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The software package Snobfit for bound constrained noisy optimization of an expensive objective

function is described. It combines global and local search by branching and local fits. The
program is made robust and flexible for practical use by allowing for soft or hidden constraints,
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1. INTRODUCTION

Snobfit (stable noisy optimization by branch and fit) is a Matlab package de-
signed for selecting continuous parameter settings for simulations or experiments,
performed with the goal of optimizing some user-specified criterion. Specifically,
we consider the optimization problem

min f(x)
s.t. x ∈ [u, v], (1)

where we use interval notation for boxes

[u, v] := {x ∈ Rn | ui ≤ xi ≤ vi, i = 1, . . . , n},

with u, v ∈ Rn and ui < vi for i = 1, . . . , n, i.e., [u, v] is bounded with nonempty
interior. A box [u′, v′] with [u′, v′] ⊆ [u, v] is called a subbox of [u, v]. Moreover,
we assume that f is a function f : D → R, where D is a subset of Rn containing
[u, v]. We will call the process of obtaining an approximate function value f(x) an
evaluation at the point x (typically by simulation or measurement).

While there are many software packages that can handle such problems, they
usually cannot cope well with one or more of the following difficulties arising in
practice:
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(I1) the function values are expensive (for example, obtained by performing com-
plex experiments or simulations);

(I2) instead of a function value requested at a point x, only a function value at
some nearby point x̃ is returned;

(I3) the function values are noisy (inaccurate due to experimental errors or to low
precision calculations);

(I4) the objective function may have several local minimizers;
(I5) no gradients are available;
(I6) the problem may contain hidden constraints, i.e., a requested function value

may turn out not to be obtainable;
(I7) the problem may involve additional soft constraints;
(I8) the user wants to measure at several points simultaneously or make parallel

simulations;
(I9) function values may be obtained so infrequently or in a heterogeneous envi-

ronment that, between obtaining function values, the computer hosting the
software is used otherwise or even switched off;

(I10) the objective function or the search region may change during optimization,
e.g., because users inspect the data obtained so far and this suggests to them
a more realistic or more promising goal.

Many different algorithms (see, e.g., the survey [Powell 1998]) have been proposed
for unconstrained or bound constrained optimization when first derivatives are not
available. Conn et al. [1997] distinguish two classes of derivative-free optimization
algorithms. Sampling methods or direct search methods proceed by generating a
sequence of points; pure sampling methods tend to require rather many function
values in practice. Modeling methods try to approximate the function over a region
by some model function and the much cheaper surrogate problem of minimizing the
model function is solved. Not all algorithms are equally suited for the application to
noisy objective functions; for example, it would not be meaningful to use algorithms
that interpolate the function at points that are too close together.

A method called DACE (design and analysis of computer experiments) (see
[Sacks et al. 1989; Welch et al. 1992]) deals with finding a surrogate function for
a function generated by computer experiments, which consist of a number of runs
of a computer code with various inputs. These codes are typically expensive to
run and the output is deterministic, i.e., rerunning the code with the same input
gives identical results, but the output is distorted by high-frequency, low-amplitude
oscillations. The lack of random error makes computer experiments different from
physical experiments. The problem of fitting a response surface model to the ob-
served data consists of the design problem, which is the problem of the choice of
points where data should be collected, and the analysis problem of how the data
should be used to obtain a good fit. The output of the computer code is modeled
as a realization of a stochastic process; the method of analysis for such models is
known as kriging in the mathematical geostatistics literature. For the choice of
the sample points, “space-filling” designs such as orthogonal array-based Latin hy-
percubes [Tang 1993] are important; see [McKay et al. 1979] for a comparison of
random sampling, stratified sampling and Latin hypercube sampling.
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The SPACE algorithm (stochastic process analysis of computer experiments) by
Schonlau [Schonlau 1997; 2001; Schonlau et al. 1998] (see also [Jones et al. 1998]
for the similar algorithm EGO) uses the DACE approach resp. Bayesian global
optimization in order to find the global optimum of a computer model. The function
to be optimized is modeled as a Gaussian stochastic process, where all previous
function evaluations are used to fit the statistical model. The algorithm contains
a parameter that controls the balance between local and global search components
of the optimization. The minimization is done in stages, i.e., rather than only one
point, the algorithm samples a specified number of points at a time. Moreover, a
method for dealing with nonlinear inequality constraints from additional response
variables is proposed.

The authors of [Booker et al. 1999; Trosset and Torczon 1997] consider traditional
iterative methods and DACE as opposite ends of the spectrum of derivative-free
optimization methods. They combine pattern search methods and DACE for the
bound constrained optimization of an expensive objective function. Pattern search
algorithms are iterative algorithms that produce a sequence of points from an initial
point, where the search for the next point is restricted to a grid containing the
current iterate and the grid is modified as optimization progresses. The kriging
approach is used to construct a sequence of surrogate models for the objective
functions, which are used to guide a grid search for a minimizer. Moreover, Booker
et al. [1999] also consider the case that the routines evaluating the objective function
may fail to return f(x) even for feasible x, i.e., the case of hidden constraints.

