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ON TWISTED TENSOR PRODUCTS OF ALGEBRAS

Andreas Čap
Hermann Schichl

Jiř́ı Vanžura

Abstract. The problems considered in this paper are motivated by non–commuta-

tive geometry. Starting from two unital algebras A and B over a commutative ring

K we describe all triples (C, iA, iB), where C is a unital algebra and iA and iB are

inclusions of A and B into C such that the canonical linear map (iA, iB) : A⊗B →
C is a linear isomorphism. We discuss possibilities to construct differential forms

and modules over C from differential forms and modules over A and B, and give a

description of deformations of such structures using cohomological methods.

1. Introduction

Although the problems we consider are from pure algebra (and topological al-
gebra), the motivation comes from non–commutative differential geometry: The
simple question we started from is, given two algebras which are supposed to de-
scribe some “spaces”, what is an appropriate representative of the product of the
two “spaces”? Thinking of the commutative case one would be led to considering
the (topological) tensor product of the two algebras. But in the non-commutative
case this means that one assumes that functions on the two factors commute with
each other, although the functions on the individual factors do not commute among
themselves, and we see no reason to assume this. In this paper we study algebras,
which are in a certain sense very close to the tensor product of the given ones, and
in particular deformations of the tensor product.

It should also be remarked that special examples of such algebras, notably the
non–commutative two tori and more generally crossed products of C∗–algebras by
groups, already play an important role in non-commutative geometry.

The problem may as well be viewed as a question of decompositions of given al-
gebras: Suppose that a unital algebra is, as a linear space, the tensor product of two
subalgebras. What does this say about the algebra structure? From this point of
view the analogous problems for discrete groups, Lie groups, Lie algebras and Hopf
algebras have been studied (see e.g. [Majid, 1990], [Michor, 1990] and [Takeuchi,
1981]), often under the name of matched pairs or factorization of structures. In the
study of the Hopf algebra case the basic conditions 2.4(1) for algebra structures
have been obtained (c.f. [Majid, 1994, 7.2.3]). It turns out that the case of algebras
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is the most complicated one, since in all other cases the problem reduces to the
study of mutual actions of the two factors on each other which are compatible in a
certain sense, while in the algebra case such a reduction is not possible. Anyhow,
for our work the point of view of decompositions is less important, since our main
aim is the study of deformations.

We will study the problem without assuming that the algebras are endowed
with topologies. In fact, all constructions can be carried out precisely in the same
way in categories of vector spaces and linear maps, such that the Hom–functor
L( , ) lifts to the category, and which admit a tensor product ⊗̂ such that there
is a natural isomorphism L(E⊗̂F,G) ∼= L(E,L(F,G)) (i.e. in monoidally closed
categories). This is the case for example in the category of Banach spaces and
continuous linear maps with the projective tensor product or, more generally, in the
category of convenient vector spaces and bounded linear maps with the bornological
tensor product (c.f. [Frölicher–Kriegl, 1988]).

2. Twisted tensor products

Throughout this paper we fix some commutative ring K with unit. Later on
when we will study deformations we will specialize to K = R or C. We assume all
algebras to be unital and all homomorphisms to preserve units.

2.1. Definition. Let A and B be algebras over K. A twisted tensor product of
A and B is an algebra C together with two injective algebra homomorphisms iA :
A→ C and iB : B → C such that the canonical linear map (iA, iB) : A⊗K B → C
defined by (iA, iB)(a⊗b) := iA(a)·iB(b) is a linear isomorphism. An isomorphism of
twisted tensor products is an isomorphism of algebras which respects the inclusions
of A and B.

2.2. There is a simple way to construct candidates for twisted tensor products as
follows: Let τ : B ⊗A→ A⊗B be a K–linear mapping, such that τ(b⊗ 1) = 1⊗ b
and τ(1 ⊗ a) = a ⊗ 1. Then on A ⊗ B define a multiplication µτ by µτ := (µA ⊗
µB) ◦ (A⊗ τ ⊗B). We write A⊗ τ ⊗B for idA ⊗ τ ⊗ idB . This is also justified by
the fact that this is the functor A⊗ ⊗B applied to the map τ .

Next define iA : A→ A⊗B by iA(a) := a⊗1 and likewise iB : B → A⊗B. These
are algebra homomorphisms by the conditions on τ . Obviously, if the multiplication
µτ is associative, then (A⊗B,µτ ) is a twisted tensor product of A and B.

Now the associativity of the multiplication µτ can be characterized in terms of
τ as follows:

2.3. Proposition/Definition. Suppose that τ(b⊗1) = 1⊗b and τ(1⊗a) = a⊗1.
Then the multiplication µτ is associative if and only if we have:

τ ◦ (µB ⊗ µA) = µτ ◦ (τ ⊗ τ) ◦ (B ⊗ τ ⊗A)

A mapping τ which satisfies these conditions is called a twisting map for A and B,
and we denote the algebra (A⊗B,µτ ) by A⊗τ B.

Proof. Let us first assume that µτ is associative. We also write ·τ for the multipli-
cation µτ . Since µτ is associative we get

(1⊗ b) ·τ (a1 ⊗ b1) ·τ (a⊗ 1) =

((1⊗ b) ·τ (a1 ⊗ 1)) ·τ ((1⊗ b1) ·τ (a⊗ 1)) =

τ(b⊗ a1) ·τ τ(b1 ⊗ a).
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But using this we compute:

τ(b1b2 ⊗ a1a2) = (1⊗ b1b2) ·τ (a1a2 ⊗ 1) =

= (1⊗ b1) ·τ ((1⊗ b2) ·τ (a1 ⊗ 1)) ·τ (a2 ⊗ 1) =

= (1⊗ b1) ·τ τ(b2 ⊗ a1) ·τ (a2 ⊗ 1) =

= µτ ◦ (τ ⊗ τ) ◦ (B ⊗ τ ⊗A)(b1 ⊗ b2 ⊗ a1 ⊗ a2),

so τ indeed satisfies the condition.
So let us conversely assume that τ satisfies the conditions. Then

(1⊗ b) ·τ ((a1 ⊗ 1) ·τ (a⊗ 1)) = (1⊗ b) ·τ (a1a⊗ 1) =

= τ(b⊗ a1a) = µτ ◦ (τ ⊗ τ) ◦ (B ⊗ τ ⊗A)(b⊗ 1⊗ a1 ⊗ a) =

= µτ (τ(b⊗ a1)⊗ a⊗ 1) = τ(b⊗ a1) ·τ (a⊗ 1) =

= ((1⊗ b) ·τ (a1 ⊗ 1)) ·τ (a⊗ 1).

and similarly with (a1⊗1) replaced by (1⊗b1). Next, from the definition of µτ it is
obvious that µτ is a left A–module homomorphism for the canonical left actions of
A and a right B–module homomorphism for the canonical right actions of B. Via
the above computation this implies that associativity holds if the middle element
is either of the form (a ⊗ 1) or of the form (1 ⊗ b). But then we may compute as
follows:

((a0 ⊗ b0) ·τ (a1 ⊗ b1)) ·τ (a2 ⊗ b2) =

= ((a0 ⊗ b0) ·τ ((a1 ⊗ 1) ·τ (1⊗ b1))) ·τ (a2 ⊗ b2) =

= (((a0 ⊗ b0) ·τ (a1 ⊗ 1)) ·τ (1⊗ b1)) ·τ (a2 ⊗ b2) =

= ((a0 ⊗ b0) ·τ (a1 ⊗ 1)) ·τ ((1⊗ b1) ·τ (a2 ⊗ b2)),

and in the same way the last line is easily seen to be equal to

(a0 ⊗ b0) ·τ ((a1 ⊗ b1) ·τ (a2 ⊗ b2)). ¤

2.4. Remarks. (1): The symmetric condition for being a twisting map used in
2.3 can be split into the two conditions:

τ ◦ (B ⊗ µA) = (µA ⊗B) ◦ (A⊗ τ) ◦ (τ ⊗A)

τ ◦ (µB ⊗A) = (A⊗ µB) ◦ (τ ⊗B) ◦ (B ⊗ τ)

It is obvious that the condition in 2.3 implies these two conditions by setting ap-
propriate entries equal to one. On the other hand, the condition in 2.3 can be easily
deduced from successive applications of the two conditions above.
(2): Note that the multiplications on A ⊗ B defined by twisting maps are exactly
those associative multiplications which are left A–module homomorphisms and right
B–module homomorphisms for the canonical actions, and for which 1 ⊗ 1 is a
unit. This can be seen as follows: Let µ be such a multiplication, and define τ by
τ(b⊗ a) = µ(1⊗ b⊗ a⊗ 1). Then by the module homomorphism property µ = µτ .
Moreover, τ(b⊗1) = µ(1⊗ b⊗1⊗1) = 1⊗ b, and in the same way τ(1⊗a) = a⊗1.
Thus from proposition 2.3 we see that τ is a twisting map.
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2.5. Next we present an alternative characterization of twisting maps which will
be very useful when dealing with differential forms. Let A and B be unital algebras
and consider the space L(A,A⊗B) of linear maps. On this space we define a mul-
tiplication ∗ by ϕ∗ψ := (A⊗µB)◦(ϕ⊗B)◦ψ, where µB denotes the multiplication
on B.

