
ESI The Erwin Schrödinger International Boltzmanngasse 9
Institute for Mathematical Physics A-1090 Wien, Austria

Parabolic Geometries and
Canonical Cartan Connections

Andreas Čap
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PARABOLIC GEOMETRIES

AND CANONICAL CARTAN CONNECTIONS

ANDREAS ČAP AND HERMANN SCHICHL

Abstract. Let G be a (real or complex) semisimple Lie group, whose Lie

algebra g is endowed with a so called |k|–grading, i.e. a grading of the form

g = g−k ⊕ · · · ⊕ gk, such that no simple factor of G is of type A1. Let P be

the subgroup corresponding to the subalgebra p = g0 ⊕ · · · ⊕ gk. The aim of

this paper is to clarify the geometrical meaning of Cartan connections corre-

sponding to the pair (G,P ) and to study basic properties of these geometric

structures.

Let G0 be the (reductive) subgroup of P corresponding to the subalge-

bra g0. A principal P–bundle E over a smooth manifold M endowed with

a (suitably normalized) Cartan connection ω ∈ Ω1(E,g) automatically gives
rise to a filtration of the tangent bundle TM of M and to a reduction to the
structure group G0 of the associated graded vector bundle to the filtered vec-
tor bundle TM . We prove that in almost all cases the principal P bundle

together with the Cartan connection is already uniquely determined by this
underlying structure (which can be easily understood geometrically), while in
the remaining cases one has to make an additional choice (which again can

be easily interpreted geometrically) to determine the bundle and the Cartan
connection.

1. Introduction

It is an idea that goes back to E. Cartan (see [10]) to view manifolds endowed
with certain geometric structures as “curved analogs” of homogeneous spaces. More
precisely, given a Lie group G and a closed subgroup H ≤ G, a generalized space
corresponding to the homogeneous space G/H (which is simply called a space by
Cartan) is a smooth manifold M of the same dimension as G/H, together with
a principal H–bundle E → M over M , which is endowed with a Cartan connec-
tion ω ∈ Ω1(E, g), that is a trivialization of the tangent bundle of E which is
H–equivariant and reproduces the generators of fundamental vector fields. For ex-
ample, for Riemannian structures (which are not among the structures considered
in this paper), the group G is the group of motions of Rn, H is the orthogonal group
O(n) (so G/H is just Rn, and G is exactly the group of isometries of Rn). Given a
Riemannian manifold M of dimension n, the principal bundle E is the orthogonal
frame bundle of M , and the Cartan connection is the soldering form on this bundle
together with the Levi–Civita connection on M .

Already this example (which is among the simplest possible ones) shows, that
identifying a manifold as a generalized space in the above sense should be rather
the result of a theorem than a definition. The aim of this paper is to clarify the
geometrical meaning of such generalized space structures in a (rather wide) spe-
cial case. Namely, we consider the case where G is semisimple (real or complex)
and its Lie algebra is endowed with a so called |k|–grading, i.e. a grading of the
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form g = g−k ⊕ · · · ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ · · · ⊕ gk and the subgroup, which will be
called P , corresponds to the Lie subalgebra g0⊕ · · · ⊕ gk. In the complex case, this
just means that P is a parabolic subgroup of G. Guided by this fact and follow-
ing Feffermann–Graham and Bailey (see [1]), we call the corresponding geometric
structures parabolic geometries. So what we consider contains curved analogs of
all compact complex simple homogeneous spaces and real forms of this situation.

Particularly well known examples of structures of this type are the so–called
AHS–structures, which are the structures corresponding to groups with |1|–graded
Lie algebras in the above sense. Among these, there are the conformal and para-
conformal (or almost Grassmannian) structures, as well as the classical projective
structures (see [6] and the references therein for a discussion of AHS–structures).
A very well studied example of a parabolic geometry corresponding to a |2|–graded
Lie algebra is given by CR–structures with non–degenerate Levi–form. This exam-
ple is discussed in some detail in this paper, see 4.14–4.16. An important source
for examples of general parabolic geometries is twistor theory, see 4.17 for an out-
line of these examples. Surprisingly, also the geometry of generic six–dimensional
codimension–two CR–manifolds fits into the scheme of parabolic geometries, see
[17].

The motivation for this work is mainly to provide a basis for a geometrical study
of parabolic geometries and of differential operators intrinsic to them. Such opera-
tors have been intensively studied in the case of AHS–structures, and in particular
in the case of conformal structures (see [6], the references therein, and [8]). Also,
powerful results on the existence of invariant differential operators for general par-
abolic geometries are already available, see [9].

There is a second way to view the results that we shall prove. Given a mani-
fold with a parabolic geometry, i.e. a principal P–bundle together with a suitably
normalized Cartan connection, it is easy to see that one can construct certain un-
derlying structures. Our main results then show that the bundle and the Cartan
connection are already fully determined by these underlying structures. These
structures are rather easy to interpret geometrically, so one can view our results
also as proofs for the existence of a canonical Cartan connection for these under-
lying structures. The construction of canonical Cartan connections also solves the
equivalence problem for such structures. In fact, this is the more traditional point
of view, say for AHS–structures and CR–structures.

The problem of constructing canonical Cartan connections has a rather long
history. First of all, Cartan’s original method of equivalence gives a possibility of
constructing canonical Cartan connections in a variety of cases. It seems that in
some of the cases we consider this method works even under weaker assumptions
than we impose. On the other hand, it seems to be hard in this approach to
give a general description of the normalizations, which are necessary to ensure
the uniqueness of the Cartan connections in a broader setting (say for arbitrary
parabolics). The problem of constructing canonical Cartan connections for AHS–
structures has been treated in several different ways by various authors (see e.g.
[19], [16] (in the torsion free case), [3] (in an associated–bundle setting) and [7]).

In the case of CR–structures, the construction of a canonical Cartan connection
is due to E. Cartan (see [11]) for hypersurfaces in C2 and to N. Tanaka (see [20]) and
S.S. Chern and J. Moser (see [12]) for arbitrary CR–manifolds. As an application
of our results, we show the existence of a canoncial Cartan connection for the
significantly more general class of partially integrable almost–CR–manifolds.

In [21], N. Tanaka treated problems quite closely related to the problems treated
here, but from a different point of view and with different aims. His main motiva-
tion was studying the corresponding equivalence problems, rather than geometric
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properties of the structures themselves. We prove a more general version of his
main result in 4.5. We believe that, besides working in bigger generality (Tanaka
treated only simple groups with trivial center and the case where the algebra is
the prolongation of the nonpositive part) and being technically simpler, our ap-
proach shows much clearer the geometrical background of the whole situation. In
particular, this refers to the emphasis on filtrations (which occur only implicitly
in Tanaka’s work) and our starting point for the prolongation procedure, which is
different from Tanaka’s and can be easily understood geometrically.

In [15], T. Morimoto developed a general theory of geometric strucutres on fil-
tered manifolds, mainly motivated by studying equivalence problems. As a special
case of this general theory, he extended the results of Tanaka on the existence of
canonical Cartan connections to semisimple groups. This general approach also
leads to a prolongation procedure producing the canonical Cartan connections in
the cases where the algebra is the prolongation of the nonpositive part. Although
Morimoto’s procedure is simpler than the one presented here (once all the general
machinery is developed) we think that our procedure has advantages compared to
his. On one hand, it also works in the cases related to projective structures and
their contact analogs, where the algebra is not the prolongation of the negative
part. On the other hand, and more importantly, in our approach all the necessary
data in the procedure are constructed directly and have a direct geometric inter-
pretation. This is not really visible in the general setting presented here, but it
becomes apparent once one works with a concrete structure, see [5]. In contrast to
that, Morimoto’s procedure uses non–commutative (semi–holonomic) frame bun-
dles and the canonical forms on these bundles, which seem to us to be much harder
to interpret geometrically. There is no doubt, however, that the two procedures are
essentially equivalent.

The main results. Since parts of this paper are rather technical, we collect here
the main results: Let G be a semisimple Lie group with |k|–graded Lie algebra g as
above, P the corresponding subgroup and G0 ≤ P the subgroup corresponding to
the Lie subalgebra g0. Let M be a smooth manifold with a filtration of the tangent
bundle TM = T−kM ⊃ · · · ⊃ T−1M by smooth subbundles such that the rank of
T iM equals the dimension of g−i ⊕ · · · ⊕ g−1. The main technical notion in the
paper is the notion of harmonic P–frame bundles of degree ` (see 3.6 and 3.10).
This notion interpolates between two rather simple concepts. For ` = 1 one gets
reductions to the structure group G0 of the associated graded vector bundle to the
filtered vector bundle TM , which satisfy a condition called the structure equations
(see 3.4). Roughly, this can be interpreted geometrically as follows: First, one has
to require that the Lie–bracket of vector fields is compatible with the filtration, i.e.
the bracket of a section of T iM with a section of T jM is a section of T i+jM . Under
this assumption, the Lie bracket gives rise to a pointwise Lie algebra structure on
the associated graded vector bundle to the tangent bundle, and a P–frame bundle of
degree one over M which satisfies the structure equations means exactly that each
fiber of the associated graded bundle (with this algebraic bracket) looks like the
graded G0–module g−k⊕· · ·⊕g−1. Since the group G0 is always reductive, this can
be easily described explicitly in each case. The other extremal case (` = 2k + 1)
of a P–frame bundle is a principal P–bundle over M endowed with a suitably
normalized Cartan connection.

The technical core of the paper is theorem 3.22, which shows that, assuming
that a certain Lie algebra cohomology group (which depends on `) is trivial, one
can construct a unique (up to isomorphism) harmonic P–frame bundle of degree
`+ 1 out of a harmonic P–frame bundle of degree `. Together with a rather simple
way to go in the other direction, this shows that, assuming the vanishing of the
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cohomology group, there is a bijective correspondence between isomorphism classes
of harmonic P–frame bundles of degree ` and of degree `+ 1.

The relevant cohomology groups have been computed in [22] using Kostant’s
version of the Bott–Borel–Weil theorem. The result is that in all cases except
two families (one of which is the classical projective structures, the other one a
certain |2|–grading on symplectic algebras which corresponds to a contact–analog
of classical projective structures) all the relevant cohomology groups vanish. Thus,
except for these two cases, there is a bijective correspondence between reductions to
the structure group G0 of the associated graded vector bundle to the tangent bundle
and isomorphism classes of principal P–bundles endowed with suitably normalized
Cartan connections. In the remaining cases (except the one of a simple factor
corresponding to one–dimensional projective structures, which is really degenerate),
we show that the obstructions occur only in the very first step of the prolongation
procedure, and in this step one has to make a choice, which should be simply viewed
as an ingredient of the structure (in fact the only ingredient in the projective case
and the only additional ingredient to a contact structure in the other case). Thus,
in these cases we still get canonical Cartan connections.

In section 4 we discuss the relation of our approach to the one of N. Tanaka
and prove a more general version of the main result of his paper [21]. Moreover,
we discuss some geometric properties of manifolds with parabolic geometries. In
particular, we study the curvature of the canonical Cartan connection and discuss
its relation to cohomology. Finally, we outline several examples, in particular AHS–
structures and partially integrable almost–CR–structures.

Acknowledgements. We would like to thank R.L. Bryant, M.G. Eastwood, C.R.
Graham, P.W. Michor, T. Morimoto, J. Slovák, V. Souček, and K. Yamaguchi for
helpful discussions on the subject. Parts of this work were done during stays of the
first author at the University of Adelaide and the Charles University in Prague,
whose supports are gratefully acknowledged.

2. |k|–graded Lie algebras

In this section, we collect some basic facts about |k|–graded semisimple Lie
algebras. Our basic reference for these results is [22]. That paper also contains
the computations of the cohomology groups which we will need in the sequel. We
give an alternative presentation of the Hodge structure on the standard complexes
computing these cohomologies in the real and complex case, which seems more
conceptual to us than the one of [21] and prove some basic results on groups with
|k|–graded semisimple Lie algebras.

2.1. Definition. Let K be R or C. A |k|–graded Lie algebra over K is a Lie algebra
g over K together with a decomposition g = g−k⊕· · ·⊕g−1⊕g0⊕g1⊕· · ·⊕gk, such
that [gi, gj ] ⊂ gi+j and such that the subalgebra g− := g−k⊕· · ·⊕g−1 is generated
by g−1. In the whole paper, we will only deal with semisimple |k|–graded Lie
algebras.

By p we will denote the subalgebra g0 ⊕ · · · ⊕ gk of g, and by p+ the subalgebra
g1 ⊕ · · · ⊕ gk of p. As we shall see in 2.2 below, the powers of p+ are then just
given as pi+ = gi ⊕ · · · ⊕ gk, for all i = 1, . . . , k. Moreover, from 2.2 it also follows
that a |k|–graded semisimple Lie algebra is a direct sum of |ki|–graded simple Lie
algebras, and we will assume throughout the paper that all these ki are bigger than
zero, i.e. that none of the simple ideals is contained in g0.

2.2. Proposition. Let g be a semisimple |k|–graded Lie algebra. Then the following
assertions hold:

(1) There is a unique element E ∈ g0 such that [E,X] = `X for all X ∈ g`.
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(2) Let B be the Killing form of g. Then B(gi, gj) = 0 unless i+ j = 0, and B
induces an isomorphism g∗i ∼= g−i of g0–modules for all i = 1, . . . , k.

(3) If g′ is an ideal in g, then g′ is homogeneous, i.e. g′ = ⊕ki=−k(g′ ∩ gi). In
particular, g is a direct sum of simple |ki|–graded Lie algebras (where all ki
are less or equal to k).

(4) Let A ∈ gi with i > −k be an element such that [A,X] = 0 for all X ∈ g−1.
Then A = 0.

(5) For i > −k we have [gi+1, g−1] = gi.

(The last two statements in the case i = 0 need that no simple factor of g is
contained in g0.)

Proof. (1)–(3) are shown in section 3.1 and lemma 3.1 of [22]. (4) and (5) are
proved in lemma 3.2 of [22] in the simple case, but under the assumption that no
simple factor is contained in g0, the results for the simple case obviously imply the
analogous statements in the semisimple case. ¤

2.3. The properties of |k|–graded Lie algebras collected in 2.2 are sufficient to
completely describe the meaning of a |k|–grading on a complex simple Lie algebra.
Namely, it can be shown (see section 3.3 of [22]) that given a complex |k|–graded
simple Lie algebra, one can find a Certan–subalgebra h ⊂ g0 ⊂ g, a system ∆+ of
positive roots for (g, h), and a subset Σ ⊂ ∆0 of the corresponding set of simple
roots such that the grading of g is given by the Σ–height of roots. This means that
for any root α, the root space gα is contained in the homogeneous component gj ,
where j is the sum of all coefficients of elements of Σ in the expansion of α as a
linear combination of simple roots. In particular, this implies that p ⊂ g is the
standard parabolic subalgebra corresponding to Σ ⊂ ∆+, see [4, 2.2].

Conversely, if p ⊂ g is any parabolic subalgebra in a complex simple Lie algebra,
then choosing a Cartan subalgebra and positive roots appropriately, p is the stan-
dard parabolic subalgebra corresponding to a set Σ of simple roots. But then the
Σ–height gives a |k|–grading on g, where k is the Σ–height of the maximal root.

In particular, specifying a |k|–grading for some k on a complex simple Lie–
algebra is equivalent to specifying a parabolic subalgebra p ⊂ g. Moreover, the
possible gradings of that type and the lengths of these gradings can be read off the
expression of the highest root (i.e. the highest weight of the adjoint representation)
as a linear combination of simple roots.

Since a |k|–grading is the same thing as a parabolic subalgebra, we can use
the Dynkin diagram notation as introduced in [4, 2.2] for complex |k|–graded Lie
algebras. So we take the Dynkin diagram for the Lie algebra g and replace the dots
corresponding to the simple roots contained in Σ by crosses. Consider for example

the Dynkin diagram × × • . The underlying Lie algebra of this is A3 = sl(4,C),
and we have to consider the standard parabolic corresponding to Σ = {α1, α2}.
The highest root for A3 is just the sum of the three simple roots, so its Σ–height is
2, and we get a |2|–grading, which is given by:




g0 g1 g2 g2

g−1 g0 g1 g1

g−2 g−1 g0 g0

g−2 g−1 g0 g0




It can also be shown that two Dynkin diagrams (with crosses) represent iso-
morphic |k|–graded Lie algebras if there is an isomorphism of the two diagrams
preserving the sets of crosses, see [22, Theorem 3.12], where also the real case is
discussed in terms of Satake diagrams.
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Finally, it should be remarked that any complex simple Lie algebra admits a (up
to isomorphism) unique contact–gradation, i.e. a |2|–grading such that dim(g±2) =
1, see [22, section 4.2].

