y (where x+tody is also feasible,) does not change anymore (cf. ([70)).
Hence, here we also have exactly the same situation as in the line search of the unconstrained
bundle-Newton method, which terminates after finitely many iterations due to LUKSAN & VLCEK
, Proof of Lemma 2.3], where the only difference in the proof is that we need to use the following
additional argument to obtain the inequality at the bottom of LUKSAN & VLCEK [@, p. 379]:
Since my € [0, 1] due to the initialization of Algorithm [ and since G is positive definite due to
([@3)), the negation of the condition in (74]) that corresponds to the change of the model of the
objective function yields —f + dz (g +p(tr, — t)Gdk) < MRV +my - (—%dzédk) < mpgv.

Remark 9 The proof of Proposition [T] only relies on f satisfying (B6l), the continuity of F' and
the strict feasibility of x. In particular, F' does not need to be weakly upper semismooth.
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4.2 Global convergence

For investigating the global convergence of Algorithm [B] we will follow closely the proof of
global convergence of the bundle-Newton method for nonsmooth unconstrained minimization
in LUKSAN & VLCEK m, p. 380-385, Section 3] with modifications which concern the con-
strained case and the use of determining the search direction by solving a QCQP, where we will
work out everything in great detail so that it is easy to see which passages of the proof are
similar to the unconstrained case resp. which passages require a careful examination. Therefore,
we assume

e=0, A?zO for all j &€ Jy , u;?:() for all j & Jj, . (87)

A main difference to the proof of convergence of the unconstrained bundle-Newton method
is that here Hj from ([#I) depends on the Lagrange multipliers (/\k,/\’;,uk,u’;) of the QCQP
B8)), which implies that so do the search direction dj from ([B9) (and consequently the new
iteration point x4 from [@9) as well as the new trial point yi41 from (B0)) and the termination
criterion wy, from (@8] in particular. Furthermore, this dependence does not allow us to achieve
the equality Hyy1 = Hj in the proof of Theorem [§ in contrast to LUKSAN & VLCEK lﬁ,
top of page 385, Proof of Theorem 3.8], which extends the complexity of the already quite
involved proof of the unconstrained bundle-Newton method.

Hence we give a brief overview of the main steps of the proof: In Proposition [[2] we express
the p-tilde data (as, e.g., g;;, ﬁ;j,. ..) as convex combinations in which no p-data (as, e.g., g;;,
g{;,. ..) occurs. Afterwards we recall a sufficient condition to identify a vector as an element of the
subdifferential in Proposition [I3} In Theorem Bl we show that if Algorithm Blstops at iteration k,
then the current iteration point xy is stationary for the optimization problem (). From then on on
we assume that the algorithm does not terminate (cf. ([@3))). After summarizing some properties

of positive definite matrices, we deduce bounds for {(W;f)’l} and {Wzﬂ“ + G* 4+ RF1GFY in
Corollary 2l which will be essential in the following. Then, in Proposition [[6 we show that if some
boundedness assumptions are satisfied and the limit inferior of the sequence {max (wg, |z — Z|)}
is zero, where Z denotes any accumulation point of the sequence of iteration points {zy}, then Z
is stationary for the optimization problem (2]), where the proof relies on Carathéodory’s theorem
as well as on the local boundedness and the upper semicontinuity of the subdifferentials 0 f and
OF. Due to the negativity of vi, which holds due to (82]), we obtain the statement t’zvk — 0
in Proposition [[7l In Proposition [[§ we show some properties of the shifted sequences {zj;},
{wg+i} and {tﬁ‘”}, where we have to take care of the dependence of (/\k,/\];,uk,u’;), which
we noticed before, in the proof. Then we recall an estimation of a certain quadratic function
on the interval [0,1] in Proposition After recalling the differentiability of matrix valued
functions to give a formula for the derivative of the matrix square root in Proposition 2Iland after
formulating the mean value theorem for vector valued functions on a convex set in Proposition
221 we combine these two results to obtain a Lipschitz estimate for the inverse matrix square root
in Proposition 23] which serves as replacement for the property Hyy; = Hj of the proof of the
unconstrained bundle-Newton method as mentioned above. Finally, we prove that under some
additional boundedness assumptions the limit inferior of the sequence {max (wg, |z — Z|)} is
always zero and therefore Proposition [I0] yields Theorem [8 which states that each accumulation
point Z of the sequence of iteration points {xj} is stationary for the optimization problem (2)).

Proposition 12 Assume that Algorithm Bl has not stopped before iteration k with k > 1. Then
there exists )\;? eR forj=1,... k with

k k
Mo, 1=3"0 L (@h gk a8 = ST M6y, 8, 8 (88)
j=1 J=1
If R¥T1 > 0, then there exists /%? ER forj=1,....k with
k o k
RE>0, 1= R, (GETgE sk = ik piGhL gt sh) (89)

<
Il
—

<
Il
Ja
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If R¥+1 =0, then 89) holds with
R =0 forallj=1,... k. (90)

Proof (by induction) Since g} = gi due to 24)) as well as o, = a7 due to BG), @23) and [23), as
well as g} = g1 due to 27) as well as A} = A} due to (BII), 206) and 29), as well as G* = G}

and G' = G} due to B33), B4) and ([23) resp. [23), the aggregated (p-)constraint of the QCQP
[(B]) at iteration k = 1 of Algorithm [ coincides with the corresponding bundle constraint, and
therefore we can drop the aggregated (p-)constraint and consequently the dual problem (ZI]) has
only two variables Al and p}, where Al = 1 must hold, so that the equality constraint of the
dual problem (2] is satisfied. Now, if we set ) = 0 and p,, = 0, then the dual solution does not
change.

Consequently, ([88) holds due to the same calculations which are performed in LUKSAN &
VLCEK [45, Lemma 3.1].

Furthermore, we obtain &2

pi due to @2) and therefore we get x; = 1 for &% > 0 and
ﬁ]l:0for/$ =0 as well as K, =

0. Summarizing these facts yield that we have at iteration

1 for R¥t1 >0 s
0 for kF+1 =0 and &, = 0.

N
P
k =1 of Algorithm Bl that &**! = ¥, kb = {

o o 1 for ¥+ >0 .
Therefore, the base case is satisfied for k = 1 with &} := {O for mh+1 — 0} , since (B9) holds

due to ([@3).

Let the induction hypothesis be satisfied (i.e. we have &

k-‘rl k+1 . k f =k+1 0
NS + Ky or k¥ > Akl k4l
AT { ic—&-l for Skl _ forj=1,....k, R =K1, (91)

k+1 > 0 in particular) and define

k41 k1
where (u; ", 5t

terms) and mkH resp. k't are set according to ([@2). The case & = 0 is equivalent to

k_ .k _ o _ Ak+1 _
ki = lﬁlp =0 for all j =1,...,k due to [@2) and therefore we obtain gp = 0 and GPJr1 = 0 due

to ([#H), which implies g{;“ = 0 due to (@17). Hence, at iteration k + 1 in the QCQP (B8] the
aggregated constraint for F' reads in the case iy < i, F(zp41) — A’;“ < 0. Since this inequality
is sharp due to (79) and [B7), the aggregated constraint for F' is inactive at iteration k + 1. Since
Lagrange multipliers for inactive constraints vanish, we obtain at iteration k+ 1 (Note that pk“‘l

is the Lagrange multiplier corresponding to the aggregated constraint for F' at iteration k41 and

) is part of the solution of the dual problem (ZI]) (including the aggregated
k+1

note that £¥*2 > 0 is the assumption for what we want to show by the inductive step k ~— k1)
kT = 0 which implies
k+1
pptt=0, (D wit'=1 A (KT >0 forallj=1,...,k+1)) (92)
j=1

due to £¥*2 > 0 and ([@Z). In the case i, > 4, ([@2) holds anyway, since then in the dual problem
1) for the QCQP ([BY)) the aggregated constraints do not occur and therefore the corresponding
Lagrange multiplier can be set to zero. So, the inductive step k — k+1 for the first two properties
of (8d) holds in the case £¥*! > 0 due to [@I), @2) and @I) (Note that we assumed that we
consider the case #**! > 0 which implies that we can use the induction hypothesis for the first
two properties of (8J) and note that we have £¥¥2 > 0, since this is the assumption for what we
want to show by the inductive step k + k + 1) and in the case &*T! = 0 due to (@) and ([@2).
The inductive step for the third property of (8d) holds in the case £**1 > 0 due to ([@H) and @),
and in the case #**! = 0 due to [@H), @) and (@I)). The inductive step for the fourth property
of (83) holds in the case ¥+ > 0 due to {@H), [E7), @) and @I) and in the case &¥*1 =0
due to @A), [@2) and (@Il). The inductive step for the fifth property of (8d) holds in the case
gETL > 0 due to ([@5), ), G3) and (IE[I) and in the case K¥*1 = 0 due to (@3], (@) and @I).