Jones [2001] presents a taxonomy of existing approaches for using response sur-
faces for global optimization. Seven methods are compared and illustrated with
numerical examples that show their advantages and disadvantages.

Elster and Neumaier [1995] develop an algorithm for the minimization of a low-
dimensional, noisy function with bound constraints, where no knowledge about
the statistical properties of the noise is assumed, i.e., it may be deterministic or
stochastic (but must be bounded). The algorithm is based on the use of quadratic
models minimized over adaptively defined trust regions together with the restriction
of the evaluation points to a sequence of nested grids.

Anderson and Ferris [2001] consider the unconstrained optimization of a function
subject to random noise, where it is assumed that averaging repeated observations
at the same point leads to a better estimate of the objective function value. They
develop a simplicial direct search method including a stochastic element and prove
convergence under certain assumptions on the noise; however, their proof of con-
vergence does not work in the absence of noise.

Carter et al. [2001] deal with algorithms for bound constrained noisy problems
in gas transmission pipeline optimization. They consider the Direct algorithm of
[Jones et al. 1993], which proceeds by repeated subdivision of the feasible region,
implicit filtering, a sampling method designed for problems that are low-amplitude,
high frequency perturbations of smooth problems, and a new hybrid of implicit
filtering and Direct, which attempts to combine the best features of the two other
algorithms. In addition to the bound constraints, the objective function may fail
to return a value for some feasible points. The traditional approach assigns a large
value to the objective function when it cannot be evaluated, which results in slow
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convergence if the solution lies on a constraint boundary. In [Carter et al. 2001] a
modification is proposed; the function value is derived from nearby feasible points
rather than assigning an arbitrary value. In [Choi and Kelley 2000], implicit filtering
is coupled with the BFGS quasi-Newton update.

The UOBYQA (unconstrained optimization by quadratical approximation) al-
gorithm by Powell [2002] for unconstrained optimization takes account of the cur-
vature of the objective function by forming quadratic models by Lagrange inter-
polation. A typical iteration of the algorithm generates a new point either by
minimizing the quadratic model subject to a trust region bound, or by a procedure
that should improve the accuracy of the model. The evaluations are made in a
way that reduces the influence of noise and therefore the algorithm is suitable for
noisy objective functions. Vanden Berghen and Bersini [2005] present a parallel,
constrained extension of UOBYQA and call it CONDOR (constrained, non-linear,
d irect, parallel optimization using the trust region method).

The goal of the present paper is to describe a new algorithm that addresses all
the above points. In Section 2 the basic setup of Snobfit is presented; for details
we refer to Section 6. In Sections 3 to 5, we describe some important ingredients of
the algorithm, namely the branching algorithm, the local models and what we call
safeguarded nearest neighbors, and the five classes of points generated by Snobfit,
respectively. In Section 7, the convergence of the algorithm is established, and in
Section 8 a penalty function is proposed to handle soft constraints. Finally, in
Section 9 numerical results are presented.

2. BASIC SETUP OF SNOBFIT

The algorithm Snobfit described in this paper tries to deal with the issues (I1)–
(I10) mentioned in the previous section. No gradients are needed (issue (I5)); some
of the other features are inherent in the Snobfit algorithm itself, others in the
interface. It

—proceeds by successive partitioning of the box (branch) and building local models
(fit) (the models are fitted and not interpolated to take issue (I3) into account);

—combines local and global search and allows the user to control which of both
should be emphasized;

—handles local search from the best point with a local quadratic model;
—produces a user-specified number of suggested evaluation points in each step and

stores the intermediate results in a file (issues (I8) and (I9));
—allows for hidden constraints and assigns to such points a function value based

on the function values of nearby feasible points (issue (I6)).