Proposition. (L(A,A ⊗ B), ∗) is an associative unital algebra with unit given by
the map a 7→ a⊗ 1.

Proof. We compute:

(ϕ ∗ ψ) ∗ ω = (A⊗ µB) ◦ ((ϕ ∗ ψ)⊗B) ◦ ω =

= (A⊗ µB) ◦ (A⊗ µB ⊗B) ◦ (ϕ⊗B ⊗B) ◦ (ψ ⊗B) ◦ ω =

= (A⊗ µB) ◦ (ϕ⊗ µB) ◦ (ψ ⊗B) ◦ ω = ϕ ∗ (ψ ∗ ω),

since the multiplication on B is associative. Obviously, a 7→ a⊗ 1 is a unit for the
multiplication ∗. ¤

Similarly, we define a multiplication on L(B,A⊗B) by ϕ ∗ψ = (µA⊗B) ◦ (A⊗
ψ) ◦ ϕ, and as above one easily proves that this is associative with unit b 7→ 1⊗ b.
2.6. Proposition. A linear map τ : B ⊗ A → A ⊗ B is a twisting map if and
only if the two associated maps B → L(A,A ⊗ B) and A → L(B,A ⊗ B) are
homomorphisms of unital algebras.

Proof. The condition that the two associated maps preserve the units mean exactly
that τ(1 ⊗ a) = a ⊗ 1 and that τ(b ⊗ 1) = 1 ⊗ b. Now let us write τb for the map
a 7→ τ(b ⊗ a). Then the condition that the first associated map is an algebra
homomorphism means that τb1b2 = τb1 ∗ τb2 , and by definition of the multiplication
∗ this means that τb1b2 = (A ⊗ µB) ◦ (τb1 ⊗ B) ◦ τb2 , and this is precisely the
second condition of remark 2.4(1). In the same way the condition that the second
associated map is an algebra homomorphism is easily seen to be the first condition
of that remark, so we get the result. ¤

2.7. Proposition. Let (C, iA, iB) be a twisted tensor product of A and B. Then
there is a unique twisting map τ : B ⊗ A → A ⊗ B such that C is isomorphic to
A⊗τ B as a twisted tensor product.

Proof. Let ϕ : A ⊗ B → C be the K–module isomorphism used in the definition
of a twisted tensor product. Then we define τ : B ⊗ A → A ⊗ B by τ(b ⊗ a) :=
ϕ−1(iB(b) · iA(a)). Then

ϕ((a⊗ 1) ·τ (a1 ⊗ b1)) = ϕ(aa1 ⊗ b1) =

= iA(aa1)iB(b1) = iA(a)iA(a1)iB(b1) = ϕ(a⊗ 1)ϕ(a1 ⊗ b1),

and likewise ϕ((a1 ⊗ b1) ·τ (1 ⊗ b)) = ϕ(a1 ⊗ b1)ϕ(1 ⊗ b). But by definition of µτ
we have (a0 ⊗ b0) ·τ (a1 ⊗ b1) = (a0 ⊗ 1) ·τ τ(b0 ⊗ a1) ·τ (1⊗ b1), so ϕ is an algebra
homomorphism since ϕ(τ(b⊗ a)) = iB(b)iA(a) = ϕ(1⊗ b)ϕ(a⊗ 1).

Finally, uniqueness of τ is obvious since any algebra homomorphism A⊗τ B →
A⊗τ ′B which is compatible with the inclusions of A and B must be the identity. ¤
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2.8. Examples. (1): Let G be a discrete group which acts from the left by
automorphisms on an algebra A, and let K[G] be the group algebra. Then there is
a natural twisting map τ : K[G]⊗A→ A⊗K[G] induced by τ(g⊗ a) := (g · a)⊗ g.
One immediately verifies by a direct computation that this is indeed a twisting map.
Similarly, a right action of G on A induces a twisting map A⊗K[G]→ K[G]⊗ A.
This construction forms the basis for crossed products.

(2): Consider the algebra A := C[z, z−1] of complex Laurent–polynomials in one
variable and let q be a complex number of modulus 1. Then define τ : A⊗A→ A⊗A
by τ(zk ⊗ z`) := qk`z` ⊗ zk. Again a simple direct computation shows that this
defines a twisting map.

In fact, this example is just a special instance of the first one, since we can identify
A with the complex group ring of Z as well as with the algebra of trigonometric
polynomials on S1. Now the left action of Z on S1 defined by n ·z = qnz induces an
action on the algebra of trigonometric polynomials and applying the construction
of (1) we get exactly the twisting map defined above.

Note that one can complete the algebra A to the algebra of Schwartz sequences,
i.e. sequences which decay faster than any polynomial, and the above twisting map
is still well defined and continuous for the natural Fréchet topology. Then this
completion can be identified with the space of smooth functions on S1 as well as
with a smooth version of the group algebra of Z, and the above construction leads
to the smooth version of the famous non-commutative two–tori. It has also been
shown in [Cap-Michor-Schichl, 1993] that on a non–commutative two–torus there
is again a natural twisting map.

(3): The conditions 2.4(1) for being a twisting map can in several cases be
obtained as a consequence of naturality conditions. Suppose that we have given a
category of modules and module homomorphisms which is closed under the tensor
product and equipped with a natural transformation τ between the tensor product
and the opposite tensor product which is compatible with the tensor product in
the sense that τA⊗B,C = τA,C ⊗ B ◦ A ⊗ τB,C and similarly for τA,B⊗C . Suppose
further that A and B are algebras in this category, i.e. that there are associative
multiplications µA : A ⊗ A → A and µB : B ⊗ B → B which are morphisms in
the category. Then the value τB,A : B ⊗A→ A⊗B of the natural transformation
τ is automatically a twisting map since the conditions 2.4(1) are precisely the
conditions defining a natural transformation applied to the maps to B ⊗ µA and
µB ⊗A, respectively.

Nontrivial natural transformations as above have been constructed in several
situations by S. Majid, for example on the category of all representations of a
quasitriangular Hopf algebra. These twisting maps satisfy an additional condition
thus leading to braided tensor categories, the algebras in which are also called
braided groups, see e.g. [Majid, 1993].

3. Differential forms and modules over twisted tensor products

In this section we want to study the following problem: Suppose we have a
twisting map τ : B ⊗ A → A ⊗ B and the algebras A and B are equipped with
graded differential algebras of differential forms, or with fixed modules. Can we
construct in this situation differential forms or modules over A⊗τ B, respectively?

3.1. Let A be a unital algebra and let B be a unital graded differential algebra
with differential dB, and consider the algebra L(A,A ⊗ B) of linear maps, with
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multiplication ∗ as defined in 2.5. Obviously, this is a graded algebra with respect
to the grading inherited from the grading of B. Now we define a differential on this
algebra by dϕ := (A⊗ dB) ◦ ϕ.

Proposition. (L(A,A⊗ B), ∗, d) is a graded differential algebra.

Proof. We only have to prove that d is a graded derivation with respect to ∗:

d(ϕ ∗ ψ) = (A⊗ dB) ◦ (A⊗ µB) ◦ (ϕ⊗ B) ◦ ψ =

= (A⊗ µB) ◦ (A⊗ dB ⊗ B +A⊗ ε⊗ dB) ◦ (ϕ⊗ B) ◦ ψ,

where ε denotes the grading of B, i.e. it is given by multiplication with (−1)k on
Bk. Now the first term in the sum equals

(A⊗ µB) ◦ (dϕ⊗ B) ◦ ψ = dϕ ∗ ψ,

while in the second for homogeneous ϕ, ε is just multiplication by (−1)|ϕ|, and this
term becomes

(−1)|ϕ|(A⊗ µB) ◦ (ϕ⊗ dB) ◦ ψ = (−1)|ϕ|ϕ ∗ dψ. ¤

3.2. Now start with two graded differential algebras A and B, a twisting map
τ : B ⊗ A → A ⊗ B, where A = A0 and B = B0 and let us denote by Ω( ) the
functor which assigns to a unital algebra the graded differential algebra of universal
differential forms (c.f. [Karoubi 1982,1983], and [Cap–Kriegl–Michor–Vanzura 1993]
for a construction in a topological setting). Consider the map B → L(A,A ⊗ B)
associated to τ . By 2.6 this is an algebra homomorphism to the zero component of
a graded differential algebra, so directly by the universal property of the universal
differential forms this prolongs to a homomorphism of graded differential algebras
Ω(B)→ L(A,A⊗ B).

Now let us assume that B = Ω(B). Then we claim that the associated map
τ̃ : Ω(B) ⊗ A → A ⊗ Ω(B) is again a twisting map, which is moreover compatible
with the grading and with the differential A⊗d, i.e. τ̃(dω⊗a) = (A⊗d)(τ̃(ω⊗a)).
In fact, the latter condition is clear from the fact that we had a homomorphism
of graded differential algebras. So by 2.6 we just have to show that the mapping
ˇ̃τ : A→ L(Ω(B), A⊗Ω(B)) associated to τ̃ is a homomorphism of unital algebras.