2.4. Next, we have to discuss the Lie algebra cohomology groups of g− with
coefficients in g, which enter in two ways into the theory of parabolic geometries.
On one hand, parts of the first cohomology occur as obstructions in the prolongation
procedure, and on the other hand the second cohomology is related to the possible
values of the curvature of a normalized Cartan connection.
As usual, the chain groups for these cohomology groups are defined as Cn(g−, g) :=
L(Λng−, g), the space of linear maps from the n–th exterior power of g− to g. Alter-
natively, one can also view them as multilinear alternating maps. The differential
∂ : Cn(g−, g)→ Cn+1(g−, g) is given by

(∂ϕ)(X0, . . . , Xn) :=

n∑

i=0

(−1)i[Xi, ϕ(X0, . . . , X̂i, . . . , Xn)]+

+
∑

i<j

(−1)i+jϕ([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xn),

where the hat denotes omission.
We will denote by L`(Λ

ng−, g) or by Cn` (g−, g) the space of linear maps which
are homogeneous of degree `, i.e. for which ϕ(X1, . . . , Xn) ∈ gi1+···+in+` if each
Xj lies in gij . From the definition of ∂ it is obvious that ∂ maps L`(Λ

ng−, g)

to L`(Λ
n+1g−, g). Accordingly, also the cohomology groups split as Hn(g−, g) =

⊕`Hn
` (g−, g).

Note that the Lie subalgebra g0 of g acts on each component gi via the ad-
joint action. This implies that it acts on each of the spaces Cn(g−, g), and the
action preserves the homogeneity of maps. Moreover, one immediately verifies that
the differential ∂ is a homomorphism of g0–modules. Consequently, each of the
cohomology groups Hn

` (g−, g) is naturally a g0–module.

2.5. By 2.2(2), the Killing form on g can be used to identify the Lie subalge-
bra g− with the dual of the Lie subalgebra p+. Consequently, for any g–module
V , we can identify the space Cn(g−, V ) ∼= Λn(g∗−) ⊗ V with the dual space of
Λn(p∗+) ⊗ V ∗ ∼= Cn(p+, V

∗). In particular, the negative of the dual map of the
Lie algebra differential ∂ : Cn−1(p+, V

∗) → Cn(p+, V
∗) can be viewed as a linear

map ∂∗ : Cn(g−, V )→ Cn−1(g−, V ), which is called the codifferential . Clearly, the
codifferential satisfies ∂∗ ◦ ∂∗ = 0.

Since the Killing form identifies g− with the dual of p+ even as a g0–module, we
conclude that the codifferential ∂∗ is a homomorphism of g0–modules.

In the sequel, we will need the formula for the codifferential in the special case
∂∗ : C2(g−, g)→ C1(g−, g). To get the explicit formula, let {ξα} be a basis for g−
and {ηα} the dual basis (with respect to the Killing form) of p+. Using these, and
identifying g with g∗ using the Killing form, we can compute the dual pairing of
ϕ ∈ Cn(g−, g) and ψ ∈ Cn(p+, g) as

〈ϕ,ψ〉 = 1
n!

∑

α1,...,αn

B (ϕ(ξα1
, . . . , ξαn), ψ(ηα1

, . . . , ηαn)) .

By definition, 〈∂∗ϕ,ψ〉 = −〈ϕ, ∂ψ〉, and computing the right hand side for ϕ ∈
C2(g−, g) and ψ ∈ C1(p+, g) we get

1
2

∑

α,β

B (ϕ(ξα, ξβ),−[ηα, ψ(ηβ)] + [ηβ , ψ(ηα)] + ψ([ηα, ηβ ])) ,
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and by bilinearity of B this splits as a sum of three terms. Invariance of the Killing
form implies that each of the first two terms gives

1
2

∑

β

B

(∑

α

[ηα, ϕ(ξα, ξβ)] , ψ(ηβ)

)
.

For the last term, we can expand [ηα, ηβ ] =
∑
γ a

γ
αβηγ , where aγαβ = B(ξγ , [ηα, ηβ ]).

But again by invariance of the Killing form, aγαβ = B([ξγ , ηα], ηβ) and thus
∑

β

aγαβξβ = [ξγ , ηα]−,

the component in g− of the Lie bracket [ξγ , ηα]. Using this, we can rewrite the last
term as

1
2

∑

γ

B

(∑

α

ϕ([ηα, ξγ ]−, ξα) , ψ(ηγ)

)
.

Thus, we see that for ϕ ∈ C2(g−, g) and X ∈ g− we get:

∂∗ϕ(X) =
∑

α

[ηα, ϕ(ξα, X)] + 1
2

∑

α

ϕ([ηα, X]−, ξα).

2.6. Next, we want to show that the codifferential is the adjoint map of the
differential with respect to a certain metric. By [21, Lemma 1.5] for any |k|–
graded simple Lie algebra g there is an involutive automorphism σ : g→ g which is
conjugate linear in the complex case, such that σ(gi) = g−i, and B(X,σ(X)) < 0 for
all 0 6= X ∈ g. Consequently, B∗(X,Y ) := −B(X,σ(Y )) defines a positive definite
inner product in the real case and a positive definite Hermitian inner product in the
complex case, which is symmetric by invariance of the Killing form. Applying this
construction to each of the simple ideals, we get the same result in the semisimple
case.

Now consider the map F : Cn(g−, g)→ Cn(p+, g) defined by

F(ϕ)(Z1, . . . , Zn) := σ (ϕ(σ(Z1), . . . , σ(Zn))) .

Note that this maps complex linear maps to complex linear maps, but is only
conjugate linear in the complex case. A simple direct computation using the fact
that σ is compatible with brackets shows that the map F is compatible with the
Lie algebra differential, i.e. ∂(F(ϕ)) = F(∂ϕ).

The form B∗ constructed above induces an inner product (which we also denote
by B∗) on each of the spaces Cn(g−, g) ∼= Λn(g∗−)⊗ g. Now we claim:

Proposition. The differential ∂ : Cn(g−, g) → Cn+1(g−, g) and the codifferential
∂∗ : Cn+1(g−, g) → Cn(g−, g) are adjoint with respect to B∗, i.e. B∗(∂ϕ, ψ) =
B∗(ϕ, ∂∗ψ). In particular, for each n and ` the space Cn` (g−, g) splits as a direct
sum of the image of ∂ and the kernel of ∂∗, and each cohomology class contains a
unique representative, which is harmonic (i.e. ∂–closed and ∂∗–closed).

Proof. As above let us denote by 〈 , 〉 the dual pairing between Cn(g−, g) and
Cn(p+, g) constructed using the Killing form. If {ξα} is an orthonormal basis for
g− with respect to B∗, then the dual basis of p+ with respect to the Killing form
is by construction given by ηα = −σ(ξα). Using this, one easily concludes that
for ϕ,ψ ∈ Cn(g−, g) we get B∗(ϕ,ψ) = (−1)n+1〈ϕ,F(ψ)〉, where F : C∗(g−, g)→
C∗(p+, g) is the map constructed above. But using this we compute:

B∗(ϕ, ∂ψ) = (−1)n+1〈ϕ,F(∂ψ)〉 = (−1)n+1〈ϕ, ∂(F(ψ))〉 =

= (−1)n〈∂∗ϕ,F(ψ)〉 = B∗(∂∗ϕ,ψ).

¤
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2.7. Using the Hodge theory on the standard complex, the cohomology H∗(g−, g)
can now be computed in the complex simple case using Kostant’s version of the
Bott–Borel–Weil theorem, see [13]. The result that we will need directly in the
prolongation procedure is the computation of the first cohomology groups, which
have been carried out in [22]. It should be noted here, that in [22] the notation
is slightly different from ours, namely what we denote by Hk

` (g−, g) is denoted by
H`−k+1,k(m, g) there.

Proposition. Let g be a complex simple |k|–graded Lie algebra. Then for each ` > 0
the cohomology group H1

` (g−, g) is trivial, except in the following cases (using the
Dynkin diagram notation, see 2.3):

(1) ×, i.e. g = A1, and p ⊂ g is the Borel subalgebra. In this case, H1
2 (g−, g)

is the only nonzero component with ` > 0.

(2)× • · · · • • ∼=• • · · · • × , i.e. g = An for some n > 1, and p is the
maximal parabolic corresponding to either the first or the last root. In this
case, H1

1 (g−, g) is the nonzero component.

(3)× • · · · • •〈 , i.e. g = Cn for some n ≥ 2, and p is the maximal para-
bolic corresponding to the first root. In this case, H1

1 (g−, g) is the nonzero
component.

Proof. see [22, Proposition 5.1]. ¤

This also completely solves the problem in the real simple case, since by [22,
Lemma 3.5] the first cohomology group of positive homogeneity of of a complexi-
fication is the complexification of the corresponding real cohomology group of the
same homogeneity. To deal with the semisimple case, we have the following

2.8. Proposition. Let g′ be a semisimple |k′|–graded Lie algebra such that no
simple factor is contained in g′0 and g′′ be a semisimple |k′′|–graded Lie algebra
such that no simple factor is contained in g′′0 , and put g = g′ ⊕ g′′. Then for each
` > 0 we have H1

` (g−, g) ∼= H1
` (g′−, g

′) ⊕H1
` (g′′−, g

′′). If k′, k′′ ≥ 2, then the result
also holds for ` = 0.

Proof. Since we have g− = g′− ⊕ g′′− and g = g′ ⊕ g′′, we can write any linear map

ψ : g− → g as a block matrix

(
A B
C D

)
, where A : g′− → g′, B : g′′− → g′, and so

on. Now suppose that ψ is a cocycle. Then for all X,Y ∈ g− we have

0 = [X,ψ(Y )]− [Y, ψ(X)]− ψ([X,Y ]).

Applying this to X,Y ∈ g′−, we get two equations. The first is exactly the cocycle
equation for A, while the second says that C([X,Y ]) = 0, for all X,Y . This means
exactly, that C vanishes on g′−k′ ⊕ · · · ⊕ g′−2. Similarly, for X,Y ∈ g′′− we get that
D is a cocycle, and B can be nonzero only on g′′−1. Finally, taking X ∈ g′− and
Y ∈ g′′−, we get [X,B(Y )] = 0 and [Y,C(X)] = 0. But by 2.2(4) this implies
that B(Y ) ∈ g′−k′ and C(X) ∈ g′′−k′′ , so B and C can contain only components
homogeneous of degree up to −k′+1 respectively −k′′+1, and the result follows. ¤

2.9. Let g be a semisimple |k|–graded Lie algebra, and let G be a Lie group
with Lie algebra g. Since G is semisimple, each element of G is determined by
its adjoint action up to elements of the center of G. Let P ⊂ G be the subgroup
of those elements which satisfy Ad(g)(gi) ⊂ gi ⊕ gi+1 ⊕ · · · ⊕ gk for each i =
−k, . . . , k. This can be interpreted as follows: The |k|–grading of g gives rise to
an associated filtration g = F−k(g) ⊃ F−k+1(g) ⊃ · · · ⊃ Fk(g) ⊃ 0, defined by
Fi(g) := gi ⊕ · · · ⊕ gk, for all i = −k, . . . , k. Clearly, this filtration is compatible
with the Lie bracket, i.e. [Fi(g),Fj(g)] ⊂ Fi+j(g). (In fact, in many points in the
sequel it will be more natural to view this filtration as the main structure on g and



PARABOLIC GEOMETRIES 9

not the actual grading.) Then P ⊂ G is the subgroup of all elements whose adjoint
action is an automorphism of the filtered Lie algebra g.

We also define a second subgroup G0 of G as the set of all those g which satisfy
that Ad(g)(gi) ⊂ gi for all i = −k, . . . , k. By definition, G0 is a subgroup of P , and
it consists of those elements whose adjoint action preserves even the grading of g.

Proposition. The subgroup P has Lie algebra p, and G0 has Lie algebra g0.

Proof. In view of the equation Ad(exp(X)) = ead(X) for X ∈ g, it suffices to show
that p and g0 are precisely the subspaces of those X ∈ g such that ad(X) preserves
the filtration respectively the grading of g. So suppose that ad(X) preserves the
filtration of g. Then we can uniquely write X = X−k+ · · ·+Xk with Xi ∈ gi. Since
ad(X) preserves the filtration, we must have [X,E] ∈ p, where E is the element from
2.2(1). But by definition of E, we have [X,E] = kX−k+ · · ·+X−1−X1−· · ·−kXk,
and this is in p if and only if X ∈ p. If ad(X) even preserves the grading then [X,E]
must be in g0, so [X,E] must be zero in this case, which implies X ∈ g0. ¤

The structure of the group P is clarified in the following

2.10. Proposition. Let g ∈ P be any element. Then there exist unique elements
g0 ∈ G0 and Xi ∈ gi for i = 1, . . . , k, such that g = g0 exp(X1) . . . exp(Xk).

Proof. (see [20, Lemma 2.6]) Consider the adjoint action Ad(g) : g→ g. This is an
automorphism of the filtered Lie algebra g. In particular, Ad(g) maps each gi to
⊕j≥igj . If we just take the lowest component of this map, we get an automorphism
of the graded Lie algebra g, which we denote by ϕ0. By construction, ϕ0(Y ) is
congruent to Ad(g)Y modulo gi+1 ⊕ · · · ⊕ gk for all Y ∈ gi.

Thus, for ϕ1 := ϕ−1
0 ◦ Ad(g) we get that ϕ1(Y ) is congruent to Y modulo

gi+1 ⊕ · · · ⊕ gk for all Y ∈ gi. In particular, for the element E ∈ g0 from 2.2(1),
we have E − ϕ1(E) ∈ g1 ⊕ · · · ⊕ gk, and we denote by X1 the component in g1 of
this element. This means that ϕ1(E) is congruent to E −X1 modulo g2⊕ · · · ⊕ gk.
Moreover, Ad(exp(−X1))(E−X1) = E, so for ϕ2 = Ad(exp(−X1))◦ϕ1 we see that
ϕ2(E) is congruent to E modulo g2 ⊕ · · · ⊕ gk, while for each Y ∈ gi the element
ϕ2(Y ) clearly is congruent to Y modulo gi+1⊕· · ·⊕gk. Inductively, we find elements
Xj ∈ gj and automorphisms ϕj of g of the form ϕj = Ad(exp(−Xj−1))◦ϕj−1, such
that ϕj(E) is congruent to E modulo gj⊕· · ·⊕gk, and such that ϕj(Y ) is congruent
to Y modulo gi+1 ⊕ · · · ⊕ gk for each Y ∈ gi.

Then consider ϕk+1. By construction, we have ϕk+1(E) = E. Then for Y ∈ gi
we see that [E,ϕk+1(Y )] = ϕk+1([E, Y ]) = iϕk+1(Y ), so ϕk+1(Y ) ∈ gi. But by
construction, ϕk+1(Y ) is congruent to Y modulo gi+1 ⊕ · · · ⊕ gk, so ϕk+1(Y ) = Y .
This means that we can write the identity map as

Ad(exp(−Xk)) ◦ . . . ◦Ad(exp(−X1)) ◦ ϕ−1
0 ◦Ad(g),

so ϕ0 is the adjoint action of g̃0 := g exp(−Xk) . . . exp(−X1), so this element lies in
G0. Moreover, by construction g̃0 exp(X1) . . . exp(Xk) has the same adjoint action
as g, so since G is semisimple these two elements differ by an element of the center
of G, which by definition is contained in G0. Putting g0 the product of this element
with g̃0, we get a representation of g as required.

For the uniqueness, assume that we have

g0 exp(X1) . . . exp(Xk) = ĝ0 exp(X̂1) . . . exp(X̂k).

Then ĝ0 = exp(−X̂1) . . . exp(−X̂k)g0 exp(X1) . . . exp(Xk). Considering the adjoint
actions of both these elements on each gi and computing modulo gi+1 ⊕ · · · ⊕
gk, we see that g−1

0 ĝ0 lies in the center of G. Thus, in particular we see that
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Ad(exp(X1) . . . exp(Xk)) = Ad(exp(X̂1) . . . exp(X̂k)). Applying this to E and com-

puting modulo g2 ⊕ · · · ⊕ gk, we see that X1 = X̂1. Inductively, Xi = X̂i for all
i = 1, . . . , k, and thus also g0 = ĝ0. ¤

2.11. Next, we define a subgroup P+ ⊂ P as the image of p+ ⊂ p under the
exponential map. From proposition 2.10 it follows that the exponential map exp :
p+ → P+ is a global diffeomorphism. Moreover, again using 2.10, we see that
P/P+

∼= G0, so P is actually a semidirect product of G0 and P+. The powers of
the nilpotent Lie group P+ are exactly the exponential images of the powers of p+,
so we have P i+ = exp(pi+) for all i = 1, . . . , k. In the sequel, we will heavily need

the quotients P/P i+ for i = 1, . . . , k. Clearly, they are again semidirect products of

G0 with the groups P+/P
i
+.

