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1 Introduction

Nonsmooth optimization addresses to solve the optimization problem

min f(x)

s.t. Fi(x) ≤ 0 for all i = 1, . . . ,m ,
(1)

where f, Fi : R
n −→ R are locally Lipschitz continuous. Since Fi(x) ≤ 0 for all i = 1, . . . ,m if

and only if F (x) := maxi=1,...,m ciFi(x) ≤ 0 with constants ci > 0 and since F is still locally
Lipschitz continuous (cf., e.g., Mifflin [54, p. 969, Theorem 6 (a)], we can always assume m = 1
in (1). Since we do not take scaling problems of the constraints into account in this paper, we
choose ci = 1 for all i = 1, . . . ,m and therefore we always consider the nonsmooth optimization
problem with a single nonsmooth constraint

min f(x)

s.t. F (x) ≤ 0 ,
(2)

where F : Rn −→ R is locally Lipschitz continuous, instead of (1).
Since locally Lipschitz continuous functions are differentiable almost everywhere, both f and

F may have kinks and therefore already the attempt to solve an unconstrained nonsmooth
optimization problem by a smooth solver (e.g., by a line search algorithm or by a trust region
method) by just replacing the gradient by a subgradient, fails in general (cf., e.g., Zowe [73,
p. 461-462]): If g is an element of the subdifferential ∂f(x), then the search direction −g does
not need to be a direction of descent (contrary to the behavior of the gradient of a differentiable
function). Furthermore, it can happen that {xk} converges towards a minimizer x̂, although the
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sequence of gradients {∇f(xk)} does not converge towards 0 and therefore we cannot identify
x̂ as a minimizer. Moreover, it can happen that {xk} converges towards a point x̂, but x̂ is not
stationary for f . The reason for these problems is that if f is not differentiable at x, then the
gradient ∇f is discontinuous at x and therefore ∇f(x) does not give any information about the
behavior of ∇f in a neighborhood of x.

Not surprisingly, like in smooth optimization, the presence of constraints adds additional
complexity, since constructing a descent sequence whose limit satisfies the constraints is (both
theoretically and numerically) much more difficult than achieving this aim without the require-
ment of satisfying any restrictions.

Methods that are able to solve nonsmooth optimization problems are, e.g., bundle algorithms
which force a descent of the objective function by using local knowledge of the function, the R-
algorithm by Shor [67] or stochastic algorithms that try to approximate the subdifferential. In
the following we will present a few implementations of these methods.
Bundle algorithms. Bundle algorithms are iterative methods for solving nonsmooth optimiza-
tion problems. They only need to compute one element g of the subdifferential ∂f(x) per itera-
tion, which in practice is easily computable by algorithmic differentiation (cf., e.g., Griewank &

Corliss [19]). For computing the search direction, they collect information about the function
(e.g., subgradients) from previous iterations. This collected information is referred to as “the
bundle”.

As in smooth optimization, convex nonsmooth optimization is much easier than nonconvex
nonsmooth optimization as well in theory as in practice because convex functions only have
global minimizers and the cutting plane approximation of a convex function always yields an
underestimation which in particular simplifies convergence analysis. A good introduction to non-
smooth optimization which treats the convex, unconstrained case in great detail is Bonnans

et al. [6, p. 106 ff]. Moreover, very detailed standard references for nonsmooth nonconvex opti-
mization are Kiwiel [35] and Mäkelä & Neittaanmäki [50], which both in particular discuss
constrained problems extensively.

Now we give a brief overview over a few bundle algorithms. We start this overview with
the following bundle algorithms that support nonconvex constraints: The multiobjective prox-
imal bundle method for nonconvex nonsmooth optimization (MPBNGC) by Mäkelä [49] is
a first order method that uses the improvement function hxk

(x) := max
(
f(x)− f(xk), F (x)

)

for the handling of the constraints. Further details about the proximal bundle method can be
found in Mäkelä & Neittaanmäki [50]. The algorithms in Mifflin [53, 54, 55] support a
nonconvex objective function as well as nonconvex constraints (cf. Remark 3). NOA by Kiwiel

& Stachurski [38] is a nonsmooth optimization algorithm that handles nonconvex constraints
by using a penalty function or an improvement function, while in the special case of convex
constraints it offers an alternative treatment by the constraint linearization technique by Ki-

wiel [36]. The limited memory bundle algorithm for inequality constrained nondifferentiable
optimization by Karmitsa et al. [34] combines LMBM by Haarala [20] with the feasible di-
rections interior point technique by Herskovits [23], Herskovits & Santos [24] for dealing
with the constraints. The search direction is determined by solving a linear system.

In addition a few bundle algorithms can only handle convex constraints: The bundle trust
algorithm by Schramm [65], Schramm & Zowe [66], which also supports a nonconvex objective
function, handles the constraints by using the constraint linearization technique by Kiwiel

[36]. The bundle filter algorithm by Fletcher & Leyffer [15] is only applicable to convex
optimization problems and it computes the search direction by solving a linear program. The
bundle-filter method for nonsmooth convex constrained optimization by Karas et al. [29] is based
on the improvement function. The infeasible bundle method for nonsmooth convex constrained
optimization by Sagastizábal & Solodov [61] is also based on the improvement function, but
it uses neither a penalty function nor a filter.

Moreover, there are some bundle algorithms that support at most linear constraints: The
variable metric bundle method PVAR by Lukšan & Vlček [46], Vlček & Lukšan [72] can
solve nonsmooth linearly constrained problems with a nonconvex objective function. The imple-
mentation PBUN of the proximal bundle method by Lukšan & Vlček [43, 47], Vlček [71]
optimizes a nonconvex objective function, where the feasible set is given by linear constraints.



Title Suppressed Due to Excessive Length 3

The proximal bundle method by Kiwiel [37], which is based on a restricted step concept, can
handle a nonconvex objective function and linear constraints. The focus of the limited memory
bundle method LMBM by Haarala [20], Haarala et al. [21, 22] is the treatment of large-scale
nonsmooth nonconvex unconstrained optimization problems. This is done by combining ideas
from the variable metric bundle method Lukšan & Vlček [46], Vlček & Lukšan [72] and
limited memory variable metric methods by, e.g, Byrd et al. [11]. Its bound constraint version
is presented in Karmitsa & Mäkelä [32, 33].

All algorithms mentioned above only use first order information of the objective function and
the constraints as input. Nevertheless, there are some very interesting bundle methods, since they
are Newton-like methods (at least in some sense) and which only support the handling of linear
constraints yet as far as I know (except for putting the objective function and the constraints
into a penalty function with a fixed penalty parameter and then applying the unconstrained
algorithm to the penalty function): The quasi-Newton bundle-type method for nondifferentiable
convex optimization by Mifflin et al. [56] generalizes the idea of Quasi-Newton methods to
nonsmooth optimization and it converges superlinearly for strongly convex functions (and some
additional technical assumptions). The bundle-Newton method for nonsmooth unconstrained
minimization by Lukšan & Vlček [45] supports a nonconvex objective function, it is based on
an SQP-approach, and it is the only method for solving nonsmooth optimization problems that
I know which uses Hessian information. Furthermore, its rate of convergence is superlinear for
strongly convex, twice times continuously differentiable functions. Moreover, a description of the
implementation PNEW of the bundle-Newton method can be found in Lukšan & Vlček [43]).

In this paper we extend the bundle-Newton method to a second order bundle algorithm for
nonsmooth, nonconvex inequality constraints by using additional quadratic information: We use
second order information of the constraint (cf. (2)). Furthermore, we use the SQP-approach of the
bundle-Newton method for computing the search direction for the constrained case and combine
it with the idea of quadratic constraint approximation, as it is used, e.g., in the sequential
quadratically constrained quadratic programming method by Solodov [68] (this method is not
a bundle method), in the hope to obtain good feasible iterates, where we only accept strictly
feasible points as serious steps. Therefore, we have to solve a strictly feasible convex QCQP
for computing the search direction (Note that this approach also yields a generalization of the
original bundle-Newton method in the unconstrained case). Using such a QCQP for computing
the search direction yields a line search condition for accepting infeasible points as trial points
(which is different to that in, e.g., Mifflin [55]). One of the most important properties of the
convex QP (that is used to determine the search direction) with respect to a bundle method is
its strong duality (e.g., for a meaningful termination criterion, for global convergence,. . . ) which
is also true in the case of strictly feasible convex QCQPs (cf. Subsection 4.2).

For Numerical results we refer the reader to Fendl & Schichl [14]. Proofs that are presented
in this paper can be looked up in explicit detail in Fendl [13, p. 25 ff, Chapter 3].
Other algorithms for nonsmooth optimization. There exist several other methods for
solving nonsmooth optimization problems that are not based on the bundle approach or that
are no bundle algorithms in the sense as described on page 2. A few representatives of these
methods that support at most linear constraints are: The algorithm PMIN by Lukšan & Vlček

[44], which is based on Lukšan [42], solves linearly constrained minimax optimization problems,
i.e. the objective function must be maximum of twice times continuously differentiable functions.
The robust gradient sampling algorithm for nonsmooth nonconvex optimization by Burke et al.
[10] approximates the whole subdifferential at each iteration (cf. Burke et al. [9]) and does
not make null steps. The MATLAB-code HANSO by Overton [60] combines ideas from BFGS
algorithms (cf. Lewis & Overton [41]) and from the gradient sampling algorithm by Burke

et al. [10] for solving nonsmooth unconstrained optimization problems. The derivative-free bundle
method (DFBM) by Bagirov [1], where “derivate-free” means that no derivate information
is used explicitly, can solve linearly constrained nonsmooth problems. The subgradients are
approximated by finite differences in this algorithm (cf. Bagirov [2]). DFBM is an essential part
of the programming library for global and non-smooth optimization GANSO by Bagirov et al.
[3]. The discrete gradient method DGM for nonsmooth nonconvex unconstrained optimization by
Bagirov et al. [5] is a bundle-like method that does not compute subgradients, but approximates
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them by discrete gradients. The quasisecant method QSM for minimizing nonsmooth nonconvex
functions by Bagirov & Ganjehlou [4] combines ideas both from bundle methods and from
the gradient sampling method by Burke et al. [10].

Furthermore, we want to mention the following solver for nonsmooth convex optimization
problems: The oracle based optimization engine OBOE by Vial & Sawhney [70] is based on
the analytic center cutting plane method by Nesterov & Vial [57], which is an interior point
framework.

Finally, we list a few algorithms that can also handle nonconvex constraints: The robust se-
quential quadratic programming algorithm extends the gradient sampling algorithm by Curtis

& Overton [12] for nonconvex, nonsmooth constrained optimization. SolvOpt by Kappel &

Kuntsevich [28] is an implementation of the R-algorithm by Shor [67]. It handles the con-
straints by automatically adapting the penalty parameter. ralg by Kroshko [39] is another
implementation of the R-algorithm by Shor [67] that is only available in (the interpreted pro-
gramming language) Python. The constraints are handled by a filter technique.

Remark 1 Karmitsa et al. [31] gives a brief, excellent description of the main ideas (including
very good readable pseudo code) of many of the unconstrained methods resp. the unconstrained
versions of the methods which we mentioned above (for further information visit the online
decision tree for nonsmooth optimization software by Karmitsa [30]).

The paper is organized as follows: In Section 2 we recall the basics of an SQP-method which is
a common technique in smooth optimization and we summarize the most important facts about
nonsmooth optimization theory. In Section 3 we give the theoretical foundation of our second
order bundle algorithm and afterwards we present the algorithm and the line search in detail.
Finally, we show the convergence of the line search and the global convergence of the algorithm
in Section 4.

Throughout the paper we use the following notation: We denote the non-negative real numbers
by R≥0 := {x ∈ R : x ≥ 0}. We denote the space of all symmetric n× n-matrices by R

n×n
sym . For

x ∈ R
n we denote the Euclidean norm of x by |x|, and for A ∈ Sym(n) we denote the spectral

norm of A by |A|. Furthermore, we denote the smallest resp. the largest eigenvalue of a positive
definite matrix A ∈ R

n×n by λmin(A) resp. λmax(A). Therefore, if A is positive definite, we have

|A| =
√

λmax(A) (3)

(cf., e.g., Golub & van Loan [18, p. 394, Follow up of Theorem 8.1.2]).

2 Optimization theory

In the following section we summarize the basics of an SQP-method, since we will approximate a
nonsmooth problem by a sequence of smooth problems to derive our algorithm in Section 3 and
hence we will need some facts about smooth optimization, and we present the most important
facts about nonsmooth optimization theory.

2.1 Smooth optimality conditions & SQP

Theorem 1 Let f, Fi : R
n −→ R (with i = 1, . . . ,m) be continuously differentiable and x̂ ∈ R

n

be a solution of the smooth optimization problem

min f(x)

s.t. Fi(x) ≤ 0 for all i = 1, . . . ,m .
(4)

Then there exist κ ≥ 0 and λ ≥ 0 with

κ∇f(x̂)T +
m∑

i=1

∇Fi(x̂)
Tλi = 0 , λiFi(x̂) = 0 for all i = 1, . . . ,m , κ = 1 or (κ = 0, λ 6= 0) . (5)
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If all occurring functions are convex, then the existence of a strictly feasible x (i.e. F (x) < 0)
always guarantees κ = 1, and the conditions (5) are sufficient (for a feasible x̂ being a minimizer
of (4)).

Proof Combine, e.g., Schichl & Neumaier [62, p. 19, 4.1 Theorem] and Boyd & Vanden-

berghe [8, p. 243, 5.5.3 KKT optimality conditions].

One possibility to find a solution of the optimization problem (4) is using an SQP-method
(sequential quadratic programming). An SQP-method minimizes the quadratic approximation
of the Lagrangian L : Rn × R

m
≥0 −→ R given by L(x, λ) := f(x) +

∑m
i=1 Fi(x)λi subject to

linearizations of the constraints and then it uses the obtained minimizer as the new iteration
point (or it performs a line search between the current iteration point and the obtained minimizer
to determine the new iteration point). Since quadratic information is necessary for this approach,
we demand f, Fi : R

n −→ R (with i = 1, . . . ,m) to be C2 in this subsection.

Proposition 1 Let the matrix ∇F (x) ∈ R
m×n (gradient of the constraints) have full rank (“Con-

straint qualification”) and let the Hessian of the Lagrangian with respect to the x-components
∇2

xxL(x, λ) = ∇2f(x) +
∑m

i=1 ∇2Fi(x)λi be positive definite on the tangent space of the con-
straints, i.e. dT∇2

xxL(x, λ)d > 0 for all d ∈ R
n with d 6= 0 and ∇F (x)d = 0 (cf. Nocedal &

Wright [59, p. 531, Assumption 18.1]). Then the SQP-step for optimization problem (4) is
given by the solution of the QP

f(x) +min
d

∇f(x)d+ 1
2d

T∇2
xxL(x, λ)d

s.t. Fi(x) +∇Fi(x)d ≤ 0 for all i = 1, . . . ,m .
(6)

Proof Straightforward calculations.

Remark 2 A difficulty of an infeasible SQP-method (e.g., SNOPT by Gill et al. [17]) — i.e. in-
feasible iteration points xk may occur — is that the linear constraints of the QP (6) can be
infeasible (cf., e.g, Nocedal & Wright [59, p. 535, 18.3 Algorithmic development]). Note that
this difficulty does not arise for a feasible SQP-method (e.g., FSQP by Lawrence & Tits [40])
— i.e. only feasible iteration points xk are accepted — as then d = 0 is always feasible for the
QP (6). Nevertheless, in this case it can be difficult to obtain feasible points that make good
progress towards a solution (cf. Remark 4).

2.2 Nonsmooth Optimality conditions

We gather information on the optimality conditions of the nonsmooth optimization problem (1)
with locally Lipschitz continuous functions f, Fi : R

n −→ R for i = 1, . . . ,m. For this purpose,
we closely follow the exposition in Borwein & Lewis [7].

