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2.1 The History of Modeling

The word “modeling” comes from the Latin word modellus. It describes
a typical human way of coping with the reality. Anthropologists think that
the ability to build abstract models is the most important feature which gave
homo sapiens a competitive edge over less developed human races like homo
neandertalensis.

Although abstract representations of real-world objects have been in use since
the stone age, a fact backed up by cavemen paintings, the real breakthrough of
modeling came with the cultures of the Ancient Near East and with the Ancient
Greek.

The first recognizable models were numbers; counting and “writing” numbers
(e.g., as marks on bones) is documented since about 30.000 BC. Astronomy and
Architecture were the next areas where models played a role, already about
4.000 BC.

It is well known that by 2.000 BC at least three cultures (Babylon, Egypt,
India) had a decent knowledge of mathematics and used mathematical models
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26 MODELING LANGUAGES IN MATHEMATICAL OPTIMIZATION

to improve their every-day life. Most mathematics was used in an algorithmic
way, designed for solving specific problems.

The development of philosophy in the Hellenic Age and its connection to
mathematics lead to the deductive method, which gave rise to the first pieces of
mathematical theory. Starting with Thales of Miletus at about 600 BC, geometry
became a useful tool in analyzing reality, and analyzing geometry itself sparked
the development of mathematics independently of its application. It is said that
Thales brought his knowledge from Egypt, that he predicted the solar eclipse
of 585 BC, and that he devised a method for measuring heights by measuring
the lengths of shadows. Five theorems from elementary geometry are credited
to him:

1. A circle is bisected by any diameter.
2. The base angles of an isosceles triangle are equal.
3. The angles between two intersecting straight lines are equal.
4. Two triangles are congruent if they have two angles and one side equal.
5. An angle in a semicircle is a right angle.

After Thales set the base, Pythagoras of Samos is said to have been the first pure
mathematician, developing among other things the theory of numbers, and most
important to initiate the use of proofs to gain new results from already known
theorems.

Important philosophers like Aristotle, Eudoxos, and many more added lots
of pieces, and in the 300 years following Thales, geometry and the rest of
mathematics were developed further. The summit was reached by Euclid of
Alexandria at about 300 BC when he wrote The Elements, a collection of books
containing most of the mathematical knowledge available at that time. The
Elements held among other the first concise axiomatic description of geometry
and a treatise on number theory.

Euclid’s books became the means of teaching mathematics for hundreds of
years, and around 250 BC Eratosthenes of Cyrene, one of the first “applied
mathematicians”, used this knowledge to calculate the distances Earth-Sun and
Earth-Moon and, best known, the circumference of the Earth by a mathemati-
cal/geometric model.

A further important step in the development of modern models was taken by
Diophantus of Alexandria about 250 AD in his books Arithmetica, where he
developed the beginnings of algebra based on symbolism and the notion of a
variable.

For astronomy, Ptolemy, inspired by Pythagoras’ idea to describe the celestial
mechanics by circles, developed by 150 AD a mathematical model of the solar
system with circles and epicircles to predict the movement of sun, moon, and the
planets. The model was so accurate that it was used until the time of Johannes
Kepler in 1619, when he finally found a superior, simpler model for planetary
motions, that with refinements due to Newton and Einstein is still valid today.



Models and the History of Modeling 27

Building models for real-world problems, especially mathematical models,
is so important for human development that similar methods were developed
independently in China, India, and the Islamic countries like Persia.

One of the most famous Arabian mathematicians is Abu Abd-Allah ibn Musa
Al-H

¯
wārizmı̄ (late 8th century). His name, still preserved in the modern word

algorithm, and his famous books de numero Indorum (about the Indian numbers
— today called arabic numbers) and Al-kitab al-muh

¯
tas. ar fi h. isāb al-ǧabr wa’l-

muqābala (a concise book about the procedures of calculation by adding and
balancing) contain many mathematical models and problem solving algorithms
(actually the two were treated as the same) for real-life applications in the areas
commerce, legacy, surveying, and irrigation. The term algebra, by the way, was
taken from the title of his second book.

In the Occident it took until the 11th century to develop mathematics and
mathematical models, in the beginning especially for surveying.