Let us first show that this map preserves the unit, i.e. that τ̃(ω ⊗ 1) = 1 ⊗ ω.
Now if ω ∈ Ω0(B) this is clear since τ is a twisting map. Moreover if it is true for ω
then it is true for dω since by construction τ̃(dω⊗ a) = (A⊗ d)(τ̃(ω⊗ a)). Finally,
it is true for ω1ω2 if it is true for each ωi by the algebra homomorphism property.
Thus, the result follows since the elements of the form b0db1 . . . dbn span the space
Ω(B).

It remains to show that

(1) ˇ̃τ(a1a2) = ˇ̃τ(a1) ∗ ˇ̃τ(a2) ∈ L(Ω(B), A⊗ Ω(B)),

so we have to show that this holds when evaluating at any ω ∈ Ω(B). For any
a ∈ A the map ˇ̃τ(a) : Ω(B)→ A⊗Ω(B) satisfies ˇ̃τ(a)(dω) = (A⊗d)(ˇ̃τ(a)(ω)). But
now one easily verifies that also ˇ̃τ(a1) ∗ ˇ̃τ(a2) is compatible with the differential in
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the above sense. Thus it follows that if (1) holds when evaluating on ω then it also
holds when evaluating on dω.

Now (1) holds when evaluating on ω if and only if τ̃ω ◦µA = (µA⊗Ω(B)) ◦ (A⊗
τ̃) ◦ (τ̃ω ⊗ A), where we write τ̃ω for the map a 7→ τ̃(ω ⊗ a). On the other hand,
since the map Ω(B) → L(A,A ⊗ Ω(B)) is an algebra homomorphism we see that
τ̃ ◦ (µΩ(B)⊗A) = (A⊗µΩ(B)) ◦ (τ̃ ⊗Ω(B)) ◦ (Ω(B)⊗ τ̃) or written after evaluation
in the Ω(B) factor: τ̃ω1ω2

= (A⊗ µΩ(B)) ◦ (τ̃ω1
⊗ Ω(B)) ◦ τ̃ω2

. Now assuming that
(1) holds when evaluating at ω1 and when evaluating at ω2 we compute:

τ̃ω1ω2
◦ µA = (A⊗ µΩ(B)) ◦ (τ̃ω1

⊗ Ω(B)) ◦ τ̃ω2
◦ µA =

= (A⊗ µΩ(B)) ◦ (τ̃ω1
⊗ Ω(B)) ◦ (µA ⊗ Ω(B)) ◦ (A⊗ τ̃) ◦ (τ̃ω2

⊗A) =

= (A⊗ µΩ(B)) ◦ (µA ⊗ Ω(B)⊗ Ω(B)) ◦ (A⊗ τ̃ ⊗ Ω(B))◦
◦ (τ̃ω1

⊗A⊗ Ω(B)) ◦ (A⊗ τ̃) ◦ (τ̃ω2
⊗A) =

= (µA ⊗ Ω(B)) ◦ (A⊗A⊗ µΩ(B)) ◦ (A⊗ τ̃ ⊗ Ω(B))◦
◦ (A⊗ Ω(B)⊗ τ̃) ◦ (τ̃ω1

⊗ Ω(B)⊗A) ◦ (τ̃ω2
⊗A) =

= (µA ⊗ Ω(B)) ◦ (A⊗ τ̃) ◦ (A⊗ µΩ(B) ⊗A)◦
◦ (τ̃ω1

⊗ Ω(B)⊗A) ◦ (τ̃ω2
⊗A) =

= (µA ⊗ Ω(B)) ◦ (A⊗ τ̃) ◦ (τ̃ω1ω2
⊗A)

Thus we see that the space of all ω ∈ Ω(B) such that (1) holds when evaluating in
ω is closed under multiplication and under the differential, and since τ̃ extends τ
it contains B = Ω0(B), so it must be all of Ω(B). Thus τ̃ : A⊗Ω(B)→ Ω(B)⊗A
is again a twisting map.

3.3. Now consider the space L0(Ω(B),Ω(A) ⊗ Ω(B)) of all linear maps which are
homogeneous of degree zero with respect to the grading of Ω(B). Recall that on
this space we have the structure of a unital algebra with multiplication defined by
f ∗g = (µΩ(A)⊗Ω(B))◦(Ω(A)⊗g)◦f . With this multiplication we get the structure
of a graded algebra with respect to the grading induced from Ω(A). We define a
differential on this space by f 7→ (dA⊗εB)◦f , where dA denotes the differential on
Ω(A) and εB denotes the grading of Ω(B). As above, one easily verifies that this
is a graded derivation with respect to the multiplication ∗. Since τ̃ is a twisting
map, the associated mapping A→ L0(Ω(B),Ω(A)⊗ Ω(B)) is a homomorphism of
unital algebras, and thus by the universal property of Ω(A) there is an induced
homomorphism of graded differential algebras Ω(A)→ L0(Ω(B),Ω(A)⊗Ω(B)). As
above one verifies that the corresponding map Ω(B) ⊗ Ω(A) → Ω(A) ⊗ Ω(B) is
again a twisting map.

Theorem. A twisting map τ : B ⊗ A → A ⊗ B extends to a unique twisting map
τ̃ : Ω(B)⊗Ω(A)→ Ω(A)⊗Ω(B) which satisfies τ̃ ◦(dB⊗Ω(A)) = (εA⊗dB)◦ τ̃ and
τ̃ ◦ (Ω(B) ⊗ dA) = (dA ⊗ εB) ◦ τ̃ . Moreover Ω(A) ⊗τ̃ Ω(B) is a graded differential
algebra with differential d(ϕ⊗ ω) = dAϕ⊗ ω + (−1)|ϕ|ϕ⊗ dBω.

Proof. Note first that τ̃ is uniquely determined by its restriction to A ⊗ B and
the compatibility with the two differentials because the behavior on products is
determined by the fact that it is a twisting map. So it suffices to show that the
twisting map we have constructed above has all properties listed in the theorem.

The compatibility with dA is clear from the second step of our construction.
Moreover, from the first step of the construction it is obvious that the compatibility
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with dB is satisfied for elements of the form ω ⊗ a with a ∈ A and ω ∈ Ω(B).
Now suppose that for some ϕ ∈ Ω(A) and all ω ∈ Ω(B) we have τ̃(dBω ⊗ ϕ) =
(εA ⊗ dB)(τ̃(ω ⊗ ϕ)). Then we compute:

τ̃(dBω ⊗ dAϕ) = (dA ⊗ εB)(τ̃(dBω ⊗ ϕ)) =

= (−1)|ϕ|(dA ⊗ εB) ◦ (Ω(A)⊗ dB)(τ̃(ω ⊗ ϕ)) =

= (−1)|ϕ|+1(Ω(A)⊗ dB) ◦ (dA ⊗ εB)(τ̃(ω ⊗ ϕ)) =

= (−1)|ϕ|+1(Ω(A)⊗ dB)(τ̃(ω ⊗ dAϕ)).

Furthermore, if the compatibility with dB is satisfied for two elements ϕ1 and ϕ2

it is easily shown using the fact that τ̃ is a twisting map that it is also satisfied
for their product. Consequently, the compatibility with dB must hold in general.
(Another way to prove this is to show that the maps in L0(Ω(B),Ω(A) ⊗ Ω(B))
which satisfy this compatibility condition form a subalgebra.)

Finally, we have to show that the differential d acts as a graded derivation with
respect to the multiplication µτ̃ . First note that by definition of d for ϕ ∈ Ω(A)
and ω ∈ Ω(B) we have

d((ϕ⊗ 1B) ·τ̃ (1A ⊗ ω)) = d(ϕ⊗ ω) = dAϕ⊗ ω + (−1)|ϕ|ϕ⊗ dBω =

= d(ϕ⊗ 1B) ·τ̃ (1A ⊗ ω) + (−1)|ϕ|(ϕ⊗ 1B) ·τ̃ d(1A ⊗ ω).