Definition 1 Let U ⊆ R
n be open and f : R

n −→ R. We define the Clarke directional
derivative in x ∈ U in direction d ∈ R

n by

f0(x, d) := lim sup
h→0,t↓0

f(x+ h+ td)− f(x+ h)

t

and we define the subdifferential ∂f(x) ⊆ R
n of f in x ∈ U by

∂f(x) := ch{g ∈ R
n : gT d ≤ f0(x, d) for all d ∈ R

n} ,

where ch denotes the convex hull of a set. The elements of ∂f(x) are called subgradients. We
define the set ∂2f(x) ⊆ R

n×n
sym of the substitutes for the Hessian of f at x by

∂2f(x) :=

{
{G} if the Hessian G of f at x exists
R

n×n
sym else .

(7)
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We summarize the most important properties of the Clarke directional derivative and the
subdifferential. The following two results are taken from Borwein & Lewis [7].

Proposition 2 The subdifferential ∂f(x) is non-empty, convex and compact. Furthermore, ∂f :
R

n −→ P(Rn), where P(Rn) denotes the power set of Rn, is locally bounded and upper semicon-
tinuous.

Theorem 2 (First order nonsmooth optimality conditions) Let x̂ be a local minimizer
of (1) and f, Fi : R

n −→ R (with i = 1, . . . ,m) be Lipschitz continuous in a neighborhood of x̂.
Then there exists κ ≥ 0 and λ ≥ 0 with

0 ∈ κ∂f(x̂) +

m∑

i=1

λi∂Fi(x̂) , λiFi(x̂) = 0 for all i = 1, . . . ,m , κ = 1 or (κ = 0, λ 6= 0) .

Furthermore, if there exists a direction d ∈ R
n that satisfies the (nonsmooth) constraint qualifi-

cation

F ◦
j (x̂, d) < 0 for all j ∈ {1, . . . ,m} with Fj(x̂) = 0 , (8)

then we can always set κ = 1.

Corollary 1 Let the constraint qualification (8) be satisfied for (2), then the optimality condition
for (2) reads as follows: There exists λ ≥ 0 with

0 ∈ ∂f(x̂) + λ∂F (x̂) , λF (x̂) = 0 , F (x̂) ≤ 0 . (9)

Proof Inserting into Theorem 2 with m = 1.

Remark 3 The algorithms in Mifflin [53, 54, 55] (for solving nonlinearly constrained nonsmooth
optimization problems) use a fixed point theorem about certain upper semicontinuous point to
set mappings by Merrill [52] as optimality condition which is different to an approach with
the optimality conditions in Theorem 2 or Corollary 1.

3 Derivation of the method

In this section we discuss the theoretical basics of our second order bundle algorithm and we
give a detailed presentation of the algorithm and the line search.

3.1 Theoretical basics

We assume in this section that the functions f, F : Rn −→ R are locally Lipschitz continuous,
gj ∈ ∂f(yj), ĝj ∈ ∂F (yj) and Gj ∈ ∂2f(yj), Ĝj ∈ ∂2F (yj) (cf. (7)).

Our goal is to determine a local minimizer for the nonsmooth optimization problem (2)

min
x∈Rn

f(x)

s.t. F (x) ≤ 0 ,

and therefore we want to find a point that satisfies the first order optimality conditions (9).
To attain this goal, we will propose an extension to the bundle-Newton method for nonsmooth
unconstrained minimization by Lukšan & Vlček [45]: If we are in the optimization problem (2)
at the iteration point xk ∈ R

n (with iteration index k), we want to compute the next trial point
(i.e. the search direction) by approximating both the objective function f and the constraint
F at xk by a piecewise quadratic function and then perform a single SQP-step, as defined in
Proposition 1, to the resulting optimization problem.
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Definition 2 Let Jk ⊆ {1, . . . , k}. We define a quadratic approximation of f resp. F in yj ∈ R
n

with damping parameter ρj resp. ρ̂j ∈ [0, 1] for j ∈ Jk by

f
♯
j (x) := f(yj) + gTj (x− yj) +

1
2ρj(x− yj)

TGj(x− yj)

F
♯
j (x) := F (yj) + ĝTj (x− yj) +

1
2 ρ̂j(x− yj)

T Ĝj(x− yj)
(10)

and the corresponding gradients by

g
♯
j(x) := ∇f

♯
j (x)

T = gj + ρjGj(x− yj) , ĝ
♯
j(x) := ∇F

♯
j (x)

T = ĝj + ρ̂jĜj(x− yj) . (11)

We define the piecewise quadratic approximation of f resp. F in xk ∈ R
n by

f�
k (x) := max

j∈Jk

f
♯
j (x) , F�

k (x) := max
j∈Jk

F
♯
j (x) . (12)

Hence we approximate the objective function f at xk by f�
k and the constraint F at xk by

F�
k in the optimization problem (2) and then we perform a single SQP-step to the resulting

optimization problem

min
x∈Rn

f�
k (x)

s.t. F�
k (x) ≤ 0 .

(13)

Proposition 3 The SQP-step (d, v̂) ∈ R
n+1 for (13) is given by the solution of the QP

f(xk) + min
d,v̂

v̂ + 1
2d

TW kd

s.t. −
(
f(xk)− fk

j

)
+ dT gkj ≤ v̂ for all j ∈ Jk

F (xk)−
(
F (xk)− F k

j

)
+ dT ĝkj ≤ 0 for all j ∈ Jk ,

(14)

where

fk
j := f

♯
j (xk) , gkj := g

♯
j(xk)

(11)
= gj + ρjGj(xk − yj)

F k
j := F

♯
j (xk) , ĝkj := ĝ

♯
j(xk)

(11)
= ĝj + ρ̂jĜj(xk − yj)

W k :=
∑

j∈Jk−1

λk−1
j ρjGj +

∑

j∈Jk−1

µk−1
j ρ̂jĜj

(15)

and λk−1
j resp. µk−1

j denote the Lagrange multipliers with respect to f resp. F at iteration k− 1
for j ∈ Jk−1.

Proof We rewrite (13) as a smooth optimization problem by using (12). If we are at the iteration
point (xk, uk) ∈ R

n × R with uk := f(xk) in this smooth reformulation, then, according to (6)
as well as using (15), the SQP-step for this problem is given by the solution of the QP (14).

Since f
♯
j resp. F ♯

j are only global underestimators for convex f resp. F and ρj = ρ̂j = 0 and

since f�
k resp. F�

k approximate f resp. F only well for trial points close to xk, we decrease the
activity of non local information (e.g., non local subgradients) by the following definition.

Definition 3 We define the localized approximation errors of f resp. F by

αk
j := max

(
|f(xk)− fk

j |, γ1(skj )ω1
)

, Ak
j := max

(
|F (xk)− F k

j |, γ2(skj )ω2
)

, (16)

where

skj := |yj − xj |+
k−1∑

i=j

|xi+1 − xi| (17)

denotes a locality measure for j = 1, . . . , k with fixed parameters γi > 0 and ωi ≥ 1 for i = 1, 2.
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Proposition 4 The locality measure skj has the following properties

skj + |xk+1 − xk| = sk+1
j , skj ≥ |yj − xk| for all j = 1, . . . , k . (18)

Proof Straightforward calculations.

Like the bundle-Newton method by Lukšan & Vlček [45], our algorithm uses a convex
search direction problem and therefore we modify (14) in the following sense.

Proposition 5 If we generalize (14) by using the localized approximation errors (16) and re-
placing W k by a positive definite modification W k

p (e.g., the Gill-Murray factorization by Gill

& Murray [16]), then the generalized version of (14) reads

f(xk) + min
d,v̂

v̂ + 1
2d

TW k
p d

s.t. − αk
j + dT gkj ≤ v̂ for all j ∈ Jk

F (xk)−Ak
j + dT ĝkj ≤ 0 for all j ∈ Jk .

(19)

Proof Replace f(xk)− fk
j by αk

j , F (xk)− F k
j by Ak

j and W k by W k
p in (14).

Remark 4 The standard SQP approach for smooth optimization problems suffers from the Maratos
effect Maratos [51], which, in general, prevents infeasible SQP-methods from getting a descent
in the merit function and feasible SQP-methods from finding (good) feasible points (cf. Tits

[69, p. 1003] and Example 1). Some well known techniques for avoiding the Maratos effect are
replacing the merit function by an augmented Lagrangian, using second order corrections, using
a watchdog technique (which is a non-monotone line search) (cf., e.g., Nocedal & Wright [59,
p. 440, 15.5 The Maratos effect]), or a quadratic approximation of the constraints (cf. Solodov

[68]). We will choose the quadratic constrained approximation approach to avoid the Maratos
effect, which makes the search direction problem slightly more difficult to solve than a QP, but,
as we will see, still guarantees strong duality which is necessary for proving convergence of our
bundle method.

Example 1 Consider the optimization problem (2) with f, F : R2 −→ R, where f(x) := x2 and
F (x) := x2

1−x2. Then this problem has the (global) minimizer x̂ = 0. Furthermore, it is smooth
and consequently its SQP-direction, which is obtained by solving the QP (6), at the iteration
k = 0 at the iteration point (xk, λk) := (−1, 1 + 10−8, 1), which implies that xk is close to the
boundary, is given by dk = (1,−2). Since we have for t ∈ [0, 1] that F (xk + tdk) ≤ 0 if and
only if t ≤ 10−4, a feasible SQP-method can only make a tiny step towards the solution x̂ on
the standard SQP-direction in this example, and similar observations can be made for any other
point xk with k 6= 0 that is close to the boundary (Note that the objective function f has no
impact on the Hessian of the Lagrangian in the QP (6) in this example).

Remark 4 leads to the following idea: Let Gk
j , Ĝ

k
j ∈ R

n×n
sym be positive definite (e.g., positive

definite modifications of Gj ∈ ∂2f(yj) resp. Ĝj ∈ ∂2F (yj); also cf. Remark 10). Then we can try
to determine the search direction by solving the convex QCQP

f(xk) + min
d,v̂

v̂ + 1
2d

TW k
p d

s.t. − αk
j + dT gkj + 1

2d
TGk

j d ≤ v̂ for all j ∈ Jk

F (xk)−Ak
j + dT ĝkj + 1

2d
T Ĝk

j d ≤ 0 for all j ∈ Jk

(20)

instead of the QP (19), i.e. instead of just demanding that the first order approximations are
feasible, we demand that the first order approximations must be the more feasible, the more we
move away from xk.
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Example 2 We consider the optimization problem (2) with f(x) := x2, and F (x) := max (min (F1(x), F2(x)), F3(x)),
where F1(x) := x2

1 + x2
2, F2(x) := −x1 + x2

2, and F3(x) := x1 − 2, and we assume that we are at
the iteration point xk := 0.

Since F̂ (x) := max
(
F2(x), F3(x)

)
is convex, and since an easy examination yields that F (x) ≤

0 ⇐⇒ F̂ (x) ≤ 0, the feasible set of our optimization problem (2) is convex. Therefore, the
linearity of f implies that our optimization problem has the unique minimizer x̂ := (2,−

√
2).

The quadratic approximation of F with respect to xk in the QCQP (20) reads F1(xk+d) ≤ 0,
i.e. d = 0 is the only feasible point for the QCQP (20) and therefore its solution, although xk = 0
is not a stationary point for our optimization problem (for this consider f), resp. much less a
minimizer (since x̂ is the unique minimizer of our optimization problem). As it can be seen, e.g.,
from considering the restriction of F to x2 = 0, the reason for the occurrence of d = 0 at xk is
the nonconvexity of F (which is a result of the presence of the min-function in F ), although the
feasible set is convex.

Notice that if we substitute F by F̂ in the constraint of our optimization problem, which
yields the same feasible set, the difficulty which we described above does not occur.

Remark 5 If F (xk) ≤ 0, ((19) as well as) (20) is always feasible and therefore we do not have to
deal with infeasible search direction problems as they occur in infeasible SQP-methods (cf. Re-
mark 2). Nevertheless, we have to demand F (xk) < 0, since otherwise it can happen that dk = 0
is the only feasible point and therefore the solution of (20), but xk is not stationary for (2) as
Example 2 showed. This is similar to difficulties arising in smooth problems at saddle points of
the constraints.

Now we state the dual search direction problem which plays an important role for proving
the global convergence of the method (cf. Subsection 4.2).

Proposition 6 The dual problem of the QCQP (20) is given by

f(xk)−min
λ,µ

1
2

∣
∣
∣Hk(λ, µ)

( ∑

j∈Jk

λjg
k
j + µj ĝ

k
j

)∣
∣
∣

2

+
∑

j∈Jk

λjα
k
j + µjA

k
j −

( ∑

j∈Jk

µj

)
F (xk)

s.t. λj ≥ 0, µj ≥ 0 for all j ∈ Jk,
∑

j∈Jk

λj = 1,
(21)

where Hk(λ, µ) :=
(
W k

p +
∑

j∈Jk
λjG

k
j + µjĜ

k
j

)− 1
2 . If F (xk) < 0, then the duality gap is zero,

and, furthermore, if we denote the minimizer of the dual problem ( (21)) by (λk, µk), then the
minimizer (dk, v̂k) of the primal QCQP (20) satisfies

dk = −(W k
p +

∑

j∈Jk

λk
jG

k
j + µk

j Ĝ
k
j )

−1
( ∑

j∈Jk

λk
j g

k
j + µk

j ĝ
k
j

)

v̂k =
( ∑

j∈Jk

λk
j g

k
j

)T
dk −

∑

j∈Jk

λk
jα

k
j + 1

2d
T
k

( ∑

j∈Jk

λk
jG

k
j

)
dk

= −dTkW
k
p dk − 1

2d
T
k

( ∑

j∈Jk

λk
jG

k
j + µk

j Ĝ
k
j

)
dk −

∑

j∈Jk

λk
jα

k
j + µk

jA
k
j −

( ∑

j∈Jk

µk
j

)(
− F (xk)

)
≤ 0 .

Proof The Lagrangian of (20) is given by L(d, v̂, λ, µ) := v̂ + 1
2d

TW k
p d +

∑

j∈Jk
λjF

1
j (d, v̂) +

∑

j∈Jk
µjF

2
j (d, v̂), where F 1

j (d, v̂) := −αk
j + dT gkj + 1

2d
TGk

j d − v̂ and F 2
j (d, v̂) := F (xk) − Ak

j +

dT ĝkj + 1
2d

T Ĝk
j d. Consequently, the equality constraint of the dual problem reads

(

W k
p +

∑

j∈Jk

λjG
k
j + µjĜ

k
j

)

d+
∑

j∈Jk

λjg
k
j + µj

¯̂gkj = 0 ,
∑

j∈Jk

λj = 1 . (22)

Rewriting 1
2d

TW k
p d = − 1

2d
TW k

p d+ dTW k
p d in L, scooping d in the latter summand and v̂, these

terms vanish according to (22). Now, expressing d in (22) and inserting it into L yield the desired
form of the dual objective function.
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Since the primal problem is convex and (because of the assumption F (xk) < 0) strictly
feasible, strong duality holds due to Boyd & Vandenberghe [8, Section 5.2.3]. Therefore
the optimal primal and dual objective function values coincide and we can express v̂k using
this equality. Using (22), the optimality conditions for the QCQP (20) and straightforward
calculations yield the desired formulas for v̂k.