In the case K¥T! = 0 we obtain Iij =0forall j =1,....k and &} = 0 due to @) and

therefore ([89) holds due to (@3] and ([@0Q).
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Proposition 13 If z € RN and there exists G; € Ré\}f,éN, 7,y; € R, g; € 0f(y;), 3;,\; €R
forj=1,...,L, where L > 1, with

L L
(@0)=> (5 +G;@—7;),5)% , 1= X%, >0, |g—2[<5;,
j=1 j=1

forallj=1,...,L, then g€ 0f(T).
Proof LUKSAN & VLCEK |45, p. 381, Proof of Lemma 3.2].

Theorem 5 If Algorithm [ stops at iteration k, then there exists K**1 > 0 such that @) holds

for (xy, B**Y), i.e. xy, is stationary for the optimization problem (B)).

Proof Since Algorithm Blstops at iteration k, step 5 of the algorithm, (87) and (82]) imply wy =0
which is equivalent to

HH(@E+ R g P =0 A ab=0 A RMTTAE=0 A M= F(z) =0 (93)

due to @R), @), #*+! > 0 and F(x}) < 0. Using the regularity of Hj, (@) and ([@3), we obtain
from ([@3))

gE+RMIgE =0, s =0. (94)

Furthermore, for £t > 0 we obtain from (@3], @8] and @3] that §’; = 0 and hence we have

either ¥t =0 or RF*1 >0 A §’;, =0.

We set T := x, L =k, §; == y;, 5; := sf Then for G; := p;G;, G; == gj, 5\]- = 5\;“, and
q:= §’Z§ resp. for ¥t > 0, G’ = piGy, G = G, Ny = /%;?,
Proposition [[3] are satisfied (by using roposition [[2]), and therefore we obtain f)’; € Jf(x) and

é;f € OF (z1). Now, using ([@4) we calculate 0 € Of (zy) + B TLOF (zy,).

and ¢ := 5{; the assumptions of

From now on, we demand that Algorithm Bldoes not stop, i.e. according to step 5 of Algorithm
and (87) we have for all k
wg > 0. (95)
We summarize some properties of positive (semi)definite matrices.
Proposition 14 Let A, B € Ré\{,rﬁN with B positive semidefinite, then

A<A+B. (96)

If A and B are even positive definite, then

A7 - B3| < - ylA-Bl, (97)
()\min(A)) 2 +()\min(B)) 2

and if additionally A < B holds, then
B~ <A (98)

Proof [@0) is clear. ([@7) holds due to HicHAM [2d, p. 135, Theorem 6.2]. Since B is positive
definite due to assumption, B~! is positive definite and since all eigenvalues of a positive definite
matrix are positive, we obtain ([@8) due to the fact that A < B <= B~! < A~! (cf. HORN
& JOHNSON [27, p. 471, Corollary 7.7.4(a)]), the fact that A < B implies \;(A) < A;(B) for all
i=1,...,N (cf. HORN & JOHNSON [21, p. 471, Corollary 7.7.4(c)]) and ).

Proposition 15 Let {A} be a sequence of positive definite matrices A, € RYXN. Then

Sym
{Aj} is bounded <~ {A%} is bounded (99)

and
{A}} is uniformly positive definite <= {A, '} is bounded . (100)
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Proof Since Ay € Rg/anN is positive definite due to assumption, there exists an eigenvalue de-
composition Ay = QT Z,Q with Qx € RN*N orthogonal and a diagonal matrix =), € RV*N
1
with positive diagonal elements and we define p11, := Amax(Zk). Since ([B) implies |Ay| = p? and
1 1 1 1
since A7 = QT =2 Qy, implies |AZ| = p}, we obtain ([@J).
([I00) follows directly from the assumption of the uniform positive definiteness of {A;} and
@).
Corollary 2 If{(W:)’%} is bounded, then {(W})™'} and {Hy} are bounded
(W)~ < Co (101)
Jor all k > 1 with some positive constant Cop > 0.
If {F*+1} is bounded and {(W;f)’%} is uniformly positive definite, then {H, '} is bounded
and _
WE+GF+RFIGR < Oy (102)
for all k > 1 with some positive constant Cp > 0.

Proof Since (W;)’% = ((Wlﬂ“)*l)% is bounded due to assumption, {(W})~*} is bounded due to
@) and therefore (IOI) holds with some positive constant Cy > 0, which is equivalent to the
uniform positive definiteness of {W;f} due to ([I00). Since W]f =< H,? for all (\F, %) > 0 with
die, )\f + AF =1 due to @), we obtain |HZ| < Cy due to [@8) and (ITL), which is equivalent
that {Hy} is bounded due to ([@9).

Since {F**1} is bounded due to assumption, there exists a positive constant yo > 0 with
gFHL < xo for all & > 1 (note that &**! > 0 due to ([@Z)). Since {(W;)*%} is uniformly
positive definite due to assumption, {(W;)%} is bounded due to ([I00), which is equivalent to
{W}} being bounded due to [@J), i.e. [WF| < xi for some positive constant x; > 0 and for all
k > 1. Therefore, we obtain the boundedness of |H, *| < y1 + Cq + xoCq due to @), @)
and the initialization of Algorithm [B, which is equivalent to {H, 11 being bounded due to (@J).
Furthermore, setting C7 := x1 + Co + XOC'G yields (I02) due to [{@2]) and the initialization of
Algorithm

From now on let the following assumption be satisfied.
Assumption 6. Let ([@5) be satisfied. Furthermore, let {(x), K**1)} be bounded and assume
there exists T € RN with (%) = 0, where o : RN — R

o(x):= likminf max (wy, |zr — x|) . (103)
— 00

Moreove, let {(W;)_%} is uniformly positive definite.
Next, we present Lemma [IHEl which we need for proving Proposition [I7}

Lemma 1 (Convergence of basic sequences) There exist K ¢ K € {1,2,...,} and &k € R
such that

K

J}kgi‘, wp — 0, (104)
g1l K 5 (105)
oS5z, w50, (106)

Proof Since we have 0 = o(Z) = liminfy_, o max (wy, |z — Z|) due to assumption and (I03) and
since wy > 0 due to (8Z), there exist convergent subsequences of {wy}r>1 and {zp — Z}r>1,
i.e. there exists (an infinite set) K < {1,2,...,} such that (I04) holds. Since {#¥*1}; is bounded
by assumption, all its subsequences are also bounded. Therefore, in particular, its subsequence
{r"1},.cx is bounded. Consequently, {#¥*1}, _ . has an accumulation point, i.e. there exists
(an infinite set) K € K and & € R such that (I05) holds. Since &1 > 0 for k = 1,2,... due
to [@2), we have & € Rxq. Since K C K and a sequence is convergent, if and only if all of its
subsequences converge towards the same limit, (I04]) yields (I06]).
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Lemma 2 (Lagrange multipliers) Let [ := {1,2,..., N 4+ 2} (Note: card(I) =n+2), S :=
{(gF,sh):5=1,... k} SRV, and S —{(g]7 sh) : ]—1 Jk} CRN*L Then fori € I and
kalthereemst)\kl, Kkt € R and (g7, s%) € S, (g1, 8% )egsuchthat

gy = Abight gk =N AR =3 AR AR >0 (107)
iel iel iel
= an’igk’i , §]; = ka%k’i , (1= Zf@'k’i A KM >0)or (K7 =0 foralliel).
iel iel iel
(108)

In particular, we have

ki JLIERFFL >0
;“ _{Oifnkﬂzo. (109)
7

Proof We have (g*,35%) € ch(S) due to [@3) and [B). Due to Carathéodory’s theorem (cf.,
e.g., NEUMAIER l@] for i€ I and k > 1 there exist (¢%¢ s"%) € S and A\ € R such

that (I07) holds. Furthermore, we have (g, 3 ’;) € ch(S) for BF1 > 0 and (g]’;, Al;) = 0 for
Rl = 0 due to [@3) and B9). In the case A1 > 0 there exist (g%, 557) € S, k%% € R for
i€l withl=73, ;s & >0 and (gp, ’;) = Y er 677, 8%%) due to Carathéodory’s
theorem (cf., e.g., NEUMAIER @] In the case kT = 0 choosing k" := 0 for all i € I yields

(g}’,f7 A’;) =0=3,; k" (g™, 5%7). Hence, (I08) holds, which immediately implies (I0J).