Direct computations easily show that

d((ϕ1 ⊗ 1B) ·τ̃ (ϕ2 ⊗ ω)) = d(ϕ1 ⊗ 1B) ·τ̃ (ϕ2 ⊗ ω) + (−1)|ϕ1|(ϕ1 ⊗ 1B) ·τ̃ d(ϕ2 ⊗ ω)

and similarly for (ϕ⊗ ω1) ·τ̃ (1A ⊗ ω2). Next we compute:

d((1A ⊗ ω) ·τ̃ (ϕ⊗ 1B)) = d(τ̃(ω ⊗ ϕ)) =

= (dA ⊗ Ω(B) + εA ⊗ dB)(τ̃(ω ⊗ ϕ)) =

= (−1)|ω|τ̃(ω ⊗ dAϕ) + τ̃(dBω ⊗ ϕ) =

= d(1A ⊗ ω) ·τ̃ (ϕ⊗ 1B) + (−1)|ω|(1A ⊗ ω) ·τ̃ d(ϕ⊗ 1B)

Now the general result immediately follows from the fact that

(ϕ1 ⊗ ω1) ·τ̃ (ϕ2 ⊗ ω2) = (ϕ1 ⊗ 1B) ·τ̃ (τ̃(ω1 ⊗ ϕ2)) ·τ̃ (1A ⊗ ω2). ¤

3.4. Let us return to the case of general differential forms, so assume we have
given graded differential algebras A and B with A = A0 and B = B0 and a twisting
map τ : B ⊗ A → A ⊗ B. Considering A and B as algebras of differential forms
it is a very reasonable assumption that they are quotients of Ω(A) and Ω(B).
Algebraically this just means that they are generated as differential algebras by
the zero components, while in the topological case it also implies that they do not
have a too coarse topology. But assuming this there is an obvious procedure to
determine whether τ induces a twisting map (which is then clearly unique) on the
level of these differential forms: First consider the map B → L(A,A⊗B) associated
to τ . From 3.2 we see that this induces a homomorphism of graded differential
algebras Ω(B) → L(A,A ⊗ B), and we just have to check whether this factors to
a map B → L(A,A ⊗ B). If this is the case then as in 3.2 one shows that it again
corresponds to a twisting map. Then as before we take the corresponding map
A → L0(B,A ⊗ B) which induces a homomorphism of graded differential algebras
Ω(A)→ L0(B,A⊗B), and again we have to check whether this factors to A. If this
is the case then as in 3.3 one proves that one gets a twisting map τ̃ : B⊗A → A⊗B.
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3.5. Example. As an example for the procedure described in 3.4 we show that
the twisting maps which define the non–commutative 2–tori induce twisting maps
on the level of Kähler differentials and (in the smooth case) on smooth differential
forms. The computations for the smooth case are precisely as the ones in the
algebraic case which we carry out here, one just has to check continuity for the
natural Fréchet topologies at several points, which is quite elementary.

First we have to discuss differential forms on the algebra A = C[u, u−1] of
trigonometric polynomials on the unit circle. Let us start with the universal
forms. By the derivation property of the differential we have d(u2) = udu+ (du)u

and inductively we get d(un) =
∑n−1
i=0 u

i(du)un−i−1 for n ∈ N. Moreover, since
0 = d(1) = d(uu−1) = ud(u−1) + (du)u−1 we see that d(u−1) = −u−1(du)u−1.
Now again using the derivation property and induction one can compute d(u−n)
for n ∈ N. We will only need the fact that any element of Ω1(A) can be written as a
sum of elements of the form ui(du)uj for i, j ∈ Z. This implies that any element of
Ωn(A) can be written as a sum of elements of the form ui0(du)ui1(du) . . . (du)uin .

Next let us turn to the Kähler differentials Λ(A) over A (cf. [Kunz, 1986]). From
the fact that Λ(A) is the universal graded commutative differential algebra with
zero component A it is clear that Λ(A) is just the graded abelization of Ω(A), i.e.
the quotient of Ω(A) by the ideal generated by all graded commutators. From the
above description of Ω(A) it is then clear that Λ(A) = A⊕A · du, while all Λk(A)
for k ≥ 2 are zero. Moreover, in Λ(A) we have the usual relations d(un) = nun−1du
for all n ∈ Z. This description in the smooth case also shows that for the unit
circle the smooth differential forms coincide with a topological version of the Kähler
differentials, or, more precisely, that the smooth differential forms on the unit circle
are the universal complete locally convex graded commutative differential algebra
with zero component the smooth functions on the circle.

Now let B = C[v, v−1], fix a complex number q of modulus one, and consider
the twisting map τ : B ⊗ A → A⊗ B given by τ(vk ⊗ u`) = qk`u` ⊗ vk. As in 3.2
we get a homomorphism of graded differential algebras Ω(B) → L(A,A ⊗ Λ(B)),
which is characterized by

v 7→ (uk 7→ qkuk ⊗ v) and dv 7→ (uk 7→ qkuk ⊗ dv)

Next one computes directly that since v and dv commute in Λ(B) that the images
of vdv and d(v)v under this homomorphism coincide. Since the homomorphism
preserves the grading and L(A,A⊗ Λ(B)) has nonzero components only in degree
zero and one this implies that the homomorphism factors over Λ(B).

Next we have to consider the corresponding homomorphism

Ω(A)→ L0(Λ(B),Λ(A)⊗ Λ(B)).

From the construction in 3.3 we see that the image of u under this homomorphism
is characterized by

vk 7→ qku⊗ vk and vkdv 7→ qk+1u⊗ vkdv,
while the image of du is characterized by

vk 7→ qkdu⊗ vk and vkdv 7→ −qk+1du⊗ vkdv.
Again an easy direct computation shows that the images of udu and (du)u coincide
and from compatibility with the grading we conclude that this homomorphism
factors to Λ(A), so indeed we get an induced twisting map τ̃ : Λ(B) ⊗ Λ(A) →
Λ(A)⊗ Λ(B).
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3.6. Modules over twisted tensor products. The problem we start to discuss
here is, given two unital algebras A and B, a left A–module M and a left B–
module N , and a twisting map τ : B⊗A→ A⊗B, can we make M ⊗N into a left
A⊗τ B module in a way which is compatible with the inclusion of A, i.e. such that
(a⊗ 1B) · (m⊗ n) = (a ·m)⊗ n? Clearly the idea we follow is that we consider an
exchange map τM : B⊗M →M⊗B and define the action λτM : A⊗τB⊗M⊗N →
M ⊗N by (λA ⊗ λB) ◦ (A⊗ τM ⊗N), where λA and λB denote the left actions of
A on M and of B on N , respectively.

Definition. The mapping τM : B⊗M →M ⊗B is called a (left) module twisting
map if and only if τM (1B ⊗m) = m⊗ 1B for all m ∈M , and

τM ◦ (µB ⊗ λA) = (λA ⊗ µB) ◦ (A⊗ τM ⊗B) ◦ (τ ⊗ τM ) ◦ (B ⊗ τ ⊗M).

3.7. As in the case of twisting maps for algebras the symmetric condition defining
a module twisting map can be split into two conditions, namely

τM ◦ (µB ⊗M) = (M ⊗ µB) ◦ (τM ⊗B) ◦ (B ⊗ τM )

τM ◦ (B ⊗ λA) = (λA ⊗B) ◦ (A⊗ τM ) ◦ (τ ⊗M).

These conditions follow by applying the above one to b1⊗ b2⊗1A⊗m and b⊗1B⊗
a⊗m, respectively. Conversely, the condition from 3.6 can be deduced by iterated
application of the two conditions here.

3.8. Theorem. If τM : B⊗M →M ⊗B is a module twisting map, then the map
λτM defined above is a left action which is compatible with the inclusion of A for
any B–module N .

Conversely, if M is a projective K–module and for one effective B–module N
the map λτM defines a left action which is compatible with the inclusion of A then
τM is a module twisting map.

Proof. Let us first assume that τM is a module twisting map. Clearly the condition
that τM (1B ⊗ m) = m ⊗ 1B ensures compatibility of the action λτM with the
inclusion of A. Using the conditions of 3.7 we compute:

λτM ◦ (µτ ⊗M ⊗N) =

= (λA ⊗ λB) ◦ (A⊗ τM ⊗N) ◦ (µA ⊗ µB ⊗M ⊗N) ◦ (A⊗ τ ⊗B ⊗M ⊗N) =

= (λA ⊗ λB) ◦ (µA ⊗M ⊗ µB ⊗N) ◦ (A⊗A⊗ τM ⊗B ⊗N)◦
◦ (A⊗ τ ⊗ τM ⊗N) =

= (λA ⊗ λB) ◦ (A⊗ λA ⊗B ⊗ λB) ◦ (A⊗A⊗ τM ⊗B ⊗N)◦
◦ (A⊗ τ ⊗ τM ⊗N) =

= (λA ⊗ λB) ◦ (A⊗ τM ⊗N) ◦ (A⊗B ⊗ λA ⊗ λB) ◦ (A⊗B ⊗A⊗ τM ⊗N) =

= λτM ◦ (A⊗B ⊗ λτM )

Thus having given a module twisting map we get a module structure for any N .
Conversely, let us assume that M is K–projective and λτM defines a left module

structure, which is compatible with the inclusion of A, for one effective B–module
N . Effectivity of N means that the algebra homomorphism B → L(N,N) which
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defines the action of B on N is injective. Since M is projective over K this implies
that the induced map M ⊗ B → M ⊗ L(N,N) is injective. Next we claim that
the latter space maps injectively to L(N,M ⊗N). Let us first assume that M is a
free K–module, so M = K(α), a direct sum of copies of K. Then M ⊗ L(N,N) '
L(N,N)(α), which maps injectively to L(N,N)α, the direct product. The latter
space is isomorphic to L(N,Nα). Thus the composition of the natural map K(α)⊗
L(N,N)→ L(N,K(α) ⊗N) with the inclusion of the latter space into L(N,Nα) is
an injection, so the claim holds in this case. In general, if M is a direct summand
in some K(α), we get an injection M ⊗ L(N,N) → K(α) ⊗ L(N,N) → L(N,N (α),
and this map is just the composition of the map M ⊗ L(N,N) → L(N,M ⊗ N)
with the obvious map from the latter space to L(N,K(α) ⊗ N) ' L(N,N (α)), so
the result holds in this case, too.