3.2 Presentation of the algorithm

The method described in Algorithm 3 works according to the following scheme: After choosing
a strictly feasible starting point x1 ∈ R

n and setting up a few positive definite matrices, we
compute the localized approximation errors. Then we solve a convex QCQP to determine the
search direction, where the quadratic constraints of the QCQP serve to obtain preferably feasible
points that yield a good descent. After computing the aggregated data and the predicted descent
as well as testing the termination criterion, we perform a line search (s. Algorithm 4) on the
ray given by the search direction. This yields a trial point yk+1 that has the following property:
Either yk+1 is strictly feasible and the objective function achieves sufficient descent (serious
step) or yk+1 is strictly feasible and the model of the objective function changes sufficiently (null
step with respect to the objective function) or yk+1 is not strictly feasible and the model of the
constraint changes sufficiently (null step with respect to the constraint). Afterwards we update
the iteration point xk+1 and the information stored in the bundle. Now, we repeat this procedure
until the termination criterion is satisfied.

Algorithm 3. 0. Initialization: Choose the following parameters, which will not be changed
during the algorithm:

Table 1: Initial parameters

General Default Description
x1 ∈ R

n Strictly feasible initial point
y1 = x1 Initial trial point
ε ≥ 0 Final optimality tolerance
M ≥ 2 M = n+ 3 Maximal bundle dimension
t0 ∈ (0, 1) t0 = 0.001 Initial lower bound for step size

of serious step in line search
t̂0 ∈ (0, 1) t̂0 = 0.001 Scaling parameter for t0
mL ∈ (0, 1

2 ) mL = 0.01 Descent parameter for serious step in line search
mR ∈ (mL, 1), mf ∈ [0, 1] mR = 0.5 Parameter for change of model of objective function

for short serious and null steps in line search
mF ∈ (0, 1) mF = 0.01 Parameter for change of model of constraint

for short serious and null steps in line search
ζ ∈ (0, 1

2 ) ζ = 0.01 Coefficient for interpolation in line search
ϑ ≥ 1 ϑ = 1 Exponent for interpolation in line search
CS > 0 CS = 1050 Upper bound of the distance between xk and yk
CG > 0 CG = 1050 Upper bound of the norm of the damped

matrices {ρjGj} (|ρjGj | ≤ CG)

ĈG > 0 ĈG = CG Upper bound of the norm of the damped

matrices {ρ̂jĜj} (|ρ̂jĜj | ≤ ĈG)
C̄G > 0 C̄G = CG Upper bound of the norm of the matrices

{Ḡk
j } and {Ḡk} (max (|Ḡk

j |, |Ḡk|) ≤ C̄G)
¯̂
CG > 0

¯̂
CG = CG Upper bound of the norm of the matrices

{ ¯̂Gk
j } and { ¯̂Gk} (max (| ¯̂Gk

j |, |
¯̂
Gk|) ≤ ¯̂

CG)
iρ ≥ 0 iρ = 3 Selection parameter for ρk+1 (cf. Remark 6)
il ≥ 0 Line search selection parameter (cf. Remark 6)
im ≥ 0 Matrix selection parameter (cf. Remark 6)
ir ≥ 0 Bundle reset parameter (cf. Remark 6)
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Table 1: Initial parameters (continued)

General Default Description
γ1 > 0 γ1 = 1 Coefficient for locality measure for objective function
γ2 > 0 γ2 = 1 Coefficient for locality measure for constraint
ω1 ≥ 1 ω1 = 2 Exponent for locality measure for objective function
ω2 ≥ 1 ω2 = 2 Exponent for locality measure for constraint

Set the initial values of the data which gets changed during the algorithm:

in = 0 (# subsequent null and short steps)

is = 0 (# subsequent serious steps)

J1 = {1} (set of bundle indices) .

Compute the following information at the initial trial point

f1
p = f1

1 = f(y1) (23)

g1p = g11 = g(y1) ∈ ∂f(y1) (24)

G1
p = G1 = G(y1) ∈ ∂2f(y1) (25)

F 1
p = F 1

1 = F (y1) < 0 (y1 is strictly feasible according to assumption) (26)

ĝ1p = ĝ11 = ĝ(y1) ∈ ∂F (y1) (27)

Ĝ1
p = Ĝ1 = Ĝ(y1) ∈ ∂2F (y1) (28)

and set

ŝ1p = s1p = s11 = 0 (locality measure) (29)

ρ̂1 = ρ1 = 1 (damping parameter)

κ̄1 = 1 (Lagrange multiplier for optimality condition)

k = 1 (iterator) .

1. Determination of the matrices for the QCQP:
if (step k − 1 and k − 2 were serious steps) ∧ (λk−1

k−1 = 1 ∨ is > ir
︸ ︷︷ ︸

bundle reset

)

W = Gk + κ̄kĜk (30)

else

W = Gk
p + κ̄kĜk

p (31)

end

if in ≤ im + il
W k

p = “positive definite modification of W ”
else

W k
p = W k−1

p (32)

end

if in < im + il (i.e. # of subsequent null and short steps < the fixed number im + il)

(Gk, Ĝk) = “positive definite modification of (Gk
p, Ĝ

k
p)”

(Gk
j , Ĝ

k
j ) = “positive definite modification of (Gj , Ĝj)” for all j ∈ Jk

(33)
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else if in = im + il

(Gk, Ĝk) = “positive definite modification of (Gk
p, Ĝ

k
p)”

(Gk
j , Ĝ

k
j ) = (Gk, Ĝk) for all j ∈ Jk

(34)

else (i.e. at least im + il subsequent null and short steps were executed)

(Gk, Ĝk) = (Gk−1, Ĝk−1) , (Gk
j , Ĝ

k
j ) = (Gk−1, Ĝk−1) for all j ∈ Jk (35)

end

2. Computation of the localized approximation errors:

αk
j := max

(
|f(xk)− fk

j |, γ1(skj )ω1
)

, αk
p := max

(
|f(xk)− fk

p |, γ1(skp)ω1
)

(36)

Ak
j := max

(
|F (xk)− F k

j |, γ2(skj )ω2
)

, Ak
p := max

(
|F (xk)− F k

p |, γ2(ŝkp)ω2
)

. (37)

3. Determination of the search direction: Compute the solution (dk, v̂k) ∈ R
n+1 of the (convex)

QCQP

min
d,v̂

v̂ + 1
2d

TW k
p d ,

s.t. − αk
j + dT gkj + 1

2d
TGk

j d ≤ v̂ for j ∈ Jk

− αk
p + dT gkp + 1

2d
TGkd ≤ v̂ if is ≤ ir

F (xk)−Ak
j + dT ĝkj + 1

2d
T Ĝk

j d ≤ 0 for j ∈ Jk

F (xk)−Ak
p + dT ĝkp + 1

2d
T Ĝkd ≤ 0 if is ≤ ir

(38)

and its corresponding Lagrange multiplier (λk, λk
p, µ

k, µk
p) ∈ R

2(|Jk|+1)
≥0 , i.e.

dk = −H2
k

( ∑

j∈Jk

λk
j g

k
j + λk

pg
k
p +

∑

j∈Jk

µk
j ĝ

k
j + µk

p ĝ
k
p

)

(39)

v̂k = −dTkW
k
p dk − 1

2d
T
k

( ∑

j∈Jk

λk
jG

k
j + λk

pG
k + µk

j Ĝ
k
j + µk

pĜ
k
)
dk −

∑

j∈Jk

λk
jα

k
j − λk

pα
k
p

−
∑

j∈Jk

µk
jA

k
j − µk

pA
k
p −

( ∑

j∈Jk

µk
j + µk

p

)(
− F (xk)

)
, (40)

where
Hk :=

(
W k

p +
∑

j∈Jk

λk
jG

k
j + λk

pG
k + µk

j Ĝ
k
j + µk

pĜ
k
)− 1

2 . (41)

Set

κ̄k+1 :=
∑

j∈Jk

µk
j + µk

p , (κk
j , κ

k
p) :=

{
(µk

j ,µ
k
p)

κ̄k+1 for κ̄k+1 > 0
0 for κ̄k+1 = 0

(42)

if is > ir
is = 0 (bundle reset)

end

4. Aggregation: We set for the aggregation of information of the objective function

(g̃kp , f̃
k
p , G

k+1
p , s̃kp) =

∑

j∈Jk

λk
j (g

k
j , f

k
j , ρjGj , s

k
j ) + λk

p(g
k
p , f

k
p , G

k
p, s

k
p) (43)

α̃k
p = max

(
|f(xk)− f̃k

p |, γ1(s̃kp)ω1
)

(44)

and for the aggregation of information of the constraint

(˜̂gkp , F̃
k
p , Ĝ

k+1
p , ˜̂skp) =

∑

j∈Jk

κk
j (ĝ

k
j , F

k
j , ρ̂jĜj , s

k
j ) + κk

p(ĝ
k
p , F

k
p , Ĝ

k
p, ŝ

k
p) (45)

Ãk
p = max

(
|F (xk)− F̃ k

p |, γ2(˜̂skp)ω2
)

(46)
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and we set

vk = −dTkW
k
p dk − 1

2d
T
k

( ∑

j∈Jk

λk
jG

k
j + λk

pG
k + µk

j Ĝ
k
j + µk

pĜ
k
)
dk − α̃k

p − κ̄k+1Ãk
p − κ̄k+1

(
− F (xk)

)

(47)

wk = 1
2 |Hk(g̃

k
p + κ̄k+1 ˜̂gkp)|2 + α̃k

p + κ̄k+1Ãk
p + κ̄k+1

(
− F (xk)

)
. (48)

5. Termination criterion:
if wk ≤ ε

stop

end

6. Line search: We compute step sizes 0 ≤ tkL ≤ tkR ≤ 1 and tk0 ∈ (0, t0] by using the line search
described in Algorithm 4 and we set

xk+1 = xk + tkLdk (is created strictly feasible by the line search) (49)

yk+1 = xk + tkRdk (50)

fk+1 = f(yk+1)) , gk+1 = g(yk+1) ∈ ∂f(yk+1)) , Gk+1 = G(yk+1) ∈ ∂2f(yk+1) (51)

Fk+1 = F (yk+1) , ĝk+1 = ĝ(yk+1) ∈ ∂F (yk+1) , Ĝk+1 = Ĝ(yk+1) ∈ ∂2F (yk+1) .

7. Update:
if in ≤ iρ

ρk+1 = min(1, CG

|Gk+1|
) (52)

else

ρk+1 = 0
end

We set

ρ̂k+1 = min(1, ĈG

|Ĝk+1|
) . (53)

if tkL ≥ tk0 (serious step)
in = 0
is = is + 1

else (no serious step, i.e. null or short step)

in = in + 1 (54)

end

Compute the updates of the locality measure

sk+1
j = skj + |xk+1 − xk| for j ∈ Jk (55)

sk+1
k+1 = |xk+1 − yk+1| (56)

sk+1
p = s̃kp + |xk+1 − xk| (57)

ŝk+1
p = ˜̂skp + |xk+1 − xk| . (58)

Compute the updates for the objective function approximation

fk+1
j = fk

j + gk T
j (xk+1 − xk) +

1
2ρj(xk+1 − xk)

TGj(xk+1 − xk) for j ∈ Jk

fk+1
k+1 = fk+1 + gTk+1(xk+1 − yk+1) +

1
2ρk+1(xk+1 − yk+1)

TGk+1(xk+1 − yk+1) (59)

fk+1
p = f̃k

p + g̃k T
p (xk+1 − xk) +

1
2 (xk+1 − xk)

TGk+1
p (xk+1 − xk) (60)
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and for the constraint

F k+1
j = F k

j + ĝk T
j (xk+1 − xk) +

1
2 ρ̂j(xk+1 − xk)

T Ĝj(xk+1 − xk) for j ∈ Jk

F k+1
k+1 = Fk+1 + ĝTk+1(xk+1 − yk+1) +

1
2 ρ̂k+1(xk+1 − yk+1)

T Ĝk+1(xk+1 − yk+1) (61)

F k+1
p = F̃ k

p + ˜̂gk T
p (xk+1 − xk) +

1
2 (xk+1 − xk)

T Ĝk+1
p (xk+1 − xk) . (62)

Compute the updates for the subgradient of the objective function approximation

gk+1
j = gkj + ρjGj(xk+1 − xk) for j ∈ Jk

gk+1
k+1 = gk+1 + ρk+1Gk+1(xk+1 − yk+1) (63)

gk+1
p = g̃kp +Gk+1

p (xk+1 − xk) (64)

and for the constraint

ĝk+1
j = ĝkj + ρ̂jĜj(xk+1 − xk) for j ∈ Jk (65)

ĝk+1
k+1 = ĝk+1 + ρ̂k+1Ĝk+1(xk+1 − yk+1) (66)

ĝk+1
p = ˜̂gkp + Ĝk+1

p (xk+1 − xk) . (67)

Choose Jk+1 ⊆ {k −M + 2, . . . , k + 1} ∩ {1, 2, . . . } with k + 1 ∈ Jk+1.
k = k + 1
Go to 1

Remark 6 Like in the original unconstrained bundle-Newton method by Lukšan & Vlček [45],
the parameters im and ir as well as the additional parameter il are only needed for proving
convergence. Since in practice we usually terminate an algorithm, if a maximal number of itera-
tions Nit_max is exceeded, we always choose im = in = il = Nit_max+ 1 in our implementation
of Algorithm 3. The case distinction for the choice of W according to (30) resp. (31) is only
necessary for showing the superlinear convergence of the original unconstrained bundle-Newton
method for strongly convex, twice times continuously differentiable functions (cf. Lukšan &

Vlček [45, p. 385, Section 4]). As the choice iρ = 3 (cf. the initialization of Algorithm 3) for
the case distinction in ≤ iρ for ρk+1 from (52) is due to empirical observations in the original
unconstrained bundle-Newton method (cf. Lukšan & Vlček [45, p. 378]), the fact that we make
no case distinction for ρ̂k+1 from (53) was also found out numerically. A numerically meaningful

choice of the matrices Gk
j , Ĝ

k
j and Ĝk that occur in (33) is discussed in Fendl & Schichl [14].

Proposition 7 We have for all k ≥ 0

|Hk(g̃
k
p + κ̄k+1 ˜̂gkp)|2 = dTk

(
W k

p +
∑

j∈Jk

λk
jG

k
j + λk

pG
k +

∑

j∈Jk

µk
j Ĝ

k
j + µk

pĜ
k
)
dk (68)

wk = − 1
2d

T
kW

k
p dk − vk . (69)

Proof Because of H−2
k = W k

p +
∑

j∈Jk
λk
jG

k
j +λk

pG
kµk

j Ĝ
k
j +µk

pĜ
k due to (41) and dk = −H2

k(g̃
k
p+

κ̄k+1 ˜̂gkp) due to (39), (42), (43) and (45), easy calculations yield (68). Furthermore, (69) holds
due to (48), (68), and (47).

Remark 7 If we consider a nonsmooth unconstrained optimization problem (i.e. we drop the
constraint F (x) ≤ 0 in optimization problem (2)) and if we choose Gk

j = 0, then our formula
for vk from (47) reduces to the formula for vk in the unconstrained bundle-Newton method
(cf. Lukšan & Vlček [45, p. 377, formula (13)]), since vk = −|Hkg̃

k
p |2 − α̃k

p due to (47) and
(68).
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3.3 Presentation of the line search

We extend the line search of the bundle-Newton method for nonsmooth unconstrained min-
imization to the constrained case in the line search described in Algorithm 4. For obtaining
a clear arrangement of the line search, we compute data concerning the objective function in
ComputeObjectiveData and data concerning the constraint in ComputeConstraintData. Before
formulating the line search in detail, we give a brief overview of its functionality:

Starting with the step size t = 1, we check if the point xk+ tdk is strictly feasible. If so and if
additionally the objective function decreases sufficiently in this point and t is not too small, then
we take xk + tdk as new iteration point in Algorithm 3 (serious step). Otherwise, if the point
xk + tdk is strictly feasible and the model of the objective function changes sufficiently, we take
xk + tdk as new trial point (short/null step with respect to the objective function). If xk + tdk
is not strictly feasible, but the model of the constraint changes sufficiently (in particular here
the quadratic approximation of the constraint comes into play), we take xk + tdk as new trial
point (short/null step with respect to the constraint). After choosing a new step size t ∈ [0, 1]
by interpolation, we iterate this procedure.