Lemma 3 (A551gnment) There efmsts j(k,i) € {1,. k’} (z e a functwn j:{keN: k>

1} x I —{1,...,k}) with g&* = j(k E skt = sk(k i) gk —gj(k i and § gk sk(,C i)

Proof Use (gF,s%%) € S and (§*7,5%%) € S fori € I and k > 1 from Lemma [

Lemma 4 (Trial point convergence & implications) For all i € I there exist §j; € RY and
(an infinite set) K3 C Ky C K1 C K with

K _
Yi(k,i) =i (110)
~ K _ = _ _
(9j (k)5 Gjhi)) — (GixGi) € Of (7)) x OF (y;) (111)
i 5 A iy Kso oA Y A =
(i) G0,y N0 D1y G ey 6571) =2 (G, Ni, G R (112)

Proof Since |y;k.i)| < |7(k,:)|+Cs holds for all i € I and for all k > 1 due to (B3, the assumption
of the boundedness of {x} yields that {y;x.) }x>1,ier is bounde and therefore it has a convergent
subsequence, i.e. (IT0) holds. Furthermore, the local boundedness of 9f resp. OF (cf. Proposition
B) imply that the sets By := {9 € 0f(Yjk,i)) * Yjki) € RN k>1, k€ Ky, i €I} and
By == {g € OF(Yjh0)) * Yjhi) € RN k >1, k € Ky, i € I} are bounded. Therefore,
By x By is bounded and consequently there exists a convergent subsequence (g;(x,i), 9j(k,i)) €
Of (Yjtk,i)) % 6‘F(y](k i), i.e. there exists (g;, ;) € RY x RY and (an infinite set) Ky C K; with

(95 (kiys Ti(hyi)) — (i, 9i)- The upper semicontinuity of df resp. F (cf. Proposition B and
(II0) imply that for all ¢ € I (III]) holds.

Since pj;,q: € (0,1] due to (B2) and Cg > 0, we obtain p;( |Gk, < Ca, which yields
the boundedness of the sequence {p;1.i)|G;k,i)|}- Due to (IID), the sequence {A\*"} is bounded.
Since pjr,iy € (0,1] due to (B3) and Ce > 0, we obtain Pik, z)|G](k oyl < Cg, which yields
(I0R), the sequence {x*} is bounded.
ki ﬁj(k,i)|éj(k,i) |, k¥} is bounded. Consequently, there
exists a convergent subsequence of {p;(x.i)|Gyk.i) [, A*%, Dj1.i)|Gikiy |, 677}, ie. for all i € I there
exist G;, G; € RNXN, \i, R; € R and (an infinite set) K3 C K, such that (II2) holds.

the boundedness of the sequence {p; i) |G](,w

Therefore, the sequence {p;(x,i)|G k.|,
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Lemma 5 (Complementarity condition) We have

Zj\i(gﬁ-éi(@—@i))+szﬁ(§i+éi(ﬂf—@i)) =0 (113)

icl iel
Ak ghii Ky (114)
pFight B2 0 5> 0. (115)

Furthermore, the complementarity condition RF(Z) = 0 holds.

Proof We calculate gp K, >icrNi(gi + Gi(@ — ;) and é;; K, SierFilgi + G:(i; =)
by using ([07), (I08), Lemma Bl (I5), (1), (1), (I06) and ([I0) Since {#**'} is bounded
and {(W]f)_%} is uniformly positive definite (both due to assumption), Corollary [ implies the
boundedness of {H;,'}. Because of (I06), {@8) and (82), we have |Hp (g8 +Rk+1§£)| 23, 0, which

implies (IT3)) due to the regularity of Hj, (I0H) and the uniqueness of a limit and d’; EiEN 0,

which implies (II4)) due to (@), (I07), Lemma Bl (I07) and (I7), as well as &*+1F(xy) 53% 0,
which implies 0 = RF(Z) due to ([I0H), the continuity of F' and (I06]), as well as Hk+1Ak 550
which implies for & > 0 that (IIH]) holds due to (I05)), (G), (I08), Lemma Bl ([I08) and (EEH)

Lemma 6 (Subdifferential elements) We have

_ _ 7i (G + Gi(7 — 5:)) € OF(z) if & > 0
o1 G w) cory, | G w) €or)

iel {0} = ROF () if k=
Proof Since ([I07) holds for all k& € K3, (II2) implies > ;.; A\; = 1. Due to ([[IZ), we have
limg, > 650 = Zzel Ri. If & > 0, then — because of (I0A)) and since K3(C K) is an infinite
set — there exists k € K3 such that |[f**! — &| < &, which implies 0 < & < &+ for all k € K3,

where K3 := {k eKs: k> k} C K3 is an 1nﬁn1te set. Therefore, we obtain  _,_; kF? =1 for all

k € K3 due to (I09), i.e. {D>ier K/kﬂ;}kekg is constant on K3 and hence we have limg Y ie; KF =
1 . Since the sequence {3, ; k¥'} ek, is convergent, the (infinite) subsequence {3, ; Iﬂ;k’i}kekg
(of the sequence {>°,.; k¥ }ick,) converges towards 1 and a sequence is convergent if and only
if all its subsequences converge towards the same limit, the limit of the sequence {3, ; K" }rex,
must be 1. Consequently, we obtatin for & > 0 that } ., k; = 1.

Due to ([II4) the sequence {\FisFi}, Ky is convergent and therefore necessarily bounded,
i.e. there exists C > 0 with 0 < sk* < )\k - due to Lemma [ as well as ([I7) and therefore
{s"} ke, is bounded due to ([IZ) for A; # 0, where at least one such \; exists because >_,.; Ai
1. Since the locality measure is monotone due to ([I8), {s%}xe K, is monotone. Consequently,
{s""}rek, is convergent for \i # 0, i.e. there exists s; := limg, s*?. Therefore, (14), (IT2) and
A\ # 0 imply s; = 0. Hence, we obtain for \; # 0 that | — 7;| = 0 due to Lemma [ (I3,
(II0) and ([I06). For & > 0 the sequence {k*s"} o, is convergent due to (II3) and therefore
necessarily bounded, i.e. there exists C' > 0 with 0 < % < %7 due to Lemma 3 as well as (7))

and therefore {§%},cx, is bounded due to (IIZ) for &; # 0, where at least one such R; exists
because Y, ;i = 1. Since the locality measure is monotone due to [I7) and [@§), {8"}rex,
is monotone. Consequently, {8%} e, is convergent for &; # 0, i.e. there exists §; := limg, §%.
Therefore, (I10), (IT2) and &; # 0 imply §; = 0. Hence, we obtain in the case & > 0 for &; # 0
that |Z — 7;| = 0 due to LemmaBl (I7), (I8), (II0) and (I06). Therefore, if \; # 0 resp. if & > 0
and R; # 0, then |Z — ;| = 0.

If we set q := Ziel j\i(gi + Gi(z — gi))7 5 = {|0$ — il igi ?’ ;8} resp. if we set ¢ :=
o Ri(Gi+ éi T—17)), s = |7 — 5il for ":% =0 in the case & > 0, then the assumptions of
ZIEI (g Yi))s %i 0 for k; #0 ’ p

Proposition[I3 are satisfied and therefore we obtain the first two desired results. Since F' is locally
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Lipschitz continuous, OF (Z) is in particular bounded due to Proposition 2l and consequently we
obtain ROF(Z) = {0} in the case & = 0.

Proposition 16 Let Assumption [0l be satisfied. Then there exists & € R>q such that [@) holds
for (z,R), i.e. if the sequence of iteration points and (single) Lagrange multipliers is bounded and
the sequence of iteration points has an accumulation point with o(z) = 0, then this accumulation
point is stationary for the optimization problem ().

Proof Due to (), the continuity of F' and (I06l), we obtain F(Z) < 0. Due to Lemma [
the complementarity condition #F(Z) = 0 holds. Using (II3])) and Lemma [6] we calculate 0 €
0f(z) + ROF ().

Proposition 17 Let @) be satisfied. If there exist € RY and K C {1,2,...} with EiN z,
then
thor 550 (116)

Proof LUKSAN & VLCEK [@, Proof of Lemma 3.5(ii)].

Proposition 18 Let ([08) be satisfied, let the sequence of (symmetric, positive definite matrices)
{H}} be bounded and assume that there exists an infinite subset K C {1,2,...} and = € RN
with

x5 7. (117)
Then we have for all i > 0
K
Thai 2 (118)

If additionally o(z) > 0 holds, then we have for alli >0

thti LSEN (119)

and for fized g > 0 and for all fited r > 0 there exists k > 0 such that

Whti = U(;) s t]ZJri < &g (120)

forallk >k ke K and 0<i<r.

