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Abstract We introduce a generalization of intervals over compact matrix
Lie groups. Interval group elements are defined using a midpoint-radius rep-
resentation. Furthermore, we define the respective group operations and the
action of interval group elements on vector spaces. We developed structures
and operations are implemented for the special case of orthogonal matrices
in the matrix library of the COCONUT Environment.
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1 Introduction

Notation and basic definitions. R+ denotes the set of nonnegative real num-
bers. I denotes the set of real intervals.

Throughout the paper, the symbol G will denote an arbitrary compact
matrix Lie group. The identity element of G is denoted by I. The set of
generalized intervals in G (to be defined later in this paper) is denoted by
IG.

For r ∈ R+, the closed ball of radius r around the identity in G is
denoted by Ur, and is defined as Ur = {g ∈ G | ‖g − I‖ ≤ r}, where ‖.‖ is
an appropriate G-invariant norm.

2 Generalized intervals on compact matrix Lie groups

We define intervals on G in a way similar to the midpoint-radius represen-
tation of circular intervals over the real numbers [4].
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Definition 1 A generalized interval on G is defined as a pair 〈g, r〉, where
g ∈ G and r ∈ R+. 〈g, r〉 represents the set Urg = {hg | h ∈ Ur}.

Less formally, given a group element g and a closed ball of radius r
around the identity, 〈g, r〉 is the translation of this ball by g.

In order to ensure numerical reliability while calculating with such gen-
eralized intervals on a computer, the midpoint g must always be an exact
representation of the group element, and the radius r must always be given
by a floating point number that is an upper bound of the intended exact
radius.

The following lemmas formulate the key property needed to develop the
product of two generalized intervals.

Lemma 1 For any 〈g, r〉 ∈ IG, gUrg
−1 = Ur.

Proof

gUrg
−1 = {ghg−1 ∈ G | h ∈ Ur} =

= {ghg−1 ∈ G | ‖h− I‖ ≤ r} =

= {ghg−1 ∈ G | ‖g(h− I)g−1‖ ≤ r} =

= {ghg−1 ∈ G | ‖ghg−1 − I‖ ≤ r} =

= {k ∈ G | ‖k − I‖ ≤ r} =

= Ur.

(The second to last equality is easily verified by checking mutual contain-
ment: to prove {ghg−1 ∈ G | ‖ghg−1− I‖ ≤ r} ⊆ {k ∈ G | ‖k− I‖ ≤ r}, set
k := ghg−1 for any fixed h, and to prove the other direction, set h := g−1kg
for any fixed k.)

Lemma 2 For any r, s ∈ R+, UrUs ⊆ Urs+r+s.

Proof By definition,

UrUs = {gh ∈ G | ‖g − I‖ ≤ r, ‖h− I‖ ≤ s},

so we only need to give an upper bound of ‖gh− I‖:

‖gh− I‖ = ‖(g − I)(h− I) + (g − I) + (h− I)‖ ≤
≤ ‖(g − I)‖‖(h− I)‖+ ‖g − I‖+ ‖h− I‖ ≤
≤ rs+ r + s.

3 Product of generalized intervals

In this section we propose a method to compute the product of two gener-
alized intervals on G in a numerically reliable way. Let 〈g, r〉, 〈h, s〉 ∈ IG.
Using Lemma 1, their product can be written as

UrgUsh = UrgUsg
−1gh = UrUsgh,
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that, by our requirement, needs to be bounded by a product Utk for some
〈k, t〉 ∈ IG. The idea we employ here is to compute an exactly representable
group element k that is an approximation of gh (in exact arithmetic k could
of course be the exact group product, since gh ∈ G), and accumulate all
rounding errors into the radius term by bounding and combining it with
UrUs.