Algorithm 4 (Line search). 0. Initialization: Choose ζ ∈ (0, 1
2 ) as well as ϑ ≥ 1 and set tL = 0

as well as t = tU = 1.
1. Modification of either tL or tU :

if F (xk + tdk) < 0

if f(xk + tdk) ≤ f(xk) +mLvk · t
tL = t

else if f(xk + tdk) > f(xk) +mLvk · t
tU = t

end

else if F (xk + tdk) ≥ 0

tU = t

t0 = t̂0tU (70)

end

if tL ≥ t0

tR = tL

return (serious step)

end
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2. Decision of return

if in < il

if F (xk + tdk) < 0

[g,G, . . . ] = ComputeObjectiveData(t,...)

if Z = true

tR = t

return (short/null step: change of model of the objective function)

end

else if F (xk + tdk) ≥ 0

[ĝ, Ĝ, . . . ] = ComputeConstraintData(t,...)

if Ẑ = true

tR = t

return (short/null step: change of model of the constraint)

end

end

else if in ≥ il

[g,G, . . . ] = ComputeObjectiveData(t,...)

if F (xk + tdk) < 0 and Z = true

tR = t

return (short/null step: change of model of the objective function)

end

end

3. Interpolation: Choose t ∈ [tL + ζ(tU − tL)
ϑ, tU − ζ(tU − tL)

ϑ].
4. Loop: Go to 1

function [g,G, . . . ] =ComputeObjectiveData(t,...)

g = g(xk + tdk) ∈ ∂f(xk + tdk)

G = G(xk + tdk) ∈ ∂2f(xk + tdk)

ρ =

{
min(1, CG

|G| ) for in ≤ 3

0 else

f = f(xk + tdk) + (tL − t)gT dk + 1
2ρ(tL − t)2dTkGdk (71)

β = max(|f(xk + tLdk)− f |, γ1|tL − t|ω1 |dk|ω1) (72)

G = “positive definite modification of G” (73)

Z = −β + dTk
(
g + ρ(tL − t)Gdk

)
≥ mRvk +mf · (− 1

2d
T
kGdk) and (t− tL)|dk| ≤ CS (74)
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function [ĝ, Ĝ, . . . ] =ComputeConstraintData(t,...)

ĝ = ĝ(xk + tdk) ∈ ∂F (xk + tdk)

Ĝ = Ĝ(xk + tdk) ∈ ∂2F (xk + tdk)

ρ̂ = min(1, ĈG

|Ĝ|
)

F = F (xk + tdk) + (tL − t)ĝT dk + 1
2ρ(tL − t)2dTk Ĝdk (75)

β̂ = max(|F (xk + tLdk)− F |, γ2|tL − t|ω2 |dk|ω2) (76)

Ĝ = “positive definite modification of Ĝ” (77)

Ẑ = F (xk + tLdk)− β̂ + dTk
(
ĝ + ρ̂(tL − t)Ĝdk

)
≥ mF · (− 1

2d
T
k Ĝdk) and (t− tL)|dk| ≤ CS

(78)

Remark 8 The parameter il is only necessary for proving global convergence of Algorithm 3 (to
be more precise, it is only needed to show that a short or null step which changes the model of
the objective function is executed in Lemma 16). If we choose il = 0, then only a change of the
model of the objective function yields a short or null step. In fact we have il steps in Algorithm
3 in which we can use any meaningful criterion for terminating the line search (even for the
unconstrained case as it is partially done in the implementation of the original unconstrained
bundle-Newton method anyway).

(70) is due to the following observation: Consider the line search (Algorithm 4) without (70)
(i.e. t0 is fixed, e.g., t0 := 0.5 ∈ (0, 1), where this large, but legal value for t0 is only chosen to
obtain a better graphical illustration in Figure 1). It can happen (in particular) at the beginning
of Algorithm 3 that the search direction dk is bad as we have no knowledge on the behavior of f
and F yet. Consequently, the following situation can occur: The model of the objective function
f does not change (e.g., if f is linear on xk + tdk with t ∈ [0, 1]), and there are no step sizes
t > t0 which yield feasible xk + tdk (this is in particular possible, if we are near the boundary of
the feasible set).

Fig. 1: Line search with fixed t0

In this situation the line search will not terminate for fixed t0 (in particular in the case in < il
the model of F does not need to even satisfy (78) for infeasible xk + tdk). Therefore, we need
to decrease t0 to have at least one feasible step in the line search for which a descent of f is
enough for terminating the line search (similar to the unconstrained case). As the convergence
analysis will show, this must not be done too often (cf. (143) and Remark 10). Because we use
the quadratic terms in the constraint approximation to obtain as much feasibility as possible on
the search path t 7→ xk+ tdk with t ∈ [0, 1] (cf. the idea that leads to the QCQP (20)), we expect
that this should be true. Indeed, in practice t0 turns out to be only modified at the beginning
of Algorithm 3 at least many examples of the Hock-Schittkowski collection by Schittkowski

[63, 64] (cf. Fendl & Schichl [14]). In particular, if F (xk + tdk) < 0 for all t ∈ [0, 1] (e.g., if
F is constant and negative on R

n which in fact yields an unconstrained optimization problem),
the case (70) will never occur and therefore t0 will not get changed (this is the reason why t0 is
constant in the bundle-Newton method for nonsmooth unconstrained minimization).

The step sizes which the line search returns correspond to the points xk+1 = xk + tkLdk and
yk+1 = xk + tdk = xk + tkRdk.
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Only strictly feasible iteration points are accepted in the line search

F (xk + tkLdk) < 0 . (79)

Nevertheless, trial points may be infeasible (if in < il).

Proposition 8 Let

α̂k
p :=

∑

j∈Jk

λk
jα

k
j + λk

pα
k
p , Âk

p :=
∑

j∈Jk

κk
jA

k
j + κk

pA
k
p (80)

ŵk := 1
2 |Hk(g̃

k
p + κ̄k+1 ˜̂gkp)|2 + α̂k

p + κ̄k+1Âk
p + κ̄k+1

(
− F (xk)

)
(81)

(Note: ŵk is the optimal function value of the dual problem (21)). Then we have at iteration k

of Algorithm 3

v̂k ≤ vk ≤ 0 ≤ wk ≤ ŵk . (82)

Proof For γ > 0 and ω ≥ 1 the functions ξ 7→ γ|ξ|ω and (ξ1, ξ2) 7→ max (ξ1, ξ2) are convex

and therefore we have γ
(∑k

i=1 ti|xi|
)ω ≤ ∑k

i=1 ti(γ|xi|ω) and max
(∑k

i=1 tixi,
∑k

i=1 tiyi
)

≤
∑k

i=1 ti max (xi, yi). Since λk
j ≥ 0 for j ∈ Jk and λk

p ≥ 0 holds for the solution of the dual problem

(21) of the QCQP (38), we have 1 =
∑

j∈Jk
λk
j + λk

p which implies f(xk) =
∑

j∈Jk
λk
j f(xk) +

λk
pf(xk), and hence α̃k

p ≤ α̂k
p follows from (44), (43), (36) and (80). If κ̄k+1 > 0, we have

1 =
∑

j∈Jk
κk
j + κk

p due to (42) which implies F (xk) =
∑

j∈Jk
κk
jF (xk) + κk

pF (xk), and hence

Ãk
p ≤ Âk

p follows from (46), (45), (37) and (80). Consequently, we have κ̄k+1Ãk
p ≤ κ̄k+1Âk

p for

κ̄k+1 ≥ 0, which yields 0 ≤ α̃k
p + κ̄k+1Ãk

p ≤ α̂k
p + κ̄k+1Âk

p due to (44), (42) and (46). Now, we
obtain the wk-estimate of (82) due to (48), (81) and (42). Because of (80) and (42) we have
0 ≥ −α̃k

p − κ̄k+1Ãk
p ≥ −∑j∈Jk

λk
jα

k
j − λk

pα
k
p −∑j∈Jk

µk
jA

k
j − µk

pA
k
p, and, therefore, we obtain

the vk-estimate of (82) by using (47), (42), (40), (69), the positive definiteness of W k
p and (82).

Proposition 9 If the line search is entered at iteration k of Algorithm 3, then

vk < 0 . (83)

Furthermore, if there occurs a step size t with F (xk + tdk) ≥ 0 in the line search, then

− 1
2d

T
k Ĝxk+tdk

dk < 0 . (84)

Proof If the line search is entered at iteration k (cf. step 6 of Algorithm 3), then no termination
occurred at step 5 of Algorithm 3 at iteration k, and therefore we have wk > 0, which yields (83)
due to (69) and the positive definiteness of W k

p .
Now we show (84) by deducing a contradiction: Suppose (84) does not hold, i.e. dk = 0 due to

(77). Then, since all iteration points xk are strictly feasible due to (79), we obtain F (xk+ tdk) =
F (xk) < 0, which is a conradiction to the assumption F (xk + tdk) ≥ 0.

Proposition 10 1. If the line search (Algorithm 4) terminates with condition (74), then the old
search direction dk and the old predicted descent vk (of iteration k) are sufficiently infeasible
for the new QCQP (38) (at iteration k + 1) in Algorithm 3 (i.e. the old search direction dk
cannot occur as search direction at iteration k + 1 and therefore we obtain a different search
direction at iteration k + 1 and consequently a “meaningful extension of the bundle”.

2. If the line search (Algorithm 4) terminates with condition (78), then the old search direction
dk (of iteration k) is sufficiently infeasible for the new QCQP (38) (at iteration k + 1) in
Algorithm 3 (i.e. using a QCQP also yields a “meaningful extension of the bundle” in the
constrained case).

3. The condition (t− tL)|dk| ≤ CS in (78) resp. (74) corresponds to

|yk+1 − xk+1| ≤ CS . (85)
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Proof Because of f = fk+1
k+1 = f

♯
xk+tdk

(xk+ tLdk) due to (71), (59) and (10) as well as β = αk+1
k+1

due to (72), (56) and (36), we obtain −αxk+tLdk

xk+tdk
+dTk g

xk+tLdk

xk+tdk
≥ mRvk+mf ·(− 1

2dkGxk+tdk
dk) by

using (74), (63) and (11). Due to the initialization of Algorithm 3, we have 0 < mR < 1 and 0 ≤
mf ≤ 1. Now, (83) resp. (73) imply mRvk > vk and mf · (− 1

2dkGxk+tdk
dk) ≥ − 1

2dkGxk+tdk
dk.

Since the line search (Algorithm 4) terminates with condition (74) due to assumption, we obtain
that dk is sufficiently infeasible for the new QCQP (38) (with respect to the approximation of
the objective function) at iteration k + 1 due to (82).

Because of F = F k+1
k+1 = F

♯
xk+tdk

(xk+tLdk) due to (75), (61) and (10) as well as β̂ = Ak+1
k+1 due

to (76), (56) and (37), we obtain F (xk+tLdk)−Axk+tLdk

xk+tdk
+dTk g

xk+tLdk

xk+tdk
≥ mF ·(− 1

2dkĜxk+tdk
dk)

by using (78), (66) and (11). Due to the initialization of Algorithm 3, we have 0 < mF < 1.

Now, (84) implies mF · (− 1
2dkĜxk+tdk

dk) > − 1
2dkĜxk+tdk

dk. Since the line search (Algorithm 4)
terminates with condition (78) due to assumption, we obtain that dk is sufficiently infeasible for
the new QCQP (38) (with respect to the approximation of the constraint) at iteration k + 1.

(85) follows from (74) and (78).

4 Convergence

In the following section we prove the convergence of the line search and we show the global
convergence of the algorithm.

4.1 Convergence of the line search

For proving the convergence of the line search (Algorithm 4) we have to identify a large subclass of
locally Lipschitz continuous functions, which is the class of weakly upper semismooth functions
(that contains, e.g., functions that are the pointwise maximum of finitely many continuously
differentiable functions due to Mifflin [54, p. 963, Theorem 2]).

Definition 4 A locally Lipschitz continuous function f : RN → R is called weakly upper semis-
mooth, if

lim sup
i→∞

ḡTi d ≥ lim inf
i→∞

f(xk+tid)−f(xk)
ti

(86)

holds for all x ∈ R
N , d ∈ R

N , {ḡi}i ⊂ R
N with ḡi ∈ ∂f(x+ tid) and {ti}i ⊂ R+ with ti ց 0.

Proposition 11 Let f : RN → R be weakly upper semismooth, then the line search (Algorithm
4) terminates after finitely many steps with tkL = tL, tkR = t and tk0 > 0.

Proof If F (xk + tdk) < 0 for all t ∈ [0, 1], then this is exactly the same situation as in the
line search of the unconstrained bundle-Newton method which terminates after finitely many
iterations due to Lukšan & Vlček [45, p. 379, Proof of Lemma 2.3]. Otherwise, since F is
continuous and F (xk) < 0, there exists a largest t̃ > 0 with F (xk+dk t̃) = 0 and F (xk+dks) < 0
for all s < t̃. Therefore, after sufficiently many iterations in the line search (Algorithm 4) (Note
that the interval [tL, tU ] is shrinking at each iteration of the line search), there only occur tL, t0, tU
with 0 ≤ tL < tU < t̃ and 0 < t0 < tU < t̃ (i.e. from now on all xk + tdk with t ∈ {tL, tU} are
feasible) and consequently t0 (where xk+t0dk is also feasible,) does not change anymore (cf. (70)).
Hence, here we also have exactly the same situation as in the line search of the unconstrained
bundle-Newton method, which terminates after finitely many iterations due to Lukšan & Vlček

[45, Proof of Lemma 2.3], where the only difference in the proof is that we need to use the following
additional argument to obtain the inequality at the bottom of Lukšan & Vlček [45, p. 379]:
Since mf ∈ [0, 1] due to the initialization of Algorithm 3 and since G is positive definite due to
(73), the negation of the condition in (74) that corresponds to the change of the model of the
objective function yields −β + dTk

(
g + ρ(tL − t)Gdk

)
< mRvk +mf · (− 1

2d
T
kGdk) ≤ mRvk.

Remark 9 The proof of Proposition 11 only relies on f satisfying (86), the continuity of F and
the strict feasibility of xk. In particular, F does not need to be weakly upper semismooth.
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4.2 Global convergence

For investigating the global convergence of Algorithm 3 we will follow closely the proof of
global convergence of the bundle-Newton method for nonsmooth unconstrained minimization
in Lukšan & Vlček [45, p. 380-385, Section 3] with modifications which concern the con-
strained case and the use of determining the search direction by solving a QCQP, where we will
work out everything in great detail so that it is easy to see which passages of the proof are
similar to the unconstrained case resp. which passages require a careful examination. Therefore,
we assume

ε = 0 , λk
j = 0 for all j 6∈ Jk , µk

j = 0 for all j 6∈ Jk . (87)

A main difference to the proof of convergence of the unconstrained bundle-Newton method
is that here Hk from (41) depends on the Lagrange multipliers (λk, λk

p, µ
k, µk

p) of the QCQP
(38), which implies that so do the search direction dk from (39) (and consequently the new
iteration point xk+1 from (49) as well as the new trial point yk+1 from (50)) and the termination
criterion wk from (48) in particular. Furthermore, this dependence does not allow us to achieve
the equality Hk+1 = Hk in the proof of Theorem 8 in contrast to Lukšan & Vlček [45,
top of page 385, Proof of Theorem 3.8], which extends the complexity of the already quite
involved proof of the unconstrained bundle-Newton method.