Now let g ∈ P be an element, and write g = g0 exp(X1) . . . exp(Xk) as in propo-
sition 2.10. Take an element h = exp(Yi) . . . exp(Yk) ∈ P i+. Then by the Baker–
Campbell–Hausdorff formula we may write exp(Xi) . . . exp(Xk)h as an expression
of the form exp(Zi) . . . exp(Zk) for certain elements Zj ∈ gj . Thus, if we decompose
the product gh according to 2.10, we must get

gh = g0 exp(X1) . . . exp(Xi−1) exp(Zi) . . . exp(Zk).

In particular, this implies that the mapping G0 × (g1 ⊕ · · · ⊕ gi−1)→ P/P i+ which
maps (g0, X1, . . . , Xi−1) to the class of g0 exp(X1) . . . exp(Xi−1) is a global diffeo-
morphism.

This construction can also be used to construct for each i = 1, . . . , k a canonical
smooth section s : P/P i+ → P/P i+1

+ of the natural quotient map P/P i+1
+ → P/P i+.

One simply pushes forward the inclusion G0×(g1⊕· · ·⊕gi−1)→ G0×(g1⊕· · ·⊕gi)
with the diffeomorphism constructed above. Note, however, that these are not
group homomorphisms, unless i = 1.

2.12. By definition, the subgroup P ⊂ G acts on each of the filtration components
Fi(g) = gi ⊕ · · · ⊕ gk, and for j > i the component Fj(g) ⊂ Fi(g) is a submodule.
Thus, we can pass to the quotient Fi(g)/Fj(g) which is isomorphic as a vector
space to gi ⊕ · · · ⊕ gj−1. In particular, this leads to a P–action on g/p ∼= g−. We
will denote all these actions by Ad (and all the corresponding Lie algebra actions
by ad) if there is no risk of confusion.

Using that Ad(exp(X)) = ead(X) it is clear that an element g ∈ P is contained in

P j+ if and only if (Ad(g)− id)(Fi(g)) ⊂ Fi+j(g) for all i. In particular, this implies

that P j+ acts trivial on Fi(g)/Fi+j(g), so the action of P on this space factors to

an action of P/P j+.

2.13. Using the action of P on g− constructed in 2.12 above, we get an action of
P on Cn(g−, g) = L(Λng−, g).

Proposition. The codifferential ∂∗ : Cn(g−, g)→ Cn−1(g−, g) is P–equivariant.

Proof. (see also [21, 1.12]) To define the codifferential, we have used the Killing
form to identify g− with the dual of p+ and g with its own dual. Now for X ∈ g−
and b ∈ P we can write Ad(b)(X) (the adjoint action in g) as the sum of the action
of b on X constructed in 2.12 above plus a component in p. Since the Killing form
vanishes on p× p+, we see that invariance of the Killing form implies that g− is in
fact dual to p+ as a P–module. The identification of g with its own dual is, again
by invariance of the Killing form, an isomorphism of G– and thus of P–modules.

Thus, we see that for each n the spaces Cn(g−, g) and Cn(p+, g) are actually
dual P–modules. But then a simple direct computation shows that the Lie algebra
differential ∂ : Cn(p+, g) → Cn+1(p+, g) is a P–module homomorphism, and the
result follows. ¤
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3. P–frame bundles and the prolongation procedure

Throughout this section we fix a semisimple |k|–graded Lie algebra g and a Lie
group G with Lie algebra g. We continue to use the notation of section 2.

The aim of this section is to show how to construct principal P–bundles equipped
with Cartan connections from underlying structures.

3.1. The basic ingredient in our study is a manifold M together with a filtration
of the tangent bundle T−kM = TM ⊃ T−k+1M ⊃ · · · ⊃ T−1M by subvector
bundles, such that for each i = −k, . . . ,−1 the rank of T i(M) equals the dimension
of gi ⊕ · · · ⊕ g−1.

Next, let p : E → M be a locally trivial fiber bundle. Then we get an induced
filtration of the tangent bundle of E as T−kE = TE ⊃ T−k+1E ⊃ · · · ⊃ T−1E ⊃
T 0E := V E, where V E denotes the vertical bundle of E. This filtration is simply
given by T iE := (Tp)−1(T iM), where Tp denotes the tangent map to the projection
p. Note that if E is a principal bundle with some structure group H, then the
principal action of H on E induces an action of H on the tangent bundle TE, and
by construction of the induced filtration, each of the subbundles T iE is invariant
under this action.

3.2. Let p : E → M be a principal bundle with structure group P/P i+ for some
i = 1, . . . , k over a manifold with a filtration of its tangent bundle as in 3.1. In
this case, we can prolong the filtration of the tangent bundle of E by putting
T jE the image of gj ⊕ · · · ⊕ gi−1 under the fundamental vector field mapping for
j = 1, . . . , i− 1.
Definition. Let ` be an integer which is ≤ i if the structure group of E is P/P i+
and ≤ 2k + 1 if the structure group is P . We define a frame form θ of length `
on E as a k–tuple θ = (θ−k, . . . , θ−1), where θj is a smooth section of the bundle
L(T jE, gj ⊕ · · · ⊕ gj+`−1) of linear maps such that

(1) The kernel of θj in each point u ∈ E is exactly the subbundle T j+`u E.
(2) The forms are mutually compatible, i.e. the restriction of θj to T j+1E has

vanishing gj–component and its components in gj+1⊕· · ·⊕gj+`−1 coincide
with the components of θj+1 in that part.

(3) Each θj is P/P i+–equivariant, i.e. (rb)∗θj = Ad(b−1) ◦ θj , where rb denotes

the principal right action of b, and Ad denotes the action of P/P i+ on
gj ⊕ · · · ⊕ gj+`−1 introduced in 2.12.

(4) For A ∈ g0⊕· · ·⊕gi−1 let ζA be the fundamental vector field corresponding
to A. Then for j + ` ≤ 0 we have θj(ζA) = 0, while for j + ` > 0, θj(ζA)
gives the components of A in g0 ⊕ · · · ⊕ gj+`.

3.3. Remarks.

(1) If θ is a frame form of length `, then simply by forgetting components it
gives rise to frame forms of length 1, . . . , `− 1. The only point that is not
completely obvious is the equivariancy but this holds by definition of the
action Ad, see 2.12.

(2) In the case ` = 1, the second and last conditions become vacuous. Thus, a
frame form of length one is just a collection θ = (θ−k, . . . , θ−1) such that
each θj is a smooth section of L(T jE, gj) which is equivariant and for each
point u ∈ E induces a linear isomorphism T juE/T

j+1
u E → gj .

(3) On the other hand, if the length ` becomes bigger than k + 2, then some
components of θ contain no information, since they are just restrictions of
lower components. In the extremal case, ` = 2k+ 1, the whole information
is contained in the form θ−k, which is by definition a Cartan connection.
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3.4. The structure equations. Let p : E → M be a principal bundle with
group P/P i+ for some i = 1, . . . , k, and let θ be a frame form of length one on
E. The structure equations impose a certain restriction to the frame form θ (and
through that to M), which can be formally written as dθi+j + [θi, θj ] = 0. Since
the individual θi are only partially defined, this does not make sense as it stands
but needs an appropriate interpretation:

The lowest component θ−k of θ is simply a g−k valued one–form on E. Thus,
we can differentiate it to obtain a g−k–valued two form dθ−k on E. Then for each
pair (i, j) of negative integers such that i+ j = −k, each point u ∈ E, and elements
ξ ∈ T iuE and η ∈ T juE we consider

dθ−k(ξ, η) + [θi(ξ), θj(η)] ∈ g−k,

where we use the bracket [ , ] : gi×gj → g−k. This gives a collection of well defined
smooth functions T iE⊗T jE → g−k, which we call the structure function of degree
−k.

Now assume that θ has the property that the structure function of degree −k
is identically zero, and take a pair of negative integers (i, j) such that i+ j > −k.

Let ξ̃ be a section of T iE and η̃ a section of T jE. Then we can also view η̃ as a
section of T−k−iE, and since −k − i < j, we see that θ−k−i(η̃) is identically zero,

so vanishing of the structure function of order k implies that 0 = dθ−k(ξ̃, η̃). Since

θ−k(ξ̃) and θ−k(η̃) are identically zero, this means that θ−k([ξ̃, η̃]) = 0, so the Lie

bracket [ξ̃, η̃] is actually a section of T−k+1E.

But this means that if i + j ≥ −k + 1, then ξ̃, η̃ and [ξ̃, η̃] are all sections
of T−k+1E. Thus, if we extend θ−k+1 to a g−k+1–valued one form and take the

exterior derivative, then the value of the resulting two form on (ξ̃, η̃) is independent
of the extension. Hence, for i + j = −k + 1, ξ ∈ T iuE and η ∈ T juE we get a well
defined element

dθ−k+1(ξ, η) + [θi(ξ), θj(η)] ∈ g−k+1.

As above, this gives rise to a smooth function T iE⊗T jE → g−k+1 for i+j = −k+1,
and the collection of these functions is called the structure function of degree −k+1.

Now this procedure can easily be iterated. If the structure function of degree
−k + 1 vanishes identically, then for i + j > −k + 1, the Lie bracket of a section
of T iE and a section of T jE lies in T−k+2E, so dθ−k+2 is well defined on such
sections, and we get a well defined structure function of degree −k + 2, and so on.

Definition.

(1) We say that the frame form θ of length one satisfies the structure equations
iff the structure functions of all orders −k, . . . ,−1 vanish.

(2) We say that a frame form of length ` satisfies the structure equations iff
the underlying frame form of length one has this property.

3.5. Remark. The existence of a frame form which satisfies the structure equa-
tions implies subtle conditions on the degree of non–integrability of the sub–bundles
T iE of TE and thus also of the sub–bundles T iM of TM . In particular, if such a
frame form exists, then the Lie bracket of a section of T iE with a section of T jE is
always a section of T i+jE, but in general not of T i+j+1E. We will give a detailed
discussion of the geometric meaning of the structure equations in 4.2.

3.6. Definition. Let M be a manifold with a filtration of its tangent bundle as
in 3.1. For ` = 1, . . . , 2k + 1 we define a P–frame bundle of degree ` over M as a
principal fiber bundle p : E → M with group P/P `+ together with a frame form θ
of length ` on E, which satisfies the structure equations.
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3.7. By definition, a P–frame bundle of degree one over a manifold M is a princi-
pal bundle E → M with group P/P+ together with a sequence θ = (θ−k, . . . , θ−1)
of smooth sections θi of the bundle L(T iE, gi), such that for each point u ∈ E,
each θi induces an isomorphism between T iuE/T

i+1
u E and gi. Since moreover each

θi has to be P/P+–equivariant, this means exactly that the form θ−k ⊕ · · · ⊕ θ−1

identifies the bundle E as a reduction to the structure group P/P+
∼= G0 of the

associated graded vector bundle (T−kM/T−k+1M)⊕· · ·⊕(T−2M/T−1M)⊕T−1M
to the tangent bundle of M . So P–frame bundles of degree one are just reductions
to the structure group G0 of the associated graded to the tangent bundle, which in
addition satisfy the structure equations.

Also, the other extremal case is fairly easy to describe. A P–frame bundle of
degree 2k + 1 is by definition a principal bundle with group P , which is equipped
with a frame from of length 2k+1, and we have already remarked in 3.3(3) that this
frame form is actually a Cartan connection. So P–frame bundles of degree 2k + 1
are just P–principal bundles equipped with a Cartan connection which satisfies the
structure equations. We shall discuss later, how the structure equations are related
to the curvature of the Cartan connection.

3.8. Let (p : E → M, θ) be a P–frame bundle of degree `. Since θ satisfies the
structure equations, we know from 3.5 that the Lie bracket of a section of T iE
with a section of T jE is a section of T i+jE for all i, j < 0. But this means, that
if i, j < 0 are such that i + j ≥ −k, then we have a well defined tensorial map
dθi+j : T iE ⊗ T jE → gi+j ⊕ · · · ⊕ gi+j+`−1. In particular, since T 0E = V E, the
vertical bundle, we can form dθi(ζA, ξ) for elements ξ ∈ T iE and A ∈ g0⊕· · ·⊕g`−1.

Lemma. In this situation, we have dθi(ζA, ξ) = − ad(A)(θi(ξ)), where ad is the
Lie algebra action corresponding to the group action introduced in 2.12.

Proof. Equivariancy of θi reads as (rb)∗θi = Ad(b−1) ◦ θi for all b ∈ P/P `+. In
particular, we can apply this to b = exp(tA). Evaluating this on an element ξ ∈
T iuE, we get a smooth curve in gi ⊕ · · · ⊕ gi+`−1, and differentiating at zero we get

d
dt |t=0((rexp(tA))∗θi)(ξ) = d

dt |t=0 Ad(exp(−tA))(θi(ξ)) = − ad(A)(θi(ξ)).

Now we can extend θi to a globally defined one form θ̃i with values in gi⊕· · ·⊕gi+`−1.
Then this one form still satisfies the above equation for ξ ∈ T iE, and the left hand
side simply reads as LζA θ̃i(ξ), the Lie derivative along the fundamental vector field.

But LζA θ̃i(ξ) equals d(iζA θ̃i) + iζA(dθ̃i), where iζA denotes the insertion operator.

Since ζA is a section of T 0E ⊂ T iE, the above equation holds on T iE with θ̃i
replaced by θi. But since iζAθi is constant, only the second term remains, and we

get d
dt |t=0((rexp(tA))∗θi)(ξ) = dθi(ζA, ξ).

¤

3.9. In the situation of 3.8, let u ∈ E be a point. We define the torsion of (E, θ)
in u as a linear map tθ(u) : g− ∧ g− → g, which has homogeneous components of
degrees 0, . . . , `− 1 only, as follows: Take X ∈ gi and Y ∈ gj , where i+ j+ ` > −k,
and choose elements ξ ∈ T iuE and η ∈ T juE such that θi(ξ) = X and θj(η) = Y . If
i+ j ≤ −k, then we define tθ(u)(X,Y ) as the components in g−k ⊕ · · · ⊕ gi+j+`−1

of dθ−k(ξ, η). If, on the other hand, i + j > −k, then we put tθ(u)(X,Y ) :=
dθi+j(ξ, η) ∈ gi+j ⊕ · · · ⊕ gi+j+`−1.

We have to show, that this is well defined. Thus, let us assume that we have two
elements ξ1, ξ2 such that θi(ξ1) = θi(ξ2) = X. Then their difference is in the kernel
of θi, which by definition is T i+`u E. Now we have to distinguish two cases:

(1) If i+ ` < 0, then both ξ2−ξ1 and η lie in T i+j+`u , and so does the Lie bracket
of any two sections of T i+`E and T jE. Thus, if i + j ≥ −k, then by definition
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dθi+j(ξ2 − ξ1, η) = 0, while for i+ j < −k the components of dθ−k(ξ2 − ξ1, η) that
we consider are zero as well.

(2) If i + ` ≥ 0, then by definition there is an element A ∈ gi+` such that
ξ2 − ξ1 = ζA(u), the value of the fundamental vector field. But by lemma 3.8, this
implies that dθi+j(ξ2 − ξ1, η) = − ad(A)(θi+j(η)) (or the respective equation with
i+ j replaced by −k). But if θi+j(η) (respectively θ−k(η)) is nonzero (which means
that ` is big enough), then it has values in gj , so − ad(A)(θi+j(η)) is an element of
gi+j+` and hence plays no role.

3.10. Definition. Let (E, θ) be a P–frame bundle over M of degree `. Then the

homogeneous components tjθ of degree j = 0, . . . , `−1 of the torsion tθ define smooth
functions on E with values in the space Lj(g− ∧ g−, g) of homogeneous maps. In
2.5 we have introduced the codifferential ∂∗ : Lj(g− ∧ g−, g)→ Lj(g−, g). We call
the P–frame bundle (E, θ) harmonic if and only if for all j = 1, . . . , ` − 1 we have

∂∗ ◦ tjθ = 0. (Note that the component t0θ is already completely determined by the
requirement that θ satisfies the structure equations.)