A natural way to obtain an appropriate k is to compute gh with ordinary
floating point arithmetic, and search a nearby representable group element.
Then,

UrUsgh = UrUsghk
−1k,

where ghk−1 ≈ I needs to be bounded by a neighborhood term Uf . This
can be done by computing F := ghk−1 − I using interval arithmetic in all
operations, (i.e., F ∈ In×n) and setting f := sup{‖F̃‖midF̃ ∈ F ∩G} or to
any overestimation of that number.

Using the previously derived relations and Lemma 2, we obtain

UrgUsh = UrUsghk
−1k ⊆ UrUsUfk ⊆ Urs+r+sUfk ⊆ U(rs+r+s)f+rs+r+s+fk.

Thus, the product we derived is

〈g, r〉〈h, s〉 = 〈k, (rs+ r + s)f + rs+ r + s+ f〉,

with k ∈ G, f ∈ R+ defined above.

3.1 Implementation issues for the real orthogonal group

We represent our stuff in VMTL, where interval calculations are supported,
but use LAPACK whenever possible to carry out the floating point parts of
the computations.

We discuss the implementation of generalized intervals on the real or-
thogonal group O(n), i.e., on the set of real orthogonal matrices of dimension
n.

3.1.1 Representing real orthogonal matrices. The most often used exact
representation of orthogonal matrices on a computer is a product of n
Householder matrices (also called elementary reflectors): Q = H1 . . . Hn.
Here each Householder matrix is defined as

H = I − βvvT , with β =
2

vT v
,

thus, for each reflector the vector v and the constant β is stored. LAPACK
also use this kind of representation (for more on the specific implementation,
see [3]). In the present study we also follow this approach with a small
modification (see Sec. 3.2): we store v as a vector of floating point numbers
as usual, but we always compute β with interval arithmetic and store it
as an interval (of small width), to ensure mathematical rigor when interval
operations are done.
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Note that the Hi matrices are almost never constructed in practice.
When the product of Q with an other matrix needs to be computed (or, as
a special case, when Q itself is needed), the elementary reflectors are applied
one-by-one.

Let us given an (arbitrary) real matrix C ∈ Rn×n and a reflector H
specified as I − βvvT with β ∈ R, v ∈ Rn. Then the right-multiplication
of C with H, i.e., CH = C − βCvvT is computed in two steps: first, the
matrix-vector multiplication w := Cv is computed, then the rank-1 update
C := C − βwvT is applied. Thus, applying a reflector H on a matrix can
be carried out by O(n2) operation, therefore, using this method, the cost of
multiplying with an orthogonal matrix (composed of n reflectors) is cubic.
For more details on the computational issues, see, e.g., [2]). The products
HC, CHT , and HTC can be computed in similar ways.

There is one more important feature of working with orthogonal matri-
ces, that is used in LAPACK, and utilized also in our present implementa-
tion, namely, the factored form representation of the Householder matrices.
We use the LQ factorization routine dgelqf of LAPACK to compute the
factorization of the previous section, and this routine creates Q as a product
Hn . . . H1, where for each k = 1, . . . , n, v1:k−1 = 0 and vk = 1, thus, only the
elements vk+1:n are returned. Our orthogonal matrix class implementation
is prepared to deal also with such factored form representations, in order to
make the interface to the LAPACK calls more efficient, and to accelerate
the application of Householder reflections for the interval-type calculations
by skipping the leading zeros of such vectors.

Further improvements during the multiplication with an orthogonal ma-
trix Q can be reached if we use a factored form representation (recall that
in this case Q = Hn . . . H1, where for each k = 1, . . . n, v1:k−1 = 0 and
vk = 1) and utilize the presence of nonzeros for the vi vectors. In particular,
whenever it is possible, it is preferred to apply Q from the right, so that the
nonzero part of w and the submatrix of C to be updated is kept minimal
during the multiplications with the elementary reflectors.