Thus we see that for any K–module V the induced mapping L(V,M ⊗ B) →
L(V,L(N,M ⊗N)) ∼= L(V ⊗N,M ⊗N) is injective. This map is given by mapping
ϕ to v ⊗ n 7→ (M ⊗ λB)(ϕ(v)⊗ n).

First the compatibility of the action λτM with the inclusion of A shows that the
map M⊗N →M⊗N given by m⊗n 7→ (M⊗λB)(τM (1B⊗m)⊗n) is the identity.
From the injectivity result above we see that thus τM (1B ⊗m) = m⊗ 1B .

Next, the condition that (1 ⊗ b1b2) · (m ⊗ n) = (1 ⊗ b1) · ((1 ⊗ b2) · (m ⊗ n))
immediately implies that

(M ⊗ λB) ◦ (τM ⊗N) ◦ (µB ⊗M ⊗N) =

= (M ⊗ λB) ◦ (M ⊗ µB ⊗N) ◦ (τM ⊗B ⊗N) ◦ (B ⊗ τM ⊗N),

and by the injectivity result above this immediately gives the first condition of 3.7.
On the other hand, we must have τ(b⊗ a) · (m⊗n) = (1⊗ b) · ((a⊗ 1) · (m⊗n)).

This gives:

(M ⊗ λB) ◦ (λA ⊗M ⊗N) ◦ (A⊗ τM ⊗N) ◦ (τ ⊗M ⊗N) =

(M ⊗ λB) ◦ (τM ⊗N) ◦ (B ⊗ λA ⊗N),

and again by the injectivity result above this implies the second condition of 3.7. ¤

Remark. The condition used in the converse part of theorem 3.8 is just one possi-
bility. Also, in the case of topological algebras and topological tensor products this
condition is not sufficient in general. The main point is that one has to ensure the
injectivity of the map L(V,M ⊗B)→ L(V ⊗N,M ⊗N) constructed in the proof
for any V . An example of a condition which ensures this, even in the topological
case, is that λτM defines a left action compatible with the inclusion of A for one
B–module N which contains a free submodule of rank one as a direct summand.
In this case it is easy to explicitly reconstruct an element of L(V,M ⊗B) from its
image in L(V ⊗N,M ⊗N).

3.9. Next we give a characterization of module twisting maps which is analogous to
the characterization of twisting maps in 2.6: First consider the space L(M,M⊗B).
As in 2.5 we see that this space is a unital associative algebra with multiplication
defined by ϕ ∗ ψ := (M ⊗ µB) ◦ (ϕ⊗ B) ◦ ψ and unit m 7→ m⊗ 1B . On the other
hand consider the space L(B,M ⊗B). On this space we define a left action of A by
a ·ϕ := (λA⊗B) ◦ (A⊗ϕ) ◦ τa, where τa : B → A⊗B is given by τa(b) := τ(b⊗ a).
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3.10. Proposition. The action defined in 3.9 makes L(B,M ⊗ B) into a left
A–module.

Proof. Consider the first condition from 2.4(1):

τ ◦ (B ⊗ µA) = (µA ⊗B) ◦ (A⊗ τ) ◦ (τ ⊗A)

Evaluating with elements of A this reads as τa1a2
= (µA⊗B)◦ (A⊗τa2

)◦τa1
. Then

we compute:

(a1a2) · ϕ = (λA ⊗B) ◦ (A⊗ ϕ) ◦ τa1a2
=

= (λA ⊗B) ◦ (A⊗ ϕ) ◦ (µA ⊗B) ◦ (A⊗ τa2
) ◦ τa1

=

= (λA ⊗B) ◦ (A⊗ λA ⊗B) ◦ (A⊗A⊗ ϕ) ◦ (A⊗ τa2
) ◦ τa1

=

= (λA ⊗B) ◦ (A⊗ (a2 · ϕ)) ◦ τa1
= a1 · (a2 · ϕ)

Moreover, since τ(b⊗ 1) = 1⊗ b it is obvious that 1A acts as the identity. ¤
3.11. Proposition. A linear map τM : B ⊗M → M ⊗ B is a module twisting
map if and only if the associated map B → L(M,M ⊗ B) is a homomorphism of
unital algebras and the associated map M → L(B,M ⊗ B) is a homomorphism of
left A–modules.

Proof. First the condition that the associated map B → L(M,M ⊗ B) preserves
the units means exactly that τM (1⊗m) = m⊗ 1. Next as in proof of 2.6 one sees
that this map being an algebra homomorphism is precisely the first condition of
3.7.

On the other hand, the condition that the associated map M → L(B,M ⊗B) is
a homomorphism of left A–modules means just that τM (b⊗ (a ·m)) = (λA ⊗B) ◦
(A⊗ τM )(τ(b⊗ a)⊗m) which is precisely the second condition of 3.7 evaluated on
b⊗ a⊗m. ¤
3.12. Right modules. What we have done above for left modules can be devel-
oped completely analogous for right modules. For completeness we list here the
corresponding conditions. We start with a twisting map τ : B⊗A→ A⊗B, a right
A–module M and a right B–module N , and we are looking for a right A ⊗τ B–
module structure on M⊗N such that (m⊗n)·(1⊗b) = m⊗(n·b). Thus we need an
exchange map τN : N⊗A→ A⊗N , and define then ρτN := (ρA⊗ρB)◦(M⊗τN⊗B),
where the ρ’s denote the given right action. We call τN a (right) module twisting
map if and only if

τN ◦ (ρB ⊗ µA) = (µA ⊗ ρB) ◦ (A⊗ τN ⊗B) ◦ (τN ⊗ τ) ◦ (N ⊗ τ ⊗A),

and the obvious analog of theorem 3.8 holds. The analogs of the conditions of 3.7
look as

τN ◦ (N ⊗ µA) = (µA ⊗N) ◦ (A⊗ τN ) ◦ (τN ⊗A)

τN ◦ (ρB ⊗A) = (A⊗ ρB) ◦ (τN ⊗B) ◦ (N ⊗ τ).

Next as in 3.9 and 3.10 we get a unital associative algebra structure on L(N,A⊗N)
via ϕ∗ψ := (µA⊗N)◦ (A⊗ψ)◦ϕ, and a right B–module structure on L(A,A⊗N)
via ϕ · b := (A⊗ ρB) ◦ (ϕ⊗B) ◦ τb, where τb : A→ A⊗B is the map a 7→ τ(b⊗ a),
and the obvious analog of proposition 3.11 holds.
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3.13. Bimodules. Again, let us start from a twisting map τ : B ⊗ A → A ⊗ B,
and suppose that M is an A–bimodule and N is a B–bimodule. Moreover, suppose
we have given a left module twisting map τM : B⊗M →M⊗B and a right module
twisting map τN : N⊗A→ A⊗N . Thus we have a left and a right A⊗τ B–module
structure on M ⊗N , which we denote by λτM and ρτN , respectively.

Proposition. M ⊗ N is an A ⊗τ B–bimodule with respect to the structures from
above if and only if

(ρA ⊗N) ◦ (M ⊗ τN ) ◦ (M ⊗ λB ⊗A) ◦ (τM ⊗N ⊗A) =

= (A⊗ λB) ◦ (τM ⊗N) ◦ (B ⊗ ρA ⊗N) ◦ (B ⊗M ⊗ τN ).

Proof. The condition above is precisely the translation of the fact that ((1 ⊗ b) ·
(m⊗n)) · (a⊗1) = (1⊗ b) · ((m⊗n) · (a⊗1)). By the compatibility of λτM with the
left action of A and of ρτN with the right action of B this condition is equivalent
to M ⊗N being a bimodule. ¤

4. Cohomology for twisted tensor products and deformations.

In this section we construct an analog of the Hochschild cohomology of an algebra
with coefficients in the algebra for twisted tensor products. We show that the
relation of this cohomology to (formal) deformations (in the sense of twisted tensor
products) is similar as in the classical case. In particular, we consider the case of
deformations of the ordinary multiplication on the tensor product. As we indicated
before, from now on we put K = R or C.

