
Chapter 15

THE NOP-2 MODELING LANGUAGE

Hermann Schichl∗

Institut für Mathematik der Universität Wien

Strudlhofgasse 4, A-1090 Wien, Austria

Hermann.Schichl@esi.ac.at

Arnold Neumaier
Institut für Mathematik der Universität Wien

Strudlhofgasse 4, A-1090 Wien, Austria

Arnold.Neumaier@univie.ac.at

http://www.mat.univie.ac.at/∼neum

Abstract We present a short overview over the modeling language NOP-2 for specifying
general optimization problems, including constrained local or global nonlinear
programs and constrained single and multistage stochastic programs. The pro-
posed language is specifically designed to represent the internal (separable and
repetitive) structure of the problem.

Keywords: Modeling Language, Global Optimization, NOP-2

15.1 Introduction

Solving global optimization problems effectively in a rigorous way requires a
lot of analytical knowledge about the functions involved. The speed of a branch-
and-bound approach is, e.g., directly correlated to the amount of overestimation
produced by interval enclosures of linear, quadratic, or convex relaxations.

∗supported by EU project COCONUT IST-2000-26063

285

286 MODELING LANGUAGES IN MATHEMATICAL OPTIMIZATION

The origin of the NOP-2 modeling language does not lie in the development
of modeling languages but in global optimization. The NOP input format was
constructed in 1997 by Arnold Neumaier mainly as an interface to the global
optimization package GLOPT [165, 43], a global solver for nonlinear partial
separable global NLPs. NOP provided a good means for entering specifications
in a compact line oriented syntax; it had the possibility to mix element functions
and mathematical notation but it did not have the strength of a true modeling
language, it did not provide named variables, extensibility of element functions,
or matrices. The first parser was written in FORTRAN 77, as was the GLOPT

solver.
In the following year 1998, GLOPT turned out to be too inflexible, so the

system was redesigned, and for the implementation it was decided to switch
from FORTRAN to C. Since a new input interface was required anyway, NOP-2
was designed as input language for GLOPT-2, and it would be a convenient
modeling language, at least for mathematicians. The new parser was written in
Bos (an enhanced version of Ox), a kind of preprocessor language for Lex and
Yacc.

At the time NOP-2 was developed, its element concept (see Section 15.3.1)
seemed to be one of the most promising approaches to global optimization,
but nowadays more flexible problem representations have been developed (e.g.
directed acyclic graphs [188]).

The development of GLOPT-2 has been stopped in the meantime, and the
authors work in the COCONUT [40] project towards a new solver platform for
global optimization. This new platform uses AMPL [72] (see Chapter 7) as its
primary input format, but a GAMS [28] (see Chapter 8) interface will be available
as well.

These facts have greatly reduced the need for the NOP-2 language, and so its
development is stopped, and it is not maintained any longer.

However, the language still contains a few unique concepts, and we hope
that the providers of the commercial modeling languages can be persuaded to
include some, if not all, of them into their systems.

15.2 Concepts

NOP-2 was primarily designed for modeling global optimization problems,
and to be a general purpose modeling language which contains the possibility
to split a problem specification into elementary functions, explicitly display its
block separable structure and which has similar flexibility and extensibility as
the other modeling languages presented in this volume (see Chapter 4).

Most solvers which are connected to modeling systems like AMPL or GAMS are
local optimization codes who do not need analytical knowledge for a fast solving
process. Extracting analytical information needed for global optimization (e.g.,

The NOP-2 Modeling Language 287

range enclosures with minimal overestimation, almost optimal linear enclosures
of functions, convexity areas, etc.) from flat models which are typical for
algebraic modeling languages cannot easily be done without human intervention
or an enormous amount of computer algebra. Most rigorous global optimization
packages, however, make use of this kind of information.