3.1.2 LQ decompositions. As it is well known, every A ∈ Rn×n matrix has
an LQ (resp., QR) decomposition, and if A is invertible, this factorization
is unique, if we require that the diagonal elements of L are all positive. In
other words, for all invertible A ∈ Rn×n, if A is factorized as A = LQ, then
A can be decomposed also a MDQ, where M is lower triangular with all
positive diagonals and D is diagonal with entries ±1 in its diagonal. Since D
is orthogonal (DTD = DD = I), so does the product DQ. In the evaluation
of the previous section an LQ decomposition is needed in such a way that L
is almost the identity, so we expect it to have all positive diagonal entries.
However, the LQ decomposition routine of LAPACK does not quarantee to
return an L with such a property, so we have to extract the negative signs
as above by using the MDQ decomposition (so that M ≈ I), and treat DQ
as the orthogonal component. The slight difficulty emerging here is that,
due to the representation of Q, D cannot be multiplied explicitly with it.
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We resolve this by storing the D matrix (as a vector of signs) next to the
Householder vectors, and whenever the Householder reflectors are applied
to compute a product, we always apply D as well. (Multiplication with D
can also be done in O(n2) operations, so this extra computation casues no
change in the overall order of complexity.)

3.2 Our representation and the respective interval calculations

According to the above discussion, an element G of the orthogonal group
for our calculations (including interval support) is implemented as a triplet
G = (d, V, b), where

– d ∈ {−1, 1}n is the respective scaling vector;
– V ∈ Rn×n is the matrix of Householder coefficients; in particular, the

vector associated with the ith Householder reflector, denoted by Vi is
stored at the ith row of V . Add how the factored form representation
looks like.

– b ∈ In is the vector of the interval enclosures of the exact β values.

In contexts where multiple elements of the orthogonal groups are used,
we will use the notation d(G), V (G), and b(G), resp., to denote the compo-
nents of G.

The ith Householder reflector of G = (d, V, b), denoted by Ri(G), can
be calculated as Ri = I − biV

T
i V i, where V i = Vi is a thin interval vector.

Note that actually we will never use this explicit calculation, similarly to
the real case.

Applying a Householder reflector to an interval matrix. Given an orthog-
onal matrix G = (d, V, b), and a matrix C ∈ In×n, the product C ·Ri(G) ∈
In×n, i.e., the right multiplication of C with Ri(G) is evaluated by first
computing w := CV T

i ∈ In, then doing the update C := C − biwV i. The
products Ri(G) ·C, C ·Ri(G)T , and Ri(G)T ·C are computed in similar
ways.

Multiplying an interval matrix with an orthogonal matrix. Given an
orthogonal matrix G = (d, V, b), and a matrix C ∈ In×n, the product
C · G ∈ In×n, i.e., the right multiplication of C with G is computed as

C · G = C · diag(d) ·Rn(G) · . . . ·R1(G) = C · diag(d) ·
1∏

j=n

Rj(G),

by applying n+ 1 successive right-multiplications. Similarly, we have

G ·C = diag(d) ·Rn(G) · . . . ·R1(G) ·C = diag(d) ·
1∏

j=n

Rj(G) ·C,

by applying n+ 1 successive left-multiplications.
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As for multiplying with GT , we have the formulas

C · GT = C ·R1(G)T · . . . ·Rn(G)T · diag(d) = C ·
n∏

j=1

Rj(G) · diag(d),

with n+ 1 successive right-multiplications, and

GT ·C = R1(G)T · . . . ·Rn(G)T · diag(d) ·C =

n∏
j=1

Rj(G) · diag(d) ·C,

with n+ 1 successive left-multiplications, respectively.
For instance, a guaranteed interval enclosure of the exact value of G can

be computed as I · G (or as G · I).
Note, that when using factored form representations, Vk contains k − 1

leading zeros (k = 1, . . . , n), (thus Vn contains the least number of nonzero
elements). That is, for the factored form representation, the right-multi-
plication with G is more economic than the left-multiplication with G, and
similarly, the left-multiplication with GT is more economic than the right-
multiplication with GT , due to the more efficient utilization of the occurring
zeros.