3.11. Underlying P–frame bundles of lower degree. Let (p : E → M, θ) be
a P–frame bundle of degree ` > 1. We construct from this a P–frame bundle (E, θ)
of degree `− 1 over M , which is called the underlying P–frame bundle.

If ` > k + 1 then this construction is completely trivial, since in this case both
E and E have to be principal P–bundles, so we keep the same bundle and define
the new frame form θ by letting θi be the first `− 1 components of θi. Obviously,
(E, θ) is a P–frame bundle of degree `− 1.

So let us assume that ` ≤ k+ 1. Then E is a principal bundle with group P/P `+,

and we have the non trivial subgroup P `−1
+ /P `+, which acts freely on E. Now we

define E := E/(P `−1
+ /P `+), the space of orbits under the action of this group. Then

π : E → E is a principal bundle with this group, and clearly E →M is a principal
bundle with group P/P `−1

+ . Next, we define a frame form θ of length ` − 1 on E

as follows: Let ξ be an element of T iuE for some i = −k, . . . ,−1. Choose a point

x ∈ E with π(x) = u and an element ξ̃ ∈ T ixE with Tπ·ξ̃ = ξ, and put θi(ξ) the

components of θi(ξ̃) in gi ⊕ · · · ⊕ gi+`−2.

To show that this is well defined, let us first assume that we have two choices ξ̃1
and ξ̃2 for one point x. Then there is an element A ∈ g`−1 such that ξ̃2−ξ̃1 = ζA(x),
so the difference lies in T `−1E, which is contained in the kernel of θi. So let us
assume that we have two choices x1 and x2 for the point in E. Then there is an
element b ∈ P `−1

+ /P `+ ⊂ P/P `+ such that x2 = x1·b, and if ξ̃1 ∈ T ix1
E is such

that Tπ·ξ̃1 = ξ, then Trb·ξ̃1 is an appropriate choice for ξ̃2 ∈ T ix2
E. But then

θi(ξ̃2) = ((rb)∗θi)(ξ̃1) = Ad(b−1)(θi(ξ̃1)). Now by proposition 2.10, there is an
A ∈ g`−1 such that b = exp(A), so the right hand side of this equation becomes

ead(A)(θi(ξ̃1)), which differs from θi(ξ̃1) only in the component gi+`−1, so it again
plays no role.

Thus, we have defined θi for all i, and one easily verifies that this actually
defines a frame form of length `− 1 on E. To verify that this frame form satisfies
the structure equations, we proceed as follows: Let σ be a local section of the
bundle π : E → E. Since Tσ(T iE) ⊂ T iE for all i, we can form the pullback σ∗θi
which is a local section of L(T iE, gi ⊕ · · · ⊕ gi+`−1). By construction, θi coincides
with the first `− 1 components of this pullback.

Let us denote by Θ and Θ the frame forms of length one underlying θ and θ,
respectively. Then Θ−k locally equals σ∗Θ−k, so dΘ−k locally equals σ∗dΘ−k.

Thus, for ξ ∈ T iuE and η ∈ T juE such that i+ j = −k and u is in the domain of σ
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we have

dΘ−k(ξ, η) = dΘ−k(Tσ·ξ, Tσ·η) = −[Θi(Tσ·ξ),Θj(Tσ·η)] = −[Θi(ξ),Θj(η)],

so the structure function of degree −k on E vanishes identically.
Now if we extend Θ−k+1 to a one form and pull back this extension along σ,

then we get an extension of Θ−k+1, so locally we must have dΘ−k+1 = σ∗dΘ−k+1

on T iE ⊗ T jE with i + j ≥ −k + 1, so as above we conclude that the structure
function of degree −k + 1 on E vanishes identically. Iterating this argument we
see that Θ satisfies the structure equations, so (E, θ) is really a P–frame bundle of
degree `− 1.

The same argument shows that dθi equals the first ` − 1 components of σ∗dθi
on the domain of σ.

3.12. Proposition. If (E, θ) is a harmonic P–frame bundle of degree ` > 1, then
the underlying P–frame bundle (E, θ) is harmonic, too.

Proof. If ` > k+ 1 then this is completely obvious, so let us assume ` ≤ k+ 1. For
negative integers i and j take X ∈ gi and Y ∈ gj , and let ξ ∈ T iuE and η ∈ T juE
be elements such that θi(ξ) = X and θj(η) = Y . Then let σ be a local section of
π : E → E as in 3.11 above. By the last observation in 3.11, tθ(u)(X,Y ) equals the

first `−1 components of dθi+j(Tσ·ξ, Tσ·η). But now let ξ̃ ∈ T iσ(u)E and η ∈ T jσ(u)E

be elements such that θi(ξ̃) = X and θj(η̃) = Y . By construction, the differences

ξ̃ − Tσ·ξ and η̃ − Tσ·η lie in gi+`−1 and gj+`−1, respectively. But then arguments
as in 3.9 show that the first ` − 1 components of dθi+j(Tσ·ξ, Tσ·η) coincide with

the first `− 1 components of dθi+j(ξ̃, η̃), so the result follows. ¤

3.13. Iterated application of the process of forming the underlying P–frame bun-
dle shows that from a P–frame bundle of degree 2k + 1, i.e. a principal P–bundle
endowed with a suitably normalized Cartan connection, one can construct a P–
frame bundle of degree one, i.e. a reduction to the structure group G0 of the associ-
ated graded vector bundle to the filtered vector bundle TM . It is easy to see, that
this process can also be carried out in just one step: Given a principal P–bundle
E → M define E0 := E/P+, which is then a principal G0–bundle over M . If ω is
a Cartan connection on E then one verifies directly (using similar arguments as in
3.11) that for i < 0 the component ωi of ω in gi descends to a smooth section θi of
the bundle L(T iE0, gi), and these define a frame form of length one on E0.

The rest of this section is devoted to the question whether this process can
be inverted. We will show that under a cohomological restriction this inversion
is possible, i.e. we will construct from a harmonic P–frame bundle of degree ` a
unique (up to isomorphism) P–frame bundle of degree `+1. This process is closely
related to the theory of prolongation of G–structures, so we call it the prolongation
procedure. An iterated application of this procedure will lead to the construction
of principal P–bundles equipped with canonical Cartan connections.

Let (E, θ) be a harmonic P–frame bundle of degree ` over a manifold M . We

start by defining Ê to be the subset of the bundle ⊕−1
i=−kL(T iE, gi ⊕ · · · ⊕ gi+`)

which is formed by all k–tuples ϕ = (ϕ−k, . . . , ϕ−1) such that:

(1) The first ` components of ϕi coincide with θi(u), where u is the base point
of ϕ.

(2) The restriction of ϕi to T i+1
u E coincides with θi+1(u) (so in particular has

zero gi–component).
(3) ϕ−1(ζA) = A for all A ∈ g0 ⊕ · · · ⊕ g`−1.
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Note that for the components ϕj with j 6= −1, a condition on compatibility with
fundamental vector fields is implied by condition (2), since θj+1 satisfies condition
(4) of 3.2.

By π : Ê → E we denote the obvious projection.

Proposition. π : Ê → E is a locally trivial bundle, and each fiber is an affine
space with modeling vector space L`(g−, g), the space of linear maps from g− to g
which are homogeneous of degree `.

Proof. Take two elements ϕ and ϕ̃ of Ê with π(ϕ) = π(ϕ̃) = u. For some i =
−k, . . . ,−1 consider the difference ϕ̃i − ϕi. By condition (1) from above, this
difference has values in gi+`, and by condition (2) it vanishes on T i+1

u E. Thus,
we can view ϕ̃i − ϕi as a linear map T iuE/T

i+1
u E → gi+`. Now let Θ be the

frame form of length one which underlies θ. Then Θi(u) induces an isomorphism
T iuE/T

i+1
u E → gi. Hence, there is a unique linear map ψi : gi → gi+` such that

ϕ̃i(ξ) − ϕi(ξ) = ψi(Θi(ξ)) for all ξ ∈ T iuE. Now we just have to collect together
the ψi to a linear map g− → g which is homogeneous of degree ` to get the affine
structure of the fibers.

To prove the local triviality, it suffices to construct local smooth sections. Con-
sider a subset U ⊂ M such that all the bundles T iM for i = −k, . . . ,−1 and E
are trivial over U . This means that we may assume that TM |U = U × g− as a
filtered vector bundle and that E|U = U × P/P `+. We construct a smooth section

of π : Ê → E over p−1(U) as follows: The tangent space to each point in E|U is
TU×T (P/P `+), and we can identify TU with U×g− as a filtered vector space. From

this trivialization we get projections onto T iE|U for i = −k, . . . , 0. Composing θi+1

with the projection onto T i+1E we can view it as being defined on T iE (if i = −1
we take θ0 to be the inverse of the fundamental vector field mapping). The top com-
ponent of this together with θi defines a smooth section ϕi ∈ L(T iE, gi⊕· · ·⊕gi+`),

and one immediately verifies that (ϕ−k(u), . . . , ϕ−1(u)) ∈ Ê for all u. ¤

3.14. The next step is to define a right action of the group P/P `+1
+ on the bundle

Ê. Let ϕ be an element of Ê, put u := π(ϕ), and let b be an element of P/P `+1
+ .

By b0 we denote the class of b in P/P `+. For each i = −k, . . . ,−1 we define a linear

map ϕi·b : T iu·b0E → gi⊕· · ·⊕gi+` by (ϕi·b)(ξ) := Ad(b−1)(ϕi(Tr
b−1
0 ·ξ)). We claim

that ϕ·b = (ϕ−k·b, . . . , ϕ−1·b) is again in Ê, so we have to verify conditions (1), (2)
and (3) of 3.13.

The first ` components of (ϕi·b) have to be compared with θi(u·b0). But by
2.12 the first ` components coincide with Ad(b−1

0 ) acting on the first ` components

of ϕi(Tr
b−1
0 ·ξ). Since ϕ is in Ê, these components equal θi(u)(Trb

−1
0 ·ξ), which by

equivariancy equals Ad(b0)(θi(u·b0)(ξ)), so (1) is satisfied.
Second, we have to compare the restriction of ϕi·b to T i+1

u·b0E with θi+1(u·b0).

But for an element ξ ∈ T i+1
u·b0E the first component of ϕi(Tr

b−1
0 ·ξ) is zero, so again

by 2.12 this restriction coincides with Ad(b−1
0 )(ϕi(Tr

b−1
0 ·ξ)). Now as above one

concludes that (2) is satisfied as well.
To verify (3) we compute:

(ϕ−1·b)(ζA(u·b0)) = Ad(b−1)(ϕ−1(Trb
−1
0 ·ζA(u·b0))) =

= Ad(b−1)(ϕ−1(ζAd(b0)(A)(u))),

and since the action of P/P `+1
+ on g0⊕ · · · ⊕ g`−1 factors over P/P `+, condition (3)

is satisfied, too.
If ϕ·b = ϕ for some ϕ ∈ Ê, we must have b0 = e, since the action of P/P `+

on E is free. But in this case by proposition 2.10, there is an A ∈ g` such that
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b = exp(A), and thus (ϕi·b)(ξ) = ϕi(ξ) − ad(A)(ϕi(ξ)). Now for each X ∈ g−1 we
can find a ξ ∈ T−1

u E such that ϕ−1(ξ) = X. But then ϕ·b = ϕ implies [A,X] = 0
for all X ∈ g−1, which implies A = 0 by 2.2(4).

Thus, we have a free right action of P/P `+1
+ on Ê, and by definition the projection

π : Ê → E is equivariant over the canonical projection P/P `+1
+ → P/P `+.

3.15. Since Ê is a locally trivial bundle over E we have the induced filtration of
the tangent bundle T Ê. Moreover, there is a natural analog of a frame form on Ê
defined as follows: Let ϕ be a point in Ê and put u := π(ϕ). An element ξ ∈ TϕÊ
is in T iϕÊ if and only if Tπ·ξ ∈ T iuE. If this is the case, then we define θ̂i(ξ) :=

ϕi(Tπ·ξ). Clearly, each θ̂i is a smooth section of the bundle L(T iÊ, gi⊕· · ·⊕gi+`).
Moreover, from the construction and the properties of ϕ it follows immediately that

θ̂ = (θ̂−k, . . . , θ̂−1) satisfies the obvious analogs of conditions (1), (2) and (4) of 3.2.

Since the projection π is equivariant, it follows that the subbundles T iÊ are

stable under the action of P/P `+1
+ , and we claim that the components of θ̂ are

equivariant. Thus, let us consider ((rb)∗θ̂i)(ξ) for some ξ ∈ T iÊ. By definition,

this equals (ϕi·b)(Tπ·Trb·ξ) = Ad(b−1)(ϕi(Tr
b−1
0 TπTrb·ξ)). But equivariancy of π

implies that this equals Ad(b−1)(ϕi(Tπ·ξ)) = Ad(b−1)(θ̂i(ξ)).

3.16. Let ϕ ∈ Ê be a point and put u := π(ϕ) ∈ E. By proposition 3.13, we

can find a section σ of Ê → E which is defined locally around u and maps u

to ϕ. For i = −k, . . . ,−1 we can form σ∗θ̂i which is a locally defined smooth

section of L(T iE, gi ⊕ · · · ⊕ gi+`). By definition of the canonical form θ̂, we see

that (σ∗θ̂i)(u)(ξ) = σi(u)(ξ). Since σ(u) ∈ Ê, the first ` components of σi(u)(ξ)

coincide with θi(u)(ξ), which means that the first ` components of σ∗θ̂i coincide
with θi.

Note that since E is a P–frame bundle the derivative dσ∗θ̂i+j = σ∗dθ̂i+j is well
defined on T iE ⊗ T jE locally around u, for all i, j such that i + j ≥ −k. In
particular, for A ∈ g0 ⊕ · · · ⊕ g`−1 we have the fundamental vector field ζA(u)

and for ξ ∈ T iuE we can form dσ∗θ̂i(ζA(u), ξ). Now the following weaker analog of
lemma 3.8 holds:

Lemma. For A as above and ξ ∈ T i+1
u we have

dσ∗θ̂i(ζA(u), ξ) = − ad(A)(σi(u)(ξ)),

where the action ad is well defined, since σi(u)(ξ) has trivial gi–component for
ξ ∈ T i+1

u E, see 2.12.

Proof. We have dσ∗θ̂i(ζA(u), ξ) = dθ̂i(Tσ·ζA(u), Tσ·ξ). If we denote fundamental

vector fields on Ê by ζ̂, then by equivariancy of the projection π : Ê → E we have

Tπ·ζ̂A = ζA. Thus, there exists an element λ ∈ VϕÊ such that Tσ·ζA(u) = ζ̂A(u) +

λ. Since θ̂i is equivariant, the proof of lemma 3.8 shows that dθ̂i(ζ̂A(u), Tσ·ξ) =

− ad(A)(θ̂i(Tσ·ξ)). Since by definition θ̂i(Tσ·ξ) = σi(u)(ξ), we can conclude the

proof by showing that for an element λ of the vertical bundle of Ê → E we have

dθ̂i(λ, Tσ·ξ) = 0.