Hence we give a brief overview of the main steps of the proof: In Proposition 12 we express
the p-tilde data (as, e.g., g̃kp , ˜̂gkp ,. . . ) as convex combinations in which no p-data (as, e.g., gkp ,

ĝkp ,. . . ) occurs. Afterwards we recall a sufficient condition to identify a vector as an element of the
subdifferential in Proposition 13. In Theorem 5 we show that if Algorithm 3 stops at iteration k,
then the current iteration point xk is stationary for the optimization problem (2). From then on on
we assume that the algorithm does not terminate (cf. (95)). After summarizing some properties

of positive definite matrices, we deduce bounds for {(W k
p )

−1} and {W k
p + Gk + κ̄k+1Ĝk} in

Corollary 2, which will be essential in the following. Then, in Proposition 16, we show that if some
boundedness assumptions are satisfied and the limit inferior of the sequence {max (wk, |xk − x̄|)}
is zero, where x̄ denotes any accumulation point of the sequence of iteration points {xk}, then x̄

is stationary for the optimization problem (2), where the proof relies on Carathéodory’s theorem
as well as on the local boundedness and the upper semicontinuity of the subdifferentials ∂f and
∂F . Due to the negativity of vk, which holds due to (82), we obtain the statement tkLvk −→ 0
in Proposition 17. In Proposition 18 we show some properties of the shifted sequences {xk+i},
{wk+i} and {tk+i

L }, where we have to take care of the dependence of (λk, λk
p, µ

k, µk
p), which

we noticed before, in the proof. Then we recall an estimation of a certain quadratic function
on the interval [0, 1] in Proposition 19. After recalling the differentiability of matrix valued
functions to give a formula for the derivative of the matrix square root in Proposition 21 and after
formulating the mean value theorem for vector valued functions on a convex set in Proposition
22, we combine these two results to obtain a Lipschitz estimate for the inverse matrix square root
in Proposition 23, which serves as replacement for the property Hk+1 = Hk of the proof of the
unconstrained bundle-Newton method as mentioned above. Finally, we prove that under some
additional boundedness assumptions the limit inferior of the sequence {max (wk, |xk − x̄|)} is
always zero and therefore Proposition 16 yields Theorem 8 which states that each accumulation
point x̄ of the sequence of iteration points {xk} is stationary for the optimization problem (2).

Proposition 12 Assume that Algorithm 3 has not stopped before iteration k with k ≥ 1. Then
there exists λ̂k

j ∈ R for j = 1, . . . , k with

λ̂k
j ≥ 0 , 1 =

k∑

j=1

λ̂k
j , (Gk+1

p , g̃kp , s̃
k
p) =

k∑

j=1

λ̂k
j (ρjGj , g

k
j , s

k
j ) . (88)

If κ̄k+1 > 0, then there exists κ̂k
j ∈ R for j = 1, . . . , k with

κ̂k
j ≥ 0 , 1 =

k∑

j=1

κ̂k
j , (Ĝk+1

p , ˜̂gkp ,
˜̂skp) =

k∑

j=1

κ̂k
j (ρ̂jĜj , ĝ

k
j , s

k
j ) . (89)
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If κ̄k+1 = 0, then (89) holds with

κ̂k
j := 0 for all j = 1, . . . , k . (90)

Proof (by induction) Since g1p = g11 due to (24) as well as α1
p = α1

1 due to (36), (23) and (29), as

well as ĝ1p = ĝ11 due to (27) as well as A1
p = A1

1 due to (37), (26) and (29), as well as G1 = G1
1

and Ĝ1 = Ĝ1
1 due to (33), (34) and (25) resp. (28), the aggregated (p-)constraint of the QCQP

(38) at iteration k = 1 of Algorithm 3 coincides with the corresponding bundle constraint, and
therefore we can drop the aggregated (p-)constraint and consequently the dual problem (21) has
only two variables λ1

1 and µ1
1, where λ1

1 = 1 must hold, so that the equality constraint of the
dual problem (21) is satisfied. Now, if we set λ1

p = 0 and µ1
p = 0, then the dual solution does not

change.
Consequently, (88) holds due to the same calculations which are performed in Lukšan &

Vlček [45, Lemma 3.1].
Furthermore, we obtain κ̄2 = µ1

1 due to (42) and therefore we get κ1
j = 1 for κ̄2 > 0 and

κ1
j = 0 for κ̄2 = 0 as well as κ1

p = 0. Summarizing these facts yield that we have at iteration

k = 1 of Algorithm 3 that κ̄k+1 = µk
1 , κ

k
1 =

{
1 for κ̄k+1 > 0
0 for κ̄k+1 = 0

}

and κk
p = 0.

Therefore, the base case is satisfied for k = 1 with κ̂k
1 :=

{
1 for κ̄k+1 > 0
0 for κ̄k+1 = 0

}

, since (89) holds

due to (45).
Let the induction hypothesis be satisfied (i.e. we have κ̄k+1 > 0 in particular) and define

κ̂k+1
j :=

{
κk+1
j + κk+1

p κ̂k
j for κ̄k+1 > 0

κk+1
j for κ̄k+1 = 0

}

for j = 1, . . . , k , κ̂k+1
k+1 := κk+1

k+1 , (91)

where (µk+1
j , µk+1

p ) is part of the solution of the dual problem (21) (including the aggregated

terms) and κk+1
j resp. κk+1

p are set according to (42). The case κ̄k+1 = 0 is equivalent to

κk
j = κk

p = 0 for all j = 1, . . . , k due to (42) and therefore we obtain ˜̂gkp = 0 and Ĝk+1
p = 0 due

to (45), which implies ĝk+1
p = 0 due to (67). Hence, at iteration k + 1 in the QCQP (38) the

aggregated constraint for F reads in the case is ≤ ir F (xk+1)− Ak+1
p ≤ 0. Since this inequality

is sharp due to (79) and (37), the aggregated constraint for F is inactive at iteration k+1. Since
Lagrange multipliers for inactive constraints vanish, we obtain at iteration k+1 (Note that µk+1

p

is the Lagrange multiplier corresponding to the aggregated constraint for F at iteration k+1 and
note that κ̄k+2 > 0 is the assumption for what we want to show by the inductive step k 7→ k+1)
µk+1
p = 0 which implies

κk+1
p = 0 ,

(
k+1∑

j=1

κk+1
j = 1 ∧ (κk+1

j ≥ 0 for all j = 1, . . . , k + 1)
)

(92)

due to κ̄k+2 > 0 and (42). In the case is > ir (92) holds anyway, since then in the dual problem
(21) for the QCQP (38) the aggregated constraints do not occur and therefore the corresponding
Lagrange multiplier can be set to zero. So, the inductive step k 7→ k+1 for the first two properties
of (89) holds in the case κ̄k+1 > 0 due to (91), (42) and (21) (Note that we assumed that we
consider the case κ̄k+1 > 0 which implies that we can use the induction hypothesis for the first
two properties of (89) and note that we have κ̄k+2 > 0, since this is the assumption for what we
want to show by the inductive step k 7→ k + 1) and in the case κ̄k+1 = 0 due to (91) and (92).
The inductive step for the third property of (89) holds in the case κ̄k+1 > 0 due to (45) and (91),
and in the case κ̄k+1 = 0 due to (45), (92) and (91). The inductive step for the fourth property
of (89) holds in the case κ̄k+1 > 0 due to (45), (67), (65) and (91) and in the case κ̄k+1 = 0
due to (45), (92) and (91). The inductive step for the fifth property of (89) holds in the case
κ̄k+1 > 0 due to (45), (58), (55) and (91), and in the case κ̄k+1 = 0 due to (45), (92) and (91).

In the case κ̄k+1 = 0 we obtain κk
j = 0 for all j = 1, . . . , k and κk

p = 0 due to (42) and
therefore (89) holds due to (45) and (90).
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Proposition 13 If x̄ ∈ R
N and there exists Gj ∈ R

N×N
sym , q̄, ȳj ∈ R

n, ḡj ∈ ∂f(yj), s̄j , λ̄j ∈ R

for j = 1, . . . , L, where L ≥ 1, with

(q̄, 0) =
L∑

j=1

(
ḡj +Gj(x̄− ȳj), s̄j

)
λ̄j , 1 =

L∑

j=1

λ̄j , λ̄j ≥ 0 , |ȳj − x̄| ≤ s̄j ,

for all j = 1, . . . , L, then q̄ ∈ ∂f(x̄).

Proof Lukšan & Vlček [45, p. 381, Proof of Lemma 3.2].

Theorem 5 If Algorithm 3 stops at iteration k, then there exists κ̄k+1 ≥ 0 such that (9) holds
for (xk, κ̄

k+1), i.e. xk is stationary for the optimization problem (2).

Proof Since Algorithm 3 stops at iteration k, step 5 of the algorithm, (87) and (82) imply wk = 0
which is equivalent to

1
2 |Hk(g̃

k
p + κ̄k+1 ˜̂gkp)|2 = 0 ∧ α̃k

p = 0 ∧ κ̄k+1Ãk
p = 0 ∧ κ̄k+1

(
− F (xk)

)
= 0 (93)

due to (48), (44), κ̄k+1 ≥ 0 and F (xk) ≤ 0. Using the regularity of Hk, (44) and (43), we obtain
from (93)

g̃kp + κ̄k+1 ˜̂gkp = 0 , s̃kp = 0 . (94)

Furthermore, for κ̄k+1 > 0 we obtain from (93), (46) and (45) that ˜̂skp = 0 and hence we have

either κ̄k+1 = 0 or κ̄k+1 > 0 ∧ ˜̂skp = 0.

We set x̄ := xk, L := k, ȳj := yj , s̄j := skj . Then for Gj := ρjGj , ḡj := gj , λ̄j := λ̂k
j , and

q̄ := g̃kp resp. for κ̄k+1 > 0, G′
j := ρ̂jĜj , ḡ

′
j := ĝj , λ̄

′
j := κ̂k

j , and q̄′ := ˜̂gkp the assumptions of

Proposition 13 are satisfied (by using roposition 12), and therefore we obtain g̃kp ∈ ∂f(xk) and
˜̂gkp ∈ ∂F (xk). Now, using (94) we calculate 0 ∈ ∂f(xk) + κ̄k+1∂F (xk).

From now on, we demand that Algorithm 3 does not stop, i.e. according to step 5 of Algorithm
3 and (87) we have for all k

wk > 0 . (95)

We summarize some properties of positive (semi)definite matrices.

Proposition 14 Let A,B ∈ R
N×N
sym with B positive semidefinite, then

A � A+B . (96)

If A and B are even positive definite, then

|A 1
2 −B

1
2 | ≤ 1

(λmin(A))
1
2 +(λmin(B))

1
2
|A−B| , (97)

and if additionally A � B holds, then

|B−1| ≤ |A−1| . (98)

Proof (96) is clear. (97) holds due to Higham [26, p. 135, Theorem 6.2]. Since B is positive
definite due to assumption, B−1 is positive definite and since all eigenvalues of a positive definite
matrix are positive, we obtain (98) due to the fact that A � B ⇐⇒ B−1 � A−1 (cf. Horn

& Johnson [27, p. 471, Corollary 7.7.4(a)]), the fact that A � B implies λi(A) ≤ λi(B) for all
i = 1, . . . , N (cf. Horn & Johnson [27, p. 471, Corollary 7.7.4(c)]) and (3).

Proposition 15 Let {Ak} be a sequence of positive definite matrices Ak ∈ R
N×N
sym . Then

{Ak} is bounded ⇐⇒ {A
1
2

k } is bounded (99)

and
{Ak} is uniformly positive definite ⇐⇒ {A−1

k } is bounded . (100)
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Proof Since Ak ∈ R
N×N
sym is positive definite due to assumption, there exists an eigenvalue de-

composition Ak = QT
kΞkQk with Qk ∈ R

N×N orthogonal and a diagonal matrix Ξk ∈ R
N×N

with positive diagonal elements and we define µk := λmax(Ξk). Since (3) implies |Ak| = µ
1
2

k and

since A
1
2

k = QT
kΞ

1
2

k Qk implies |A
1
2

k | = µ
1
4

k , we obtain (99).
(100) follows directly from the assumption of the uniform positive definiteness of {Ak} and

(3).

Corollary 2 If {(W k
p )

− 1
2 } is bounded, then {(W k

p )
−1} and {Hk} are bounded

|(W k
p )

−1| ≤ C0 (101)

for all k ≥ 1 with some positive constant C0 > 0.
If {κ̄k+1} is bounded and {(W k

p )
− 1

2 } is uniformly positive definite, then {H−1
k } is bounded

and
|W k

p +Gk + κ̄k+1Ĝk| ≤ C1 , (102)

for all k ≥ 1 with some positive constant C1 > 0.

Proof Since (W k
p )

− 1
2 =

(
(W k

p )
−1
) 1

2 is bounded due to assumption, {(W k
p )

−1} is bounded due to
(99) and therefore (101) holds with some positive constant C0 > 0, which is equivalent to the
uniform positive definiteness of {W k

p } due to (100). Since W k
p � H−2

k for all (λk, µk) ≥ 0 with
∑

j∈Jk
λk
j + λk

p = 1 due to (41), we obtain |H2
k | ≤ C0 due to (98) and (101), which is equivalent

that {Hk} is bounded due to (99).
Since {κ̄k+1} is bounded due to assumption, there exists a positive constant χ0 > 0 with

κ̄k+1 ≤ χ0 for all k ≥ 1 (note that κ̄k+1 ≥ 0 due to (42)). Since {(W k
p )

− 1
2 } is uniformly

positive definite due to assumption, {(W k
p )

1
2 } is bounded due to (100), which is equivalent to

{W k
p } being bounded due to (99), i.e. |W k

p | ≤ χ1 for some positive constant χ1 > 0 and for all

k ≥ 1. Therefore, we obtain the boundedness of |H−2
k | ≤ χ1 + C̄G + χ0

¯̂
CG due to (41), (42)

and the initialization of Algorithm 3, which is equivalent to {H−1
k } being bounded due to (99).

Furthermore, setting C1 := χ1 + C̄G + χ0
¯̂
CG yields (102) due to (42) and the initialization of

Algorithm 3.

From now on let the following assumption be satisfied.

Assumption 6. Let (95) be satisfied. Furthermore, let {(xk, κ̄
k+1)} be bounded and assume

there exists x̄ ∈ R
N with σ(x̄) = 0, where σ : RN −→ R

σ(x) := lim inf
k→∞

max (wk, |xk − x|) . (103)

Moreove, let {(W k
p )

− 1
2 } is uniformly positive definite.

Next, we present Lemma 1–6, which we need for proving Proposition 17.

Lemma 1 (Convergence of basic sequences) There exist K ⊂ K̂ ⊂ {1, 2, . . . , } and κ̄ ∈ R

such that

xk
K̂−→ x̄ , wk

K̂−→ 0 , (104)

κ̄k+1 K−→ κ̄ , (105)

xk
K−→ x̄ , wk

K−→ 0 . (106)

Proof Since we have 0 = σ(x̄) = lim infk→∞ max (wk, |xk − x̄|) due to assumption and (103) and
since wk ≥ 0 due to (82), there exist convergent subsequences of {wk}k≥1 and {xk − x̄}k≥1,

i.e. there exists (an infinite set) K̂ ⊂ {1, 2, . . . , } such that (104) holds. Since {κ̄k+1}k is bounded
by assumption, all its subsequences are also bounded. Therefore, in particular, its subsequence
{κ̄k+1}k∈K̂ is bounded. Consequently, {κ̄k+1}k∈K̂ has an accumulation point, i.e. there exists

(an infinite set) K ⊂ K̂ and κ̄ ∈ R such that (105) holds. Since κ̄k+1 ≥ 0 for k = 1, 2, . . . due
to (42), we have κ̄ ∈ R≥0. Since K ⊂ K̂ and a sequence is convergent, if and only if all of its
subsequences converge towards the same limit, (104) yields (106).
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Lemma 2 (Lagrange multipliers) Let I := {1, 2, . . . , N + 2} (Note: card(I) = n + 2), S :=
{(gkj , skj ) : j = 1, . . . , k} ⊆ R

N+1, and Ŝ := {(ĝkj , skj ) : j = 1, . . . , k} ⊆ R
N+1. Then for i ∈ I and

k ≥ 1 there exist λk,i, κk,i ∈ R and (gk,i, sk,i) ∈ S, (ĝk,i, ŝk,i) ∈ Ŝ such that

g̃kp =
∑

i∈I

λk,igk,i , s̃kp =
∑

i∈I

λk,isk,i , 1 =
∑

i∈I

λk,i , λk,i ≥ 0 . (107)

˜̂gkp =
∑

i∈I

κk,iĝk,i , ˜̂skp =
∑

i∈I

κk,iŝk,i , (1 =
∑

i∈I

κk,i ∧ κk,i ≥ 0) or (κk,i = 0 for all i ∈ I) .