Since the algorithm is not a pure sampling method (in the sense of the term as used
in the Introduction), it does not require as many function values for obtaining a good
point than typical stochastic algorithms and is therefore applicable to problems
with expensive function values (issue (I1)). Issue (I2) is another aspect of noisiness;
moreover, as we will state at the end of this section, the interface of Snobfit allows
the user to evaluate the function at other points than the ones suggested by the
algorithm. Issue (I7) is dealt with in Section 8, and at the end of Section 6 we
describe how to handle issue (I10).
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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In the following we call a job the attempt to solve a single problem with Snobfit.
The function and some of the tuning parameters of Snobfit stay the same in a job.
A job consists of several calls to Snobfit. We use the notion initial call for the
first call of a job and continuation call for any later call of Snobfit on the same
job. At the end of each call the intermediate results are stored in a working file,
which means that a job can be interrupted after each call and be continued later.
Moreover, in the following we denote withX the set of points for which the objective
function has already been evaluated at some stage of Snobfit. In addition to the
search region [u, v], which is the box that will be partitioned by the algorithm, we
consider a box [u′, v′] ⊂ Rn in which the points generated by Snobfit should be
contained. The vectors u′ and v′ are input variables for each call to Snobfit and
their most usual application occurs when the user wants to explore a subbox of
[u, v] more thoroughly (which almost amounts to a restriction of the search region),
but it is also possible to choose u′ and v′ such that [u′, v′] 6⊆ [u, v], and in that
case [u, v] is extended such that it contains [u′, v′]. Moreover, we use the notion
box tree for a certain kind of partitioning structure of a box [u, v]. Each node of
the box tree consists of a (nonempty) subbox [x, x] of [u, v] and a point x in the
interior of [x, x]. Apart from the leaves, each node of a box tree with corresponding
box [x, x] and point x has two children containing two subboxes of [x, x] obtained
by splitting [x, x] along a splitting plane perpendicular to one of the axes. There
point x belongs to one of the child nodes, and the other child node is assigned a
new point x′. This box tree corresponds to a partition of [u, v] into subboxes each
containing a point.

One call to Snobfit roughly proceeds as follows; for a detailed description of the
algorithm and its input and output parameters we refer to Section 6. The main
input ingredients are a (possibly empty) list xj , j = 1, . . . , J , of points (which do
not have to be in [u, v], but input of points xj /∈ [u, v] will result in an extension
of the search region as will be explained later), their corresponding function values
fj and the uncertainties ∆fj of the function values. If the user has not been able
to obtain a function value for xj , fj should be set to NaN (“not a number”). It
is assumed that the ith coordinate is measured in units ∆xi, and the “resolution
vector” ∆x ∈ Rn, ∆x > 0, is an input parameter that is only set in an initial
call and stays the same during the whole job. The effect of the resolution vector
is that the algorithm only suggests evaluation points whose ith coordinate is an
integral multiple of ∆xi. In a continuation call, in addition to the “new” points, a
list of “old” points, corresponding function values and uncertainties and a box tree
are loaded from a working file; in an initial call the box tree consists of only one
box. The algorithm first splits all subboxes containing more than one point and
generates a box tree as defined above. Splitting is done by the branching algorithm
described in Section 3.

Section 4 is devoted to selecting the local quadratic models and what we call
safeguarded nearest neighbors. A local quadratic model around xbest is computed,
and simpler local models are estimated around all new points and all old points
whose safeguarded nearest neighbors have changed. The algorithm generates five
classes of points, explained in detail in Section 5, where the function should be
evaluated before the next call to Snobfit. The points of classes 1 to 3 represent
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the local aspects of the algorithm and are generated with the aid of the local
models at positions where good function values are expected. The points of classes
4 and 5 represent the global aspect of the optimization, i.e., they are generated in
unexplored regions.

The adjective “stable” in the name of the algorithm is to be understood in the
sense of “stable with respect to both noise in the data and the input of the user”.
For example, it is permitted

—to evaluate the function at other points than the ones suggested by Snobfit;

—to use a point x ∈ X again as input with a different function value – in that case
an averaged function value is computed (see Section 6, Step 2);

—to use an empty set of points as input for a call to Snobfit (which might be
useful in an initial call); and

—to use points outside the box bounds [u, v] as input, which results in an extension
of the search region (see Section 6, Step 1).

3. THE BRANCHING ALGORITHM

We assume that [u, v] is a bounded box where the function should be explored. We
want to split a subbox [x, x] containing the pairwise distinct points xk, k = 1, . . . ,K,
K ≥ 2, such that each subbox contains exactly one point.

If K = 2, we choose i with |x1
i − x2

i |/(vi − ui) maximal and split along the ith
coordinate at yi = λx1

i + (1 − λ)x2
i ; here λ is the golden section number ρ :=

1
2 (
√

5− 1) ≈ 0.62 if f(x1) ≤ f(x2), and λ = 1− ρ otherwise. The subbox with the
lower function value gets the larger part of the original box so that it is eligible for
being selected for the generation of a point of class 4 more quickly.