The probably first great western mathematician after the decline of Greek
mathematics was Fibonacci, Leonardo da Pisa (ca. 1170–ca. 1240). As a son
of a merchant, Fibonacci undertook many commercial trips to the the Orient,
and in that time he got familiar with the Oriental knowledge about mathematics.
He used the algebraic methods recorded in Al-H

¯
wārizmı̄’s books to improve his

success as a merchant, because he realized the gigantic practical advantage of
the Indian numbers over the Roman numbers which were still in use in western
and central Europe at that time. His highly influential book Liber Abaci, first
issued in 1202, began with a presentation of the ten "Indian figures" (0, 1, 2,
..., 9), as he called them. This date was especially important because it finally
brought the number zero to Europe, an abstract model of nothing. The book
itself was written to be an algebra manual for commercial use, and explained
in detail the arithmetical rules using numerical examples which were derived,
e.g., from measure and currency conversion.

Artists like the painter Giotto (1267–1336) and the Renaissance architect
and sculptor Filippo Brunelleschi (1377–1446) started a new development of
geometric principles, e.g. perspective. In that time, visual models were used as
well as mathematical ones (e.g., for Anatomy).

In the later centuries more and more mathematical principles were detected,
and the complexity of the models increased. It is important to note that despite
the achievements of Diophant and Al-H

¯
wārizmı̄ the systematic use of variables

was really invented by Vietá (1540–1603). In spite of that it took another 300
years until Cantor and Russell that the true role of variables in the formulation
of mathematical theory was fully understood. Physics and the description of
Nature’s principles became the major driving force in modeling and the devel-
opment of the mathematical theory. Later economics joined in, and now an ever
increasing number of applications demand models and their analysis.
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In the next section we will take a closer look at models, their function and their
most prominent characteristics. Further information on mathematical history
can, e.g., be found in [81].

2.2 Models

As a basic principle we may say:

A model is a simplified version of something that is real.

The traits of the model can vary according to its use. They can vary in their level
of formality, explicitness, richness in detail, and relevance. The characteristics
depend on the basic function of the model and the modeling goal.

In building models, everything starts with the real-world object we are con-
sidering. In a model real-world objects are replaced by other, simpler objects,
usually carrying the same names. The knowledge we possess about the real-
world is structured by the model, and everything is reduced to those phenomena
and aspects which are considered important. Of course, a model can only de-
scribe a part of the real-world phenomenon, and hence its usefulness is restricted
to its scope of application.

Models can have many different functions.

Explain Phenomena. Most of the theories developed in physics belong to this
category: Newton’s mechanics, thermodynamics, Einstein’s theory of
relativity, quantum mechanics, the Standard Model of particle physics,
and many more.

There is not only physics, however. The aggregate demand-price adjust-
ment (AD-PA) model, the aggregate demand-inflation adjustment (AD-
IA) model, or the Hicks-Hansen IS/LM Model are three examples of
economic models describing macroeconomical equilibria.

Avalanche researchers build models based on statistical and phenomeno-
logical data to describe the state of snow on alpine slopes.

Biologists use predator-prey models or epidemiological models to inves-
tigate the relationship between various life-forms.

Make Predictions. After the models are built which explain the phenomena,
these models can be used as a further step to make predictions about the
future development of a real-world phenomenon.

The avalanche researchers, for example, take their state data and the topo-
graphical information of the slopes to make predictions on the probability
that avalanches are triggered, on their likely strenghts and their presumed
places.
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Aerodynamical models make e.g., predictions about the maneuverability
of a constructed airplane.

Climatic models are used to forecast the effects of the increased amount
of greenhouse gases in the atmosphere.

Decision Making. A car driver uses a model of his surroundings and the typical
traffic on the streets to decide which route to take. Of course, this model
of the real world, reduced to streets and average traffic, is in no way a
formal mathematical one. It is based on experience and rather vague, if
it can be expressed in words at all.

A more formal model for decision making is the design problem for
a chemical plant with hundreds of decision variables and thousands of
additional variables and constraints, written as mathematical equations
and inequalities. They represent space, capacity, cost limitations, and
chemical principles like conservation of mass.

Communication. Another important aspect of models is that they can be used
to communicate knowledge. If a person A wants to visit person B, he
might ask for the way to drive. B will sketch the correct route on a sheet
of paper with a few lines and some additional marks and text, like “here
at the corner is a yellow house with small garden”. This sheet of paper
is a visual model for the surroundings of B’s house; its purpose is to
communicate a subset of B’s knowledge about his city to A.

Others. The detailed check-lists for airplane maintenance are (extremely de-
tailed and explicit ones) models as well, as are the collections of formal
norms (ANSI, DIN, EU Norm,. . . ) used to regulate public life in modern
countries.