In NOP-2 a model has to be specified in a highly structured way; the empha-
sis is on the block-separability of the model structure. The element function
approach, the extensibility of NOP-2, and a library of element functions make
it possible to specify optimization problems in such a way that global optimiza-
tion packages can be provided with as much analytical information as possible,
see 15.3.1. However, the modeler needs a decent knowledge in mathematics
and a will to twist the model, performing mathematical transformations, until
it nicely fits with the provided elements.

Another important design parameter was the minimality of modeling over-
head. The modeling language SIF [41] (the input language of Lancelot, and
a nonlinear extension of MPS) was a negative example.

Furthermore, stochastic programs and multistage models should be repre-
sentable, and the language should be easily expandable. Finally, as outlined
in Chapter 4, Section 4.2, for global optimization and verified computing it is
extremely important that all levels of rigor for data are representable.

Still, the main interest in developing NOP-2 was to provide a convenient
input format for our solver. The design was an extension of the original NOP
idea and was not developed as a new modeling language, and the wuthors were
not specialists in modeling language design. Therefore, some features generally
available in algebraic modeling languages are missing from NOP-2.

We did not care about set indexing, so variables can only be indexed by
integers not by sets. This does not reduce the number of models which can be
specified, but it is a major difference on how models are developed.

We did not think about connecting many different solvers to NOP-2, since it
was primarily intended as an input language to GLOPT-2. There was no API
written for solver connection. In addition, we did not care about passing data
back from the solver to the modeling system; we could control the output of the
solver anyway.

There was no clear separation between models and data. Data had to be
specified in NOP-2 syntax, and the input statement was the only chance to sep-
arate data and models somewhat. No elaborate data reading was implemented,
no database connections, no spreadsheet interface, etc.

Finally, there is (almost) no automatic generation of derived data, especially
no automatic differentiation. Since the amount of analytical information in
global optimization is huge, we kept the generation of this information, hence
the automatic differentiation, in the solver.

288 MODELING LANGUAGES IN MATHEMATICAL OPTIMIZATION

By the way, there is absolutely no procedural part (not even a solve state-
ment) in NOP-2. In some sense, it is a very pure declarative language.

15.3 Specialties of NOP-2

This section is devoted to presenting special features unique to NOP-2. In-
stead of giving details on how models in general are designed in our language,
modeling the Rosenbrock [114] function

min 100(x2
1 − x2)

2 + (x1 − 1)2

s.t. x1, x2 ∈ [−2, 8].
(15.3.1)

shall serve as a illustrative example.
In (15.3.1), the objective function is a polynomial in two variables of degree 4.

For multivariate higher degree polynomials, direct calculation of good interval
range enclosures and quadratic relaxations are in general a non-trivial task. We
can improve on that in this case, making the least squares structure apparent by
introducing the variable

x3 = 10x2
1 − 10x2, (15.3.2)

thereby reducing the objective function to

x4 = x2
3 + (x1 − 1)2. (15.3.3)

This shows that we can rewrite the optimization problem equivalently as

min x4

s.t. x4 = x2
3 + (x1 − 1)2

x3 = 10x2
1 − 10x2

x1, x2 ∈ [−2, 8].

(15.3.4)

In this form, we have increased the dimension by one (adding x3) but we have
reduced the objective function and constraints to quadratic functions. Quadratic
relaxation and good interval enclosures have become easy; we can even use
inverse functions for improving on the solution process.

If we now count the total number of variables and remember the bounds, we
end up with the following NOP-2 file. (The lines starting with // are comments
added only to make the file more readable.)

// Rosenbrock function

min x[4];

bnd x[1 2] in [-2,8];

// element list

qu4 x[1 2]; 0 10 -10 0 = x[3];

The NOP-2 Modeling Language 289

qu2 x[3 1]; 0 1 = x[4];

Here the line min x[4] tells the solver that the variablex4 should be minimized,
the line starting with bnd fixes the bounds on the variables x1 and x2, and the
remaining lines give the constraints.

qu2 and qu4 are so called element functions (see 15.3.1). Many of them
are predefined and specially selected such that most of the analytic information
and estimates can be computed efficiently for them. Although it is possible to
define new element functions, a modeler is advised to perform mathematical
transformations until the model consists of predefined element functions only.
This new structure will enable the global optimization code to use most of the
built-in analytical knowledge.