In proposition 3.13 we have seen that the fibers of Ê → E are affine spaces, so
we can canonically identify each vertical tangent space with the modeling vector
space L`(g−, g). So for each element ψ in this space, we can consider the constant

vertical vector field ψ̃. Now we can imitate the proof of lemma 3.8 as follows: The
flow of ψ̃ up to time t clearly maps ϕ to (ξ 7→ ϕi(ξ) + tψ(Θi(ξ))). Now for an

element ξ̄ ∈ T iϕÊ we have by definition θ̂i(ξ̄) = ϕi(Tπ·ξ̄). Pulling this back with

the above flow and differentiating in zero we get ψ(Θi(Tπ·ξ̄)), so this is just the
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Lie derivative Lψ̃ θ̂i(ϕ)(ξ̄). We can write Lψ̃ = d ◦ iψ̃ + iψ̃ ◦ d, and by definition

iψ̃ θ̂i = 0, so we finally get dθ̂i(ψ̃(ϕ), ξ̄) = ψ(Θi(Tπ·ξ̄)). Since ξ ∈ T i+1
u E and thus

Θi(ξ) = 0, we are done. ¤

3.17. Now we define the torsion of ϕ as a linear map tϕ : g−∧g− → g, which has
homogeneous components of degree 0, . . . , ` only, as follows: For X ∈ gi and Y ∈ gj
choose ξ ∈ T iuE and η ∈ T juE such that ϕi(ξ) = X and ϕj(η) = Y . If i + j < −k,

then we define tϕ(X,Y ) to be the components in g−k⊕· · ·⊕gi+j+` of dσ∗θ̂−k(u)(ξ, η)

and if i+ j ≥ −k, we put tϕ(X,Y ) := dσ∗θ̂i+j(u)(ξ, η) ∈ gi+j ⊕ · · · ⊕ gi+j+`.
To show that this is well defined, let us first assume that we have two elements

ξ1, ξ2 ∈ T iuE such that ϕi(ξ1) = ϕi(ξ2) = X. Then the difference ξ2 − ξ1 lies in
the kernel of ϕi, which by condition (2) of 3.13 and condition (1) of 3.2 equals
T i+`+1
u E. In particular, ϕ−1 is bijective, so there is no choice in ξ in this case. Now

if i + ` + 1 < 0, then one concludes exactly as in case (1) of 3.9 that passing from
ξ1 to ξ2 does not change the torsion. On the other hand, if i+ `+ 1 ≥ 0, then there
is an element A ∈ gi+`+1 such that ξ2 − ξ1 = ζA(u). From above, we know that
i < −1, so i + ` + 1 < `. Thus for j > −k we can immediately apply lemma 3.16

to see that dσ∗θ̂i+j(ξ2 − ξ1, η) = − ad(A)(Y ) (or the respective equation with i+ j
replaced by −k), and [A, Y ] is an element of gi+j+`+1, so it plays no role. If j = −k,

then the proof of lemma 3.16 shows the difference between dσ∗θ̂−k(ξ2 − ξ1, η) and
− ad(A)(Y ) lies in g−k+`, so it can play no role either.

To prove independence of the choice of the section σ, we compute the effect of

a general change of σ on dσ∗θ̂i. If we have two local sections σ and σ̄, then from
the proof of proposition 3.13 we see that there is a smooth function ψ with values
in L`(g−, g), such that σ̄i(u)(ξ) = σi(u)(ξ) + ψ(u)(Θi(u)(ξ)). But this means that

σ̄∗θ̂i = σ∗θ̂i+ψ◦Θi. Differentiating this, we get for elements ξ ∈ T iuE and η ∈ T juE:

dσ̄∗θ̂i+j(ξ, η) = dσ∗θ̂i+j(ξ, η) + dψ(ξ)(Θi+j(η))− dψ(η)(Θi+j(ξ)) + ψ(dΘi+j(ξ, η)),

and since Θi+j(ξ) and Θi+j(η) are zero and Θ satisfies the structure equation, this
reduces to

dσ̄∗θ̂i+j(ξ, η) = dσ∗θ̂i+j(ξ, η)− ψ([Θi(ξ),Θj(η)]).

In particular, this implies that the value of dσ∗θ̂i in u depends only on σ(u), so the
torsion of ϕ is really well defined.

We have noted already in 3.16 that the first ` components of σ∗θ̂i coincide with
θi, which implies that the homogeneous components of degrees less than ` of the
torsion tϕ coincide with the torsion tθ(u), so only the homogeneous component of
degree ` is really relevant.

3.18. Using the last computation in 3.17, we next compute how the torsion de-
pends on ϕ. Let us change ϕ to ϕ̃, ϕ̃i(ξ) := ϕi(ξ) + ψ(Θi(ξ)), and take elements
X ∈ gi and Y ∈ gj . If ξ ∈ T iuE is such that ϕi(ξ) = X, then by definition
Θi(ξ) = X, so ϕ̃i(X) = X + ψ(X), and ψ(X) ∈ gi+`. If i + ` ≥ 0, we put
ξ′ := ζψ(X)(u) while for i + ` < 0 we choose an element ξ′ ∈ T i+`u E such that
ϕi+`(ξ

′) = ψ(X). In both cases, we then have ϕi(ξ
′) = ψ(X) and Θi(ξ

′) = 0, so
ϕ̃i(ξ − ξ′) = X. Similarly we define η′.

Let σ̃ be a section with σ̃(u) = ϕ̃. We have to compute

tϕ̃(X,Y ) = dσ̃∗θ̂i+j(ξ − ξ′, η − η′),
or the corresponding expression with i+j replaced by −k if i+j < −k. In any case,

by the last computation in 3.17 this equals dσ∗θ̂i+j(ξ− ξ′, η−η′)−ψ([X,Y ]), since
for i + j < −k the bracket [X,Y ] is zero. The first of these two terms splits into

the sum of tϕ(X,Y ) with three additional terms. Among these, dσ∗θ̂i+j(ξ′, η′) = 0,
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since by construction σ∗θ̂i+j vanishes on both ξ′ and η′, and the Lie bracket of two
vector fields through these vectors lies in gi+j+2`, so it cannot contribute either.

So we have to analyze the term dσ∗θ̂i+j(ξ′, η) (or the respective term with i + j
replaced by k). If i+ ` ≥ 0, then ξ′ = ζψ(X)(u), and by lemma 3.16 this term gives

− ad(ψ(X))(Y ). On the other hand, let us assume that i+ ` < 0. Since ξ′ ∈ T i+`u E

we have σ∗θ̂i+j(ξ′) = 0 (respectively, those terms of σ∗θ̂−k(ξ) that we consider are

zero). Also, i+ j + ` < j, so σ∗θ̂i+j(η) = 0 as well. Consequently, we have

dσ∗θ̂i+j(ξ
′, η) = −σ∗θ̂i+j([ξ̃′, η̃](u)) = −ϕi+j([ξ̃′, η̃](u)),

where ξ̃′ and η̃ are vector fields through ξ′ and η, respectively. (If i + j < −k a
similar equation holds for the appropriate components with i+ j replaced by −k.)

But by construction, [ξ̃′, η̃](u) is an element of T i+j+`u E, so applying condition (2)

of 3.13 and then several times condition (2) of 3.2, we see that −ϕi+j([ξ̃′, η̃](u)) =

−Θi+j+`([ξ̃
′, η̃](u)). Since Θi+j+` vanishes both on ξ′ and η, the latter term equals

dΘi+j+`(ξ
′, η) which by the structure equation equals −[ψ(X), Y ].

Together these computations show that the torsion of ϕ̃ = ϕ+ψ ◦Θ(u) is given
by

tϕ̃(X,Y ) = tϕ(X,Y ) + [ψ(X), Y ] + [X,ψ(Y )]− ψ([X,Y ]),

so tϕ̃ = tϕ + ∂ψ, where ∂ denotes the Lie algebra differential introduced in 2.4.

3.19. In 2.6 we have seen that the codifferential ∂∗ : L`(g−, g)→ L`(g−∧g−, g) is
the adjoint with respect to a certain metric of the differential ∂ : L`(g− ∧ g−, g)→
L`(g−, g) used above. In particular, this implies that the kernel of ∂∗ and the
image of ∂ are complementary subspaces of L`(g− ∧ g−, g). This means, that for

each ϕ ∈ Ê, we can find a ψ ∈ L`(g−, g) such that for ϕ̃ = ϕ + ψ ◦ Θ(u) we have
∂∗(t`ϕ̃) = 0, where t`ϕ̃ denotes the homogeneous component of degree ` of the torsion
of ϕ̃. Moreover, from the last formula in 3.18 it is clear that the space of all ϕ over
a point u ∈ E such that ∂∗(t`ϕ) = 0 is an affine space with modeling vector space
Ker(∂) ⊂ L`(g−, g).

Proposition. Let ϕ ∈ Ê be a point such that ∂∗(t`ϕ) = 0, and let b ∈ P/P `+1
+ be

any element. Then also ∂∗(t`ϕ·b) = 0.

Proof. To compute the torsion tϕ·b, we first need a section. Starting from a section σ

defined locally around u = π(ϕ), we define σ̄ := rb◦σ◦rb0−1

, where as before b0 is the

class of b in P/P `+, and we denote by r the right actions on Ê and E, to get a section
defined locally around u·b0 with σ̄(u·b0) = ϕ·b. For each i = −k, . . . ,−1, we then

have σ̄∗θ̂i = (rb0
−1

)∗σ∗(rb)∗θ̂i. Equivariancy of θ̂ reads as (rb)∗θ̂i = Ad(b−1) ◦ θi.
Differentiating this, we see that for ξ ∈ T iu·b0 and η ∈ T ju·b0 we have

dσ̄∗θ̂i+j(ξ, η) = Ad(b−1)(dσ∗θ̂i+j(Tr
b0
−1 ·ξ, T rb0−1 ·η)).

To get tϕ·b(X,Y ) for X ∈ gi and Y ∈ gj , we have to compute this (or the respective
expression with i+j replaced by −k if i+j < −k) for ξ such that (ϕi·b)(ξ) = X and

η such that (ϕj·b)(η) = Y . Since (ϕi·b)(ξ) = X, we get ϕi(Tr
b0
−1 ·ξ) = Ad(b)(X),

so we may write Trb0
−1 ·ξ = ξ′ + ξ′′, where ϕi(ξ

′) = Ad−(b)(X), the components
of Ad(b)(X) in gi ⊕ · · · ⊕ g−1, and ϕi(ξ

′′) = Ad+(b)(X) = Ad(b)(X)−Ad−(b)(X).

Similarly, we split Trb0
−1 ·η = η′ + η′′. Now we write

dσ∗θ̂i+j(Tr
b0
−1 ·ξ, T rb0−1 ·η) = dσ∗θ̂i+j(ξ

′, η′) + dσ∗θ̂i+j(ξ
′′, T rb0

−1 ·η)+

+ dσ∗θ̂i+j(Tr
b0
−1 ·ξ, η′′)− dσ∗θ̂i+j(ξ′′, η′′).

Since Ad(b−1) never moves down in the grading, we may compute this modulo

gi+j+`+1 ⊕ · · · ⊕ gk. But modulo this, the term dσ∗θ̂i+j(ξ′′, T rb0
−1 ·η) is by lemma
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3.16 congruent to −[Ad+(b)(X),Ad(b)(Y )], and the next two terms are congruent
to −[Ad(b)(X),Ad+(b)(Y )] and [Ad+(b)(X),Ad+(b)(Y )], respectively.

Finally, we claim that the remaining term dσ∗θ̂i+j(ξ′, η′) is congruent to the
torsion tϕ(Ad−(b)(X),Ad−(b)(Y )). To see this, we have to split ξ′ and η′ into sums
of elements which are mapped by ϕi to one homogeneous component of Ad−(b)(X)
or Ad−(b)(Y ), and we only have to consider elements corresponding to components
in gi′ and gj′ if i′+ j′ ≤ i+ j+ `. But in this case, the components in gi′+j′ ⊕· · ·⊕
gi+j+` of dσ∗θ̂i+j of these elements coincide with the components of dσ∗θ̂i′+j′ of
these elements by condition (2) of 3.13.

By the structure equation, the homogeneous component of degree zero of the
torsion tϕ(Ad−(b)(X),Ad−(b)(Y )) equals −[Ad−(b)(X),Ad−(b)(Y )], which adds
up with the terms from above to −[Ad(b)(X),Ad(b)(Y )]. Together, we see that

dσ̄∗θ̂i+j(ξ, η) = −[X,Y ] + Ad(b−1)(t≥1
ϕ (Ad−(b)(X),Ad−(b)(Y )))

modulo gi+j+`+1⊕· · ·⊕gk, where t≥1
ϕ denotes the sum of homogeneous components

of degree ≥ 1 of the torsion tϕ. By equivariancy of ∂∗ (see proposition 2.13) the
proposition follows. ¤

3.20. Assume now that H1
` (g−, g) = 0. If ` > k, then this implies that over

each point we find a unique ϕ with ∂∗tϕ = 0. Clearly, mapping each point to this

element defines a smooth section of Ê → E, and by proposition 3.19 above this

section is P–equivariant. Thus, we can simply pull back θ̂ along this section to get
a frame form of length `+ 1 on E, and with that pullback E clearly is a harmonic
P–frame bundle of degree `+ 1.

If ` ≤ k, then denote by Ẽ the subset of all ϕ such that ∂∗(t`ϕ) = 0, and denote by

p̃ : Ẽ →M the projection and by θ̃ the restriction of θ̂ to Ẽ. By proposition 3.19,
we have a free right action of P/P `+1

+ on Ẽ, which preserves the fibers of p̃. We
claim that the action is transitive on each fiber. To see this, assume that ϕ and ϕ̄
are points of Ẽ which are in the same fiber of p̃. Then π(ϕ) and π(ϕ̄) are in the same
fiber of p : E → M , so there is an element b0 ∈ P/P `+ such that π(ϕ̄) = π(ϕ)·b0.

Now let s : P/P `+ → P/P `+1
+ be the canonical section introduced in 2.11. Then

π(ϕ·s(b0)) = π(ϕ)·b0 = π(ϕ̄), so there is a map ψ ∈ Ker(∂) ⊂ L`(g−, g) such that
ϕ̄i(ξ) = (ϕi·s(b0))(ξ) +ψ(Θi(ξ)). Since H1

` (g−, g) = 0 we must have ψ = ad(A) for

some A ∈ g`. But then for b1 := exp(A) ∈ P/P `+1
+ we clearly have ϕ·s(b0)b1 = ϕ̄.

Since Ê → E and E →M are locally trivial bundles, the projection p̃ : Ẽ →M
admits local smooth sections, and since it has a free right action which is transitive
on each fiber, it is actually a smooth principal bundle. Moreover, from 3.15 it is
clear that θ̃ is a frame form of length ` + 1 on Ẽ, and by construction it satisfies
the structure equations, so p̃ : Ẽ → M is a P–frame bundle of degree ` + 1. Also,
the underlying P–frame bundle to Ẽ of length ` clearly is just E.

To see that the P–frame bundle (Ẽ, θ̃) is harmonic, we compute tθ̃(ϕ)(X,Y ),

for X ∈ gi and Y ∈ gj . To do this, we have to choose ξ ∈ T iϕẼ and η ∈ T jϕẼ

such that θ̃i(ξ) = ϕi(Tπ·ξ) = X and θ̃j(η) = Y . We do this by choosing ξ′ ∈
T iπ(ϕ)E and η′ ∈ T jπ(ϕ)E such that ϕi(ξ

′) = X and ϕj(η
′) = Y and a local smooth

section σ with σ(π(ϕ)) = ϕ and putting ξ = Tσ·ξ′ and η = Tσ·η′. But then

dθ̃i+j(ξ, η) = dσ∗θ̂i+j(ξ′, η′) = tϕ(X,Y ) (or the same equation with i + j replaced

by −k is i+ j < −k), so tθ̃(ϕ) = tϕ, and thus (Ẽ, θ̃) is really harmonic.

3.21. To discuss the question of uniqueness, let us assume that (Ẽ, θ̃) is any P–
frame bundle of degree `+1, such that the underlying P–frame bundle of degree ` is
(E, θ). In particular, this means that we have a smooth mapping p̃ : Ẽ → E which
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is equivariant over the canonical projection P/P `+1
+ → P/P `+. For a point ũ ∈ Ẽ

with p̃(ũ) = u we define f(ũ) = (f(ũ)−k, . . . , f(ũ)−1) ∈ Ê as follows: For ξ ∈ T iuE
choose an element ξ̃ ∈ T iũẼ such that T p̃·ξ̃ = ξ and define f(ũ)i(ξ) := θ̃i(ũ)(ξ̃).
One immediately verifies that this is well defined, and since (E, θ) is the underlying

P–frame bundle to (Ẽ, θ̃), it is an element of Ê. Clearly, f : Ẽ → Ê is a smooth
fiber bundle homomorphism.

We claim that f is P/P `+1
+ –equivariant. So we have to compute f(ũ·b) for

b ∈ P/P `+1
+ . If we take ξ ∈ T iuE and ξ̃ ∈ T iũẼ as before, then Trb·ξ̃ is a lift of

Trb0 ·ξ, so we have by equivariancy of θ̃:

f(ũ·b)i(Trb0 ·ξ) = θ̃i(ũ·b)(Trb·ξ̃) = Ad(b−1)(θ̃i(u)(ξ̃)) = (f(ũ)·b)(Trb0 ·ξ),
so f is really equivariant.

Also, it follows immediately from the construction, that θ̃i = f∗θ̂i for all i, and
finally a computation similar to the one in the end of 3.20 shows that the torsion of
θ̃ in a point ũ equals the torsion of f(ũ) in the sense of 3.17. In particular, in the
situation of 3.20 it follows that f actually is an isomorphism of P–frame bundles.
Thus we have completed the proof of the following theorem:

3.22. Theorem. Let E be a harmonic P–frame bundle of degree `, and suppose that
the cohomology group H1

` (g−, g) vanishes. Then there is an (up to isomorphism)

unique harmonic P–frame bundle (Ẽ, θ̃) of degree `+ 1 whose underlying P–frame
bundle of degree ` is isomorphic to (E, θ).