If K > 2 we apply the following procedure:

while there is a subbox containing more than one point
choose the subbox containing the highest number of points
choose i such that the variance of xi/(vi − ui) is maximal, where the
variance is taken over all points x in the subbox
sort the points such that x1

i ≤ x2
i ≤ . . .

split in the coordinate i at yi = λxj
i + (1− λ)xj+1

i , where
j = argmax(xj+1

i − xj
i ), with

λ = ρ if f(xj) ≤ f(xj+1), and λ = 1− ρ otherwise
end while

To each subbox [x, x] we assign its smallness

S := −
n∑

i=1

round(log2((xi − xi)/(vi − ui))) ≈ const− log2(volume), (2)

where round is the function rounding to nearest integers and log2 denotes the
logarithm to the base 2. This quantity roughly measures how many bisections are
necessary to obtain this box from [u, v]. We have S = 0 for the exploration box
[u, v], and S is large for small boxes.
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4. SAFEGUARDED NEAREST NEIGHBORS AND LOCAL MODELS

For each point x, its n+∆n safeguarded nearest neighbors (∆n ≥ 1) are determined
as follows. First, for i = 1, . . . , n, a point closest to x among the points y not yet
in the list satisfying |yi−xi| ≥ ∆xi is chosen (if such a point exists). This gives up
to n points. The list of n+ ∆n nearest neighbors is filled up with a set of (at least
∆n) points closest to x not yet in the list.

A local model around each point x is fitted as follows. Let xk, k = 1, . . . , n+∆n,
be the nearest neighbors of x, f := f(x), fk := f(xk), D := diag(∆f/∆x2

i ), and
let ∆f and ∆fk be the uncertainties in the function values f and fk, respectively.
Then we consider the equations

fk − f = gT (xk − x) + εk((xk − x)TD(xk − x) + ∆fk), k = 1, . . . , n+ ∆n, (3)

where εk, k = 1, . . . , n+∆n are model errors. The errors εk account for second (and
higher) order deviation from linearity, and for measurement errors; the form of the
weight factor guarantees reasonable scaling properties. As we shall see later, one
can derive from (3) a sensible separable quadratic surrogate optimization problem
(5); a more accurate model would be too expensive to be constructed and minimized
around every point.

The model errors are minimized by writing (3) as Ag − b = ε, where ε :=
(ε1, . . . , εn+∆n)T , b ∈ Rn+∆n and A ∈ R(n+∆n)×n. We make a reduced singular
value decomposition A = UΣV T and replace Σ by max(Σ, 10−4Σ11), where Σ11

is the largest singular value. Then the estimated gradient is determined by g :=
V Σ−1UT b and the estimated standard deviation of ε by

σ :=
√
‖Ag − b‖2

2/∆n.

The factor after εk is chosen such that for points with a large ∆fk (i.e., inaccurate
function values) and a large (xk − x)TD(xk − x) (i.e., far away from x), a larger
error in the fit is permitted. In this fit, n+ ∆n equations are used to determine n
parameters, i.e., the system of equations is overdetermined by ∆n equations. The
choice ∆n = 5 used in the implementation is a compromise between choosing ∆n
too small (resulting in an only slightly overdetermined fit) and too large (requiring
much computational effort).

A local quadratic fit is computed around the best point xbest. LetK := min(n(n+
3), Npoints−1), where Npoints := |X| is the number of points for which the objective
function has been evaluated, and assume that xk, k = 1, . . . ,K, are the points in
X closest to but distinct from xbest, let fk := f(xk) be the corresponding function
values and sk := xk − xbest and define model errors ε̂k by the equations

fk − fbest = gT sk +
1
2
(sk)TGsk + ε̂k((sk)THsk)3/2, k = 1, . . . ,M, (4)

where H := (
∑
sl(sl)T )−1. The fact that we expect the best point to be possibly

close to the global minimizer warrants the fit of a quadratic model. The error
term is affine invariant; the exponent 3

2 reflects the expected cubic approximation
order of the quadratic model. We refrained from adding an independent term for
noise in function value since we found no useful affine invariant recipe that keeps
the estimation problem tractable. The N := n +

(
n+1

2

)
= n(n+3)

2 parameters in
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(4) consisting of the components of the vector g ∈ Rn and the symmetric matrix
G ∈ Rn×n are determined by minimizing

∑
ε̂2k. This is done by writing (4) as

Aq − b = ε̂, where the vector q ∈ RN contains the parameters to be determined,
ε̂ := (ε̂1, . . . , ε̂M )T , A ∈ RM×N and b ∈ RM . Then q is computed with the aid
of the backslash operator in Matlab as q = A\b. We compute H by making an
economy size QR factorization

(s1, . . . , sM )T = QR

with an orthogonal matrix Q ∈ RM×n and a square upper triangular matrix R ∈
Rn×n and obtain (sk)THsk = ‖R−T sk‖2. In the case that Npoints ≥ n(n+ 3)− 1,
n(n+3)

2 parameters are fitted from n(n + 3) equations, and again the contribution
of the points closer to xbest is larger.