15.3.1 Specifying Structure — The Element Concept

The most special element in NOP-2 is the very explicit way of specifying the
structure of the problem. Every model must be decomposed into elementary
functions. These element functions are then entered line by line.

In general, NOP-2 allows to describe an optimization problem of one of three
basic forms

1 A classical global optimization problem

min ωxs

s.t. Eν(x), ν = 1, . . . , N

x ∈ [x0],

(15.3.5)

possibly with additional integrality constraints. The bound constraints
x ∈ [x0] define componentwise restrictions x0 ≤ x ≤ x0, and may
contain ±∞ as bounds to allow for one-sided bounds and free variables.

2 A single stage stochastic optimization problem

min f(x, ξ)

s.t. Eν(x, ξ), ν = 1, . . . , N,

x ∈ [x0],

ξ ∼ g(b, x),

(15.3.6)

as in 1. possibly with additional integrality constraints. The variables ξ
are stochastic variables with (probably unknown or partially unknown)
distribution functions g(b, x).

290 MODELING LANGUAGES IN MATHEMATICAL OPTIMIZATION

3 Most general, a multistage optimization problems of the form

min f(x(k), ξ)(k)

s.t. E(k)
ν (ξ(k), ξ(<k), x(<k)), ν = 1, . . . , N (k),

x(k) ∈ [x
(k)
0],

ξ(k) ∼ g(k)(b(k), x),

(15.3.7)

as in 1. and 2. possibly with additional integrality constraints. The vari-
ables ξ(k) are stochastic variables with (probably unknown or partially
unknown) distribution functions g(k)(b(k), x), and are valid in stage k of
this multistage problem.

The so-called elements Eν(x) are expressions of one of the forms

⊙

k

f(ak, xJk
) ∈ bq + c, (15.3.8)

⊙

k

f(ak, xJk
) = bxKj

+ c, (15.3.9)

⊙

k

f(ak, xJk
) ∈ S, (15.3.10)

and a few irregular variants, that consist of only one operand, allowing simple
coding of Boolean expressions, polynomials, trigonometric polynomials, and a
limited form of branching.

Here f is a so-called element function, ak, b, c are parameters, parameter
vectors, parameter matrices, higher order tensors, or lists of such. xJk

, and
xKj

are subvectors of x indexed by the index lists Jk and Kj , q is a possibly
unbounded box, possibly restricted to integers, and S is a union of finite sets
and possibly unbounded boxes. � specifies one of the following operators:

∑

,
∏

, max, min,
∑

k(−1)k. The contributions f(a, bk, xJk
) are referred to as the

pieces of the element. (Elements containing a single piece only are, of course,
permitted.)

The element functions that we found most useful in coding a large number
of problems are listed in Tables 15.1 and Table 15.2, and are among others
collected in a standard library, that is by default included into every NOP-2

specification. For all these functions it is possible to get a complete analytic
overview over ranges and inverse ranges, which makes these elements suitable
for applications in a branch and bound framework. Other element functions can
easily be defined using algebraic statements in a syntax similar to most algebraic
modeling languages.

The NOP-2 Modeling Language 291

name element function element shape
sum x

∑

xi

lin px
∑

pixi

abs |x|
∑

|xi|
abs2 p|x|

∑

pi|xi|
sqr x2 ∑

x2
i

qu1 px2 ∑

pix
2
i

qu2 (x − p)2
∑

(xi − pi)
2

qu3 p2(x − p1)
2 ∑

pi+m(xi − pi)
2

qu4 p1x + p2x
2 ∑

(pixi + pi+mx2
i)

pow xp
∑

xp
i

log log |x − p|
∑

log |xi − pi|
xlog x log x

∑

xi log xi

exp p1e
−p2x

∑

pie
−pi+mxi

gss p3e
−

p2
2

(x−p1)2 pi+2me−
pi+m

2
(x−pi)