Iterated application of this theorem immediately leads to

3.23. Corollary. Suppose that G is a semisimple Lie group whose Lie algebra
g is endowed with a |k|–grading, such that all cohomology groups H1

` (g−, g) with
` > 0 are trivial. (In particular this is satisfied if none of the simple factors of g is
contained in g0 and none of the simple factors is of one of the three types listed in
proposition 2.7). Let M be a smooth manifold with a filtration of its tangent bundle
as in 3.1. Then there is a bijective correspondence between isomorphism classes
of reductions to the structure group G0 of the associated graded vector bundle to
the tangent bundle, which satisfy the structure equations, and isomorphism classes
of principal P–bundles over M endowed with Cartan connections with ∂∗–closed
curvature.

3.24. The case of nontrivial cohomology. Using proposition 2.7 together with
proposition 2.8 and the basic results on complexifications noted in 2.7, we see that,
except in the case of A1 (and the case of a simple factor contained in g0, which is
rather bizarre), the only nontrivial cohomology which can occur is H1

1 (g−, g). This
means that the problems caused by this cohomology group occur actually in the
very first prolongation step, that is in the step where we try to construct a P/P 2

+–
bundle from a P/P+–bundle. So in this case we have a principal bundle E → M
with group P/P+ and a frame form θ on E of length one. Note that in 3.13–3.20
we have not made any assumptions on the cohomology, so all the results from there
remain valid in this case. In particular, we can construct the bundle Ê → E, the

action of P/P 2
+ on Ê, the canonical forms θ̂ on Ê, define the torsion of elements of

Ê and the elements with co–closed torsion are stable under the action of P/P 2
+.

The group P/P 2
+ is the semidirect product of G0

∼= P/P+ and P+/P
2
+. More

explicitly, the canonical smooth section s : G0 → P/P 2
+ introduced in 2.11 is a group

homomorphism in this case. Using this, one easily shows that one can find local G0–
equivariant sections from E to the space of elements in Ê with co–closed torsion.
Moreover, using the fact that the exponential map induces a diffeomorphism g1

∼=
P+/P

2
+ one can glue such local sections using a partition of unity to a global section,

which is still G0–equivariant (compare with the proof of lemma 3.6 of [6]). Now
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choosing such a global G0–equivariant section from E to the space of elements in
Ê with co–closed torsion, we can then take the orbit of the image of this section
under the group P/P 2

+. By proposition 3.19, this is still contained in the subspace
of all elements having co–closed torsion, and thus we can restrict the frame form
to the orbit to get a harmonic P–frame bundle of length two over M .

After making the choice of a section in the first step, we can then finish the pro-
longation procedure as described before. Geometrically, one has to view the choice
of the equivariant section simply as a part of the structure. This is particularly
transparent in the case of projective structures (of dimension > 1), in which the
P–frame bundle of length one contains no information at all (it is simply the full
first order frame bundle), and the whole structure is contained in the choice of the
equivariant section (which corresponds to choosing a class of connections in this
case).

The second exceptional case is of quite similar nature: In that case, the first order
frame bundle is equivalent to specifying a contact structure, and the whole rest of
the structure is contained in the additional choice of a section, which can again be
interpreted equivalently as choosing a class of partial connections compatible with
the contact structure.

Thus, the only case we cannot deal with is the case of simple factors which are
either contained in g0 or correspond to one–dimensional projective structures, and
both these cases are quite degenerate.

4. Parabolic geometries

4.1. By corollary 3.23 and 3.24, a harmonic P–frame bundle of degree 2` + 1 is
either already determined by the underlying P–frame bundle of degree one, or by
this bundle plus a section of an additional bundle. Thus, in order to understand
the geometrical meaning of parabolic geometries (or to understand the structures
for which we are able to construct canonical Cartan connections), the main step is
to understand the geometrical meaning of a P–frame bundle of degree 1.

So let g be a semisimple |k|–graded Lie algebra, G a group with Lie algebra g,
and denote the various subgroups and subalgebras as before. Let p : E → M be a
smooth principal bundle with structure group P/P+

∼= G0 over a smooth manifold
M which has the same dimension as g−, and let θ be a frame form of length one on
E. As we have noted in 3.3(2), for each point u ∈ E the component θi of the frame
form θ induces a linear isomorphism T iuE/T

i+1
u E ∼= gi for each i = −k, . . . ,−1.

Now let ξ ∈ T ixM and η ∈ T jxM be tangent vectors, choose a point u ∈ E

with p(u) = x and tangent vectors ξ̃ and η̃ over ξ and η. By definition of the

induced filtration on TE (see 3.1), we have ξ̃ ∈ T iuE and η̃ ∈ T juE, so we can form

[θi(ξ̃), θj(η̃)] ∈ gi+j . Since ξ̃ and η̃ are unique up to vertical vectors and θi and

θj vanish on vertical vectors this element is independent of the choice of ξ̃ and η̃.
There is an element λ ∈ T i+ju E (unique up to elements from T i+j+1

u E) such that

θi+j(λ) = [θi(ξ̃), θj(η̃)], and we denote by {ξ, η} ∈ T i+jx M/T i+j+1
x M the class of

Tp·λ (which is independent of the choice of λ).
We claim that {ξ, η} is also independent of the choice of u ∈ E. If u1 and u2

are two points with p(u1) = p(u2) = x, then there is an element b ∈ P/P+
∼=

G0 such that u2 = u1·b. If ξ̃ ∈ T iu1
E and η̃ ∈ T ju1

E are tangent vectors over

ξ and η, then Trb·ξ̃ and Trb·η̃ are tangent vectors over ξ and η with footpoint
u2. But by equivariancy of the frame form, θi(u2)(Trb·ξ̃) = ((rb)∗θi)(u1)(ξ̃) =

Ad(b−1)(θi(u1)(ξ̃)) and similarly for η̃. Now let λ in T i+ju1
E be such that θi+j(λ) =
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[θi(ξ̃), θj(η̃)], and consider Trb·λ ∈ T i+ju2
E. Again by equivariancy we get

θi+j(u2)(Trb·λ) = Ad(b−1)(θi+j(u1)(λ)) = Ad(b−1)([θi(u1)(ξ̃), θj(u1)(η̃)]) =

= [Ad(b−1)(θi(u1)(ξ̃)),Ad(b−1)(θj(u1)(η̃))] = [θi(u2)(Trb·ξ̃), θj(u2)(Trb·η̃)],

and since Tp·Trb·λ = Tp·λ the independence follows.
Thus, from the bundle E together with the frame form θ, we get vector bundle

homomorphisms T iM ⊗ T jM → T i+jM/T i+j+1M which are skew symmetric if
i = j. In fact, these homomorphisms define on the associated graded to each
tangent space the structure of a graded Lie algebra, which is isomorphic to g−.

A very similar structure is however already intrinsic to the filtration of the tan-
gent bundle of M . Let ξ ∈ T ixM and η ∈ T jxM be as above, extend them to local

vector fields ξ̃ and η̃ which have values in T iM and T jM , respectively, and denote
by L(ξ, η) the class of the Lie bracket [ξ̃, η̃](x) in TxM/T i+j+1

x M . If f is a smooth

function on M , then [ξ̃, f η̃] = f [ξ̃, η̃] + (ξ̃·f)η̃. Since i + 1 ≤ 0, we see that η̃ is a
section of T i+j+1M , so passing to the class modulo this subbundle, we get some-
thing which is linear over smooth functions in the second (and similarly in the first)
variable. Thus, L is a well defined tensorial map T iM ⊗ T jM → TM/T i+j+1M ,
which is called the (generalized) Levi–form corresponding to the filtration of TM .
Actually, even the class of the Lie bracket in TM/Tmin{i,j}M would be well defined,
but we do not need this here.

4.2. Proposition. The frame form θ of length one satisfies the structure equations
if and only if the map { , } : T iM ⊗ T jM → T i+jM/T i+j+1M coincides with the
generalized Levi form L. In particular, the Lie bracket of vector fields on M has to
be compatible with the filtration, i.e. the bracket of a section of T iM with a section
of T jM has to be a section of T i+jM .

Proof. Let u ∈ E be a point, ξ ∈ T iuE and η ∈ T juE tangent vectors such that

i + j = −k. Let us extend ξ and η to smooth sections ξ̃ and η̃ of T iE and T jE,
respectively. Since i, j > −k, we have θ−k(ξ̃) = θ−k(η̃) = 0, and thus dθ−k(ξ, η) =

−θ−k([ξ̃, η̃](u)). Thus, the structure function of degree −k is identically zero if and

only if θ−k(u)([ξ̃, η̃]) = [θi(u)(ξ), θj(u)(η)]. By definition, this is equivalent to the

fact that {Tp·ξ, Tp·η} equals the class in TM/T−k+1M of Tp·([ξ̃, η̃](u)). But if

we choose for ξ̃ and η̃ projectable vector fields, then the last expression coincides
with the Lie bracket of the projected fields, which by construction extend Tp·ξ and
Tp·η, and thus the class in TM/T−k+1M coincides with L(Tp·ξ, Tp·η). Iterating
this argument we get the result. ¤

4.3. Remark. At this place, an interesting relation to the cohomology groups of
g− with coefficients in g shows up. Namely, suppose that H1

0 (g−, g) = 0. By
definition, this implies that any derivation g− → g− which is homogeneous of
degree zero is given by the bracket with an element of g0. But this implies that
the group G0 is a (possibly not connected) covering of the connected component
of the group of automorphisms of the graded Lie algebra g−. Otherwise put, a
reduction to the group G0 of the associated graded to the tangent bundle imposes no
further condition on the individual fibers than the structure of a graded Lie algebra
isomorphic to g−. Hence in these cases, the filtration giving rise to an appropriate
Levi form is the only essential ingredient for the corresponding parabolic geometries.
Further ingredients (depending on the choice of the group G) can only be of the
type of an orientation or an analog of a spin–structure.

On the other hand, if H1
0 (g−, g) 6= 0, then there must be an additional structure

on the individual fibers of the associated graded to the tangent bundle, which is
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intrinsic to the corresponding parabolic geometry. For example, this can be a com-
plex structure, or a further (local) decomposition into a direct sum of subbundles
or a tensor product of vector bundles.

There is a complete list of all complex simple |k|–graded Lie algebras which have
H1

0 (g−, g) 6= 0 in [22, Proposition 5.1]. Clearly, this list contains all the |1|–graded
cases (in which the filtration is trivial), as well as all the contact type structures,
i.e. |2|–graded algebras with dim(g−2) = 1, since in this case the filtration only
gives rise to a contact structure, which is well known to be of infinite order. Apart
from these obvious cases, there are however only two more series, namely A` with
two crossed roots, one of which is the very first (or last) root, and C` with the
first and last roots crossed. Thus, the case in which the filtration with appropriate
Levi form is the only ingredient for the structure is rather typical for the general
situation, but most of the structures which have been studied in more detail up to
now do not fall into this group.

4.4. G#
0 –structures of type m. Apart from the structure equations, a P–frame

bundle of degree one over a manifold M is just a reduction of the associated graded
to the tangent bundle. In particular, it is “less” than a first order G–structure. On
the other hand, for a group G corresponding to a |k|–graded Lie algebra consider a
principal P/P k+ bundle over M , which is equipped with a frame form θ of length k
(so if the frame form satisfies the structure equations, we have a P–frame bundle
of degree k). Then the component θ−k of θ is just an equivariant g−–valued one–
form on the bundle, so it gives a first order P/P k+–structure on M . But clearly, at
this step more information than this first order structure is already encoded in the
frame form θ. So there is no step in the prolongation procedure in which we deal
exactly with first–order structures (apart from the structure equations, which are
always an additional restriction).

There is a way, however, to formulate the degree one case equivalently in terms of
a first order structure. In our setting, this translation seems not to be very natural,
but we reproduce it here because of the important role it plays in the papers of N.
Tanaka, see [21].

Let us temporarily denote by GLgrad(g−) and GLfilt(g−) the groups of invert-
ible linear maps on g−, which preserve the grading or the filtration, respectively.
From 2.10 we see that the adjoint action identifies G0 with a covering of a sub-
group of GLgrad(g−) and P with a covering of a subgroup of GLfilt(g−). Obviously,
GLgrad(g−) is a subgroup of GLfilt(g−). On the other hand, there is an obvious pro-
jection from π : GLfilt(g−) → GLgrad(g−), which corresponds to passing from the
filtered vector space g− to the associated graded vector space, which can be canon-
ically identified with g−. Let GL+(g−) be the kernel of this projection. Then it is
easy to see, that GLfilt(g−) is the semidirect product of GLgrad(g−) and GL+(g−).

Now we define G#
0 := {(g, ϕ) ∈ G0 × GLfilt(g−) : π(ϕ) = Ad(g)}. This is a Lie

subgroup, and we have a canonical inclusion G0 → G#
0 , which together with the

first projection identifies G#
0 with the semidirect product of G0 and GL+(g−).

Let us consider a manifold M with a filtration of the tangent bundle TM as
in 3.1. Let p : E → M be a principal G0 bundle, and let θ be a frame form
of length one on E. Then the frame form gives a map j from E to the frame
bundle of the associated graded bundle to the filtered bundle TM , which can be
viewed as the fibered product (over M) of the bundles Iso(gi, T

iM/T i+1M) of linear
isomorphisms for i = −k, . . . ,−1. Clearly, the latter bundle is a principal bundle
with group GLgrad(g−), and this map is a homomorphism of principal bundles over
the homomorphism G0 → GLgrad(g−) described above. This homomorphism is a
reduction of structure group (in the sense of G0 covering a subgroup of GLgrad(g−)).
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Similarly, we can consider the bundle Isofilt(g−, TM) of filtration preserving
linear isomorphism between g− and tangent spaces of M . This is a principal bundle
with group GLfilt(g−), and clearly it is a subbundle of the frame bundle of M .
Moreover, we have a natural projection Π from Isofilt(g−, TM) to the frame bundle
of the associated graded bundle to TM , which is a homomorphism of principal
bundles over the group homomorphism GLfilt(g−)→ GLgrad(g−) from above.

Now starting from the bundle E from above, we define E# := {(u, ψ) ∈ E ×G0

Isofilt(g−, TM) : j(u) = Π(ψ)}. Since j and Π are homomorphisms of principal
bundles over compatible group homomorphisms, this is well defined, and one im-

mediately verifies that it is a principal bundle with group G#
0 . The obvious map

E# → Isofilt(g−, TM) clearly is a reduction of structure group, so E# gives rise

to a first order G#
0 –structure on M . Conversely, starting from a first order G#

0 –

structure on M defined by a bundle Ẽ →M and a one–form Θ ∈ Ω1(Ẽ, g−), we can

simply form the principal G0–bundle E = Ẽ/GL+(g−) over M . Similar arguments
as in 3.11 show that for i = −k, . . . ,−1 the component Θi of Θ in gi descends to a
smooth section θi of the bundle L(T iE, gi), and these together are a frame form of
length one on E.

If E and F are principal G0–bundles over M equipped with frame forms of
length one such that there is an isomorphism E → F which is compatible with
the frame forms, then one easily sees that E# and F# are equivalent first order

G#
0 –structures. On the other hand, it is easy to see that GL+(g−) is a vector

group. Using this together with the fact that G#
0 is the semidirect product of G0

and GL+(g−), one shows similarly as in 3.24 that the bundle E# → E always
has a global G0–equivariant section. Using this, one shows that if E# and F#

are equivalent G#
0 –structures, then there is an isomorphism between E and F

which is compatible with the frame forms. Thus, we have established a bijective

correspondence between isomorphism classes of first order G#
0 –structures on M and

isomorphism classes of principal G0–bundles equipped with frame forms of length
one over M .