2.3 Mathematical Models

The models of interest for us are mathematical models. Here, the real world
object is represented by mathematical objects in a formalized mathematical
language.

The advantage of mathematical models is that they can be analyzed in a
precise way by means of mathematical theory and algorithms.

As we have seen in Section 2.1, mathematical models have been used long
ago, and many problems have been formulated mathematically since hundreds
of years. However, the sheer amount of computational work needed for solving
the models restricted their use to qualitative analysis and to very small and
simple instances.

The development of algorithms like the Runge-Kutta method or the Fast
Fourier Transform made complex models accessible to computers. In the be-
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ginning of the twentieth century human workers (most of the time low paid
women) were used as “computers”, and the problem size was still very limited.

As ENIAC was started in 1945, models of previously unknown size became
tractable. It was possible for the first time to use mathematical modeling for
solving practical problems of significant size.

The improvements in computer technology in the years since and the enor-
mous gain in storage capacity and speed have made mathematical modeling
increasingly attractive for military and industry, and a special class of prob-
lems, optimization problems, became very important.

The success in solving real world problems increased the demand for better
and more complex models, and the modeling process itself was investigated.
There are now several books on modeling, e.g., [228] and [123], and branches of
mathematics completely devoted to solving practical problems and developing
theory and algorithms for working on models, like operations research. See
also [103] for a short treatise of this theme.

The structure of the models has changed throughout history, as the mathemat-
ical community gained increasing insight into the foundations of mathematics
and formal logic. The introduction of variables, function spaces, and of all
the mathematical structural theory has made mathematical models increasingly
formal.

To date a mathematical model consists of concepts like

variables: These represent unknown or changing parts of the model, e.g., whether to take
a decision or not (decision variable), how much of a given product is being
produced, the thickness of a beam in the design of a ceiling, an unknown function
in a partial differential equation, an unknown operator in some equation in infinite
dimensional spaces as they are used in the formulation of quantum field theory,
etc.

relations: Different parts of the model are not independent of each other, but connected by
relations usually written down as equations or inequalities. E.g., the amount of a
product manufactured has influence on the number of trucks needed to transport
it, and the size of the trucks has an influence on the maximal dimensions of
individual pieces of the product.

data: All numbers needed for specifying instances of the model. E.g. the maximal
forces on a building, the prices of the products, and the costs of the resources.

2.4 The Modeling Process

As every textbook on modeling describes, the process of building a model
from a real-world problem is a tedious task. It often involves many iterations
in a cycle like in Fig. 2.4.1.

This is the traditional description of the modeling process, however as we will
see in Chapter 3, the various stages of the modeling cycle appear interconnected,
demanding even more interaction between the subtasks.
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Figure 2.4.1. Modeling cycle

Several of these modeling steps require the help of the end user. For complex
models, it is widely accepted that computers are needed in the compute solution
process. For huge data sets or data which has to be retrieved from different
sources, computer support for the collect data step is accepted, as well.

In this section we won’t go into the details of the modeling process itself.
This is done in the next chapter. We will rather focus on two aspects which have
a strong influence on the structure of the model itself.

Until the first third of the twentieth century most of the mathematical models
were used to describe phenomena and to make qualitative statements about the
real world problems described. Since then the situation has changed dramati-
cally. The tremendous increase in computing power has shifted the interest in
mathematical models more and more from problem description towards prob-
lem solving.

This has an important consequence for mathematical modeling itself and for
the structure of the models: If the most important conclusions which can be
drawn from a model are qualitative statements, which are derived by analytic
means using a lot of mathematical theory, it is important to formulate the model
in a very concise way, especially tailored to the analytical methods available.
In contrast to that, the urge for numerical solutions in the last decades, made it
necessary to change the model structure, to adapt it to the solution algorithms
available. Section 2.4.1 will focus on the impact solution methods have on the
structure of the model. The adaption of the model and the connection with a
computer based solution method made it further necessary to make the model
machine accessible. This will be discussed in Section 2.4.2.

2.4.1 The Importance of Good Modeling Practice

Most important for the applicability of a model in real-life situations is,
whether it can be used to solve problems of industry-relevant sizes. Whether
this is possible greatly depends on the solution time of the algorithm. Although
modern algorithms have made a bigger number of model classes solvable, it
still makes a difference which model formulation is chosen, especially if solu-
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tion time is considered, even if several mathematically equivalent formulations
are compared. Choosing the “right” structure is a matter of experience and
distinguishes good from bad modellers.