4.1. From 2.7 we see that we may reduce the study of twisted tensor products to the
study of multiplications on the tensor product which are defined by a twisting map
like in 2.2. Now for multiplication maps on a fixed module there is a conceptual
approach to Hochschild cohomology via a certain graded Lie algebra, which is
probably due to [Gerstenhaber, 1953]. This approach is probably better known in
the case of Lie algebras, see [Nijenhuis-Richardson, 1967]. A multigraded version
both for associative and Lie algebras is developed in [Lecomte-Michor-Schicketanz,
1992]. Here we give a short outline in the associative case: Let V be a K–vector
space and for n ∈ N put Mn(V ) := Ln+1(V, V ), the space of all n+ 1–linear maps
from V n+1 to V . Then for Li ∈M `i(V ) define j(L1)L2 and [L1, L2] in M `1+`2(V )
by:

(j(L1)L2)(v0, . . . , v`1+`2) :=

=

`2∑

i=0

(−1)`1iL2(v0, . . . , L1(vi, . . . , vi+`1), . . . , v`1+`2)

[L1, L2] :=j(L1)L2 − (−1)`1`2j(L2)L1.

Then it turns out that this bracket defines a graded Lie algebra structure on
M(V ) =

⊕
nM

n(V ). Moreover, an element µ ∈ M1(V ), i.e. a bilinear map V ×
V → V is an associative multiplication if and only if [µ, µ] = 0. But if this is the case
then by the graded Jacobi–identity the mapping dµ : Mn(V )→ Mn+1(V ) defined
by dµ(L) = [µ,L] is a differential, i.e. dµ◦dµ = 0 and the cohomology of (M(V ), dµ)
is exactly the Hochschild cohomology of the algebra (V, µ) with coefficients in the
bimodule V .
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4.2. Let us now adapt this construction for twisted tensor products. Thus we have
V = A ⊗ B. Now Mn(A ⊗ B) = L((A ⊗ B)⊗n+1, A ⊗ B) and both (A ⊗ B)⊗n+1

and A⊗B have canonical structures of a left A–module and a right B–module, by
acting on the leftmost A component and the rightmost B-component, respectively.
By definition, any multiplication of the form µτ as defined in 2.2 is a homomorphism
for both these module structures. Moreover, from the definition of the operator j
above it is obvious that the subspace M̃(A ⊗ B) =

⊕
M̃n(A ⊗ B), where M̃n

denotes the set of linear maps (A⊗B)⊗n+1 → A⊗B, which respect both module
structures, is a Lie subalgebra of M(A ⊗ B). Since A and B are unital we may

identify M̃0(A⊗B) with A⊗B and M̃n(A⊗B) with L(B⊗(A⊗B)⊗n−1⊗A,A⊗B).

In particular, under this identification M̃1(A⊗B) = L(B⊗A,A⊗B) and one easily

checks that the element in M̃1(A ⊗ B) corresponding to a multiplication µτ as in
2.2 is exactly the map τ . Let us again denote by [ , ] the induced bracket on

M̃(A⊗B). Then from the above we see that µτ is associative if and only if [τ, τ ] = 0.
Since we are interested in twisting maps τ , we have to take into account the

additional condition that τ(1 ⊗ a) = a ⊗ 1 and τ(b ⊗ 1) = 1 ⊗ b. We define

Cn(A⊗B) to be the set of all σ ∈ M̃n(A⊗B) which satisfy the following condition:
σ(b⊗a1⊗b1⊗· · ·⊗an−1⊗bn−1⊗a) = 0 if either b = 1 or a = 1 or ai = 1 and bi = 1
for some i = 1, . . . , n − 1. The motivation for this definition is that elements in
C1(A⊗B) should be candidates for infinitesimal deformations of twisting maps and
in order to remain in the realms of twisting maps they have to satisfy σ(1 ⊗ a) =
σ(b⊗ 1) = 0, and the following result, the proof of which also shows that C(A⊗B)
is just the natural analog of the normalized Hochschild complex.

4.3. Proposition. The space C(A⊗B) =
⊕

n C
n(A⊗B) is a graded Lie subalgebra

of M̃(A ⊗ B) and for any twisting map τ it is closed under the differential dτ =
[τ, ].

Proof. Take σi ∈ Cni(A ⊗ B) for i = 1, 2. To compute the bracket [σ1, σ2] we
proceed as follows: To σi we associate Li ∈Mni(A⊗B) defined by

Li(a0 ⊗ b0 ⊗ · · · ⊗ ani ⊗ bni) = a0 · σi(b0 ⊗ · · · ⊗ ani) · bni ,

and then

[σ1, σ2](b⊗ a1 ⊗ · · · ⊗ bn1+n2−1 ⊗ a) = [L1, L2](1⊗ b⊗ · · · ⊗ a⊗ 1).

This shows that [σ1, σ2] ∈ C(A ⊗ B) is equivalent to [L1, L2](v0, . . . , vn1+n2
) = 0

if one of the vi equals 1 assuming that the Li have this property. (Here we write
vi for elements of A ⊗ B). But obviously each individual summand occurring in
the definition of j(L1)L2 vanishes under these conditions, so C(A⊗B) is indeed a
subalgebra.

Now suppose that σ ∈ Cn(A ⊗ B) and that τ is a twisting map. As above we
form Lσ and consider the bracket [µτ , Lσ](1 ⊗ b ⊗ · · · ⊗ a ⊗ 1). Now we have to
show that [µτ , Lσ](v0, . . . , vn+1) vanishes if any of the vi = 1 assuming that Lσ has
this property and that 1 is really the multiplicative unit for µτ . This is exactly
the classical fact that the normalized Hochschild cochains form a subcomplex. Ex-
plicitly this can be seen as follows: Consider first the case where vi = 1 for some
i 6= 0, n+ 1. Then in the sum defining j(µτ )Lσ all terms vanish obviously, but the
two in which vi goes into the µτ . But these two give the same result with opposite
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signs since µτ ∈ M1(A⊗ B) and 1 is a multiplicative unit. On the other hand, in
both summands of j(Lσ)µτ this vi must go into the Lσ since i 6= 0, n+ 1, so these
vanish, too.

Next suppose that v0 = 1. Then in j(µτ )Lσ the only surviving summand equals
Lσ(v1, . . . , vn+1), while from j(Lσ)µτ we get −(−1)n(−1)n·1Lσ(v1, . . . , vn+1), so
these two terms cancel. Similarly one proves the result if vn+1 = 1, and thus
C(A⊗B) is indeed closed under the differential dτ for any twisting map τ . ¤
4.4. Definition. We now define the cohomology H∗(τ) to be the cohomology
of the complex (C∗(A ⊗ B), dτ ). Note that C0(A ⊗ B) = 0, so H0(τ) = 0 and

H1(τ) = Ker(dτ ) ⊂ C1(τ). This is true since M̃0(A ⊗ B) ∼= A ⊗ B, with (α ⊗
β)(a⊗ b) = aα⊗ βb and such a map vanishes on 1⊗ 1 only if α⊗ β = 0.

Nevertheless, we do not renumber the cohomology groups so that we get the
usual correspondences between cohomology groups and deformations.

Note that by the graded Jacobi identity the differential dτ acts as a graded
derivation with respect to the graded Lie bracket, which thus induces a graded Lie
algebra structure on the cohomology space H∗(τ).

4.5. Formal Deformations. To study deformations of twisted tensor products
we have to study deformations of twisting maps. So let τ0 be a twisting map and
consider a formal power series τ =

∑
k≥0 τkt

k, where each τk is a linear mapping
τk : B ⊗ A → A ⊗ B. To have a chance that at least for small t this power series
defines a twisting map we obviously have to assume that for each k, a and b we
have τk(b⊗ 1) = τk(1⊗ a) = 0, i.e. that each τk is in fact an element of C1(A⊗B).
Next let [τ, τ ] be the formal power series

∑
k[τ, τ ]kt

k with [τ, τ ]k :=
∑
i+j=k[τi, τj ],

so we have
[τ, τ ] = 0 + 2[τ0, τ1]t+ (2[τ0, τ2] + [τ1, τ1])t2 + . . .

Now we call τ a formal deformation of τ0 if and only if [τ, τ ] = 0. Clearly, if the
power series τ converges for |t| < t0 for some t0 > 0 then this condition is equivalent
to τ(t) being a twisting map for all |t| < t0.

4.6. Now it is quite easy to relate formal deformations to the cohomology. Assume
that we have given a formal power series τ =

∑
k τkt

k as above. Then the first term
in the expansion of [τ, τ ] is just 2dτ0(τ1), so the first condition for being a formal
deformation is that τ1 ∈ H1(τ0). In particular, if H1(τ0) = 0 then τ1 = 0 and the
next equation reads just as 2dτ0(τ2) = 0, thus τ2 = 0 and inductively one gets that
all τk must be zero. Thus if H1(τ0) = 0 there is no formal deformation of τ0, and
we call τ0 formally rigid in this case.

On the other hand if H1(τ0) 6= 0 let us fix some τ1. Then the next term in
the expansion of [τ, τ ] is 2dτ0(τ2) + [τ1, τ1]. Since dτ0 acts as a graded derivation
with respect to the bracket we see that [τ1, τ1] is always a cocycle, and thus the
obstruction against the existence of a τ2 ∈ C1(A ⊗ B) which solves the equation
2dτ0(τ2)+[τ1, τ1] = 0 is exactly the cohomology class of [τ1, τ1] in H2(τ0). Moreover,
if this class vanishes then this element τ2 is determined up to elements of H1(τ0).