5. RECOMMENDED EVALUATION POINTS

Snobfit generates points belonging to five classes. The (at most one) point of class
1 is the expected minimizer according to the local quadratic model around the best
point xbest. A point of class 2 or 3 is a minimizer of the local model in a trust region
around a point x ∈ X. The points x for generation of points of class 2 and 3 are
selected according to criteria described below, and the points of class 2 and 3 are
alternative good points and selected with a view to their expected function value,
i.e., they represent another aspect of the local search part of the algorithm. The
points of class 4 are points in unexplored regions (i.e., they are generated in large
subboxes of the current partition) and they represent the most global aspect of the
algorithm. Points of class 5 are only produced if the algorithm does not manage
to reach the desired number of points by generating points of classes 1 to 4, for
example, when there are not enough points available yet to build local quadratic
models, which happens in particular in an initial call with an empty set of input
points and function values. The points of class 5 are chosen from a set of random
points such that their distances from the points already in the list are maximal; for
details see below.

Let ∆x ∈ Rn, ∆x > 0, be a resolution vector as defined in Section 2, and let
[u′, v′] ⊆ [u, v] be the box where the points are to be generated. The point w of
class 1 is obtained by minimizing the local quadratic model around xbest

q(x) := fbest + gT (x− xbest) +
1
2
(x− xbest)TG(x− xbest)

(where g and G are determined as described in the previous section) over [xbest −
d, xbest + d] ∩ [u′, v′], where d := max(maxk |xk − xbest|,∆x) (with componentwise
max) and xk, k = 1, . . . ,K, are the points from which the model has been generated,
and rounding its components to integral multiples of ∆xi into the box [u′, v′]. If
w is a point already in X, a point is generated from a uniform distribution on
[xbest − d, xbest + d] ∩ [u′, v′] and rounded as above, and if this again results in a
point already in X, at most nine more attempts are made to find a point on the
grid that is not yet in X.

For each point x ∈ X, we define a trust region radius d := max( 1
2 maxk |xk −

x|,∆x), where xk (k = 1, . . . , n+ ∆n) are the safeguarded nearest neighbors of x.
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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We solve the problem

min gT p+ σpTDp
s.t. p ∈ [−d, d] ∩ [u′ − x, v′ − x], (5)

where g, σ and D are defined as in the previous section. This problem is motivated
by the model (3), replacing the unknown (and x-dependent) εk by the estimated
standard deviation. This gives a conservative estimate of the error and ensures that
the surrogate minimizer is not too far from the region where the linear model can
be expected to be reasonably accurate.

Let p̂ be the solution of (5), which is a bound constrained separable quadratic
program and therefore can be solved explicitly. Let y be the point obtained by
rounding the coordinates of x + p̂ to integral multiples of the coordinates of ∆x
into the interior of [u′, v′], and define the estimated function value of y by

fy := f + gT (y − x) + σ((y − x)TD(y − x) + ∆f). (6)

If y is a point already in X, a point is generated from a uniform distribution on
[x − d, x + d] ∩ [u′, v′] and rounded as above, and if this again results in a point
already in X, at most four more attempts are made to find a point on the grid that
is not yet in X. The corresponding estimated function value fy is again determined
by (6). Therefore a call to Snobfit may occasionally not return a point of class 1.

Let x ∈ X, f := f(x), and let f1 and f2 be the smallest and largest among
the function values of the n+ ∆n safeguarded nearest neighbors of x, respectively.
The point x is called local if f < f1 − 0.2(f2 − f1), i.e., if its function value is
“significantly smaller” than that of its nearest neighbors. We require a stronger
condition than f < f1 in order to avoid artificial local minimizers produced by an
inaccurate evaluation of the function values.

A point of class 2 is a point y generated by the recipe described above from a
local point, and we consider such a point to be an approximation to a putative local
minimizer. A call to Snobfit will not produce any points of class 2 if there are no
local points in the current set X. A point of class 3 is a point y pertaining to a
nonlocal point x.

For a box [x, x] with corresponding point x, the point z of class 4 is defined by

zi :=
{

1
2 (xi + xi) if xi − xi > xi − xi,
1
2 (xi + xi) otherwise,

and zi is rounded into [xi, xi] to the nearest integral multiple of ∆xi.
The points of class 5 serve to fill up the set of recommended evaluation points. In

order to generate n5 points of class 5, 100n5 random uniformly distributed points
in [u′, v′] are sampled and their coordinates are rounded to integral multiples of
∆xi, which yields a set Y of points. Initialize X ′ as the union of X and the points
in the list of recommended evaluation points of the current call to Snobfit, and
let Y := Y \X ′. Then the set X5 of points of class 5 is generated as follows:

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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X5 = ∅
if X ′ = ∅

choose y ∈ Y
X ′ = {y}; Y = Y \ {y}; X5 = X5 ∪ {y};

end if
while |X5| < n5

y = argmax minx∈X′ ‖x− y‖2;
X ′ = X ′ ∪ {y}; Y = Y \ {y}; X5 = X5 ∪ {y};

end while

Moreover, a point of classes 2 to 4 is only accepted if it differs from all previously
generated suggested evaluation points in this call by at least 0.1(v′i−u′i) in at least
one coordinate i, which prevents several copies of essentially the same point in one
call. (This condition is not required for the points of class 5 since they are not too
close to the other points by construction.)