When we consider MIP or nonlinear problems, the solution time can often be
reduced significantly by appropriate modeling. This is important since in con-
trast to ordinary LPs, effective solution of MIP or nonlinear problems depends
critically upon good model formulation, the use of high level branching con-
structs, control of the Branch-and-Bound strategy, scaling and the availability of
good initial values. The solution times can be greatly influenced by observing
a few rules which distinguish “bad” from “good” modeling.

Good formulations in MIP models are those whose LP relaxation is as close as
possible to the MILP relaxation, or, to be precise, those whose LP relaxation has
a feasible region which is close to the convex hull, that is the smallest polyhedron
including all feasible MILP points. In practice, this means, for example, that
upper bounds should be as small as possible. If α1 and α2 denote integer
variables, the inequality α1 +α2 ≤ 3.7 can be bound-tightened to α1 +α2 ≤ 3.
Another example: Expressions containing products of k binary variables can
be transformed to MILP models according to
{

δp =
∏k

i=1
δi

}

⇐⇒
{

δp ≤ δi, i = 1, ..., k ;
∑k

i=1 δi − δp ≤ k − 1 ; δi ∈ {0, 1}

}

.

(2.4.1)
However, the formulation (2.4.1) is superior to the alternative, and algebraically
equivalent set of only two inequalities
{

δp =
∏k

i=1
δi

}

⇐⇒
{

kδp ≤∑k
i=1 δi ;

1
k

∑k
i=1 δi −

(

k −∑k
i=1 δi

)

≤ δp

}

(2.4.2)

because the k + 2 inequalities in (2.4.1) couple δp and the individual variables
δi directly.

In many models, in addition, it might be possible, to derive special cuts, i.e.,
valid inequalities cutting off parts of the LP relaxation’s feasible set but leaving
the convex hull unchanged. If we detect inequalities of the form x+ Aα ≥ B
with constants A and B, and variables x ∈ R and α ∈ N in our model, we can
enhance and tighten our model by the cuts

x ≥ [B − (C − 1)A] (C − α) , C :=

⌈

B

A

⌉

= ceil

(

B

A

)

, (2.4.3)

where C denotes the rounded-up value of the ratio B/A. If a semi-continuous
variable σ, e.g., σ = 0 or σ ≥ 1, occurs in the inequality x+Aσ ≥ B it can be
shown that x

B
+ σ ≥ 1 is a valid inequality tightening the formulation.

All these examples show that the quality of the model greatly depends on the
care the modeler takes when designing its structure.
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Preprocessing can also improve the model formulation. Preprocessing meth-
ods introduce model changes to speed up the algorithm. They apply to both
continuous and MIP problems but they are much more important for MIP prob-
lems. Some common preprocessing methods are: presolve (logical tests on
constraints and variables, bound tightening), disaggregation of constraints, co-
efficient reduction, and clique and cover detection (see [126] and references
therein). However, it is important that preprocessing is used carefully, because
for some classes of problems, especially if rigorous computing is needed (e.g.,
global optimization, see Section 4.2), the roundoff errors introduced by certain
preprocessing techniques effectively change the model.

In models of industrial relevance, the number of variables and constraints
which can be solved effectively usually makes the difference between success
and failure of a model.

For very large problems, a second difficulty “lurks behind the corner”. Some-
body has to put together all relevant variables, constraints, and the data, without
making errors. If the model is designed once, then fixed, and only the data
changes, this can be done by normal database tools. However, if the model
itself changes from problem instance to problem instance the overall structure
of the model has to be clearly arranged.

For example, optimization problems coming from resource optimization
[207] tend to be very large and highly structured. However, from applica-
tion to application neither the variables nor the constraints are fixed, not even
parametrizable. In spite of that, all constraints can be generated from building
blocks, and the data can be retrieved from databases.

There is a hierarchical system of models of increasing complexity and in-
creasing non-linearity. Constraints for different resources are similar in structure
but not identical, so they cannot be modeled by using loops or simple indexing.

Complicated resource optimization problems can have several 100,000 vari-
ables. A typical problem looks like in Figure ??. There the si describe the
resource streams needed for the amount p of end-product. Depending on the
complexity of the materials these are linear or non-linear mixed integer prob-
lems. Most constraints can be constructed by general principles like resource
conservation. The other constraints depend on the resources needed, their im-
pact on the environment, and all this information could be retrieved from a
database.