Now let us inductively assume that for k < N we have found elements τk ∈
C1(A ⊗ B) such that 0 = 2dτ0(τk) +

∑
i,j>0;i+j=k[τi, τj ] for all k. Clearly, this

implies that

[τ, τ ] = tN (2dτ0(τN ) +
∑

i,j>0;i+j=N

[τi, τj ]) + higher order terms.
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Now applying dτ0 to
∑
i,j>0;i+j=N [τi, τj ] we get:

∑

i,j>0
i+j=N

([dτ0τi, τj ]− [τi, dτ0τj ]) = 2
∑

i,j>0
i+j=N

[dτ0τi, τj ]

which by our assumptions equals

2
∑

i,j>0
i+j=N

∑

m,n>0
m+n=i

[[τm, τn], τj ] = 2
∑

i,j,k>0
i+j+k=N

[[τi, τj ], τk].

If in this sum there is a term in which all three indices are equal than this term
vanishes by the graded Jacobi identity. Next, the sum of all terms in which exactly
two indices are equal can be written as

2
∑

i,j>0
2i+j=N

([[τi, τi], τj ] + [[τi, τj ], τi] + [[τj , τi], τi]),

and each of these summands vanishes by the graded Jacobi identity and the sym-
metry of the bracket for elements of degree one. Finally, again using this symmetry
the sum of the terms in which all three indices are different can be rewritten as

4
∑

i>j>k>0
i+j+k=N

([[τi, τj ], τk] + [[τi, τk], τj ] + [[τj , τk], τi]),

and as above each of these summands vanishes.
So again the obstruction against finding τN ∈ C1(A⊗ B) such that 2dτ0(τN ) +∑
i,j>0;i+j=N [τi, τj ] = 0 is the cohomology class of

∑
i,j>0;i+j=N [τi, τj ] in H2(τ0),

and if this vanishes the choice of τN is unique up to elements of H1(τ0). Together
we see that if we try to extend a cocycle τ1 ∈ H1(τ0) to a formal deformation, in
each step there is an obstruction in H2(τ0) and if this vanishes the extension is
unique up to elements of H1(τ0).

4.7. Definition. In order to proceed towards the computation of the cohomology
of a twisting map τ , we have to consider some module structures depending on
τ . From 3.9 we get a left A–module structure on L(B,A ⊗ B) given by a · σ :=
(µA⊗B)◦ (A⊗σ)◦ τa, where τa : B → A⊗B is the map given by τa(b) := τ(a⊗ b).
Moreover, we define a right action of A on this space by (σ · a)(b) := σ(b) ·τ (a⊗ 1).
Similarly from 3.12 we get a right B–module structure on L(A,A ⊗ B) given by
σ · b := (A ⊗ µB) ◦ (σ ⊗ B) ◦ τb and we define a left action of B on this space by
(b · σ)(a) := (1⊗ b) ·τ σ(a).

4.8. Proposition. The actions from 4.7 make L(B,A ⊗ B) into an A–bimodule
and L(A,A⊗B) into a B–bimodule.

Proof. We prove this only for the actions of A, the proof for the actions of B is
completely analogous.

In 3.10 we have shown that the left action of A is indeed an action. Next by
definition the τ–multiplication with a⊗ 1 from the right is just given by (µA⊗B) ◦
(A⊗ τa). Thus we get:

(a1 · σ) · a2 = (µA ⊗B) ◦ (A⊗ τa2
) ◦ (a1 · σ) =

= (µA ⊗B) ◦ (A⊗ τa2
) ◦ (µA ⊗B) ◦ (A⊗ σ) ◦ τa1

,



ON TWISTED TENSOR PRODUCTS OF ALGEBRAS 17

while on the other hand

a1 · (σ · a2) = (µA ⊗B) ◦ (A⊗ (σ · a2)) ◦ τa1
=

= (µA ⊗B) ◦ (A⊗ µA ⊗B) ◦ (A⊗A⊗ τa2
) ◦ (A⊗ σ) ◦ τa1

,

and again by associativity of µA this equals the above expression. ¤
4.9. Remarks. (1) If V is an arbitrary K–vector space then the module structures
from above induce an A–bimodule structure on L(B⊗V,A⊗B), since this space is
canonically isomorphic to L(V,L(B,A⊗B)) by the universal property of the tensor
product. In the same way, one gets a B–bimodule structure on L(V ⊗ A,A ⊗ B)
for any V .

A short computation shows that these structures are given by (σ · a)(b ⊗ v) =
σ(b ⊗ v) ·τ (a ⊗ 1) and a · σ = (µA ⊗ B) ◦ (A ⊗ σ) ◦ (τa ⊗ V ), and likewise for the
actions of B.
(2) To any mapping σ ∈ L(B ⊗ V,A ⊗ B) we can associate a linear map Lσ :
A ⊗ B ⊗ V → A ⊗ B, which is a homomorphism for the left A–module structures
given by left multiplication. Now the nontrivial module structures defined above
can be conveniently expressed using Lσ as (a·σ)(b⊗v) = Lσ(τ(b⊗a)⊗v). Similarly
one can express the right actions of B. This follows directly from the definitions.

4.10. Consider the space C1(A⊗B) ⊂ L(B ⊗A,A⊗B). This can be canonically
identified with L0(B,L0(A,A ⊗ B)), where L0 denotes the space of those linear
maps which vanish on 1. Thus we can consider the Hochschild differential ∂τB with
respect to B and the B–bimodule structure on L0(A,A ⊗ B) constructed in 4.7
above (obviously L0(A,A⊗B) is a sub–bimodule of L(A,A⊗B) for this structure).
∂τB has then values in the space L(B ⊗B,L0(A,A⊗B)) which can be canonically
identified with a subspace of L(B⊗B⊗A,A⊗B). Since the Hochschild differential
respects the normalized Hochschild complex the values are in fact in the subspace
of those maps which vanish if one entry is equal to one.

Similarly, identifying C1(A⊗B) with L0(A,L0(B,A⊗B)) we get a Hochschild
differential ∂τA which has values in (a subspace of) L(B ⊗A⊗A,A⊗B).

For later use let us compute these differentials explicitly:
For σ ∈ L0(B,L0(A,A ⊗ B)) we have by definition ∂τBσ(b1 ⊗ b2) = b1 · (σ(b2)) −
σ(b1b2) + (σ(b1)) · b2. Reinterpreting σ as a map from B ⊗A to A⊗B we thus get

∂τBσ(b1 ⊗ b2 ⊗ a) = (1⊗ b1) ·τ (σ(b2 ⊗ a))− σ(b1b2 ⊗ a) + Lσ(b1 ⊗ τ(b2 ⊗ a)).

Here Lσ : B ⊗ A ⊗ B → A ⊗ B denotes the homomorphism of right B–modules
induced by σ (cf. 4.9(2)).

Similarly one computes

∂τAσ(b⊗ a1 ⊗ a2) = Lσ(τ(b⊗ a1)⊗ a2)− σ(b⊗ a1a2) + (σ(b⊗ a1)) ·τ (a2 ⊗ 1).

In this case Lσ : A⊗B⊗A→ A⊗B denotes the homomorphism of left A–modules
induced by σ as in 4.9(2).

4.11. Next consider the map Ψ1 : C2(A ⊗ B) → L(B ⊗ B ⊗ A,A ⊗ B) given by
(Ψ1σ)(b1 ⊗ b2 ⊗ a) := σ(b1 ⊗ 1 ⊗ b2 ⊗ a). Obviously, this is a homomorphism of
A–bimodules and of B–bimodules for the structures defined in 4.8 for any twisting
map τ .
Similarly, we get such a homomorphism Ψ2 : C2(A⊗B)→ L(B ⊗A⊗A,A⊗B).
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Theorem. For a fixed twisting map τ let Z2
τ (A ⊗ B) denote the space of two–

cocycles in C2(A⊗B) with respect to dτ . Then the induced map

Ψ = (Ψ1,Ψ2) : Z2
τ (A⊗B)→ L(B ⊗B ⊗A,A⊗B)⊕ L(B ⊗A⊗A,A⊗B)

is injective and we have Ψ ◦ dτ = (−∂τB , ∂τA). Moreover, Ψ1 has values in the
subspace of normalized Hochschild two–cocycles on B with values in L0(A,A⊗ B)
and Ψ2 has values in the subspace of normalized Hochschild two–cocycles on A with
values in L0(B,A⊗B).