3.3 Computing the triple interval matrix product

Next we investigate various ways of computing the reliable interval enclosure
A ∈ In×n of the product G · H · KT of three orthogonal matrices. As
noted above, the usual way of computing such a product for real orthogonal
matrices is to apply the respective Householder reflections successively, in
order to reduce the total computing effort, and to utilize the presence of
nonzeros for factored form representation.

These two observations can be carried forward to the interval case, how-
ever, in addition to reducing the computation time, in the interval case we
also have to take care of reducing the interval width of the result. (As we
will se below, the two criteria will not necessarily coincide.)

First we introduce two straightforward ways of computing the triple
product. Algorithm 1 just uses 3(n+ 1) successive multiplications with the
Householder reflectors and with the scaling matrices, resp.:

Algorithm 1:

1. Compute A := KT · I. (Observe the left-multiplication in order to be
more efficient for factored form representations.)

2. Compute the update A := H ·A.
3. Finally, compute the update A := G ·A.

Another approach, utilizing the factored form representation for all three
components (for the price of additional explicit matrix-matrix multiplica-
tions), is the following:

Algorithm 2:
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Table 1 Comparison of the three proposed algorithms for thin interval multipli-
cation of two n× n matrices. The first group of column shows the 2-norm of the
result. The second group of column shows the CPU time.

n Alg 1 Alg 2 Alg 3 Alg 1 Alg 2 Alg 3

5 7.57 · 10−13 3.88 · 10−14 1.29 · 10−14 0.000 0.000 0.000
10 1.44 · 10−9 9.90 · 10−13 4.71 · 10−14 0.001 0.002 0.001
20 4.03 · 10−3 2.82 · 10−10 1.68 · 10−13 0.002 0.004 0.003
50 5.11 · 1017 3.41 · 10−3 9.44 · 10−13 0.013 0.028 0.037

100 2.37 · 1051 5.30 · 1020 3.57 · 10−12 0.076 0.167 0.301
200 1.08 · 10118 2.29 · 1087 1.38 · 10−11 0.535 1.176 4.126

1. Compute the interval matrices G,H,K as G := I · G, H := I ·H, and
K := KT · I, resp.

2. Compute A := G ·H ·K with explicit interval matrix-matrix multipli-
cations.

The above facts motivated us to design an alternative method of a reli-
able computation of G ·H ·KT , using midpoint-error representation at each
Householder update. First we discuss the method assuming exact arithmetic.

Given a matrix C ∈ In×n, decompose it into C = P + E1, where P ∈
Rn×n is the midpoint of C and E1 ∈ In×n is the interval error matrix of C,
resp. Then a left Householder update R ·C = R · (P +E1) = R ·P +R ·E1

can be written as
R ·C = P ′ + E2 + R ·E1,

where P ′ ∈ Rn×n is the midpoint of R · P (i.e., the interval product of an
exact Householder reflector and a thin interval matrix) and E2 ∈ In×n is
the interval error matrix of R · P , resp. Thus E2 is the newly added error
term after multiplying with R. As we will see later, the error term R ·E1

need not be computed explicitly for our purpose. Hence, we need to apply
R only to P , which means that we will face only the smallest amount of
interval overestimation for each left-multiplication update.

To formulate the left-multiplication of C = P + E1 with diag(d) in a
similar way, we can write diag(d) ·C = diag(d) ·P +diag(d) ·E1 = P ′+E1,
that is,

diag(d) ·C = P ′ + E2 + diag(d) ·E1,

with the midpoint matrix P ′ = diag(d) ·P and the new error term E2 = 0,
resp.