Proof We show ([[I8) by induction: The base case holds for i = 0 due to assumption (II7). Now,
let the induction hypothesis be satisfied for ¢ > 0. We have

dk+z Hk+z( k+i + I{k+z+lgk+z) (121)

due to (39), @2), @3) and [@H) as well as

2|H/€+l k+z+l€k+z+1 k+1,>|2

dk+zW +ldk+z+ d}c+z Z )\k+sz+z+)\k+1Gk+z k+sz+z+Mk+le+z)dk+ (122)

JE€Tk+i
due to (68) and the positive definiteness of Wi‘” as well as
af iy gRHFI AR L gRHHL(_ P(2y44)) >0 (123)
due to {4), E2), @) and (7). Now, using @), (I2I), (I22), adding (I23), using (@T), the

boundedness of {Hj} (by assumption), 5™ € [0,1] and (I6) yields |Tht(i4+1) — Ty £, 0, and

therefore |2y (;11) — Z| £, 0 follows from the induction hypothesis. -
We show ([IT9)) by contradiction: Suppose (1)) is false, i.e. there exists i > 0,t > 0, K C K:

5 > T for all k € K. Since 0 < fwyprs < —t¥ oy 25 0 due to B), @), @), 5 € [0, 1],
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D) and ([II6]), we have wy4; £, 0 and therefore we obtain o(z) = 0 due to (I03)) and (IIJ),
which is a contradiction to the assumption o(z) > 0.

We show ([20)): Let » > 0 be fixed and 0 < ¢ < r. Since we have @ < lim g wg4; due to the
assumption o(z) > 0, (I03]) and ([II8]), because of (II9]) and because £y > 0 is a fixed number by

o(2)

assumption, there exist k; > 0 with % < wpy; and t]f“i < gq for all k > k; with k € K. Now,
setting k := max {k; : 0 < i < 7} yields ([20).

Proposition 19 Let p,g, A € RY and c,u,w,3 € R, m € (0,1), a > 0 with
w=3pP+a, v=—(pf+a), —B-g"p>mv, c=max(g|,p|,Va)
and define @Q : R — R by
QW) = 3lvg+ 1 -v)(p+ AP +vs+(1-v)a,
then

min Q(v) < w - w3 4 de| Al + LA

Proof LUKSAN & VLCEK [45, Lemma 3.4].

We introduce the following notation (cf. MAGNUS & NEUDECKER [@, p. 31, Section 2 resp. p. 34, Sec-
tion 4]).

Definition 5 Let A, B € RV*N. We define the Frobenius norm of A by |A|, = (ZN Afj)%

i,j=1
and we define the vectorization A(.) of A as well as the Kronecker product A® B of A and B by
A:l 5 AllB AINB R )
A(:):< : )GRN , A®B:< : : )ERN XN (124)
Ain An1B ... ANNB

Proposition 20 Let A, B,C € RV*N . Then
A< Al < VNIA|, (ABC)y = (CT @ A)By, [A©AI<NAP.  (125)

Proof The first property of (I23]) holds due to GOLUB & VAN LOAN IE, p. 56, Section 2.3.2],
the second holds due to MAGNUS & NEUDECKER , p. 35, Theorem 2], and the third holds

due to ([I24).

Now, we introduce differentiability of matrix valued functions (cf. MAGNUS & NEUDECKER
|48, p. 107, Definition 3]).

Definition 6 Let A : RP — RY*N and g € RP be fixed. If there exists B(ug) € RV*¥P with

Apy(po + 1) = Agy (o) + B(po) e+ Ry (po, 1) (126)
for all 1 € R? in a neighborhood of 19 and lim,, o W = 0, then A is said to be differentiable

at po. Furthermore, the N x N-matrix dA(ug, p) defined by

A (po, 12) = Bluo)u € RN (127)

is called the (first) differential of A at po with increment p and B(uo) is called the first derivative
of A at pyg.

Proposition 21 Let T := {Y : Y € R¥*N detY # 0} be the set of non-singular N x N-
matrices. If A : RP — T is k times (continuously) differentiable, then so is B : RP — T
defined by B(p) := A(p)~* and

dB(po, p) = —B(po)dA(po, 1) B(po) - (128)
Proof MAGNUS & NEUDECKER @7 p. 156, Theorem 3.
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Proposition 22 Let f: 2 CR — R? (with an open interval §2) be continuously differentiable
and let w := sup,cq | f'(2)| < oo, then

|f(y) = f(2)] S wly — 2 (129)
for all x,y € 2 (i.e. [ is Lipschitz continuous on {2).

Proof This is a direct consequence of the mean value theorem for vector valued functions (cf.,
e.g., HEUSER , p. 278, 167.4 Mittelwertsatz fiir vektorwertige Funktionen]).

Proposition 23 Let {kF!} be bounded and let {(Wzﬂ“)*%} be bounded and uniformly positive
definite. For k > 1 we define Zy, : Rsg — RV*N

1
2

Zi(s) == (WE + G* 4 sG") (130)
Then we have for all k > 1
| Zp(RET2) — Z (RFHY)| < Cs|rF2 —RFHL, 0<Cs < o0, (131)
where Cs := CoCy, Cy := NC3C3, Cy := N%ég and Cy is a positive constant.
Proof We define for all £ > 1
Yi(s) = (WF + G* 4 sGF) (132)

and therefore we have |V (£¥1) =1 < C} for all k > 1 due to ([[32) and ([{02), which is equivalent
to {Vi(k**!)} being uniformly positive definite due to (I0J), i.e. there exists Co > 0 with
Amin (Y2 (8EF1)) > Cy. Consequently, we obtain for all k > 1

[N

1 c1pm
o PN (e F = 262

and hence we estimate for all k > 1

V(RH2)E — Yi(RFH)}) < GolY(442) — Vi(ab) (133
due to [@T), where we set Cy := %C‘Q_% > 0.
Defining B B
Xi(s) =Wy + G +Ux(s), Us(s):= sGF Uy = CA?’(“:) (134)

for k > 1, we calculate Uy, ()(t — 5) = Up(t — s) due to (I34). Therefore, we have Xj(t) =
Xi(s)+U(t—s) for all k > 1 and for all 5,¢ € R due to ([34), which is equivalent to Xy, (.)(t) =
X ((8)+ Ui (t—s). Consequently, (IZ6) and (IZ7) imply that the differential of X}, at s is given
by

ka’(:)(S, t—s)= Uk(t —5) (135)

(with Rg(s,t —s) = 0) and that the derivative of X at s is constant, which implies that X}, is
continuously differentiable. Furthermore, we estimate for all k£ > 1

Ul < Cs , (136)

due to (I34), (I28) and the initialization of Algorithm
Since G* is symmetric and positive definite, we obtain that Ug(s) is symmetric and positive
semidefinite for all s > 0 (cf. (I34)). Consequently, we have W]f = Xj(s) due to the symmetry
and the positive definiteness of G*, ([@8) and (I34]). Therefore, we estimate for all k£ > 1 and for
all s >0
Yi(s)] < Co (137)

due to (I32), (I34), @8)) and (IOI).
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For k > 1Y), we define
Vk(s) = (Yk(s) ®Yk(8))Uk . (138)
Since X}, is continuously differentiable (cf. (I35)), Proposition 2] yields the continuous differen-
tiability of Yi(s) = Xi(s)™! due to (I32) and (L34), as well as dYj, (.y(s,t — s) = Vi(s)(t — s)

due to (I28), [25), Yi(s) € RY N, ([33) and [I38) and therefore (I27) implies that Vj(s) is the
derivative of Y, at s. Furthermore, we estimate for all k > 1

sup |Vi(s)| < Cy . (139)
s>0

due to (I38), (I24), (I36) and ([I37).

Since Y}, is continuously differentiable for all s,t € S := {¢ € R : £ > 0} (note that S is an
interval) and since the derivative of Y at s is given by Vi (s) (cf. (I38))) and since the norm of
the derivative |V (s)| is bounded on S due to (I39), we obtain

|Yk7(:)(t) — Yk’(:)(8)| < C4|t — S| (140)

for all s,t € S and for all £ > 1 due to (I29).
Now, we estimate for all £ > 1

|Zk(l§k+2) o Zk(kk+1)| < C5|I7£k+2 o Rk+1|

due to (T30), ([E2), (CE), (I25) and (T0).

Furthermore, we obtain C5 = Co N 2 Cc? C¢ and therefore the fact that Cy is a positive constant
due to (I33)), the fact that N > 1 is a fixed finite natural number, combining (IOI) with the
positive definiteness of VVZ’f7 and the initialization of Algorithm Bl yield (I31).