2

atan arctan(x)
∑

arctan(xi)

pr0 x1x2

∑

x2i−1x2i

pr1 x1x2

∑

xixi+m

pr2 (x1 − p1)(x2 − p2)
∑

(xi − pi)(xi+m − pi+m)
div x1/x2

∑

x2i−1/x2i

bil x1x2 + p1x1 + p2x2

∑

(xixi+m + pixi + pi+mxi+m)
qf1 px1x2

∑

pixixi+m

qf2 p1x
2
1 + p2x1x2 + p3x

2
2

∑

(pix
2
i + pi+mxixi+m + pi+2mx2

i+m)
dsq (x1 − x2)

2 ∑

(xi − xi+m)2

atan2 ±arctan(x1/x2)
∑

±arctan(x2i−1/x2i)
(sign as in C, FORTRAN)

pol
∑n

i=1 pixj
n+1−i

sin
∑n

i=1 ai sin(iωxj − pi)
cos

∑n

i=1 ai cos(iωxj − pi)
if1 if xi ≤ p then xj else xk

if2 if xi ≥ p then xj else xk

if3







xj if xi ≤ p,
xk if p < xi ≤ q,
xl if xi > q

prod x

n
∏

i=1

xji

min0 x minn
i=1 xji

min1 |x| maxn
i=1 |xji

|
min2 p|x| maxn

i=1 pi|xji
|

max0 x maxn
i=1 xji

max1 |x| maxn
i=1 |xji

|
max2 p|x| maxn

i=1 pi|xji
|

Table 15.1. Predefined elements with one dimensional result

292 MODELING LANGUAGES IN MATHEMATICAL OPTIMIZATION

name element shape short description
mv Av left multiplication of vector with matrix
vm vT A right multiplication of vector with matrix
vmv vT Av evaluation of the quadratic for specified by A

lookup interpolate in a specified way a function given by a table
trace tr(A) the trace of the matrix A
det det(A) the determinant of the matrix A
cond cond(A) the condition number of the matrix A

Table 15.2. Elements having higher dimensional results or involving matrices and tensors

15.3.2 Data and Numbers

Data for global optimization is a tricky thing. We have seen in Chapter 1,
Section 1.2.7 and in Chapter 4, Section 4.2 that various levels of rigor are
interesting when data has to be specified. There are several possibilities, and
the modeling language has to act according to the type of solver the model is
sent to. Basically, for GLOPT-2 one could distinguish between a rigorous mode
and an approximating mode. In NOP-2 data can be entered in various ways.

Data can contain an approximate number, e.g.,

const A = sin(4/3*pi);

in rigorous mode constructs a small interval enclosing the number, and in non-
rigorous mode takes an approximate floating point value (rounded towards near-
est).

Sometimes, data can be an approximate number, even in rigorous mode, but
if it must be rounded, the rounding direction is important:

const A = sin(4/3*pi)<+>; round towards +∞,
const A = sin(4/3*pi)<->; round towards −∞,
const A = sin(4/3*pi)<0>; round towards 0 .

Especially important for mathematical proofs is that some numbers are not
tampered with. Exact data is entered as follows:

const A = sin(4/3*pi)!;

If the data is not exactly representable as a floating point number, then do one of
the following depending on the mode of operation: issue a warning, construct
a small interval containing the true number, or pass the value as a literal string
to the solver.

In some cases, a number is really approximate

const A = 3.56647?

The NOP-2 Modeling Language 293

It is represented it by a rounded floating point number in approximate mode,
and converted it to an interval. The radius of that interval should be 1

2 in the
first unspecified digit or 0.5ulp, whichever is bigger.