(108)

In particular, we have
∑

i∈I

κk,i =

{
1 if κ̄k+1 > 0
0 if κ̄k+1 = 0 .

(109)

Proof We have (g̃kp , s̃
k
p) ∈ ch(S) due to (95) and (88). Due to Carathéodory’s theorem (cf.,

e.g., Neumaier [58]), for i ∈ I and k ≥ 1 there exist (gk,i, sk,i) ∈ S and λk,i ∈ R such
that (107) holds. Furthermore, we have (˜̂gkp ,

˜̂skp) ∈ ch(Ŝ) for κ̄k+1 > 0 and (˜̂gkp ,
˜̂skp) = 0 for

κ̄k+1 = 0 due to (95) and (89). In the case κ̄k+1 > 0 there exist (ĝk,i, ŝk,i) ∈ Ŝ, κk,i ∈ R for
i ∈ I with 1 =

∑

i∈I κ
k,i, κk,i ≥ 0 and (˜̂gkp ,

˜̂skp) =
∑

i∈I κ
k,i(ĝk,i, ŝk,i) due to Carathéodory’s

theorem (cf., e.g., Neumaier [58]). In the case κ̄k+1 = 0 choosing κk,i := 0 for all i ∈ I yields
(˜̂gkp ,

˜̂skp) = 0 =
∑

i∈I κ
k,i(ĝk,i, ŝk,i). Hence, (108) holds, which immediately implies (109).

Lemma 3 (Assignment) There exists j(k, i) ∈ {1, . . . , k} (i.e. a function j : {k ∈ N : k ≥
1} × I −→ {1, . . . , k}) with gk,i = gkj(k,i), s

k,i = skj(k,i), ĝ
k,i = ĝkj(k,i), and ŝk,i = ŝkj(k,i).

Proof Use (gk,i, sk,i) ∈ S and (ĝk,i, ŝk,i) ∈ Ŝ for i ∈ I and k ≥ 1 from Lemma 2.

Lemma 4 (Trial point convergence & implications) For all i ∈ I there exist ȳi ∈ R
N and

(an infinite set) K3 ⊂ K2 ⊂ K1 ⊂ K with

yj(k,i)
K1−−→ ȳi . (110)

(gj(k,i), ĝj(k,i))
K2−−→ (ḡi, ¯̂gi) ∈ ∂f(ȳi)× ∂F (ȳi) (111)

(ρj(k,i)Gj(k,i), λ
k,i, ρ̂j(k,i)Ĝj(k,i), κ

k,i)
K3−−→ (Gi, λ̄i, Ĝi, κ̄i) . (112)

Proof Since |yj(k,i)| ≤ |xj(k,i)|+CS holds for all i ∈ I and for all k ≥ 1 due to (85), the assumption
of the boundedness of {xk} yields that {yj(k,i)}k≥1,i∈I is bounde and therefore it has a convergent
subsequence, i.e. (110) holds. Furthermore, the local boundedness of ∂f resp. ∂F (cf. Proposition
2) imply that the sets B1 := {g ∈ ∂f(yj(k,i)) : yj(k,i) ∈ R

N , k ≥ 1, k ∈ K1, i ∈ I} and
B2 := {ĝ ∈ ∂F (yj(k,i)) : yj(k,i) ∈ R

N , k ≥ 1, k ∈ K1, i ∈ I} are bounded. Therefore,
B1 × B2 is bounded and consequently there exists a convergent subsequence (gj(k,i), ĝj(k,i)) ∈
∂f(yj(k,i))× ∂F (yj(k,i)), i.e. there exists (ḡi, ¯̂gi) ∈ R

N × R
N and (an infinite set) K2 ⊂ K1 with

(gj(k,i), ĝj(k,i))
K2−−→ (ḡi, ¯̂gi). The upper semicontinuity of ∂f resp. ∂F (cf. Proposition 2) and

(110) imply that for all i ∈ I (111) holds.

Since ρj(k,i) ∈ (0, 1] due to (52) and CG > 0, we obtain ρj(k,i)|Gj(k,i)| ≤ CG, which yields

the boundedness of the sequence {ρj(k,i)|Gj(k,i)|}. Due to (107), the sequence {λk,i} is bounded.

Since ρ̂j(k,i) ∈ (0, 1] due to (53) and ĈG > 0, we obtain ρ̂j(k,i)|Ĝj(k,i)| ≤ ĈG, which yields

the boundedness of the sequence {ρ̂j(k,i)|Ĝj(k,i)|}. Due to (108), the sequence {κk,i} is bounded.

Therefore, the sequence {ρj(k,i)|Gj(k,i)|, λk,i, ρ̂j(k,i)|Ĝj(k,i)|, κk,i} is bounded. Consequently, there

exists a convergent subsequence of {ρj(k,i)|Gj(k,i)|, λk,i, ρ̂j(k,i)|Gj(k,i)|, κk,i}, i.e. for all i ∈ I there

exist Gi, Ĝi ∈ R
N×N , λ̄i, κ̄i ∈ R and (an infinite set) K3 ⊂ K2 such that (112) holds.
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Lemma 5 (Complementarity condition) We have

∑

i∈I

λ̄i

(
ḡi +Gi(x̄− ȳi)

)
+ κ̄

∑

i∈I

κ̄i

(
¯̂gi + Ĝi(x̄− ȳi)

)
= 0 (113)

λk,isk,i
K3−−→ 0 (114)

κk,iŝk,i
K3−−→ 0 if κ̄ > 0 . (115)

Furthermore, the complementarity condition κ̄F (x̄) = 0 holds.

Proof We calculate g̃kp
K3−−→ ∑

i∈I λ̄i

(
ḡi + Gi(x̄ − ȳi)

)
and ˜̂gkp

K3−−→ ∑

i∈I κ̄i

(
¯̂gi + Ĝi(x̄ − ȳi)

)

by using (107), (108), Lemma 3, (15), (112), (111), (106) and (110) Since {κ̄k+1} is bounded

and {(W k
p )

− 1
2 } is uniformly positive definite (both due to assumption), Corollary 2 implies the

boundedness of {H−1
k }. Because of (106), (48) and (82), we have |Hk(g̃

k
p + κ̄k+1 ˜̂gkp)|

K3−−→ 0, which

implies (113) due to the regularity of Hk, (105) and the uniqueness of a limit and α̃k
p

K3−−→ 0,

which implies (114) due to (44), (107), Lemma 3, (107) and (17), as well as κ̄k+1F (xk)
K3−−→ 0,

which implies 0 = κ̄F (x̄) due to (105), the continuity of F and (106), as well as κ̄k+1Ãk
p

K3−−→ 0
which implies for κ̄ > 0 that (115) holds due to (105), (46), (108), Lemma 3, (108) and (17).

Lemma 6 (Subdifferential elements) We have

∑

i∈I

λ̄i

(
ḡi +Gi(x̄− ȳi)

)
∈ ∂f(x̄) ,







∑

i∈I

κ̄i

(
¯̂gi + Ĝi(x̄− ȳi)

)
∈ ∂F (x̄) if κ̄ > 0

{0} = κ̄∂F (x̄) if κ̄ = 0 .

Proof Since (107) holds for all k ∈ K3, (112) implies
∑

i∈I λ̄i = 1. Due to (112), we have

limK3

∑

i∈I κ
k,i =

∑

i∈I κ̄i. If κ̄ > 0, then — because of (105) and since K3(⊂ K) is an infinite

set — there exists k̂ ∈ K3 such that |κ̄k+1 − κ̄| < κ̄
2 , which implies 0 < κ̄

2 < κ̄k+1 for all k ∈ K̂3,

where K̂3 :=
{

k ∈ K3 : k ≥ k̂
}

⊆ K3 is an infinite set. Therefore, we obtain
∑

i∈I κ
k,i = 1 for all

k ∈ K̂3 due to (109), i.e. {∑i∈I κ
k,i}k∈K̂3

is constant on K̂3 and hence we have limK̂3

∑

i∈I κ
k,i =

1 . Since the sequence {
∑

i∈I κ
k,i}k∈K3

is convergent, the (infinite) subsequence {
∑

i∈I κ
k,i}k∈K̂3

(of the sequence {
∑

i∈I κ
k,i}k∈K3

) converges towards 1 and a sequence is convergent if and only

if all its subsequences converge towards the same limit, the limit of the sequence {∑i∈I κ
k,i}k∈K3

must be 1. Consequently, we obtatin for κ̄ > 0 that
∑

i∈I κ̄i = 1.

Due to (114) the sequence {λk,isk,i}k∈K3
is convergent and therefore necessarily bounded,

i.e. there exists C > 0 with 0 ≤ sk,i ≤ C
λk,i due to Lemma 3 as well as (17) and therefore

{sk,i}k∈K3
is bounded due to (112) for λ̄i 6= 0, where at least one such λ̄i exists because

∑

i∈I λ̄i =

1. Since the locality measure is monotone due to (18), {sk,i}k∈K3
is monotone. Consequently,

{sk,i}k∈K3
is convergent for λ̄i 6= 0, i.e. there exists si := limK3

sk,i. Therefore, (114), (112) and
λ̄i 6= 0 imply si = 0. Hence, we obtain for λ̄i 6= 0 that |x̄ − ȳi| = 0 due to Lemma 3, (18),
(110) and (106). For κ̄ > 0 the sequence {κk,isk,i}k∈K3

is convergent due to (115) and therefore

necessarily bounded, i.e. there exists Ĉ > 0 with 0 ≤ ŝk,i ≤ Ĉ
κk,i due to Lemma 3 as well as (17)

and therefore {ŝk,i}k∈K3
is bounded due to (112) for κ̄i 6= 0, where at least one such κ̄i exists

because
∑

i∈I κ̄i = 1. Since the locality measure is monotone due to (17) and (18), {ŝk,i}k∈K3

is monotone. Consequently, {ŝk,i}k∈K3
is convergent for κ̄i 6= 0, i.e. there exists ŝi := limK3

ŝk,i.
Therefore, (115), (112) and κ̄i 6= 0 imply ŝi = 0. Hence, we obtain in the case κ̄ > 0 for κ̄i 6= 0
that |x̄− ȳi| = 0 due to Lemma 3, (17), (18), (110) and (106). Therefore, if λ̄i 6= 0 resp. if κ̄ > 0
and κ̄i 6= 0, then |x̄− ȳi| = 0.

If we set q̄ :=
∑

i∈I λ̄i

(
ḡi + Gi(x̄ − ȳi)

)
, s̄i :=

{
|x̄− ȳi| for λ̄i = 0
0 for λ̄i 6= 0

}

resp. if we set q̄′ :=

∑

i∈I κ̄i

(
¯̂gi+ Ĝi(x̄− ȳi)

)
, s̄′i :=

{
|x̄− ȳi| for κ̄i = 0
0 for κ̄i 6= 0

}

in the case κ̄ > 0, then the assumptions of

Proposition 13 are satisfied and therefore we obtain the first two desired results. Since F is locally
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Lipschitz continuous, ∂F (x̄) is in particular bounded due to Proposition 2 and consequently we
obtain κ̄∂F (x̄) = {0} in the case κ̄ = 0.

Proposition 16 Let Assumption 6 be satisfied. Then there exists κ̄ ∈ R≥0 such that (9) holds
for (x̄, κ̄), i.e. if the sequence of iteration points and (single) Lagrange multipliers is bounded and
the sequence of iteration points has an accumulation point with σ(x̄) = 0, then this accumulation
point is stationary for the optimization problem (2).

Proof Due to (79), the continuity of F and (106), we obtain F (x̄) ≤ 0. Due to Lemma 5,
the complementarity condition κ̄F (x̄) = 0 holds. Using (113) and Lemma 6, we calculate 0 ∈
∂f(x̄) + κ̄∂F (x̄).

Proposition 17 Let (95) be satisfied. If there exist x̄ ∈ R
N and K ⊂ {1, 2, . . . } with x

K−→ x̄,
then

tkLvk
K−→ 0 . (116)

Proof Lukšan & Vlček [45, Proof of Lemma 3.5(ii)].

Proposition 18 Let (95) be satisfied, let the sequence of (symmetric, positive definite matrices)
{Hk} be bounded and assume that there exists an infinite subset K ⊂ {1, 2, . . . } and x̄ ∈ R

N

with

xk
K−→ x̄ . (117)

Then we have for all i ≥ 0

xk+i
k

K−→∞−−−−−→ x̄ . (118)

If additionally σ(x̄) > 0 holds, then we have for all i ≥ 0

tk+i
L

k
K−→∞−−−−−→ 0 , (119)

and for fixed ε0 > 0 and for all fixed r ≥ 0 there exists k̃ ≥ 0 such that

wk+i ≥ σ(x̄)
2 , tk+i

L < ε0 (120)

for all k > k̃, k ∈ K and 0 ≤ i ≤ r.

Proof We show (118) by induction: The base case holds for i = 0 due to assumption (117). Now,
let the induction hypothesis be satisfied for i ≥ 0. We have

dk+i = H2
k+i(g̃

k+i
p + κ̄k+i+1 ˜̂gk+i

p ) (121)

due to (39), (42), (43) and (45) as well as

1
2 |Hk+i(g̃

k+i
p + κ̄k+i+1 ˜̂gk+i

p )|2 ≤

dTk+iW
k+i
p dk+i +

1
2d

T
k+i

( ∑

j∈Jk+i

λk+i
j Gk+i

j + λk+i
p Gk+iµk+i

j Ĝk+i
j + µk+i

p Ĝk+i
)
dk+i (122)

due to (68) and the positive definiteness of W k+i
p as well as

αk+i
p + κ̄k+i+1Ak+i

p + κ̄k+i+1
(
− F (xk+i)

)
≥ 0 (123)

due to (44), (42), (46) and (79). Now, using (49), (121), (122), adding (123), using (47), the

boundedness of {Hk} (by assumption), tk+i
L ∈ [0, 1] and (116) yields |xk+(i+1) − xk+i| K−→ 0, and

therefore |xk+(i+1) − x̄| K−→ 0 follows from the induction hypothesis.
We show (119) by contradiction: Suppose (119) is false, i.e. there exists i ≥ 0, t̄ > 0, K̄ ⊂ K:

tk+i
L ≥ t̄ for all k ∈ K̄. Since 0 ≤ t̄wk+i ≤ −tk+i

L vk+i
K̄−→ 0 due to (82), (48), (68), tk+i

L ∈ [0, 1],
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(47) and (116), we have wk+i
K̄−→ 0 and therefore we obtain σ(x̄) = 0 due to (103) and (118),

which is a contradiction to the assumption σ(x̄) > 0.