From now on let the following assumption be satisfied.

Assumption 7. Let [@3) be satisfied. Furthermore, let the sequence {(xy, B*T1)} be bounded, let
the sequence (of symmetric, positive definite matrices) {(Wi)’%} be bounded as well as uniformly

positive definite and let T € R™ be any accumulation point of {xy}, i.e. there exists (an infinite
set) K C {1,2,...} with

a5z, (141)
and demand
RFH2 _ gE By (142)
as well as
tiof = gg% th >0 (143)

(cf. Remark {).
Next, we present Lemma [[HIg], which we need for proving Theorem

Lemma 7 (Bounded basic sequences) The following boundedness statements hold:

{ur}, {prGr}, {pxGr} and {gi} are bounded, (144)
{H}} is bounded, (145)
{gf}, {Hygk} and {af} are bounded. (146)

Proof ([I44) holds as this statement was shown in the proof of Lemma [ where only the assump-
tion of the boundedness of {z}} was used, and consequently, this statement is here also true.
Since {(W;)*%} is bounded due to assumption, (I45) holds due to Corollary 21 Due to (&3], the
boundedness of {z)} and () resp. |HpgF| < |Hy| - |gF| and ([[H) resp. B8), EI), G6), G,

the Cauchy-Schwarz inequality and the fact that f is continuous on (the whole) R™, we obtain

(4G
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Lemma 8 (Bounded aggregate sequences) We define
o = af + RFAR 4 BFT (= F(2)) >0, (147)
then
{wi} {gp} {95}, {ap}, (R ALY, {Hi(gy + £*135)} and {7} are bounded . (148)

Proof Since (A, A\, 1, p1,) € R2ITEIFD) with

__Jlforj=k . L , L
/\j'_{OfoerJk\{k'}}’)\p'_o’ ;=0 foralljeJ,, p, =0 (149)

is feasible for the (dual) problem ([ZIJ) for &£ > 1 (Note: This problem is written as a minimization
problem), we obtain (Note: wy, is the optimal function value of 21I)) due to (&), [@3), &0, @3,
([@2) and inserting the feasible point from ([[4J) that @y, < 3|HggF|* + af. Hence, due to (8]
and ([82), we estimate

0 < 3| Hp(35 + &FHGE) 2 + &k + RMIAE + RFY (= F(an)) < 3| Hpgb? + of

and therefore ([40]) as well as the non-negativity of af, k1, fl’; resp. —F(xy) due (), (2),
(@) resp. (@) imply that {wy}, {ar}, {FFT1ARY, {Hi(gk + 7FT1gk)} and {7} are bounded.
Now, consider the proof of Lemma[Bt There we only used the first consequence x, K 7 of (Iaa)

(and this property is also satisfied here due to (I4I])) of the assumption o(z) = 0 for showing the
convergence of g’; resp. Q’If on a subsequence. Consequently, §’; resp. g’; are also bounded here.

[The second property (wy, EiN 0) of (I0G) resulting from o(Z) = 0 there, is first used directly
after proving the boundedness of g;f and g;;. If this property was already used for showing these
boundedness results, the above implication would be false, since then indeed ¢(Z) = 0 (and

not only xy EiN z) would be used for proving the boundedness of g{; and g}llg, and the relevant
situation in the proof of Theorem B will be o(z) > 0.]

Lemma 9 (o is finite) o(Z) is finite.
Proof This is true due to ([I03)), the assumption of the boundedness of {x} and (I48).

Lemma 10 (Cauchy sequences) We have

st gk Ko, gt 3k Ko (150)
Flaen) = flan) S50, Flage) — Flag) =0, (151)
o B FEoFE S0 Ay S0, (152)
where B
Ap = Hyp (g5 + R gpth) — (gp + 5 ay)) - (153)

Proof Since the assumptions of Proposition [I8 for applying ([I8]) are satisfied — xy, X, 7 holds
due to ([[4I), o(Z) > 0 holds due to Lemma [l — applying ([[I8)) for ¢ = 1 and ¢ = 0 yields

Tht1 — Tk £, 0. Due to ED) and ([E]), we obtain ([IB0). Because of (4l and the continuity
of f and F, we obtain (I5I)). Due to (@5 the assumptions of Proposition [[2 are satisfied and
therefore we estimate using (B8), ([24) and (B2 resp. BD), @), (4d) and G3) that |GET] <
Ce , |G’;+1| < Cg. Due to [@0), the Cauchy-Schwarz inequality and ([48) resp. ([@2), the

Cauchy-Schwarz inequality and ([[48) resp. (I53), @), (7)), (@2), (I5) and the boundedness of
{r**1} (by assumption), we obtain (I52).

Lemma 11 (Zero sequence) We have

|[(akF1 — GE) 4 RAFL (AR = AR) 1 R (F(ay) — Fla))| 250
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P
{ak} due to (I28), 5 is bounded. Since the function § — £ with wy > 1 is Lipschitz continuous
on every bounded subset of R, there exists ¢, > 0 with

[(s57)% = ()] < ewlsy™ = 53l (154)

gy L
Proof Because of 0 < 3% < (%) “' due to @) and (@) and because of the boundedness of

In the case ¥ = 0, we have #*15k = 0 due to (@) and {@T). Now consider the case &1 >

- k1 Gk o
0. Because of 0 < gFF1gh < (ghH1)w> (%) * due to {@5) and [@G) and because of the

boundedness of {£**1} due to assumption and the boundedness of {Rk“;l];} due to (I48),

RF+15k is bounded. Therefore, {#*+15*} is bounded for all #5+! > 0. Since the function & —
§¥? with wy > 1 is Lipschitz continuous on every bounded subset of R, there exists ¢, > 0
with [(RFF! ’““)W2 — (RFF18E)w2| < e T8R! — %] and hence, using the assumption of the

1+

boundedness of {k¥*1} and wy > 1 as well as setting ¢y, := &1, supy~, (K¥T1)" %2 < oo, we obtain

RETL(skT)we — (sk)w=| < ep|shtt — 3k (155)

We remind of the formula |max (a,b) —max (¢, d)| < |[a—c|+|b—d| for all a,b, ¢, d € R. Therefore,

we have ot — @l £, 0 due to B9), @), [154), (I52), I51) and ([@I50). Furthermore, due to
(1) and (IEI) we obtaln

AP = A < BT — 4 |F () — Fair)| + 2l (857 = (35)+] .

Multiplying this last inequality with £¥** > 0 (due to [@2)) and using ([I5H), the boundedness of

{FF1}, ([[52), (5D) and ([50) yields &%+ AET — Ak| 55 0 and &¥FYF(ay) — F(zgp)] = 0.
Therefore, using ([42]), we obtain the desired result.

Lemma 12 (Estimates for zero sequences) Assume o(Z) > 0. Then the constants

& —sup (‘Hkgk+1| ‘Hk(gp+’<’k+1 k)| \/ ) 5:: @ 9 _51 TZLR 9
PR k+1 k+17k C. = &C 2. 1. Leo (156)
C-—iglf(lgk+1|+lgp+f€ 9pl) , Ce:=cCsmax (2c, 1, 5¢C5)
are finite and there exists k> 0 such that
2 ~
de| Ag) + 2L (b — GF) 4+ BFTH AR - AE) 4 R (F(ay) — Flap))| < 3¢ 157)
(|I<Lk+2 —k+1| + |Ak‘ . |F;k+2 _ Rk+1| + |Rk+2 _ Rk+1|2) < %52

hold for all k > k.

Proof Then c¢ is finite due to (I50), (I43), (I40) and (I48)). Furthermore, we have ¢ > 0 (If
we had ¢ = 0, then using ([50]), (I47) and @8] would imply wy = 0 for all & > 1, which is a
contradiction to assumption ([@3])). Due to ([IEH), o(Z) > 0 and 1 —mpg > 0 (cf. the initialization

of Algorithm [3)), we have ¢ = @ - 1=mrwhere o(z) > 0 implies ¢ > 0, and Lemma [ implies
¢ < oo. Due to ([I56), ([40), (I48) and the assumption of the boundedness of {F**1}, & > 0

is bounded. Therefore, (I506) and (31 imply 0 < Cg < oco. Since 4c|Ax| + % + [(aftt —
ak) + BRI (AR — fl’;) + RFPH(F(2k) — F(2r41)) | £, 0 due to (I52) and Lemma [IT] and since

Co(|RFT2 — RFFY 4 [Ag| - |2 — AL 4 |RFH2 — ghHL2)) 5 0 due to ([T, there exists k > 0
such that (IZ7) holds for all k& > k.