For many practically relevant optimization problems, data cannot be specified
exactly. So in NOP-2 it is possible to specify uncertain data in three widely used
ways:

const B = [3.23245, 3.23268];

const C = 1.3345 +- 0.0013;

const D = 1.334562(34);

HereB is in interval notation,C is defined using center and radius, and the decla-
ration ofD is using the engineering notation, in this caseD = [1.334528, 1.334596].

Of course, data items can be infinite as well:

const I = inf; or const MI = -inf;

and numbers can be unknown

const U = ?;

Finally, NOP-2 allows several data types: integer, real, complex integer,
complex, interval, and complex interval (disk representation).

15.3.3 Sets and Lists

Sets in NOP-2 are completely different from sets in most other modeling
languages; some of the set-theoretic constructions can be performed in OPL, see
Chapter 17, as well.

In NOP-2 sets represent possible domains of variables, constraints, and in-
dices (integers). After specification, a range set is transformed to a normal
form, a union of closed boxes, and an integer set is converted into a list of
integer tuples.

In addition to sets, lists can be produced by analogous constructors. The only
difference is that sets never contain duplicate entries, but lists do.

There are several ways for constructing sets in NOP-2. The easiest way is by
giving explicit intervals

[-3, 4.5],

which is possible for reals and for integers.
Ranges follow their intuitive meaning. The value in the middle specifies the

increment; if it is missing the increment is 1.

1:2:12, 0.5:0.2:3.4, and 1:3

will produce the sets {1, 3, 5, 7, 9, 11}, {0.5, 0.7, 0.9, . . . , 3.3}, and {1, 2, 3},
respectively.

294 MODELING LANGUAGES IN MATHEMATICAL OPTIMIZATION

Everybody with experience in using numerical software (e.g. Matlab) will
know that roundoff problems sometimes make increments unreliable, especially
if a range has to be dissected into a given number of pieces of equal sizes. So
in NOP-2 there is a constructor for that:

0.1~10~0.9

constructs the set {0.1, 0.18, 0.26, 0.34, . . . , 0.82, 0.9} of 11 points representing
10 subintervals of (approximately) equal size.

Repeaters just produce lists of specified length.

1**27

produces a list containing 27 entries of 1.
Of course, sets can be enumerated explicitly

{ 1, 2, 3, 7, 8.2, 9, 3*e^4 },

but it is also possible to use simple descriptions like

{ 3+4*i | i = 1:3:22 },

which are very close to mathematical notation. For complicated sets more
complex description syntax is available:

{{ int k,int l,real r | 4*l*m^k | k=1:n, l=1:m,

r=0.5:0.03:0.8 }}.

All the lists can be constructed sorted or unsorted, and there are the usual
set operations union (|), intersection (&), set difference (\), set power (^), and
cartesian product (*). Finally, there is the membership relation in:

A in ([3,4] | [1,2])*(0~4~1)^2.

15.3.4 Matrices and Tensors

Since many mathematical models contain matrices, we thought it natural to
include matrix and tensor operations in NOP-2.

Vectors are constructed automatically from lists or from sparse definitions,
e.g.,

v = (97 $ 1.4 $ 3.7@1,3,9 4.8@44);

which defines a vector of dimension 97. Almost all components are 1.4, except
there is a 3.7 in v1, v3, and v9, and a 4.8 in v44.

There are many ways to specify matrices and tensors (arrangements of num-
bers with more than two indices). You have the choice between several shapes:
dense, sparse, banded, symmetric (or hermitian), antisymmetric, unsymmetric,

The NOP-2 Modeling Language 295

and triangular. The matrices can be entered using Matlab notation, row index
notation, or as a stream of numbers.

Many operators for vectors, matrices, and tensors are defined, which can be
used in the models:

Sums for vectors (x, y), matrices (A, B), and tensors (S, T) of the same
shape:

A+B, T-S, x+y.

Products of vectors (x, y), and matrices (A,B), if the shapes are compat-
ible

A.x, A.B, x.y.

Tensor products:

A(*)B

if A and B are matrices, this definition gives the tensor A ⊗ B with 4
indices.