6. THE SNOBFIT ALGORITHM

Now we are ready to describe the Snobfit algorithm in detail. We look for a
solution of the problem (1) by repeated calls to Snobfit. In each call to Snobfit,
a (possibly empty) list of points xj , j = 1, . . . , J , their function values fj , the
uncertainties of the function values ∆fj , a natural number nreq, two n-vectors u′

and v′, u′ ≤ v′, and a number p ∈ [0, 1] are fed into the program. If the user has not
been able to obtain a function value for xj , fj should be set to NaN (whereas xj

should be deleted if a function evaluation has not even been tried), and p denotes
the fraction of points of class 4 among the set of points of classes 2 to 4. The
program then returns nreq suggested evaluation points in the box [u′, v′], their class
(as defined in Section 5), their model function values, the current best point and
the current best function value. The idea of the algorithm is that these points
and their function values are used as input for the next call to Snobfit, but the
user may feed instead other points or even an old point with a newly evaluated
function value into the program. For example, some suggested evaluations may
not have been feasible or successful, or the experiment does not allow to locate the
position precisely; the position obtained differs from the intended position but can
be measured with a precision higher than the error made.

When a job is started (i.e., in the case of an initial call to Snobfit), an n-vector
∆x > 0 is needed as additional input, which is a resolution vector as described in
Section 2. In the continuation calls to Snobfit, ∆x, the points in X, their function
values and all parameters characterizing the state of the splitting procedure are
reloaded from a working file created after the previous call to Snobfit.

One call to Snobfit proceeds in the following 11 steps.
Step 1. The vectors u and v are defined such that [u, v] is the smallest box

containing [u′, v′], all new input points and, in the case of a continuation call to
Snobfit, also the box [uold, vold] from the previous iteration. [u, v] is considered
to be the box to be explored and a box tree of [u, v] is generated; however, all
suggested new evaluation points are in [u′, v′]. Moreover, we set J4 = ∅.

Step 2. Duplicates in the set of points consisting of the “new” points and in
a continuation call also the “old” points from the previous iterations are thrown
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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away, and the corresponding function value f and uncertainty ∆f are updated. If a
point has been put into the input list m times with function values f1, . . . , fm and
corresponding uncertainties ∆f1, . . . ,∆fm, the quantities f and ∆f are defined by

f =
1
m

m∑
i=1

fi, ∆f =

√√√√ 1
m

m∑
i=1

((fi − f)2 + ∆f2
i ).

Step 3. All current boxes containing more than one point are split according to
the algorithm described in Section 3. The smallness is computed for these boxes.
If [u, v] is larger than [uold, vold] in a continuation call, the box bounds and the
smallness are updated for the boxes for which this is necessary.

Step 4. If we have |X| < n + ∆n + 1 for the current set X of points, go to
Step 11. Otherwise, for each new point x a vector pointing to n+ ∆n safeguarded
nearest neighbors is computed. The neighbor lists of some old points are updated
in the same way if necessary.

Step 5. For any new input point x with function value NaN (which means
that the function value could not be determined at that point) and for all old
points marked infeasible whose nearest neighbors have changed, let f1 and f2 be
the minimal and maximal function value among the safeguarded nearest neighbors
of x, excepting the neighbors where no function value could be obtained, and let
f1 and f2 be the minimal and maximal function value among all feasible points in
X in the case that all safeguarded nearest neighbors of x were infeasible. Then we
set f = f2 + 10−3(f2 − f1) and ∆f = ∆f2.

Step 6. Local fits (as described in Section 4) around all new points and all old
points with changed nearest neighbors are computed and the potential points y of
class 2 and 3 and their estimated function values fy are determined as in Section
5.

Step 7. The current best point xbest and the current best function value fbest

in [u′, v′] are determined; if the objective function has not been evaluated in [u′, v′]
yet, n1 = 0 and go to Step 8. A local quadratic fit around xbest is computed as
described in Section 4 and the point w of class 1 is generated as described in Section
5. If such a point w was generated, let w be contained in the subbox [xj , xj ] (in
the case that w belongs to more than one box, a box with minimal smallness is
selected). If mini(x

j
i − xj

i ) > 0.05 maxi(x
j
i − xj

i ), the point w is put into the list of
suggested evaluation points, and otherwise (if the smallest side length of the box
[xj , xj ] is too small compared to the largest one) we set J4 = {j}. This gives n1

evaluation points (n1 = 0 or 1).
Step 8. To generate the remaining m := nreq − n1 evaluation points, let n′ :=

bpmc and n′′ := dpme. Then a random number generator sets m1 = n′ with
probability mp− n1 and m1 = n′′ otherwise. Then m−m1 points of classes 2 and
3 together and m1 points of class 4 are to be generated.