Lemma 13 (Estimate with error term) We define for k > 1

= Hugit . pe= Hi(gh +7F1gh)

= (2c+ | Axl)é Ex| + 3| El* . Ey := Hpy1 — Hy, .
Then we have for all v € [0,1] and for all k > 1
SvHR g+ (U= v)H (g7 + R 0512 < Svage + (1= ) (e + Ap))* +ex - (159)

(158)



32 Hannes Fendl, Hermann Schichl

Proof Setting zj, := Ekg’,jﬁ, we obtain Hk+1g,]§fr% = g, + 21, due to ([IE]). Setting 2, := Fj (g;f +
Rk“'lé;f), we obtain Hyqq(ghtt +RFHgET) = pr+ Aj 4 2, due to ([I53) and (I58). Furthermore,
we estimate for all v € [0, 1]

(var + (1 =)ok + Ap)) " (van + (1= v)2) < 2+ [AxDlvzr + (1 - )2

due to the Cauchy-Schwarz inequality, (I58) and ([I50) as well as vz, + (1 — v) 2| < ¢|E)| due
to (I56). Hence we obtain (I59) due to and (I58]).

Lemma 14 (Index construction) Assume o(Z) > 0 and define

[SJ[eY

7= -g—z—&—im, ri=1d +7. (160)

Then there exists a finite index ko € K such that

wy >6, th<tf (161)
in >0+ i (162)

hold for k := ko + i, + i with i € [iy, 7] N{0,1,...}.

Proof We obtain r > i + 4, > 4; > 0 due to ([I60) and the initialization of Algorithm
Therefore, [if, r] is a well-defined interval and since 7; > 0 is a natural number (cf. Algorithm [B]),
there exists ¢ € [i;,7]N{0,1,...} C[0,r]. Furthermore, [i,,, 7] is a well-defined interval and since
im > 0 is a natural number (cf. Algorithm [)), there exists ¢ € [iy,, 7] N {0,1,...} C [0,7]. The
assumptions of Proposition [I8 are satisfied — (@3]) holds due to assumption, {H}} is bounded

due (I43), we have £, 7 due to (1)), we have o(Z) > 0 due to assumption and Lemma [
r > 0 is a fixed number due to ([[G0), the choice gy := t* > 0 yields a fixed positive number &y
due to ([[43) — and therefore we can apply Proposition For r defined in ([I60) there exists
k > 0 with

Wi 2 @ =0 5 tlz+i < gg = tionf (163)

for all k > k, k € K and for all 0 < i < r due to (I20) and [I56). Since K is an infinite set due
to () (K € {1,2,...,}), we can choose kg € K with ko > max (k, k) > k (k was introduced in
Lemma [12). Hence, ([IG3)) holds in particular for all & > k¢ and hence for k = ko, i.e. wpy4i >0
and 50T < #0f for all 0 < i < r. Because of t%0 < tko% for all 0 < i < r due to (I43), we
obtain

Wy ai >0, thott < thotd (164)

for all 0 < i <. Due to (I60), (I64) holds in particular for all i € [i;,r] = 4; + [0, 7] which yields
Wiy iy 40 > 0 and K0T < gho it with § € [0,7]. In particular, these last two inequalities hold
for all ¢ € [i,mm, 7] N {0,1,...,} and now setting k := ko + 4; + ¢ yields the desired index and that
(IBT) holds after step 6 (line search) of Algorithm Bl Due to (I64), we have thot? < hoti in
particular for all 0 < i < 4; + i,,. Consequently, the case (B4 always occurs for the i; + i,, + 1
subsequent iterations ko 40, ..., ko +1ir,..., ko +% + iy (Remember: 4, > 0 denotes the number
of subsequent short and null steps according to the initialization of Algorithm [B]) and therefore
([I62) holds at the end of iteration kg + i; + iy, (even if the initial value of i, is zero at the
beginning of iteration ko + 0) after step 6 (line search) of Algorithm Bl

Lemma 15 (Error estimate) For k defined in Lemma [l we have e, < 1¢*.

Proof Since i, > i, +1,, due to (I62) and since i,, increases at most by one at each iteration due
to (B4)), we have at iteration k at least 4, > i; + 4,, and hence either the case 4] or ([B3) occurs
(at iteration k). Furthermore, since 4,, > i; + 4,, due to ([I62)), the cases 32) and [B5) occur at
iteration k + 1. Therefore, combining these facts yields Ej, = Zp(r**2) — Z(k¥+1) due to (I55),
ED), @), the fact that 3., A+ A =1 = YT A?H + Artl, and ([@30). Since {FFH1}
is bounded and {(Wi)*%} is bounded as well as uniformly positive definite (by assumption),
we can make use of Proposition 23] and hence we obtain |Ex| < Cs|r*+2 — &F+1| due to (I31).
Consequently, we obtain he desired estimate due to (I5S), (I50) and ([I57).
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Lemma 16 (Termination criterion estimate) For k defined in Lemma [I4 a short or null
step which changes the model of the objective function is executed and

wir < J(opt = ap) + REHART = AD) + BN (F(an) = Flan))| + en

+ min 3lvge+ (1= 1)k + A0 + vy + (1 -7
Proof Combining (IGI]) with step 6 (line search) of Algorithm [l and considering the case i, >
iy + i > 4; due to [IG2) in the line search (Algorithm M), we obtain that at iteration k a short
or null step which changes the model of the objective function is executed. Furthermore, i is
unchanged (since no serious step is executed), i.e. is < i, (no bundle reset) still holds (If i5 > i,
then we would have had a serious step at iteration k, as a bundle reset can only occur after a
serious step). Therefore, (A, Ay, iz, f1,) € R2e+11+1) with

Y ::{Vforj:k—i—l

gkl
0 fOI‘j S Jk+1

\{k+1}} s Api=1—v, pj =0 forall j & Jip1, pp:=(1-v) 7
(165)
where v € [0,1], is feasible for the (k + 1)st (dual) problem (ZI)) (Note: This problem is written

as a minimization problem) and, hence, due to (82), (&I), @3), @), BQ), @), inserting the
feasible point from ([I65), (I47), taking into account that v € [0, 1] and (I29), we estimate (Note:

W1 in ) is the optimal function value of (21I))

W1 < %|1/qk + (1 —v)(px + Ak)|2 + e + Vo/,ji} + (1 —v)m
+ |(a’;+1 - d’;) + RkH(AI;H - fl’;) + BFY(F(xy) — F(2k41))]

and consequently, since v € [0, 1] is arbitrary, we obtain the desired estimate.

Lemma 17 (Termination criterion is shrinking) For k defined in Lemma [ we have

W1 < Wg — é2.

Proof Since for p := pg, g := qx, A := A, v 1= vk—%dg(zjejk )\;’?éé’?—i—)\’;(jk—i—uféf—i—u’;ék)dk,

wi=wy, §i= aii%, m := mpg and « := T, the assumptions of Proposition [[9 are satisfied and
2

since we have 52% = 2¢? due to (I50), now applying Proposition Md yields the desired

estimate due to Lemma [T0] (I57)), Lemma [I5] and ([I61)).

Lemma 18 (Contradiction) For ko from Lemma [ we have wyy1pn11 < 0.

Proof Set n := max.<; .eqo,1,..} 2 (Note that 7 > 0 due to (IG0)), then we have n + 1 > # and
hence (IG0) implies —*(n + 1 — i,,) < —3¢*. Now, applying Lemma [T (n — i,,) + 1 times as

well as using [{@8)), (I47) and ([I56]) yields

.\ 2 3 2 2, 2 32
Whotntl < Whotiy, — (41 —10,)C" < Wryyi, — 5¢ < 56 +c¢”—35¢"=0.

N|—=

Theorem 8 Let Assumption [q be satisfied. Then there exists & € R such that @) holds for
(Z,R), i.e. each accumulation point of the sequence of iteration points {xy} is stationary for the
optimization problem ().

Proof (by contradiction) Since {(x,%**1)} is bounded and {(W;)_%} is uniformly positive
definite (both due to assumption) , the statement follows from Proposition [0 if we can show
o(z) = 0. We suppose this is false, i.e. we have due to (I03) o(z) > 0 or o(Z) = oo. Due to
Assumption [ we can make use of Lemma [fHI] which implies that only the case o(z) > 0 occurs.
Therefore, we can use Lemma [[TOHI8] which yields a contradiction to the non-negativity of wy
for all k > 1 due to (82).

Remark 10 In examples that do not satisfy the nonsmooth constraint qualification (&), &¥**

became very large in Algorithm B] (Note that Theorem [§ has in particular the assumption that
#k*1 is bounded).