Proof. Let us first compute the two–cocycle equation for σ ∈ C2(A ⊗ B). This
reads as:

0 = [µτ , Lσ](1⊗ b0 ⊗ a1 ⊗ b1 ⊗ a2 ⊗ b2 ⊗ a3 ⊗ 1) =

= Lσ((1⊗ b0) ·τ (a1 ⊗ b1)⊗ a2 ⊗ b2 ⊗ a3 ⊗ 1)−
− Lσ(1⊗ b0 ⊗ (a1 ⊗ b1) ·τ (a2 ⊗ b2)⊗ a3 ⊗ 1)+

+ Lσ(1⊗ b0 ⊗ a1 ⊗ b1 ⊗ (a2 ⊗ b2) ·τ (a3 ⊗ 1))−
− (1⊗ b0) ·τ Lσ(a1 ⊗ b1 ⊗ a2 ⊗ b2 ⊗ a3 ⊗ 1)−
− Lσ(1⊗ b0 ⊗ a1 ⊗ b1 ⊗ a2 ⊗ b2) ·τ (a3 ⊗ 1)

Now apply this equation with b1 = 1 and a2 = 1. Then the last two terms vanish
since σ(1 ⊗ . . . ) = σ(. . . ⊗ 1) = 0 and since (1 ⊗ b) ·τ (a ⊗ 1) = τ(b ⊗ a) and
(a⊗ 1) ·τ (1⊗ b) = a⊗ b we get:

0 = (a1 · σ)(b0 ⊗ 1⊗ b2 ⊗ a3)− σ(b0 ⊗ a1 ⊗ b2 ⊗ a3) + (σ · b2)(b0 ⊗ a1 ⊗ 1⊗ a3),

and since Ψ1 and Ψ2 are bimodule homomorphisms this implies injectivity of Ψ.
Next applying the cocycle equation with a1 = a2 = 1 we get:

0 = σ(b0b1 ⊗ 1⊗ b2 ⊗ a3)− σ(b0 ⊗ 1⊗ b1b2 ⊗ a3)+

+ (σ · b2)(b0 ⊗ 1⊗ b1 ⊗ a3)− (b0 · σ)(b1 ⊗ 1⊗ b2 ⊗ a3),

which exactly means that Ψ1(σ) is a Hochschild two–cocycle. Similarly, the cocycle
equation for b1 = b2 = 1 shows that Ψ2(σ) is a Hochschild two–cocycle.

Finally, for σ ∈ C1(A⊗B) we have:

dτ (σ)(b0 ⊗ a1 ⊗ b1 ⊗ a2) = [µτ , Lσ](1⊗ b0 ⊗ a1 ⊗ b1 ⊗ a2 ⊗ 1) =

=Lσ((1⊗ b0) ·τ (a1 ⊗ b1)⊗ a2 ⊗ 1)− Lσ(1⊗ b0 ⊗ (a1 ⊗ b1) ·τ (a2 ⊗ 1))−
− (1⊗ b0) ·τ Lσ(a1 ⊗ b1 ⊗ a2 ⊗ 1) + Lσ(1⊗ b0 ⊗ a1 ⊗ b1) ·τ (a2 ⊗ 1)

Putting in this equation a1 = 1 we get

Ψ1(dτσ)(b0 ⊗ b1 ⊗ a2) = σ(b0b1 ⊗ a2)− (σ · b1)(b0 ⊗ a2)− (b0 · σ)(b1 ⊗ a2),

and this is just −∂τBσ(b0 ⊗ b1 ⊗ a2), while putting b1 = 1 we get

Ψ2(dτσ)(b0 ⊗ a1 ⊗ a2) = (a1 · σ)(b0 ⊗ a2)− σ(b0 ⊗ a1a2) + (σ · a2)(b0 ⊗ a1),

which is just ∂τAσ(b0 ⊗ a1 ⊗ a2). ¤
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4.12. The case of the trivial twisting map. We investigate the case of the
trivial twisting map s : B⊗A→ A⊗B, s(b⊗a) = a⊗ b, i.e. of deformations of the
ordinary tensor product. First note that in this case the bimodule structures defined
in 4.7 simplify considerably: By definition, the right action of A on L(B,A ⊗ B)
and the left action of B on L(A,A ⊗ B) are just given by right respectively left
multiplication on the values of the maps. On the other hand the left action of A
on L(B,A ⊗ B) is defined by a · σ := (µA ⊗ B) ◦ (A ⊗ σ) ◦ sa and this is the map
b 7→ a⊗b 7→ a⊗σ(b) 7→ (a⊗1)(σ(b)), so the left action reduces to left multiplication
on the values and similarly for the right action of B.

Using this fact we can now give a nice description of H1(s): Consider a map
σ : B⊗A→ A⊗B. By theorem 4.11 σ is in H1(s) if and only if ∂sB(σ) = ∂sA(σ) =
0. From the equations in 4.10 one immediately reads off that in this case these
conditions just mean that

σ(b1b2 ⊗ a) = σ(b1 ⊗ a)(1⊗ b2) + (1⊗ b1)(σ(b2 ⊗ a))

σ(b⊗ a1a2) = σ(b⊗ a1)(a2 ⊗ 1) + (a1 ⊗ 1)(σ(b⊗ a2)).

Now viewing σ as an element of L(B,L(A,A⊗B)) the second equation just means
that the values are in the subspace Der(A,A ⊗ B) of derivations, while the first
condition means that the map itself is a derivation with respect to the bimodule
structure on Der(A,A ⊗ B) given by multiplication on the values. Thus H1(s) ∼=
Der(B,Der(A,A⊗ B)) ∼= Der(A,Der(B,A⊗ B)), since the compatibility with the
units is automatically satisfied by derivations.

4.13. Examples. Still in the case of the trivial twisting map, suppose that ϕ ∈
Der(A,A) and ψ ∈ Der(B,B) are derivations. Consider the map b ⊗ a 7→ ϕ(a) ⊗
ψ(b). Obviously this is an element of H1(s). Now consider the formal power series

exp(tϕ⊗ ψ) := s+
∑
k≥1

tk

k! (ϕ⊗ ψ)k, where (ϕ⊗ ψ)k(b⊗ a) := ϕk(a)⊗ ψk(b). We
claim that this is always a formal deformation of s. By theorem 4.11 we have to
show that for any N ∈ N we have

2
N !∂

s
B((ϕ⊗ ψ)N ) =

∑

i,j>0;i+j=N

1
i!j!Ψ1([(ϕ⊗ ψ)i, (ϕ⊗ ψ)j ])

and
− 2
N !∂

s
A((ϕ⊗ ψ)N ) =

∑

i,j>0;i+j=N

1
i!j!Ψ2([(ϕ⊗ ψ)i, (ϕ⊗ ψ)j ]).

By the product rule for powers of derivations we have (ϕ ⊗ ψ)N (b1b2 ⊗ a) =∑N
i=0

(
N
i

)
ϕN (a)⊗ ψi(b1)ψN−i(b2). Thus, using the formula for ∂τB derived in 4.10

we see that

∂sB((ϕ⊗ ψ)N )(b1 ⊗ b2 ⊗ a) =

N−1∑

i=1

(
N

i

)
ϕN (a)⊗ ψi(b1)ψN−i(b2).

On the other hand, writing Li for the extension of (ϕ⊗ψ)i to A⊗B ⊗A⊗B as a
left A–module and a right B–module homomorphism we compute:

[(ϕ⊗ ψ)i, (ϕ⊗ ψ)j ](b1 ⊗ 1⊗ b2 ⊗ a) =

= Lj(Li(1⊗ b1 ⊗ 1⊗ b2)⊗ a⊗ 1)− Lj(1⊗ b1 ⊗ Li(1⊗ b2 ⊗ a⊗ 1))+

+ Li(Lj(1⊗ b1 ⊗ 1⊗ b2)⊗ a⊗ 1)− Li(1⊗ b1 ⊗ Lj(1⊗ b2 ⊗ a⊗ 1)) =

= 0− ϕi+j(a)⊗ ψj(b1)ψi(b2) + 0− ϕi+j(a)⊗ ψi(b1)ψj(b2)
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Using this it is easy to see that the first of the two above equations holds. The
second one is proved similarly.

In fact, this is closely related to a result of [Mourre 1990], who has shown that
if A is an algebra and D1 and D2 are commuting derivations on A, then a ∗ b :=∑∞
k=0

tk

k!D
k
1 (a)Dk

2 (b) is a formal deformation of A.

Let us carry this out in the two simplest situations: First put A = B = C[x]
viewed as the algebra of complex valued polynomials on the real line, and consider
the formal deformation exp(it ddx ⊗ d

dx ). Calling the variable in B p instead of x
we can write the resulting commutation relation as px = xp + it or [p, x] = it, so
we get exactly the Heisenberg uncertainty relation. It should be remarked that
clearly this is a true deformation on the level of polynomials. The extension of this
deformation to bigger subalgebras of all complex valued functions on the real line
is a more subtle (topological) problem.

Second put A = C[u, u−1], B = C[v, v−1] viewed as two copies of the algebra of
trigonometric polynomials on the unit circle, and consider the formal deformation
exp(it∂u ⊗ ∂v), where ∂u is the derivation given by ∂u(un) = inun, and similarly

for ∂v. We then get the commutation relation vu = uv
∑
k≥0

(−it)k
k! = e−ituv,

which is exactly the non–commutative two torus (or irrational rotation algebra)
with parameter q = e−it or in terms of physics the Weyl relations. In this case
this is not only a true deformation in the case of polynomials but it is also well
known that this extends to a true deformation for smooth functions and even to
continuous and essentially bounded functions.
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