Step 9. If X contains any local points, first at most m−m1 points y generated
from the local points are chosen in the order of ascending fy to yield points of class
2. If the desired number of m − m1 points has not been reached yet, afterwards
points y pertaining to nonlocal x ∈ X are taken (again in the order of ascending
fy).

For each potential point of class 2 or 3 generated in this way, a subbox [xj , xj ] of
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the box tree with minimal smallness is determined with y ∈ [xj , xj ]. If mini(x
j
i −

xj
i ) > 0.05 maxi(x

j
i −x

j
i ), the point y is not put into the list of suggested evaluation

points but instead we set J4 = J4 ∪ {j}.
Step 10. Let Smin and Smax denote the minimal and maximal smallness, respec-

tively, among the boxes in the current box tree, and let M := b 1
3 (Smax − Smin)c.

For each smallness S = Smin + m, m = 0, . . . ,M , the boxes are sorted according
to ascending function values f(x). First a point of class 4 is generated from the
box with S = Smin with smallest f(x). If J4 6= ∅, then the points of class 4 be-
longing to the subboxes with indices in J4 are generated. Subsequently, a point of
class 4 is generated in the box with smallest f(x) at each nonempty smallness level
Smin +m, m = 1, . . . ,M , and then the smallness levels from Smin to Smin +M are
gone through again etc. until we either have nreq recommended evaluation points
or there are no eligible boxes for generating points of class 4 any more.

A point of classes 2 to 4 is only accepted if it is not yet in X and not yet in the
list of recommended evaluation points and if it differs from all points already in
the current list of recommended evaluation points by at least ∆yi in at least one
coordinate i.

Step 11. If the number of suggested evaluation points is still less than nreq, the
set of evaluation points is filled up with points of class 5 as described in Section 5. If
local models are already available (i.e., if |X| ≥ n+∆n+1), we assign to the points
of class 5 the model function values obtained from the local models pertaining to
the points in their boxes; otherwise, they are set to NaN.

Stopping criterion. Since Snobfit is called explicitly before each new eval-
uation, the search continues as long as the calling agent (an experimenter or a
program) finds it reasonable to continue. A natural stopping test would be to quit
exploration (or move exploration to a different “box of interest”) if for a number
of consecutive calls to Snobfit no new point of class 1 is generated. Indeed, this
means that Snobfit thinks that, according to the current model, the best point is
already known; but since the model may be inaccurate, it is sensible to have this
confirmed repeatedly before actually stopping.

Changing the objective function. Suppose that the objective function f is of
the form f(x) = ϕ(y(x)), where the vector y(x) ∈ Rk is obtained by time-consuming
experiments or simulations but the function ϕ can be computed cheaply. In this case
we may change ϕ during the solution process without wasting the effort spent in
obtaining earlier function evaluations. Indeed, suppose that the objective function
f has already been evaluated at x1, . . . , xM and that, at some moment, the user
decides that the objective function f̃(x) = ψ(y(x)) is more appropriate, where ψ can
be computed cheaply, too. Then the already determined vectors y(x1),. . . ,y(xM )
can be used to compute f̃(x1),. . . ,f̃(xM ), and we can start a new Snobfit job with
x1,. . . ,xM and f̃(x1), . . . ,f̃(xM ), i.e., we use the old grid of points but make a new
partition of the space before the Snobfit algorithm is continued. For examples,
see Section 9.3.
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7. CONVERGENCE OF THE ALGORITHM

For a convergence analysis, we assume that the exploration box [u, v] is scaled to
[0, 1]n and that we do not do any rounding, which means that all points of class 4
are accepted since they differ from the old point in the box. Moreover, we assume
that [u′, v′] = [u, v] = [0, 1]n during the whole job, that at least one point of class
4 is generated from a box of minimal smallness in each call to Snobfit, and that
the function is evaluated at the points suggested by Snobfit.

Then Snobfit is guaranteed to converge to a global minimizer if the objective
function is continuous – or at least continuous in the neighborhood of a global
optimizer. This follows from the fact that, under the assumptions made above, the
set of points produced by Snobfit forms a dense subset of the search space. That
is, given any point x ∈ [u, v] and any δ > 0, Snobfit will eventually generate a
point within a distance δ from x.

When a box with smallness S is split into two parts, the following two cases are
possible if S1 and S2 denote the smallnesses of the two subboxes. When the box
is split into two equal halves, we have S1 = S2 = S + 1, and otherwise we have
S1 ≥ S and S2 ≥ S + 1 (after renumbering the two subboxes if necessary). This
implies that, if Smin is the minimal smallness occurring in the current partition, the
number of boxes with smallness Smin does not increase after a box has been split
(it either stays the same or decreases by one).