We show (120): Let r ≥ 0 be fixed and 0 ≤ i ≤ r. Since we have σ(x̄)
2 < limK wk+i due to the

assumption σ(x̄) > 0, (103) and (118), because of (119) and because ε0 > 0 is a fixed number by

assumption, there exist ki ≥ 0 with σ(x̄)
2 ≤ wk+i and tk+i

L < ε0 for all k > ki with k ∈ K. Now,

setting k̃ := max {ki : 0 ≤ i ≤ r} yields (120).

Proposition 19 Let p, g,∆ ∈ R
N and c, u, w, β ∈ R, m ∈ (0, 1), α ≥ 0 with

w = 1
2 |p|

2 + α , v = −(|p|2 + α) , − β − gT p ≥ mv , c = max (|g|, |p|,
√
α)

and define Q : R −→ R by

Q(ν) := 1
2 |νg + (1− ν)(p+∆)|2 + νβ + (1− ν)α ,

then
min

ν∈[0,1]
Q(ν) ≤ w − w2 (1−m)2

8c2 + 4c|∆|+ 1
2 |∆|2 .

Proof Lukšan & Vlček [45, Lemma 3.4].

We introduce the following notation (cf. Magnus & Neudecker [48, p. 31, Section 2 resp. p. 34, Sec-
tion 4]).

Definition 5 Let A,B ∈ R
N×N . We define the Frobenius norm of A by |A|

F
:=
(∑N

i,j=1 A
2
ij

) 1
2

and we define the vectorization A(:) of A as well as the Kronecker product A⊗B of A and B by

A(:) :=

(
A:1

...
A:N

)

∈ R
N2

, A⊗B :=

(
A11B ... A1NB

...
...

AN1B ... ANNB

)

∈ R
N2×N2

. (124)

Proposition 20 Let A,B,C ∈ R
N×N . Then

|A| ≤ |A|
F
≤

√
N |A| , (ABC)(:) = (CT ⊗A)B(:) , |A⊗A| ≤ N |A|2 . (125)

Proof The first property of (125) holds due to Golub & van Loan [18, p. 56, Section 2.3.2],
the second holds due to Magnus & Neudecker [48, p. 35, Theorem 2], and the third holds
due to (124).

Now, we introduce differentiability of matrix valued functions (cf. Magnus & Neudecker

[48, p. 107, Definition 3]).

Definition 6 Let A : Rp −→ R
N×N and µ0 ∈ R

p be fixed. If there exists B(µ0) ∈ R
N2×p with

A(:)(µ0 + µ) = A(:)(µ0) +B(µ0)µ+R(:)(µ0, µ) (126)

for all µ ∈ R
p in a neighborhood of µ0 and limµ→0

R(:)(µ0,µ)

|µ| = 0, then A is said to be differentiable

at µ0. Furthermore, the N ×N -matrix dA(µ0, µ) defined by

dA(:)(µ0, µ) := B(µ0)µ ∈ R
N2

(127)

is called the (first) differential of A at µ0 with increment µ and B(µ0) is called the first derivative
of A at µ0.

Proposition 21 Let T := {Y : Y ∈ R
N×N , detY 6= 0} be the set of non-singular N × N -

matrices. If A : Rp −→ T is k times (continuously) differentiable, then so is B : Rp −→ T

defined by B(µ) := A(µ)−1 and

dB(µ0, µ) = −B(µ0)dA(µ0, µ)B(µ0) . (128)

Proof Magnus & Neudecker [48, p. 156, Theorem 3].
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Proposition 22 Let f : Ω ⊆ R −→ R
q (with an open interval Ω) be continuously differentiable

and let ω := supz∈Ω |f ′(z)| < ∞, then

|f(y)− f(x)| ≤ ω|y − x| (129)

for all x, y ∈ Ω (i.e. f is Lipschitz continuous on Ω).

Proof This is a direct consequence of the mean value theorem for vector valued functions (cf.,
e.g., Heuser [25, p. 278, 167.4 Mittelwertsatz für vektorwertige Funktionen]).

Proposition 23 Let {κ̄k+1} be bounded and let {(W k
p )

− 1
2 } be bounded and uniformly positive

definite. For k ≥ 1 we define Zk : R≥0 −→ R
N×N

Zk(s) :=
(
W k

p +Gk + sĜk
)− 1

2 . (130)

Then we have for all k ≥ 1

|Zk(κ̄
k+2)− Zk(κ̄

k+1)| ≤ C5|κ̄k+2 − κ̄k+1| , 0 ≤ C5 < ∞ , (131)

where C5 := C2C4, C4 := NC2
0C3, C3 := N

1
2
¯̂
CG and C2 is a positive constant.

Proof We define for all k ≥ 1

Yk(s) :=
(
W k

p +Gk + sĜk
)−1

(132)

and therefore we have |Yk(κ̄
k+1)−1| ≤ C1 for all k ≥ 1 due to (132) and (102), which is equivalent

to {Yk(κ̄
k+1)} being uniformly positive definite due to (100), i.e. there exists C̃2 > 0 with

λmin(Yk(κ̄
k+1)) ≥ C̃2. Consequently, we obtain for all k ≥ 1

1

(λmin(Yk(κ̄k+2)))
1
2 +(λmin(Yk(κ̄k+1)))

1
2
≤ 1

2 C̃
− 1

2
2

and hence we estimate for all k ≥ 1

|Yk(κ̄
k+2)

1
2 − Yk(κ̄

k+1)
1
2 | ≤ C2|Yk(κ̄

k+2)− Yk(κ̄
k+1)| , (133)

due to (97), where we set C2 := 1
2 C̃

− 1
2

2 > 0.
Defining

Xk(s) := W k
p +Gk + Uk(s) , Uk(s) := sĜk , Ûk :=

¯̂
Gk

(:) (134)

for k ≥ 1, we calculate Uk,(:)(t − s) = Ûk(t − s) due to (134). Therefore, we have Xk(t) =
Xk(s)+Uk(t− s) for all k ≥ 1 and for all s, t ∈ R due to (134), which is equivalent to Xk,(:)(t) =

Xk,(:)(s)+ Ûk(t−s). Consequently, (126) and (127) imply that the differential of Xk at s is given
by

dXk,(:)(s, t− s) = Ûk(t− s) (135)

(with Rk(s, t− s) ≡ 0) and that the derivative of Xk at s is constant, which implies that Xk is
continuously differentiable. Furthermore, we estimate for all k ≥ 1

|Ûk| ≤ C3 , (136)

due to (134), (125) and the initialization of Algorithm 3.

Since Ĝk is symmetric and positive definite, we obtain that Uk(s) is symmetric and positive
semidefinite for all s ≥ 0 (cf. (134)). Consequently, we have W k

p � Xk(s) due to the symmetry

and the positive definiteness of Gk, (96) and (134). Therefore, we estimate for all k ≥ 1 and for
all s ≥ 0

|Yk(s)| ≤ C0 . (137)

due to (132), (134), (98) and (101).



Title Suppressed Due to Excessive Length 29

For k ≥ 1 Yk we define

Vk(s) :=
(
Yk(s)⊗ Yk(s)

)
Ûk . (138)

Since Xk is continuously differentiable (cf. (135)), Proposition 21 yields the continuous differen-
tiability of Yk(s) = Xk(s)

−1 due to (132) and (134), as well as dYk,(:)(s, t − s) = Vk(s)(t − s)
due to (128), (125), Yk(s) ∈ R

N×N
sym , (135) and (138) and therefore (127) implies that Vk(s) is the

derivative of Yk at s. Furthermore, we estimate for all k ≥ 1

sup
s≥0

|Vk(s)| ≤ C4 . (139)

due to (138), (125), (136) and (137).
Since Yk is continuously differentiable for all s, t ∈ S := {ξ ∈ R : ξ ≥ 0} (note that S is an

interval) and since the derivative of Yk at s is given by Vk(s) (cf. (138)) and since the norm of
the derivative |Vk(s)| is bounded on S due to (139), we obtain

|Yk,(:)(t)− Yk,(:)(s)| ≤ C4|t− s| (140)

for all s, t ∈ S and for all k ≥ 1 due to (129).
Now, we estimate for all k ≥ 1

|Zk(κ̄
k+2)− Zk(κ̄

k+1)| ≤ C5|κ̄k+2 − κ̄k+1|

due to (130), (132), (133), (125) and (140).

Furthermore, we obtain C5 = C2N
3
2C2

0
¯̂
CG and therefore the fact that C2 is a positive constant

due to (133), the fact that N ≥ 1 is a fixed finite natural number, combining (101) with the
positive definiteness of W k

p , and the initialization of Algorithm 3 yield (131).

From now on let the following assumption be satisfied.

Assumption 7. Let (95) be satisfied. Furthermore, let the sequence {(xk, κ̄
k+1)} be bounded, let

the sequence (of symmetric, positive definite matrices) {(W k
p )

− 1
2 } be bounded as well as uniformly

positive definite and let x̄ ∈ R
n be any accumulation point of {xk}, i.e. there exists (an infinite

set) K ⊂ {1, 2, . . . } with

xk
K−→ x̄ , (141)

and demand

κ̄k+2 − κ̄k+1 K−→ 0 (142)

as well as

tinf0 := inf
k≥0

tk0 > 0 (143)

(cf. Remark 8).

Next, we present Lemma 7–18, which we need for proving Theorem 8.

Lemma 7 (Bounded basic sequences) The following boundedness statements hold:

{yk}, {ρkGk}, {ρ̂kĜk} and {gk} are bounded, (144)

{Hk} is bounded, (145)

{gkk}, {Hkg
k
k} and {αk

k} are bounded. (146)

Proof (144) holds as this statement was shown in the proof of Lemma 4, where only the assump-
tion of the boundedness of {xk} was used, and consequently, this statement is here also true.

Since {(W k
p )

− 1
2 } is bounded due to assumption, (145) holds due to Corollary 2. Due to (63), the

boundedness of {xk} and (144) resp. |Hkg
k
k | ≤ |Hk| · |gkk | and (145) resp. (36), (59), (56), (51),

the Cauchy-Schwarz inequality and the fact that f is continuous on (the whole) R
n, we obtain

(146).
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Lemma 8 (Bounded aggregate sequences) We define

τk := α̃k
p + κ̄k+1Ãk

p + κ̄k+1
(
− F (xk)

)
≥ 0 , (147)

then

{wk}, {g̃kp}, {˜̂gkp}, {α̃k
p}, {κ̄k+1Ãk

p}, {Hk(g̃
k
p + κ̄k+1 ˜̂gkp)} and {τk} are bounded . (148)

Proof Since (λ, λp, µ, µp) ∈ R
2(|Jk|+1) with

λj :=

{
1 for j = k

0 for j ∈ Jk \ {k}

}

, λp := 0 , µj := 0 for all j ∈ Jk , µp := 0 (149)

is feasible for the (dual) problem (21) for k ≥ 1 (Note: This problem is written as a minimization
problem), we obtain (Note: ŵk is the optimal function value of (21)) due to (81), (43), (80), (45),
(42) and inserting the feasible point from (149) that ŵk ≤ 1

2 |Hkg
k
k |2 + αk

k. Hence, due to (48)
and (82), we estimate

0 ≤ 1
2 |Hk(g̃

k
p + κ̄k+1 ˜̂gkp )|2 + α̃k

p + κ̄k+1Ãk
p + κ̄k+1

(
− F (xk)

)
≤ 1

2 |Hkg
k
k |2 + αk

k

and therefore (146) as well as the non-negativity of α̃k
p , κ̄

k+1, Ãk
p resp. −F (xk) due (44), (42),

(46) resp. (79) imply that {wk}, {α̃k
p}, {κ̄k+1Ãk

p}, {Hk(g̃
k
p + κ̄k+1 ˜̂gkp )} and {τk} are bounded.

Now, consider the proof of Lemma 5: There we only used the first consequence xk
K−→ x̄ of (106)

(and this property is also satisfied here due to (141)) of the assumption σ(x̄) = 0 for showing the
convergence of g̃kp resp. ˜̂gkp on a subsequence. Consequently, g̃kp resp. ˜̂gkp are also bounded here.

[The second property (wk
K−→ 0) of (106) resulting from σ(x̄) = 0 there, is first used directly

after proving the boundedness of g̃kp and ˜̂gkp . If this property was already used for showing these
boundedness results, the above implication would be false, since then indeed σ(x̄) = 0 (and

not only xk
K−→ x̄) would be used for proving the boundedness of g̃kp and ˜̂gkp , and the relevant

situation in the proof of Theorem 8 will be σ(x̄) > 0.]

Lemma 9 (σ is finite) σ(x̄) is finite.

Proof This is true due to (103), the assumption of the boundedness of {xk} and (148).

Lemma 10 (Cauchy sequences) We have

sk+1
p − s̃kp

K−→ 0 , ŝk+1
p − ˜̂skp

K−→ 0 , (150)

f(xk+1)− f(xk)
K−→ 0 , F (xk+1)− F (xk)

K−→ 0 , (151)

fk+1
p − f̃k

p
K−→ 0 , F k+1

p − F̃ k
p

K−→ 0 , ∆k
K−→ 0 , (152)

where
∆k := Hk+1

(
(gk+1

p + κ̄k+1ĝk+1
p )− (g̃kp + κ̄k+1 ˜̂gkp)

)
. (153)

Proof Since the assumptions of Proposition 18 for applying (118) are satisfied — xk
K−→ x̄ holds

due to (141), σ(x̄) > 0 holds due to Lemma 9 — applying (118) for i = 1 and i = 0 yields

xk+1 − xk
K−→ 0. Due to (57) and (58), we obtain (150). Because of (141) and the continuity

of f and F , we obtain (151). Due to (95) the assumptions of Proposition 12 are satisfied and
therefore we estimate using (88), (144) and (52) resp. (89), (90), (144) and (53) that |Gk+1

p | ≤
CG , |Ĝk+1

p | ≤ ĈG. Due to (60), the Cauchy-Schwarz inequality and (148) resp. (62), the
Cauchy-Schwarz inequality and (148) resp. (153), (64), (67), (42), (145) and the boundedness of
{κ̄k+1} (by assumption), we obtain (152).

Lemma 11 (Zero sequence) We have

∣
∣(αk+1

p − α̃k
p) + κ̄k+1(Ak+1

p − Ãk
p) + κ̄k+1

(
F (xk)− F (xk+1)

)∣
∣ K−→ 0 .
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Proof Because of 0 ≤ s̃kp ≤
(

α̃k
p

γ1

) 1
ω1

due to (43) and (44) and because of the boundedness of

{α̃k
p} due to (148), s̃kp is bounded. Since the function ξ 7→ ξω1 with ω1 ≥ 1 is Lipschitz continuous

on every bounded subset of R+, there exists cL > 0 with

|(sk+1
p )ω1 − (s̃kp)

ω1 | ≤ cL|sk+1
p − s̃kp| . (154)

In the case κ̄k+1 = 0, we have κ̄k+1 ˜̂skp = 0 due to (42) and (45). Now consider the case κ̄k+1 >

0. Because of 0 ≤ κ̄k+1 ˜̂skp ≤ (κ̄k+1)ω2

(
κk+1Ãk

p

γ2

) 1
ω2

due to (45) and (46) and because of the

boundedness of {κ̄k+1} due to assumption and the boundedness of {κ̄k+1Ãk
p} due to (148),

κ̄k+1 ˜̂skp is bounded. Therefore, {κ̄k+1 ˜̂skp} is bounded for all κ̄k+1 ≥ 0. Since the function ξ 7→
ξω2 with ω2 ≥ 1 is Lipschitz continuous on every bounded subset of R+, there exists c̄L > 0
with |(κ̄k+1ŝk+1

p )ω2 − (κ̄k+1 ˜̂skp)
ω2 | ≤ c̄Lκ̄

k+1|ŝk+1
p − ˜̂skp| and hence, using the assumption of the

boundedness of {κ̄k+1} and ω2 ≥ 1 as well as setting ĉL := c̄L supk≥1 (κ̄
k+1)1+

1
ω2 < ∞, we obtain

κ̄k+1|(ŝk+1
p )ω2 − (˜̂skp)

ω2 | ≤ ĉL|ŝk+1
p − ˜̂skp| . (155)

We remind of the formula |max (a, b)−max (c, d)| ≤ |a−c|+ |b−d| for all a, b, c, d ∈ R. Therefore,

we have |αk+1
p − α̃k

p |
K−→ 0 due to (36), (44), (154), (152), (151) and (150). Furthermore, due to

(37) and (46), we obtain

|Ak+1
p − Ãk

p| ≤ |F k+1
p − F̃ k

p |+ |F (xk)− F (xk+1)|+ γ2|(ŝk+1
p )ω2 − (˜̂skp)

ω2 | .