Indexing is very similar to Matlab, the : stands for the whole range of
the given index. If there are more than two indices, the notation :(list)
can be used to take the whole range for all indices specified in the list,
e.g.,

A[1,3], A[:,4], T[:,3,:,5], S[:(1:3),6].

As in Matlab, a whole submatrix can be assigned:

A[1:3,:] = B[6:8,:].

Finally, additional useful matrix operators such as

A’, det(A), tr(A), cond(A,2),

namely the transpose, determinant, trace, and condition numbers may be
used; and there are matrix constraints like

A is psd,

which codes a positive semidefiniteness requirement on A.

296 MODELING LANGUAGES IN MATHEMATICAL OPTIMIZATION

15.3.5 Stochastic and Multistage Programming

In NOP-2 stochastic programs can be specified just like ordinary optimization
problems. They just involve some stochastic variables and special constraints.

Stochastic variables and their distribution functions can be specified using
the following syntax:

stoch real xi[5]; stoch int yi[3];

defines vectors of 5 continuous and 3 discrete stochastic variables. For these
variables distribution information can be added:

distr xi[1] ~ N(0,1);

makes ξ1 normally distributed with mean 0 and variance 1, while

distr xi[2] ~ N(3.44,?);

specifies that ξ2 is normally distributed with mean 3.44 and unknown variance.
It is even possible to specify covariance matrices, such as

distr xi[3:5] ~ covar(A);

where the matrix A would have to be defined somewhere else in the model.
Discrete variables work just like continuous ones:

distr yi[1] ~ binom(12,0.3);

defines a binomial distribution, while

distr yi[2] ~ discrete((1,0.1),(2,0.3),(3,0.6));

declares an arbitrary discrete distribution with values and associated probabili-
ties, and some or all of the probabilities might even be unknown:

distr yi[2] ~ discrete((4,?),(5,?),(9,?));

In order to provide the capability to model stochastic programmingNOP-2 allows
the use of stochastic operators in constraints such as

Expect(xi[3]), Prob(xi[2]), or Variance(yi[1]*xi[4]).

Coding multistage problems is done by assigning a stage to each variable.

stage x = 3;

If no stage is assigned, the variable is implicitly supposed to be in stage 0.
Stages are propagated through all expressions, and an expression belongs to the
maximal stage of all variables occurring in it. Note that allowed stagenumbers
are all integers, so variables could be declared to be in e.g. stage −4.

The NOP-2 Modeling Language 297

15.3.6 Recursive Modeling and Other Components

Every NOP-2model containing free variables can be used as a function within
another model. This is done via the call operator, as in

call "subprob.nop"(x, 3.0, 1.2);

supposing that the subproblem has 3 free variables. Here, the first variable
is kept and x is passed there, and the two other variables are fixed at 3.0 and
1.2, respectively. The return values to the call operator are in the subproblem
specified by the solution record:

solution x[1:30];

In principle, even recursive modeling is possible, if call is combined with
conditionals and loops in the model.

In addition to the presented features NOP-2 provides an interface to black-box
functions, and integrals.

Finally, bounds and constraints can be defined using arbitrary sets, e.g.,

bnd x[1 3 19] in {0} | [3.1,19.223];

bnd x[2 4] in {i^2 | i=0:6 } | [36,112];

could be used to specify semi-continuous and partially integer variables.

15.4 Conclusion

NOP-2 is a modeling language specifically designed for global optimization.
It is between an advanced input language and a modern modeling language.
There are many features not readily available in other modeling languages. On
the other hand, many features contained in most algebraic modeling languages
are missing. The element concept for capturing the structure is an interest-
ing idea. However, nowadays newer representations for global optimization
problems are available, making the element approach less appealing.

The language is unsupported now, and its development and use have ceased.
In spite of that, it contains many useful features, and we hope that some, if not
all, of them will in the near future be included in some commercial modeling
systems. Especially important would be rigorous data handling and matrix
support.