So it remains to discuss the structure equations in the G#
0 –picture, and this

is fairly easy to do: Let Ẽ → M be a principal G#
0 –bundle together with a one

form Θ ∈ Ω1(Ẽ, g−) as above, and form the quotient E = Ẽ/GL+(g−) with the
induced frame form θ of length one. Then the component θi of θ is induced by
restricting the gi–component Θi of Θ to T iẼ. From this one easily concludes that
θ satisfies the structure equations if and only if for each i, j = −k, . . . ,−1 and
ξ ∈ T iẼ and η ∈ T jẼ we have that dΘ(ξ, η) is congruent to [Θ(ξ),Θ(η)] modulo

gi+j+1 ⊕ · · · ⊕ g−1. In this case, Tanaka calls the corresponding G#
0 –structure “of

type m” (m is his notation for g−). Thus, we recover the main result of [21] (which
is proved in the case that G is simple and has trivial center there):

4.5. Theorem. Suppose that G is a semisimple Lie group with |k|–graded Lie
algebra g, such that all cohomology groups H1

` (g−, g) for ` > 0 are trivial. Then for
any manifold M with a filtration of the tangent bundle as in 3.1, there is a bijective

correspondence between isomorphism classes of first order G#
0 –structures of type m

on M and of principal P–bundles over M equipped with a Cartan connection with
∂∗–closed curvature.

4.6. Remark. The main difference between the prolongation procedure of Tanaka
and the one described here, lies in the first k−1 steps. Roughly, it can be described

as follows: Tanaka starts with a G#
0 –structure of type m and then works “down”,

refining it step by step, until he arrives at a first order P/P k+–structure with special
properties (which corresponds to a P–frame bundle of degree k in our picture). In
contrast to this, our approach is starting with the group G0 and work “up” step by
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step over the quotients P/P i+, until we arrive at this point. So in these first steps,
not only the procedure is different, but also the data that we work with. From the
step of a P–frame bundle of degree k on, the prolongation procedures still differ,
but the data are the same.

4.7. The curvature of the canonical Cartan connection. Let (p : E →M, θ)
be a harmonic P–frame bundle of degree 2k+1. As we have already noted in 3.3(3),
the component ω := θ−k ∈ Ω1(E, g) of the frame form θ is a Cartan connection
in this case. This means that ω(u) : TuE → g is a linear isomorphism for each
u ∈ E, ω is equivariant, so (rb)∗ω = Ad(b−1) ◦ ω for all b ∈ P , and it reproduces
the generators of fundamental fields, so ω(ζA) = A for all A ∈ p.

In general, the curvature of a Cartan connection is defined to be the g–valued
two–form K := dω + 1

2 [ω, ω], i.e. for ξ, η ∈ TuE we have K(ξ, η) = dω(ξ, η) +
[ω(ξ), ω(η)]. Now suppose that ξ is vertical, so ξ = ζA(u) for some A in p. Then
by lemma 3.8, we get dω(ζA(u), η) = −[A,ω(η)], and thus K(ζA(u), η) = 0, so the
curvature is a horizontal form. Moreover, equivariancy of ω immediately implies
that (rb)∗K = Ad(b−1) ◦K, so K is equivariant, too. Hence, we can view K as a
two–form on M with values in the vector bundle E ×P g associated to the adjoint
representation of P on g.

There is another very convenient way to view the curvature as follows: Since K is
horizontal, its value in u ∈ E is completely determined by the function κ(u) : g− ∧
g− → g, which is defined by κ(u)(X,Y ) := K(ω(u)−1(X), ω(u)−1(Y )). Thus, K is
completely determined by the smooth function κ : E → C2(g−, g). By definition,
κ coincides with the torsion of θ as introduced in 3.9. In particular, since (E, θ) is
harmonic, we know that ∂∗ ◦ κ = 0.

There are two natural ways to split the function κ into components. First, we
may split κ = κ−k + · · · + κk, according to the splitting g = g−k ⊕ · · · ⊕ gk. In
traditional terminology, the form κ− := κ−k+· · ·+κ−1 is called the torsion and the
form κp := κ0 + · · ·+ κk is called the curvature of ω. If the form κ− is identically
zero, the corresponding P–frame bundle is called torsion–free, and if the form κ
is zero, the corresponding bundle is called flat . Note that the P–frame bundle
(G → G/P, ω), where ω is the left Maurer–Cartan form, is flat by the Maurer–
Cartan equation.

The second natural way is to split κ as
∑
i κ

(i) according to homogeneous degrees.
The importance of this splitting lies in the fact that since κ coincides with the
torsion of the P–frame bundle (E, θ) in the sense of 3.9, we see from the proof of
proposition 3.12 that various homogeneous components of κ are already visible on
the P–frame bundles of lower degree underlying (E, θ). In particular, the structure
equation exactly means that the homogeneous components κ(i) are zero for all i ≤ 0,

so the decomposition of κ reads as κ =
∑3k
i=1 κ

(i).

4.8. To give a geometrical interpretation of torsion and curvature, note that since
the Cartan connection gives rise to a trivialization of the tangent bundle of E, it can
in particular be viewed as a generalized connection on E, that is a projection onto
the vertical bundle. This vertical projection V : TE → V E is given by mapping
ξ ∈ TuE to ξ − ω(u)−1(ω−(ξ)) = ζωp(ξ), where we split ω = ω− + ωp according
to the splitting g = g− ⊕ p. Thus, we also get a horizontal distribution given by
Hu := ω(u)−1(g−).

Now for any X ∈ g we can consider the vector field X̃ ∈ X (E) defined by

X̃(u) := ω(u)−1(X), thus obtaining a map g→ X (E). Let Xh(E) denote the space
of horizontal (with respect to ω) vector fields on E. This space becomes a Lie
algebra with the bracket [ , ]h given by the horizontal projection of the usual Lie
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bracket, i.e. [ξ, η]h := [ξ, η] − V ([ξ, η]) for ξ, η ∈ Xh(E). Now we can characterize
vanishing of torsion and curvature as follows:

Proposition. Let E →M be a P–frame bundle of degree 2k+ 1, ω ∈ Ω1(E, g) the
corresponding Cartan connection, κ its curvature and H the horizontal distribution
induced by ω. Then

(1) The curvature component κp is identically zero if and only if the horizontal
distribution H is integrable, i.e. the Lie bracket of two horizontal fields is
horizontal, too.

(2) The torsion component κ− is identically zero if and only if the mapping

g− → Xh(E) given by X 7→ X̃ is a Lie algebra homomorphism for the
bracket [ , ]h.

Proof. Let X,Y ∈ g− and consider the Lie bracket [X̃, Ỹ ]. Then the horizontal part

of this, which can be computed as ω−1(ω−([X̃, Ỹ ])) is by definition just [X̃, Ỹ ]h.

Now since ω(X̃) and ω(Ỹ ) are constant, we see that by definition of the exterior

derivative, we have dω(X̃, Ỹ ) = −ω([X̃, Ỹ ]), or equivalently κ(X,Y ) = [X,Y ] −
ω([X̃, Ỹ ]). The component of this in g− equals by the above observation [X,Y ] −
ω([X̃, Ỹ ]h), so the second part follows.

Also, if the horizontal distribution is integrable, then we must have [X̃, Ỹ ]h =

[X̃, Ỹ ], and thus κp(X,Y ) = 0, so the necessity in the first part is clear. Finally,
we can write each horizontal vector field ξ as

∑
i ξiẽi, where {ei} is a basis of g−

and the ξi are smooth functions on E. Now
[∑

ξiẽi,
∑

ηj ẽj

]
=
∑

i,j

(
ξiηj [ẽi, ẽj ] + ξi(ẽi·ηj)ẽj + ηj(ẽj·ξi)ẽi

)
,

and this is horizontal if and only if [ẽi, ẽj ] is horizontal for all i and j. ¤

4.9. In the general case, we can get more information on the curvature using the
following result, which is called the Bianchi identity (compare with [6, 2.4])

Proposition. The curvature κ satisfies the equation

(∂ ◦ κ)(X,Y, Z) +
∑

cycl

(κ(κ−(X,Y ), Z) + X̃·κ(Y,Z)) = 0

for all X,Y, Z ∈ g−, where ∂ is the Lie algebra differential introduced in 2.4,
∑
cycl

denotes the sum over all cyclic permutations of (X,Y, Z), and X̃ is the horizontal
vector field corresponding to X as in 4.8.

Proof. The definition of κ, applied to the vector fields [X̃, Ỹ ] and Z̃ reads as

κ(ω−([X̃, Ỹ ]), Z) = dω([X̃, Ỹ ], Z̃) + [ω([X̃, Ỹ ]), Z].

Using the fact that ω(Z̃) = Z is constant, we get from the definition of the exterior
derivative that

dω([X̃, Ỹ ], Z̃) = −Z̃·ω([X̃, Ỹ ])− ω([[X̃, Ỹ ], Z̃]).

From the proof of 4.8 we know that ω([X̃, Ỹ ]) = [X,Y ] − κ(X,Y ). Inserting this
into the above equation and rearranging terms, we get

− [κ(X,Y ), Z]− κ([X,Y ], Z) + κ(κ−(X,Y ), Z) + Z̃·κ(X,Y ) =

= ω([[X̃, Ỹ ], Z̃])− [[X,Y ], Z].

Forming the sum over all cyclic permutations of (X,Y, Z), the right hand side
vanishes by the Jacobi identity for vector fields and for the Lie bracket in g, and
the first two terms on the left hand side add up to (∂ ◦ κ)(X,Y, Z). ¤
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4.10. Corollary. Let κ =
∑3k
i=1 κ

(i) be the splitting of the curvature into homoge-

neous components as in 4.8. Then ∂ ◦ κ(1) is identically zero. More generally, if
κ(j) is identically zero for all j < i, the ∂ ◦ κ(i) is identically zero.

Proof. We have to split the Bianchi identity into homogeneous parts to see this.
Evaluate the Bianchi identity on elements X, Y , and Z, which are homogeneous
of degree |X|, |Y |, and |Z|, and consider the homogeneous component of degree
|X|+|Y |+|Z|+i of the result for some i > 0. Since we have observed that ∂ preserves
homogeneous degrees in 2.4, the first term in the Bianchi identity contributes ∂ ◦
κ(i) in this degree. All contributions of the second term in this degree must be

of the form κ(j)(κ
(i−j)
− (X,Y ), Z) (or a cyclic permutation of the arguments) for

some j with 0 < j < i. Finally, the last term can only contribute summands as
Z̃·κ(i+|Z|)(X,Y ), and since |Z| < 0, the result follows. ¤

4.11. Using the adjointness of the codifferential and the differential that we have
proved in 2.6, one can split Cn(g−, g) as Im(∂)⊕ Im(∂∗)⊕ (Ker(∂) ∩Ker(∂∗)) for
each n. Moreover, Im(∂∗)⊕ (Ker(∂) ∩Ker(∂∗)) = Ker(∂∗) and (Ker(∂) ∩Ker(∂∗))
(the harmonic part) can be identified with Hn(g−, g). Since both ∂ and ∂∗ preserve
the homogeneous degree, this decomposition is compatible with the decomposition
into homogeneous degrees.

The curvature κ has values in C2(g−, g), so we can also split it according to
this decomposition. By construction, κ is co–closed, so its Im(∂)–component is
zero. Now by corollary 4.10 we also have ∂ ◦ κ(1) = 0, so κ(1) has harmonic values
and thus can be viewed as a smooth function with values in the cohomology group
H2

1 (g−, g). Similarly, if we already know that κ(j) is identically zero for all j < i,
then κ(i) can be viewed as a smooth function with values in H2

i (g−, g). As we
have mentioned before, these cohomology groups can be computed using Kostant’s
version of the Bott–Borel–Weil theorem, so this gives computable information about
certain curvature components being automatically trivial. Moreover, this result
provides not only the g0–module structure of the cohomology but it contains also
an explicit description of harmonic representatives for the individual irreducible
components. In several cases, this can be used to restrict the possibilities for the
values of κ further.

Finally, the splitting from above allows us to consider the harmonic part of
the curvature κ, and as above we see that κ is identically zero if and only if this
harmonic part is identically zero.

4.12. Proposition. Let (E →M,ω) be a P–frame bundle of degree 2k + 1. Then
the following are equivalent:

(1) The P–frame bundle E is flat.
(2) The harmonic part of the curvature κ is identically zero.

(3) The mapping g→ X (E) given by X 7→ X̃ as in 4.8 is a homomorphism of
Lie algebras.

(4) M is locally isomorphic to G/P , i.e. for each x ∈M there are neighborhoods
U of x and V of 0 = eP ∈ G/P such that E|U is isomorphic to G|V as a
P–frame bundle.

Proof. The equivalence of (1) and (2) was already observed in 4.11 above, and the
equivalence of (1) and (3) follows immediately from part (2) of proposition 4.8 and
equivariancy of ω. The fact that (4) implies (1) is clear, since G/P is flat by the
Maurer–Cartan equation. So it remains to prove that (1) implies (4).

Consider the product E×G and the form Ω := pr∗1ω−pr∗2ωMC , where ω denotes
the Cartan connection on E and ωMC denotes the Maurer–Cartan form on G. The
kernel of Ω is a distribution on E×G of constant rank equal to the dimension of g.
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Now using the fact that both ω and ωMC are flat, we can compute the derivative
of Ω as

dΩ = − 1
2 ([pr∗1ω, pr

∗
1ω] + [pr∗2ω

MC , pr∗2ω
MC ]) = − 1

2 ([Ω, pr∗1ω] + [pr∗2ω
MC ,Ω]).

But this implies that the differential of each component of Ω lies in the ideal gen-
erated by the components of Ω, so the kernel of Ω is an integrable distribution by
the Frobenius theorem, so one has the corresponding foliation.
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Now let x ∈ M be a point, and let σ be a local section of E defined around
x. Let L be the connected component of the leaf of the foliation through (σ(x), e)
in a small neighborhood. Then by definition of the distribution, the projections
pr1 : L→ E and pr2 : L→ G are local diffeomorphisms, so they give rise to a local
diffeomorphism Φ from a neighborhood of σ(x) to a neighborhood of e ∈ G (whose
graph is exactly L). Now this neighborhood contains a neighborhood of the form
{σ(y)·b : y ∈ U, b ∈ W}, where U is an open neighborhood of x in M and W is an
open neighborhood of the identity in P .

We then define ϕ : U → G/P by mapping y to the class of Φ(σ(y)). Using
that both pr1 and pr2 are equivariant, one concludes that ϕ is a diffeomorphism
locally around x. Moreover, we can obviously extend it equivariantly to a local
isomorphism of principal bundles (which coincides with the equivariant extension
of Φ), and by construction this map pulls back ωMC to ω. ¤

4.13. AHS–structures. As a first special case of our general constructions, we
discuss the case of almost Hermitian symmetric structures or AHS structures. This
is the case of |1|–graded Lie algebras g = g−1⊕g0⊕g1. Examples of these structures
are conformal structures and almost Grassmannian structures. These structures
(particularly the conformal ones) have been studied in detail by many authors, see
[6] and the references therein. In this case, things simplify considerably. First of all,
the filtration on TM as introduced in 3.1 has length one, so one can simply forget
it. Frame forms of length ` are simply one forms with values in g−1 ⊕ · · · ⊕ g`−2.
Moreover, the structure equations as introduced in 3.4 become vacuous. Thus, in
the AHS–case, a P–frame bundle of degree one over a manifold M is just a (first
order) G0–structure on M described by a g−1–valued one form θ−1 on E (compare
with [7, 1.2]).

To apply the prolongation procedure, we first have to consider the space Ê
introduced in 3.13. By definition, this is the subspace of L(TE, g−1⊕g0) formed by
all ϕ : TuE → g−1⊕g0 which have θ−1(u) as g−1–component and satisfy ϕ(ζA(u)) =
(0, A) for all A ∈ g0. So this is precisely the space constructed (pointwise) in [7,
1.2]. The torsion of ϕ in the sense of 3.17 has only one relevant component, namely
the component g−1 ∧ g−1 → g−1. So in this case we only need the component in

g−1 of the form θ̂ on Ê introduced in 3.15. But then from 3.16 we see, that we
may compute the torsion of ϕ simply as tϕ(X,Y ) = dθ−1(u)(ϕ−1(X), ϕ−1(Y )) for
X,Y ∈ g−1. Thus, we see that the first step in our prolongation procedure coincides
exactly with the constructions carried out in [7, 1.2–1.6].

Similarly, one can analyze the second step in the prolongation procedure and
show that our procedure coincides with the one carried out in [7, section 2].

4.14. Partially integrable almost CR–structures. Next, we discuss the par-
abolic geometry containing codimension one CR–structures. These correspond to
a |2|–graded Lie algebra, and have been is extensively studied in the literature.
The construction of the canonical Cartan connection for CR–manifolds is due to E.
Cartan (see [11]) for dimension three and to N. Tanaka (see [20]) and S.S. Chern
and J. Moser (see [12]) for arbitrary dimensions. As we shall see below, a parabolic
geometry for that case is a more general structure, namely a partially integrable
almost CR–structure. Hence by our general method we get canonical Cartan con-
nections in this more general situation. Here we only outline how to specialize our
procedure to this case, a more detailed discussion will appear in [5]. For simplicity,
we will restrict the discussion to the case of positive definite Levi form.