Multiplying this last inequality with κ̄k+1 ≥ 0 (due to (42)) and using (155), the boundedness of

{κ̄k+1}, (152), (151) and (150) yields κ̄k+1|Ak+1
p − Ãk

p|
K−→ 0 and κ̄k+1|F (xk) − F (xk+1)| K−→ 0.

Therefore, using (42), we obtain the desired result.

Lemma 12 (Estimates for zero sequences) Assume σ(x̄) > 0. Then the constants

c := sup
k≥1

(

|Hkg
k+1
k+1 |, |Hk(g̃

k
p + κ̄k+1 ˜̂gkp)|,

√
τk

)

, δ := σ(x̄)
2 , c̄ := δ 1−mR

4c ,

c̃ := sup
k≥1

(|gk+1
k+1 |+ |g̃kp + κ̄k+1 ˜̂gkp |) , C6 := c̃C5 max (2c, 1, 1

2 c̃C5) .
(156)

are finite and there exists k̄ ≥ 0 such that

4c|∆k|+ |∆k|
2

2 +
∣
∣(αk+1

p − α̃k
p) + κ̄k+1(Ak+1

p − Ãk
p) + κ̄k+1

(
F (xk)− F (xk+1)

)∣
∣ < 1

2 c̄
2

C6(|κ̄k+2 − κ̄k+1|+ |∆k| · |κ̄k+2 − κ̄k+1|+ |κ̄k+2 − κ̄k+1|2) < 1
2 c̄

2
(157)

hold for all k > k̄.

Proof Then c is finite due to (156), (145), (146) and (148). Furthermore, we have c > 0 (If
we had c = 0, then using (156), (147) and (48) would imply wk = 0 for all k ≥ 1, which is a
contradiction to assumption (95)). Due to (156), σ(x̄) > 0 and 1−mR > 0 (cf. the initialization

of Algorithm 3), we have c̄ = σ(x̄)
2 · 1−mR

4c , where σ(x̄) > 0 implies c̄ > 0, and Lemma 9 implies
c̄ < ∞. Due to (156), (146), (148) and the assumption of the boundedness of {κ̄k+1}, c̃ ≥ 0

is bounded. Therefore, (156) and (131) imply 0 ≤ C6 < ∞. Since 4c|∆k| + |∆k|
2

2 +
∣
∣(αk+1

p −
α̃k
p) + κ̄k+1(Ak+1

p − Ãk
p) + κ̄k+1

(
F (xk)− F (xk+1)

)∣
∣ K−→ 0 due to (152) and Lemma 11 and since

C6(|κ̄k+2 − κ̄k+1|+ |∆k| · |κ̄k+2 − κ̄k+1|+ |κ̄k+2 − κ̄k+1|2)| K−→ 0 due to (142), there exists k̄ ≥ 0
such that (157) holds for all k > k̄.

Lemma 13 (Estimate with error term) We define for k ≥ 1

qk := Hkg
k+1
k+1 , pk := Hk(g̃

k
p + κ̄k+1 ˜̂gkp)

ek := (2c+ |∆k|)c̃|Ek|+ 1
2 c̃

2|Ek|2 , Ek := Hk+1 −Hk .
(158)

Then we have for all ν ∈ [0, 1] and for all k ≥ 1

1
2 |νHk+1g

k+1
k+1 + (1− ν)Hk+1(g

k+1
p + κ̄k+1ĝk+1

p )|2 ≤ 1
2 |νqk + (1− ν)(pk +∆k)|2 + ek . (159)
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Proof Setting zk := Ekg
k+1
k+1 , we obtain Hk+1g

k+1
k+1 = qk + zk due to (158). Setting ẑk := Ek(g̃

k
p +

κ̄k+1 ˜̂gkp), we obtain Hk+1(g
k+1
p + κ̄k+1ĝk+1

p ) = pk+∆k+ ẑk due to (153) and (158). Furthermore,
we estimate for all ν ∈ [0, 1]

(
νqk + (1− ν)(pk +∆k)

)T (
νzk + (1− ν)ẑk

)
≤ (2c+ |∆k|)|νzk + (1− ν)ẑk|

due to the Cauchy-Schwarz inequality, (158) and (156) as well as |νzk + (1− ν)ẑk| ≤ c̃|Ek| due
to (156). Hence we obtain (159) due to and (158).

Lemma 14 (Index construction) Assume σ(x̄) > 0 and define

r̂ := 3
2 · c2

c̄2
+ im , r := il + r̂ . (160)

Then there exists a finite index k0 ∈ K such that

wk ≥ δ , tkL < tk0 (161)

in > il + im (162)

hold for k := k0 + il + i with i ∈ [im, r̂] ∩ {0, 1, . . . }.

Proof We obtain r ≥ il + im ≥ il ≥ 0 due to (160) and the initialization of Algorithm 3.
Therefore, [il, r] is a well-defined interval and since il ≥ 0 is a natural number (cf. Algorithm 3),
there exists i ∈ [il, r]∩{0, 1, . . . } ⊆ [0, r]. Furthermore, [im, r̂] is a well-defined interval and since
im ≥ 0 is a natural number (cf. Algorithm 3), there exists i ∈ [im, r̂] ∩ {0, 1, . . . } ⊆ [0, r̂]. The
assumptions of Proposition 18 are satisfied — (95) holds due to assumption, {Hk} is bounded

due (145), we have xk
K−→ x̄ due to (141), we have σ(x̄) > 0 due to assumption and Lemma 9,

r ≥ 0 is a fixed number due to (160), the choice ε0 := tinf0 > 0 yields a fixed positive number ε0
due to (143) — and therefore we can apply Proposition 18: For r defined in (160) there exists
k̃ ≥ 0 with

wk+i ≥ σ(x̄)
2 = δ , tk+i

L < ε0 = tinf0 (163)

for all k > k̃, k ∈ K and for all 0 ≤ i ≤ r due to (120) and (156). Since K is an infinite set due
to (141) (K ⊂ {1, 2, . . . , }), we can choose k0 ∈ K with k0 > max (k̃, k̄) ≥ k̃ (k̄ was introduced in
Lemma 12). Hence, (163) holds in particular for all k ≥ k0 and hence for k = k0, i.e. wk0+i ≥ δ

and tk0+i
L < tinf0 for all 0 ≤ i ≤ r. Because of tk0+i

L ≤ tk0+i
0 for all 0 ≤ i ≤ r due to (143), we

obtain
wk0+i ≥ δ , tk0+i

L < tk0+i
0 (164)

for all 0 ≤ i ≤ r. Due to (160), (164) holds in particular for all i ∈ [il, r] = il + [0, r̂] which yields
wk0+il+i ≥ δ and tk0+il+i

L < tk0+il+i
0 with i ∈ [0, r̂]. In particular, these last two inequalities hold

for all i ∈ [im, r̂] ∩ {0, 1, . . . , } and now setting k := k0 + il + i yields the desired index and that
(161) holds after step 6 (line search) of Algorithm 3. Due to (164), we have tk0+i

L < tk0+i
0 in

particular for all 0 ≤ i ≤ il + im. Consequently, the case (54) always occurs for the il + im + 1
subsequent iterations k0 +0, . . . , k0 + il, . . . , k0 + il + im (Remember: in ≥ 0 denotes the number
of subsequent short and null steps according to the initialization of Algorithm 3) and therefore
(162) holds at the end of iteration k0 + il + im (even if the initial value of in is zero at the
beginning of iteration k0 + 0) after step 6 (line search) of Algorithm 3.

Lemma 15 (Error estimate) For k defined in Lemma 14 we have ek < 1
2 c̄

2.

Proof Since in > il+ im due to (162) and since in increases at most by one at each iteration due
to (54), we have at iteration k at least in ≥ il + im and hence either the case (34) or (35) occurs
(at iteration k). Furthermore, since in > il + im due to (162), the cases (32) and (35) occur at
iteration k+1. Therefore, combining these facts yields Ek = Zk(κ̄

k+2)−Zk(κ̄
k+1) due to (158),

(41), (42), the fact that
∑

j∈Jk
λk
j + λk

p = 1 =
∑

j∈Jk+1
λk+1
j + λk+1

p , and (130). Since {κ̄k+1}
is bounded and {(W k

p )
− 1

2 } is bounded as well as uniformly positive definite (by assumption),

we can make use of Proposition 23 and hence we obtain |Ek| ≤ C5|κ̄k+2 − κ̄k+1| due to (131).
Consequently, we obtain he desired estimate due to (158), (156) and (157).
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Lemma 16 (Termination criterion estimate) For k defined in Lemma 14 a short or null
step which changes the model of the objective function is executed and

wk+1 ≤
∣
∣(αk+1

p − α̃k
p) + κ̄k+1(Ak+1

p − Ãk
p) + κ̄k+1

(
F (xk)− F (xk+1)

)∣
∣+ ek

+ min
ν∈[0,1]

1
2 |νqk + (1− ν)(pk +∆k)|2 + ναk+1

k+1 + (1− ν)τk .

Proof Combining (161) with step 6 (line search) of Algorithm 3 and considering the case in >

il + im ≥ il due to (162) in the line search (Algorithm 4), we obtain that at iteration k a short
or null step which changes the model of the objective function is executed. Furthermore, is is
unchanged (since no serious step is executed), i.e. is ≤ ir (no bundle reset) still holds (If is > ir,
then we would have had a serious step at iteration k, as a bundle reset can only occur after a
serious step). Therefore, (λ, λp, µ, µp) ∈ R

2(|Jk+1|+1) with

λj :=

{
ν for j = k + 1
0 for j ∈ Jk+1 \ {k + 1}

}

, λp := 1−ν , µj := 0 for all j ∈ Jk+1 , µp := (1−ν)κ̄k+1 ,

(165)
where ν ∈ [0, 1], is feasible for the (k + 1)st (dual) problem (21) (Note: This problem is written
as a minimization problem) and, hence, due to (82), (81), (43), (45), (80), (42), inserting the
feasible point from (165), (147), taking into account that ν ∈ [0, 1] and (159), we estimate (Note:
ŵk+1 in (81) is the optimal function value of (21))

wk+1 ≤ 1
2 |νqk + (1− ν)(pk +∆k)|2 + ek + ναk+1

k+1 + (1− ν)τk

+
∣
∣(αk+1

p − α̃k
p) + κ̄k+1(Ak+1

p − Ãk
p) + κ̄k+1

(
F (xk)− F (xk+1)

)∣
∣

and consequently, since ν ∈ [0, 1] is arbitrary, we obtain the desired estimate.

Lemma 17 (Termination criterion is shrinking) For k defined in Lemma 14 we have
wk+1 < wk − c̄2.

Proof Since for p := pk, g := qk, ∆ := ∆k, v := vk− 1
2d

T
k

(∑

j∈Jk
λk
jG

k
j +λk

pG
k+µk

j Ĝ
k
j +µk

pĜ
k
)
dk,

w := wk, β := αk+1
k+1, m := mR and α := τk, the assumptions of Proposition 19 are satisfied and

since we have δ2
(1−mR)2

8c2 = 2c̄2 due to (156), now applying Proposition 19 yields the desired
estimate due to Lemma 16, (157), Lemma 15 and (161).

Lemma 18 (Contradiction) For k0 from Lemma 14 we have wk0+n+1 < 0.

Proof Set n := maxz≤r̂,z∈{0,1,... } z (Note that r̂ > 0 due to (160)), then we have n+ 1 > r̂ and

hence (160) implies −c̄2(n + 1 − im) < − 3
2c

2. Now, applying Lemma 17 (n − im) + 1 times as
well as using (48), (147) and (156) yields

wk0+n+1 < wk0+im − (n+ 1− im)c̄2 < wk0+im − 3
2c

2 ≤ 1
2c

2 + c2 − 3
2c

2 = 0 .

Theorem 8 Let Assumption 7 be satisfied. Then there exists κ̄ ∈ R≥0 such that (9) holds for
(x̄, κ̄), i.e. each accumulation point of the sequence of iteration points {xk} is stationary for the
optimization problem (2).

Proof (by contradiction) Since {(xk, κ̄
k+1)} is bounded and {(W k

p )
− 1

2 } is uniformly positive
definite (both due to assumption) , the statement follows from Proposition 16, if we can show
σ(x̄) = 0. We suppose this is false, i.e. we have due to (103) σ(x̄) > 0 or σ(x̄) = ∞. Due to
Assumption 7, we can make use of Lemma 7–9, which implies that only the case σ(x̄) > 0 occurs.
Therefore, we can use Lemma 10–18, which yields a contradiction to the non-negativity of wk

for all k ≥ 1 due to (82).

Remark 10 In examples that do not satisfy the nonsmooth constraint qualification (8), κ̄k+1

became very large in Algorithm 3 (Note that Theorem 8 has in particular the assumption that
κ̄k+1 is bounded).
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The assumption (142) of Theorem 8 was satisfied in all numerical examples in Fendl &

Schichl [14] in which the termination criterion of Algorithm 3 was satisfied.
If tk0 is only modified in, e.g., finitely many iterations of Algorithm 3, then (143) is satisfied

(cf. Remark 8).
For an unconstrained optimization problem we obtain in the proof of Lemma 15 that Ek =

0 which implies that ek = 0 due to (158). Therefore, Lemma 15 is trivially satisfied in the
unconstrained case, since c̄ from 156 is positive.

If we demand that all assumptions in the proof of convergence, which we imposed on W k
p , are

satisfied for
∑

j∈Jk
λk
jG

k
j + λk

pG
k, then the convergence result also holds in the case W k

p = 0. This
is important, since first numerical results in the unconstrained case showed a better performance
for the choice W k

p = 0, which is due to the fact that otherwise for a smooth, convex objective
function f the Hessian information in the QCQP (20) is distorted — this can be seen by putting
the constraints of the QCQP (20) into its objective function, which is then given by

max
j∈Jk

(
− αk

j + dT gkj + 1
2d

TGk
j d
)
+ 1

2d
TW k

p d = max
j∈Jk

(
− αk

j + dT gkj + 1
2d

T (Gk
j +W k

p )d
)

.

5 Conclusion

In this paper we investigated the possibility of extending the SQP-approach of the bundle-Newton
method for nonsmooth unconstrained minimization byLukšan & Vlček [45] to nonsmooth
nonlinearly constrained optimization problems, where we did not use a penalty function or a
filter or an improvement function to handle the constraints. Instead — after the commitment to
only accept strictly feasible points as iteration points, while trial points do not need to have this
property — we computed the search direction by solving a convex QCQP in the hope to obtain
preferably feasible points that yield a good descent. Since the duality gap for such problems is
zero, if the iteration point is strictly feasible, we were able to establish a global convergence result
under certain assumptions. Furthermore, we discussed the presence of tk0 in the line search, we
explained why this should not be a problem when we use the solution of the QCQP as the search
direction and we referred to Fendl & Schichl [14] that this turns out to be true in practice
for at least many examples of the Hock-Schittkowski collection by Schittkowski [63, 64].
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