34 Hannes Fendl, Hermann Schichl

The assumption ([[42) of Theorem [ was satisfied in all numerical examples in FENDL &
SCHICHL M] in which the termination criterion of Algorithm Bl was satisfied.

If 5 is only modified in, e.g., finitely many iterations of Algorithm [3 then (IZ3) is satisfied
(cf. Remark []).

For an unconstrained optimization problem we obtain in the proof of Lemma [I5] that E; =
0 which implies that e = 0 due to ([I58). Therefore, Lemma is trivially satisfied in the
unconstrained case, since ¢ from [[56] is positive.

If we demand that all assumptions in the proof of convergence, which we imposed on W;f, are

satisfied for ZjeJk )\;?é;? + )\’;ék, then the convergence result also holds in the case Wzﬂ“ = 0. This
is important, since first numerical results in the unconstrained case showed a better performance
for the choice Wlf = 0, which is due to the fact that otherwise for a smooth, convex objective
function f the Hessian information in the QCQP (20) is distorted — this can be seen by putting
the constraints of the QCQP (20) into its objective function, which is then given by

max (—aj +d' gj + 3d" Gjd) + 3d"Wyd = max (= aj +d" g7 + 3d" (G} + Wy)d) .

5 Conclusion

In this paper we investigated the possibility of extending the SQP-approach of the bundle-Newton
method for nonsmooth unconstrained minimization byLUKSAN & VLCEK IE] to nonsmooth
nonlinearly constrained optimization problems, where we did not use a penalty function or a
filter or an improvement function to handle the constraints. Instead — after the commitment to
only accept strictly feasible points as iteration points, while trial points do not need to have this
property — we computed the search direction by solving a convex QCQP in the hope to obtain
preferably feasible points that yield a good descent. Since the duality gap for such problems is
zero, if the iteration point is strictly feasible, we were able to establish a global convergence result
under certain assumptions. Furthermore, we discussed the presence of t£ in the line search, we
explained why this should not be a problem when we use the solution of the QCQP as the search
direction and we referred to FENDL & SCHICHL M] that this turns out to be true in practice
for at least many examples of the Hock-Schittkowski collection by SCHITTKOWSKI [@, @]

References

1. A.M. Bagirov. A method for minimization of quasidifferentiable functions. Optimization
Methods and Software, 17:31-60, 2002.

2. A.M. Bagirov. Continuous subdifferential approximations and their applications. Journal of
Mathematical Sciences, 115:2567-2609, 2003.

3. A.M. Bagirov, G. Beliakov, M. Mammadov, and A.M. Rubinov.  Programming li-
brary GANSO (Global And Non-Smooth Optimization). Centre for Informatics and Ap-
plied Optimization, University of Ballarat, Australia, 2005. Version 5.1.0.0. URL
http://www.ballarat.edu.au/ard/itms/CIAQ/ganso/.

4. A.M. Bagirov and A. Ganjehlou. A quasisecant method for minimizing nonsmooth functions.
Optimization Methods and Software, 25(1):3-18, 2010.

5. A.M. Bagirov, B. Karasozen, and M. Sezer. Discrete gradient method: Derivative-free method
for nonsmooth optimization. Journal of Optimization Theory and Applications, 137(2):317—
334, 2008.

6. J.F. Bonnans, J.C. Gilbert, C. Lemaréchal, and C.A. Sagastizabal. Numerical Optimization:
Theoretical and Practical Aspects. Springer-Verlag, Berlin Heidelberg New York, 2nd ed.,
2006.

7. J.M. Borwein and A.S. Lewis. Conver Analysis and Nonlinear Optimization: Theory and
Ezxamples. Springer, 2nd ed., 2006.

8. S. Boyd and L. Vandenberghe. Convexr Optimization. Cambridge University Press, Cam-
bridge, 2004.


http://www.ballarat.edu.au/ard/itms/CIAO/ganso/

Title Suppressed Due to Excessive Length 35

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.
28.

29.

30.

31.

32.

. J.V. Burke, A.S. Lewis, and M.L. Overton. Approximating subdifferentials by random sam-

pling of gradients. Mathematics of Operations Research, 27(3):567-584, 2002.

J.V. Burke, A.S. Lewis, and M.L. Overton. A robust gradient sampling algorithm for nons-
mooth, nonconvex optimization. SIAM Journal on Optimization, 15(3):751-779, 2005.
R.H. Byrd, J. Nocedal, and R.B. Schnabel. Representations of quasi-Newton matrices and
their use in limited memory methods. Mathematical Programming, 63:129-156, 1994.

F.E. Curtis and M.L. Overton. A robust sequential quadratic programming algorithm for
nonconvex, nonsmooth constrained optimization. SIAM Journal on Optimization, 2010.
Submitted for publication.

H. Fendl. A feasible second order bundle algorithm for nonsmooth, nonconvex optimization
problems with inequality constraints and its application to certificates of infeasibility. PhD
thesis, Universitdt Wien, 2011.

H. Fendl and H. Schichl. Numerical results of the feasible second order bundle algorithm for
nonsmooth, nonconvex optimization problems with inequality constraints. In preparation,
2011.

R. Fletcher and S. Leyffer. A bundle filter method for nonsmooth nonlinear optimization.
Numerical Analysis Report NA /195, University of Dundee, Department of Mathematics,
December 1999.

P.E. Gill and W. Murray. Newton-type methods for unconstrained and linearly constrained
optimization. Mathematical Programming, 28:311-350, 1974.

P.E. Gill, W. Murray, and M.A. Saunders. SNOPT: An SQP algorithm for large-scale
constrained optimization. STAM Review, 47(1):99-131, 2005.

G.H. Golub and C.F. van Loan. Matriz Computations. Johns Hopkins Studies in Mathe-
matical Sciences. The Johns Hopkins University Press, 3rd ed., 1996.

A. Griewank and G.F. Corliss, editors. Automatic Differentiation of Algorithms: Theory,
Implementation, and Application. STAM, Philadelphia, PA, 1991.

M. Haarala. Large-scale nonsmooth optimization: Variable metric bundle method with limited
memory. PhD thesis, University of Jyvéskyld, Department of Mathematical Information
Technology, 2004.

M. Haarala, M. Miettinen, and M.M. Mikel&. New limited memory bundle method for large-
scale nonsmooth optimization. Optimization Methods and Software, 19(6):673—-692, 2004.
N. Haarala, M. Miettinen, and M.M. Mékeld. Globally convergent limited memory bundle
method for large-scale nonsmooth optimization. Mathematical Programming, 109(1):181—
205, 2007.

J. Herskovits. Feasible direction interior-point technique for nonlinear optimization. Journal
of Optimization Theory and Applications, 99(1):121-146, 1998.

J. Herskovits and G. Santos. On the computer implementation of feasible direction interior
point algorithms for nonlinear optimization. Structural Optimization, 14:165-172, 1997.

H. Heuser. Lehrbuch der Analysis Teil 2. B.G. Teubner, Stuttgart Leipzig Wiesbaden, 2000.
N.J. Higham. Functions of Matrices: Theory and Computation. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2008.

R.A. Horn and C.R. Johnson. Matriz Analysis. Cambridge University Press, 1990.

F. Kappel and A.V. Kuntsevich. An implementation of Shor’s r-algorithm. Computational
Optimization and Applications, 15(2):193-205, 2000.

E. Karas, A. Ribeiro, C. Sagastizabal, and M. Solodov. A bundle-filter method for nonsmooth
convex constrained optimization. Mathematical Programming, B(116):297-320, 2009.

N. Karmitsa. Decision tree for nonsmooth optimization software. WWW-Page. URL
http://napsu.karmitsa.fi/solveromatic/\

N. Karmitsa, A.M. Bagirov, and M.M. Mékeld. Empirical and Theoretical Comparisons
of Several Nonsmooth Minimization Methods and Software. TUCS Technical Report 959,
Turku Centre for Computer Science, October 2009.

N. Karmitsa and M.M. Mékeld. Adaptive limited memory bundle method for bound con-
strained large-scale nonsmooth optimization. Optimization: A Journal of Mathematical Pro-
gramming and Operations Research, 59(6):945-962, 2010.


http://napsu.karmitsa.fi/solveromatic/

36

Hannes Fendl, Hermann Schichl

33

34.

35.

36.

37.

38.

39.
40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

. N. Karmitsa and M.M. Mékeld. Limited memory bundle method for large bound constrained
nonsmooth optimization: Convergence analysis. Optimization Methods and Software, 25(6):
895-916, 2010.