Using this technique the product G ·H ·KT can be written as

G ·H ·KT · I =
(
diag(d(G)) ·

1∏
j=n

Rj(G)
)
·

·
(
diag(d(H)) ·

1∏
j=n

Rj(H)
)
·
( n∏
j=1

Rj(K) · diag(d(K))
)
· I =
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= P +

3(n+1)∑
i=0

E′i,

where P ∈ Rn×n is the midpoint of the interval matrix resulted after the
3(n+ 1) left-multiplications, and the error terms E′i are given as

E′i =

3(n+1)∏
k=i+1

SkEi, i = 0, . . . , 3(n+ 1),

where Sk is a shorthand notation of either a Householder reflector Rj or
a diagonal matrix diag(d) of one of the three orthogonal matrices, and
Ei, i = 1, . . . , 3(n + 1) is the newly added error term after the ith left-
multiplication. (At i = 1, i = 2n+ 2 and i = 3n+ 3 we have Ei = 0.) The
term E0 denotes the initial 0 error term of the midpoint-error representation
of I.

Lemma 3 Let Si ∈ O(n) for an index set i. Then for any A ∈ In×n matrix,
||(
∏

i Si)A||2 = ||A||2.

Proof Easy, both possible types of transformations (and their compositions)
are orthogonal.

Thus, we have

||G ·H ·KT − I||2 = ||P +

3(n+1)∑
i=0

E′i − I||2 ≤

||P−I||2+||
3(n+1)∑
i=0

E′i||2 ≤ ||P−I||2+

3(n+1)∑
i=0

||E′i||2 = ||P−I||2+

3(n+1)∑
i=0

||Ei||2.

For the computer implementation of the above computation only a few
things need to be taken into account. First, notice that we have not actually
used that the midpoints are the exact midpoints of the given interval ma-
trices, hence the method remains valid with approximate midpoints as well.
Furthermore, for the computed approximate midpoints we need a guaran-
teed enclosure of the respective exact error matrices, from which the upper
bounds of the 2-norms of the exact error matrices are calculated. Then the
overall upper bound will also be an upper bound of the exact

∑3(n+1)
i=0 ||Ei||2

term. In addition, of course, the application of the Householder reflections to
the current (approximate) midpoint and the calculation of the term ||P−I||2
also have to be done in interval way. The short algorithmic description of
the presented method is the following:

Algorithm 3:

1. Set the current midpoint to P = I and the sum of the 2-norm of the
error terms to a = 0.

2. For i = 1, . . . , 3(n+ 1), iterate the steps 2.1. to 2.4.:
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Table 2 Results of multiplying N thin interval orthogonal matrices (Lie group-
based representation, ‘L’), and N thin interval enclosures of approximately or-
thogonal matrices (standard interval matrix representation, ‘S’)

n N radius runtime

L S L S

10

10 4.69e−13 1.66e−11 0.013 0.001
20 9.36e−13 3.03e−07 0.019 0.002
30 1.40e−12 5.46e−03 0.022 0.003
40 1.87e−12 8.91e+01 0.032 0.004
50 2.33e−12 1.48e+06 0.038 0.005

50

10 9.39e−12 1.45e−07 0.401 0.032
20 1.88e−11 6.34e+00 0.805 0.062
30 2.82e−11 2.79e+08 1.211 0.100
40 3.76e−11 1.23e+16 1.610 0.130
50 4.71e−11 5.37e+23 2.012 0.163

200

10 1.38e−10 5.00e−04 39.610 1.626
20 2.75e−10 2.17e+07 80.954 3.350
30 4.13e−10 9.49e+17 118.833 5.160
40 5.51e−10 4.11e+28 162.324 6.967
50 6.88e−10 1.78e+39 200.499 8.741

2.1. Let Si be the ith factor of G ·H ·KT from the right.
2.3. If Si is a Householder reflector R, then

2.3.1. Compute P = R · P in interval way.
2.3.1. Decompose P into the sum of a point P and an error matrix

Ei.
2.3.2. Set a = a + ||Ei||2.

2.4. Otherwise, if Si is a diagonal matrix diag(d), then
2.4.1 Set P = diag(d) · P

3. Set a = a + ||P − I||2.
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