The basic setup in this case is as follows: Put g = su(n+1, 1). Let us number the
coordinates on Cn+2 as x0, . . . , xn+1, and choose as the Hermitian form (x, y) 7→
2x0ȳn+1 + 〈(x1, . . . , xn), (y1, . . . , yn)〉, where 〈 , 〉 denotes the standard positive
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definite Hermitian form on Cn. Then g consists of all matrices of the form


z Z ib
X A −Z∗
ia −X∗ −z̄


 ,

where the blocks are of sizes 1, n, and 1, z ∈ C, X ∈ Cn, Z ∈ Cn∗, A ∈ u(n)
with tr(A) = z̄ − z, and a, b ∈ R. Now one defines a |2|–grading on g by giving
degree −2 to the entry corresponding to a, −1 to the one corresponding to X, 0
to the ones corresponding to z and A, 1 to those corresponding to Z, and 2 to the
one corresponding to b. From the block form it is obvious, that this is actually a
|2|–grading.

Next, let G be the adjoint group of su(n + 1, 1). We can identify G with the
quotient of SU(n + 1, 1) by its center, which is isomorphic to Zn+2, given by the
roots of unity times the identity matrix. Thus, we will compute in SU(n + 1, 1)
keeping in mind that we work modulo the center. First, one easily verifies that
the matrices which are in the subgroup G0 (see 2.9) must be block diagonal (with
blocks of sizes 1, n, and 1), and using this, one verifies that they must be of the
form 


ϕ 0 0
0 Φ 0
0 0 ϕ/|ϕ|2


 ,

for some ϕ ∈ C and some Φ ∈ U(n) such that ϕ2

|ϕ|2 detΦ = 1. We denote this element

by (ϕ,Φ).
We have to discuss the adjoint action of G0 on g− = g−2 ⊕ g−1. In a nota-

tion similar as above, let us denote an element of g− as a pair (a,X). A direct
computation shows that Ad(ϕ,Φ)(a,X) = ( a

|ϕ|2 , ϕ
−1ΦX). Now for two elements

X,Y ∈ g−1 the bracket [X,Y ] is just the imaginary part of 〈X,Y 〉. Clearly, the
adjoint action preserves this bracket.

Conversely, let us assume that we have a complex linear automorphism f of g−1

such that [f(X), f(Y )] = α[X,Y ] for all X,Y ∈ g−1 and some (fixed) real number
α. Since Re(〈X,Y 〉) = − Im(〈X, iY 〉), we get [X, iX] = −i〈X,X〉, and since f
is complex linear, this implies on one hand that α must be positive and on the
other hand that 〈f(X), f(Y )〉 = α〈X,Y 〉. Thus, f√

α
is unitary, so the absolute

value of the determinant of f is αn/2. Now let ϕ ∈ C be a complex number
such that ϕ−n−2 = α det(f1). (The non–uniqueness of ϕ exactly reflects the fact
that we work modulo the center of SU(n + 1, 1).) Taking the absolute value in
that equation, we get α = 1/|ϕ|2, which immediately implies that ϕf is unitary.

Moreover, det(ϕf) = ϕndet(f) = |ϕ|2
ϕ2 , so (ϕ,ϕf) is an element of G0. Thus, we

can identify G0 with the group of all pairs (α, f) as above. (Clearly, the number α
is determined by f .)

4.15. Now suppose that M is a smooth manifold of dimension 2n + 1 with a
subbundle T−1M ⊂ TM of real rank 2n and that p : E → M is a principal G0–
bundle with a frame form θ = (θ−2, θ−1) of length one on E. As we have noticed
in 3.3, in each point u ∈ E the form θ−1(u) gives an isomorphism T−1

p(u)M
∼=

T−1
u E/VuE ∼= g−1 and thus in particular a complex structure J on T−1

p(u)M . It

is independent of the choice of the point u since the adjoint action of G0 on g−1

preserves the complex structure. Similarly, since the bracket g−1 × g−1 → g−2 is
preserved by the adjoint action, it pulls back to a bilinear skew symmetric bundle
map { , } : T−1M × T−1M → (TM/T−1M). This map is totally real in the sense
that {J(ξ), J(η)} = {ξ, η} for all ξ, η ∈ T−1

x M and x ∈M .
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Conversely, assume that we have a smooth manifold M of dimension 2n + 1,
together with a rank n complex subbundle T−1M of TM and a bilinear pairing
{ , } : T−1M ×T−1M → (TM/T−1M) which is non–degenerate at each point and
totally real. Then for a point x ∈M we can fix an identification of TxM/T−1

x M with
R. Then one easily sees that on each T−1

x M the map { , } is the imaginary part of a
non degenerate Hermitian form. Let us in addition assume that this Hermitian form
is positive definite for each x and an appropriate isomorphism TxM/T−1

x M → R.
Note that this also fixes an orientation of the line–bundle TM/T−1M (which means
just deciding between a positive definite or a negative definite form).

Then let E be the set of all pairs (ϕ1, ϕ2), where ϕ1 : g−1 → T−1
x M is a

complex linear isomorphism and ϕ2 : g−2 → TxM/T−1
x M is a linear isomorphism

for some x ∈ M , such that {ϕ1(X), ϕ1(Y )} = ϕ2([X,Y ]), for all X,Y ∈ g−1. Let
p : E →M denote the obvious projection. Then one verifies directly that this is a
smooth principal G0–bundle, where G0 acts by composition with the adjoint action
from the right.

Moreover, we define a frame form θ on E as follows: Let Tp : TE → TM
be the tangent map of p. Take a point ϕ = (ϕ1, ϕ2) ∈ E and a tangent vector
ξ ∈ TϕE. Then Tp·ξ is an element of Tp(ϕ)M , so we can form its class [ξ] in

Tp(ϕ)M/T−1
p(ϕ)M . But the component ϕ2 of the point ϕ is an isomorphism of the

latter space with g−2, and we define θ−2(ϕ)(ξ) := ϕ−1
2 ([ξ]). This gives a well defined

one form θ−2 ∈ Ω1(E, g−2). Next, by definition an element ξ ∈ TϕE lies in the

subbundle T−1
ϕ E if and only if Tp·ξ ∈ T−1

p(ϕ)M . But in this case we can define

θ−1(ξ) := ϕ−1
1 (Tp·ξ). From the definitions, one verifies directly that θ = (θ−1, θ−2)

is actually a frame form of length one on E.
Thus, we see that giving a principal G0–bundle with a frame form of length one

on it is equivalent to specifying a rank n complex subbundle T−1M in TM and
a non–degenerate skew pairing { , } : T−1M × T−1M → (TM/T−1M) which is
positive definite and compatible with the complex structure as explained above.
Finally, by proposition 4.2 it is clear that the frame form θ satisfies the structure
equations if and only if the pairing is actually given by the Levi–form.

Let us compare this to the usual concept of almost–CR–manifolds: Clearly,
specifying a rank n complex subbundle T−1M ⊂ TM is equivalent to specifying a
rank n complex subbundle V in the complexified tangent bundle TCM such that
V ∩V̄ = 0, by letting V be the holomorphic part of T−1M⊗C and conversely putting
T−1M = (V ⊕ V̄ )∩TM . As above, let J be the complex structure on T−1M . The
fact that the (real) Levi–form on M is a totally real map is clearly equivalent to the
fact that for sections ξ, η of T−1M the difference [ξ, η]− [J(ξ), J(η)] is also a section
of T−1M . In the complex picture, this is easily seen to be equivalent to the fact that
the bracket of two sections of V is a section of V ⊕ V̄ , which is exactly the definition
of a partially integrable almost–CR–structure (M,V ), see [14]. For general almost–
CR manifolds, one defines the Levi–form V × V → TCM/(V ⊕ V̄ ) via the class of
−i[ξ, η̄]. Now one easily verifies that the real Levi form introduced above is up to
a fixed scalar multiple exactly the imaginary part of this Levi form. Consequently,
the structures we consider are exactly partially integrable almost–CR–structures
with positive definite Levi–form.

4.16. Integrability and torsion. Next, we want to characterize CR–structures
with positive definite Levi–form in our picture. By definition, an almost–CR–
manifold M is CR if and only if the subbundle V ⊂ TCM from 4.15 above is
integrable. This can be reformulated as follows: Let ξ and η be smooth sections of
T−1M , and consider the sections [ξ, η]− [J(ξ), J(η)] and [J(ξ), η]+ [ξ, J(η)] of TM .
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As observed above, these are actually sections of T−1M , and the integrability is
equivalent to the fact that [ξ, η]− [J(ξ), J(η)] = −J([J(ξ), η] + [ξ, J(η)]).

This integrability problem can be related to our constructions as follows: Suppose
we have finished all the prolongations, so we have a principal P–bundle p : E →M
together with a Cartan connection ω ∈ Ω1(E, g). If ξ is a local section of T−1M ,

then we can lift it locally to a smooth section ξ̃ of T−1E, which is p–related to ξ,
i.e. such that Tp·ξ̃(u) = ξ(p(u)). Similarly, for a second section η we find η̃. Since

the bracket of p–related vector fields is again p–related we get [ξ, η] = Tp·[ξ̃, η̃].

Now put X := ω−1(ξ̃), A := ωp(ξ̃). Then ξ̃(u) = ω−1(X(u)) + ζA(u). Similarly,

we write η̃(u) = ω−1(Y (u)) + ζB(u). Moreover, Tp induces an isomorphism of

T−1
p(u)M with T−1

u E/VuE, which in turn is isomorphic via ω(u) to g−1, and these

are complex linear isomorphisms. Thus, to understand the T−1 component of the
Lie bracket [ξ, η] we have to compute ω−1([ξ̃, η̃]). By definition of the exterior
derivative, we get

ω−1([ξ̃, η̃](u)) = ξ̃(u)·Y (u)− η̃(u)·X(u)− dω−1(ξ̃(u), η̃(u)).

Next, by definition of the curvature K of ω (see 4.7), we can compute

dω−1(ξ̃(u), η̃(u)) = K−1(ξ̃(u), η̃(u))− [A0(u), Y (u)]− [X(u), B0(u)],

where we split A and B according to the splitting p = g0 ⊕ g1 ⊕ g2. Finally, by
definition K−1(ξ̃(u), η̃(u)) = κ−1(X(u), Y (u)), and since both X and Y have degree
−1, this equals κ(1)(X(u), Y (u)). Collecting the computations together, we get

ω−1([ξ̃, η̃](u)) =ξ̃(u)·Y (u)− η̃(u)·X(u)−
−κ(1)(X(u), Y (u)) + [A0(u), Y (u)] + [X(u), B0(u)].

Next, observe that if ω−1(X(u)) + ζA(u) is p–related to ξ, then ω−1(iX(u)) +
ζA(u) is p–related to J(ξ). Using this, one directly verifies that in the expression
corresponding to [ξ, η]− [J(ξ), J(η)] + J([J(ξ), η] + [ξ, J(η)]) all terms except those
coming from κ(1) cancel, so that integrability is equivalent to

κ(1)(u)(X,Y )− κ(1)(u)(iX, iY ) + i(κ(1)(u)(iX, Y ) + κ(1)(u)(X, iY )) = 0,

for all u ∈ E and X,Y ∈ g−1. Note that since this involves only the homoge-
neous component of degree one of the curvature it is already visible in the first
prolongation step.

We just outline briefly how to proceed further: By the Bianchi identity (see 4.9),
we know that for each u ∈ E the map κ(1)(u) : Λ2g− → g is ∂–closed and ∂∗–closed.
Now we can extend this map to the complexification gC = sl(n+2,C), which is |2|–
graded using the same block form as for g. In the complex case, the subspace g−1

splits as a g0–module into a direct sum of two irreducible modules, and the condition
on κ(1) from above is equivalent to the fact that the complexification preserves both
these submodules. But now the complexification still is ∂– and ∂∗–closed, so it is
the harmonic representative for a cohomology class in H2

1 (gC−, g
C). But Kostant’s

version of the Bott–Borel–Weil theorem (see [13]) also gives an explicit description
of representatives of these cohomology classes. Looking at these, one sees that they
can never preserve the submodules, so that integrability is actually equivalent to
κ(1) = 0. If this is the case, then one can analyze κ(2) in a similar way and see that
actually integrability implies that the structure is torsion free, so all components
of κ in g− vanish.

4.17. Examples related to twistor theory. To finish, we discuss a family of
examples of parabolic geometries which is closely related to twistor theory and
Penrose transforms. These examples are not interesting from the point of view of
the prolongation procedure, since one gets the canonical Cartan connections for
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free, but we think that they show the importance of understanding the geometrical
properties of structures of this type. The basic idea underlying these examples is
easy to explain: Suppose that we have a Lie group G with |k|–graded Lie algebra
g and that q ⊂ p is a subalgebra which gives rise to an |`|–grading of g.

In the complex case, such subalgebras are particularly easy to find. In this case,
we know from 2.3 that the original |k|–grading on g is determined by a standard
parabolic subalgebra p ⊂ g, which corresponds to a set Σ ⊂ ∆0 of simple roots,
which is exactly the set of those simple roots whose root spaces are contained in p+.
Now we simply take a second subset Σ′ of ∆0 such that Σ′ ⊃ Σ. By construction,
then the standard parabolic q corresponding to Σ′ is a subalgebra of p.

Returning to the general case, we consider the corresponding subgroups Q ⊂ P ⊂
G. If we have a manifold M with a parabolic geometry corresponding to P , then we
have a P–principal bundle E →M endowed with a Cartan connection ω ∈ Ω1(E, g)
with ∂∗–closed curvature. Now since P acts freely on E, also the subgroup Q of P
acts freely on E, so we can form the orbit space M ′ := E/Q. Then the canonical
projection p : E → M ′ is a principal Q–bundle, and one immediately verifies that
the form ω itself is a Cartan connection on p : E → M ′. Finally, the curvature κ
of ω is also closed under the operator ∂∗ corresponding to the subalgebra q. To
see this, one only has to notice that although the subalgebra g− corresponding to
q is bigger than the one corresponding to p, the additional elements correspond to
horizontal vectors on E →M ′ but to vertical vectors on E →M , so the curvature
vanishes on these elements. Together with the formula for ∂∗ from 2.5 this implies
the result. Thus, we see that the parabolic geometry corresponding to P ⊂ G on
M is almost the same thing as a parabolic geometry corresponding to Q ⊂ G on
M ′. Note that the corresponding construction in the flat (homogeneous) case is the
basis for applications of Penrose transforms to representation theory as described
in [4].

For an explicit example, consider the case g = sl(4,R) with the |1|–grading

corresponding to the block form

(
g0 g1

g−1 g0

)
, where all blocks are of size 2 × 2.

The complexification of this corresponds to the Dynkin diagram • × • in the
notation of 2.3. The corresponding geometric structure is an almost Grassmannian
(or paraconformal) structure of type (2, 2). This means that one deals with 4–
dimensional manifolds equipped with a volume form and two rank two bundles
whose tensor product is isomorphic to the tangent bundle (see [2] for a discussion
of almost Grassmannian structures and their twistor theory). Via the well known
isomorphism sl(4,C) ∼= so(6,C), upon complexification this gives also information
on 4–dimensional conformal manifolds. (To have this directly in the real setting one
has to consider pseudo–Riemannian conformal manifolds in split–signature (2, 2).)

The simplest instance of the construction outlined above is now to consider
Σ′ = {α1, α2} ⊃ Σ = {α2}. This gives a |2|–grading on g which is the obvious

real version of the example in 2.3 corresponding to × × • . In this case, the
manifold E/Q can be easily described explicitly as follows: The Lie algebra p has
two obvious irreducible two dimensional representations corresponding to the two
diagonal 2× 2–blocks. The associated bundles to these representations are exactly
the two rank two bundles whose tensor product gives the tangent bundle. Taking
the first of these (which corresponds to the upper block), one can pass to the
projectivization (i.e. the space of all lines in this representation), and the subgroup
Q is exactly the isotropy subgroup of a suitable point in this projectivization.
Using this, one easily proves that the manifold M ′ is exactly the total space of
the associated bundle corresponding to this projectivization, so it is exactly the
projectivization of the rank two bundle from above. In the language of twistor
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theory, this is the correspondence space. Thus, the correspondence space carries

canonically a parabolic geometry of the type × × • .
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