For this type of problem, a modeling system would be most convenient,
in which large models can be constructed from smaller building blocks, and
it is important that the modeler keeps the structure in the model description.
Otherwise, the model will not be applicable for more than a few simple (and in
practice irrelevant) examples.

Good modeling practice ([228], [126]) takes advantages from good use of
structuring, presolve, scaling, and branching choice. Modeling appears more
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min B(z1, . . . , zq) =
∑

i∈I

bi(si, z1, . . . , zq)

s.t. si = fi(p) ∀i ∈ I0 ⊆ I

si = Si(p, z1, . . . , zq) ∀i ∈ Ip

si ≤ 0 ∀i ∈ Iin ⊆ I \ (I0 ∪ Ip)

si ≥ −Miyni
∀i ∈ Iin ∩ Id

si ≥ 0 ∀i ∈ Iout ⊆ I \ (I0 ∪ Ip)

si ≤ Miyni
∀i ∈ Iout ∩ Id

gj(p, sj1
, . . . , sjn ) ≤ 0 ∀j ∈ Ju, j1, . . . , jn ∈ I

hk(p, sk1
, . . . , skm ) = 0 ∀k ∈ Jg, k1, . . . , kn ∈ I

Gj(z1, . . . , zq) ≤ 0 ∀j ∈ J
z
u

Hk(z1, . . . , zq) = 0 ∀k ∈ J
z
g

mr∑

i=1

yni
≤ er ∀r ∈ R

p, si, zj ∈ R (or Z) ∀i ∈ I, j = 1, . . . , q

yn ∈ {0, 1} ∀n ∈ E.

Figure 2.4.2. A typical model for resource optimization

as an art rather than a science. Experience clearly dominates. Remodeling
and reformulations of problems (see, for instance, Section 10.4 in [126]) can
significantly reduce the running time and factors like the integrality gap, i.e., in
a maximization problem the difference between the LP-relaxation and the best
integer feasible point found. This task is still largely the responsibility of the
modeler, although work has been done on automatically reformulating mixed
zero-one problems [221]. For nonlinear problems this is much more difficult,
though.

Especially, in nonlinear problems it is essential that the mathematical struc-
ture of the problem can be exploited fully. This is even more true if rigorous
computing is involved. It is important that good initial values are made available
by, for instance, exploiting homotopy techniques, or that good estimates for con-
straint propagation are provided by proper use of interval analytical techniques
(see e.g.[128]).

2.4.2 Making Mathematical Models Accessible for
Computers

As stated before, there is a second important consequence from computer
assisted model solving. Somebody has to translate the model into a form ac-
cessible by the computer.

If we consider again the simple modeling cycle in Figure 2.4.1, we note that
no step involving a computer is contained in this coarse grained view. In reality,
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Figure 2.4.3. Detailed modeling cycle

the modeling process contains many more steps than described there. So let us
consider the revised and more detailed model of the modeling process depicted
in Fig. 2.4.3.

We observe that some of the additional steps in model building and solving
involve translations from one format to another (translate model to solver input
format, translate data to solver input format, write status report). These tasks
are full of routine work and error prone. Furthermore, since during the various
cycles sometimes the solution algorithm, and hence the solver, is changed, these
“rewriting” steps have to be performed again and again.

A special case is the task construct derived data. Many solution algorithms
need data which is a priori not part of the model, but which is also not provided
by the solver. E.g. gradients of all functions involved are usually needed for an
efficient local optimization algorithm. This not only involves routine but also
mathematical work and additional translation steps.

As we have seen in Section 1.3 about the history of modeling languages,
in the beginning all these translation steps were performed by hand and ended
in the writing of programs, which would represent the mathematical model
in an algorithmic way, almost like in Babylonian mathematics everything was
described by means of algorithms. Data was stored in hand-written files. This
method was very inflexible, error prone, and not re-usable. Maintenance of
the models was close to impossible, and the models were not very scalable.
This made the modeling process very expensive. In addition, a lot of expert
knowledge in mathematics, modeling, and software engineering was necessary
for building applicable models.



36 MODELING LANGUAGES IN MATHEMATICAL OPTIMIZATION

Many of the important models for military applications and for the industry
were optimization problems, so methods were designed to reduce the modeling
costs and to reduce the error rate in the translation steps, so many self-written
modeling support systems were designed (and still are). However, using them
still needed a lot of expert knowledge, and although scalability improved usually,
flexibility did not.

Most of these problems now can be resolved by using a modeling language
or modeling system, and the most important features of these will be analyzed
in Chapter 4.
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