N. Karmitsa, M.M. Mékela, and M.M. Ali. Limited memory interior point bundle method
for large inequality constrained nonsmooth minimization. Applied Mathematics and Com-
putation, 198(1):382-400, 2008.

K.C. Kiwiel. Methods of Descent for Nondifferentiable Optimization. Lecture Notes in
Mathematics 1133. Springer-Verlag, Berlin, 1985.

K.C. Kiwiel. A constraint linearization method for nondifferentiable convex minimization.
Numerische Mathematik, 51:395-414, 1987.

K.C. Kiwiel. Restricted step and Levenberg-Marquardt techniques in proximal bundle meth-
ods for nonconvex nondifferentiable optimization. SIAM Journal on Optimization, 6(1):
227-249, 1996.

K.C. Kiwiel and A. Stachurski. Issues of Effectiveness Arising in the Design of a System of
Nondifferentiable Optimization algorithms. In A. Lewandowski and A.P. Wierzbicki, editors,
Aspiration Based Decision Support Systems: Theory, Software and Applications, Lecture
Notes in Economics and Mathematical Systems 331, pp. 180-192. Springer-Verlag, Berlin,
1989.

D.L. Kroshko. ralg. Software package. URL http://openopt.org/ralg/|

C.T. Lawrence and A.L. Tits. A computationally efficient feasible sequential quadratic
programming algorithm. STAM Journal on Optimization, 11(4):1092-1118, 2001.

A.S. Lewis and M.L. Overton. Nonsmooth optimization via BFGS. SIAM Journal on
Optimization, 2010. Submitted for publication.

L. Luksan. An implementation of recursive quadratic programming variable metric methods
for linearly constrained nonlinear minimax approximation. Kybernetika, 21(1):22-40, 1985.
L. Luksan and J. Vlcek. PBUN, PNEW - Bundle-Type Algorithms for Nons-
mooth Optimization. Technical report 718, Institute of Computer Science, Academy
of Sciences of the Czech Republic, Prague, Czech Republic, September 1997. URL
http://wuw.uivt.cas.cz/ luksan/subroutines.html,

L. Luksan and J. Vléek. PMIN — A Recursive Quadratic Programming Variable Metric
Algorithm for Minimax Optimization. Technical report 717, Institute of Computer Science,
Academy of Sciences of the Czech Republic, Prague, Czech Republic, September 1997. URL
http://www.uivt.cas.cz/ luksan/subroutines.html,

L. Luksan and J. VI¢ek. A bundle-Newton method for nonsmooth unconstrained minimiza-
tion. Mathematical Programming, 83:373-391, 1998.

L. Luksan and J. VI¢ek. Globally convergent variable metric method for convex nonsmooth
unconstrained minimization. Journal of Optimization Theory and Applications, 102(3):593—
613, 1999.

L. Luk8an and J. Vl¢ek. NDA: Algorithms for nondifferentiable optimization. Technical re-
port 797, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague,
Czech Republic, 2000. URL http://www.uivt.cas.cz/ luksan/subroutines.html,

J.R. Magnus and H. Neudecker. Matrixz Differential Calculus with Applications in Statistics
and Econometrics. John Wiley & Sons, 3rd ed., 1999.

M.M. Mikeld. Multiobjective proximal bundle method for nonconvex nonsmooth optimiza-
tion: FORTRAN subroutine MPBNGC 2.0. Reports of the Department of Mathematical
Information Technology, Series B. Scientific computing, B 13/2003 University of Jyvéskyla,
Jyvaskyld, 2003. URL http://napsu.karmitsa.fi/proxbundle/|

M.M. Mikeld and P. Neittaanméki. Nonsmooth Optimization: Analysis and Algorithms with
Applications to Optimal Control. World Scientific Publishing Co., Singapore, 1992.

N. Maratos. Ezact penalty function algorithms for finite dimensional and control optimization
problems. PhD thesis, University of London, 1978.

O.H. Merrill. Applications and extensions of an algorithm that computes fixed points of
certain upper semicontinuous point to set mappings. PhD thesis, University of Michigan,
Ann Arbor, 1972.


http://openopt.org/ralg/
http://www.uivt.cas.cz/~luksan/subroutines.html
http://www.uivt.cas.cz/~luksan/subroutines.html
http://www.uivt.cas.cz/~luksan/subroutines.html
http://napsu.karmitsa.fi/proxbundle/

Title Suppressed Due to Excessive Length 37

93

o4.

35.

56.

o7.

o8.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

. R. Mifflin. An algorithm for constrained optimization with semismooth functions. Mathe-
matics of Operations Research, 2(2):191-207, 1977.

R. Mifflin. Semismooth and semiconvex functions in constrained optimization. SIAM Journal
on Control and Optimization, 15(6):959-972, 1977.

R. Mifflin. A modification and an extension of Lemarechal’s algorithm for nonsmooth mini-
mization. Mathematical Programming Study, 17:77-90, 1982.

R. Mifflin, D. Sun, and L. Qi. Quasi-Newton bundle-type methods for nondifferentiable
convex optimization. SIAM Journal on Optimization, 8(2):583-603, 1998.

Y. Nesterov and J.-P. Vial. Homogeneous analytic center cutting plane methods for convex
problems and variational inequalities. STAM Journal on Optimization, 9:707-728, 1999.

A. Neumaier. Interval methods for systems of equations, vol. 37 of Encyclopedia of Mathe-
matics and its Applications. Cambridge University Press, Cambridge, 1990.

J. Nocedal and S.J. Wright. Numerical Optimization. Springer Series in Operations Research
and Financial Engineering. Springer, New York, 2nd ed., 2006.

M. Overton. Hanso: Hybrid Algorithm for Non-Smooth Optimization, Septem-
ber 2010. New York University, Department of Computer Science. URL
http://www.cs.nyu.edu/overton/software/hanso/.

C. Sagastizabal and M. Solodov. An infeasible bundle method for nonsmooth convex con-
strained optimization without a penalty function or a filter. SIAM Journal on Optimization,
16:146-169, 2006.

H. Schichl and A. Neumaier. Transposition theorems and qualification-free optimality con-
ditions. SIAM Journal on Optimization, 17:1035-1055, 2006.

K. Schittkowski. Test Examples for Nonlinear Programming Codes — All Problems from the
Hock-Schittkowski-Collection. Department of Computer Science, University of Bayreuth, D
- 95440 Bayreuth, February 2009.

K. Schittkowski. An updated set of 306 test problems for nonlinear programming with
validated optimal solutions - user’s guide. Department of Computer Science, University of
Bayreuth, D - 95440 Bayreuth, November 2009.

H. Schramm. Eine Kombination von Bundle- und Trust-Region- Verfahren zur Lésung nicht-
differenzierbarer Optimierungsprobleme. PhD thesis, Universitdt Bayreuth, 1989.

H. Schramm and J. Zowe. A version of the bundle idea for minimizing a nonsmooth function:
Conceptual idea, convergence analysis, numerical results. SIAM Journal on Optimization, 2
(1):121-152, 1992.

N.Z. Shor. Minimization Methods for Non-Differentiable Functions. Springer-Verlag, Berlin
Heidelberg New York Tokyo, 1985.

M.V. Solodov. On the sequential quadratically constrained quadratic programming methods.
Mathematics of Operations Research, 29(1), 2004.

A L. Tits. Feasible sequential quadratic programming. In C.A. Floudas and P.M. Pardalos,
editors, Encyclopedia of Optimization, pp. 1001-1005. Springer, 2nd ed., 2009.

J.-P. Vial and N. Sawhney. OBOFE User Guide Version 1.0, June 2007. URL
https://projects.coin-or.org/0BOE/.

J. VIcek. Bundle algorithms for nonsmooth unconstrained minimization. Research Report
608, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague,
Czech Republic, 1995.

J. Vlcek and L. Luksan. Globally convergent variable metric method for nonconvex nondif-
ferentiable unconstrained minimization. Journal of Optimization Theory and Applications,
111(2):407-430, 2001.

J. Zowe. The BT-Algorithm for minimizing a nonsmooth functional subject to linear con-
straints. In F.H. Clarke, V.F. Demyanov, and F. Giannessi, editors, Nonsmooth optimization
and related topics, pp. 459-480. Plenum Press, New York, 1989.


http://www.cs.nyu.edu/overton/software/hanso/
https://projects.coin-or.org/OBOE/

	Introduction
	Optimization theory
	Smooth optimality conditions & SQP
	Nonsmooth Optimality conditions

	Derivation of the method
	Theoretical basics
	Presentation of the algorithm
	Presentation of the line search

	Convergence
	Convergence of the line search
	Global convergence

	Conclusion
	References