The definition of the point of class 4 prevents splits in too narrow variables.
Indeed, consider a box [x, x] containing the point x and let

xi − xi ≥ xj − xj for j = 1, . . . , n (7)

(i.e., the ith dimension of the box is the largest one). In order to simplify notation,
we assume that

xj − xj ≥ xj − xj (8)

and thus we have zj = 1
2 (xj + xj) for j = 1, . . . , n (the other cases can be handled

similarly) for the point z of class 4. According to the branching algorithm defined
in Section 3, the box will be split along the coordinate k with zk −xk = 1

2 (xk −xk)
maximal, i.e., xk − xk ≥ xj − xj for j = 1, . . . , n. Then (7), (8) and the definition
of k imply

xk − xk ≥ xk − xk ≥ xi − xi ≥
1
2
(xi − xi),

which means that only splits along coordinates k with xk − xk ≥ 1
2 max(xj − xj)

are possible. After a class 4 split along coordinate k, the kth side length of the
larger part is at most a fraction 1

4 (1 +
√

5) ≈ 0.8090 of the original one.
These properties give the following convergence theorem for Snobfit without

rounding and where at least one point of class 4 is generated in a box of minimal
smallness Smin in each call to Snobfit.

Theorem 7.1. Suppose that the global minimization problem (1) has a solution
x∗ ∈ [u, v], and that f : [u, v] → R is continuous in a neighborhood of x∗, and let
ε > 0. Then the algorithm will eventually find a point x with f(x) < f(x∗)+ε, i.e.,
the algorithm converges.
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Proof. Since f is continuous in a neighborhood of x∗, there exists a δ > 0
such that f(x) < f(x∗) + ε for all x ∈ B := [x∗ − δ, x∗ + δ] ∩ [u, v]. We prove
the theorem by contradiction and assume that the algorithm will never generate
a point in B. Let [x1, x1] ⊇ [x2, x2] ⊇ . . . be the sequence of boxes containing x∗

after each call to Snobfit and xk ∈ [xk, xk] be the corresponding points. Then
maxi |xk

i − x∗i | ≥ δ for k = 1, 2, . . . and therefore maxi(xk
i − xk

i ) ≥ δ for k =
1, 2, . . .. Since we assume that in each call to Snobfit at least one box with minimal
smallness Smin is split and the number of boxes with smallness Smin does not
increase but will eventually decrease after sufficiently many splits, after sufficiently
many calls to Snobfit, there are no boxes with smallness Smin left any more. If Sk

denote the smallness of the box [xk, xk], we must therefore have limk→∞ Sk = ∞.
Assume that maxi(xk0

i − xk0
i ) ≥ 20 mini(xk0

i − xk0
i ) for some k0. Then the next

split that the box [xk0 , xk0 ] will undergo is a class 4 split along a coordinate i0 with
xk0

i0
−xk0

i0
= max(xk0

i −xk0
i ). If this procedure is repeated, we will eventually obtain a

contradiction to maxi(xk
i −xk

i ) ≥ δ for k = 1, 2, . . .. Therefore δ ≤ maxi(xk
i −xk

i ) <
20 mini(xk

i − xk
i ) for k = 1, 2, . . ., i.e., xk

i − xk
i >

δ
20 for i = 1, . . . , n, k = 1, 2, . . ..

This implies Sk ≤ −n log2
δ
20 for all k, contradiction.

Note that this theorem only guarantees that a point close to a global minimizer
will eventually be found but it does not say how fast this convergence is. This
accounts for the occasional slow jobs reported in Section 9 since we only make a
finite number of calls to Snobfit. Also note that the actual implementation differs
from the idealized version discussed in this section; in particular, choosing the
resolution too coarse may prevent the algorithm from finding a good approximation
to the global minimum value.

8. HANDLING GENERAL CONSTRAINTS

In this section we consider the constrained optimization problem

min f(x)
s.t. x ∈ [u, v], F (x) ∈ F, (9)

where, in addition to the assumptions after (1), F : [u, v] → Rm is a vector of m
continuous contraint functions F1(x),. . . ,Fm(x), and F := [F , F ] is a box in Rm

defining the constraints on F (x).
Traditionally (see [Fiacco and McCormick 1990]), constraints that cannot be

handled explicitly are accounted for in the objective function, using simple l1 or
l2 penalty terms for constraint violations, or logarithmic barrier terms penalizing
the approach to the boundary. There are also so-called exact penalty functions
whose optimization gives the exact solution (see, e.g., [Nocedal and Wright 1999]);
however, this only holds if the penalty parameter is large enough, and what is large
enough cannot be assessed without having global information.

The use of more general transformations (cf. [Dallwig et al. 1997]) gives rise to
more precisely quantifiable approximation results. In particular, if it is known in
advance that all constraints apart from the simple constraints are soft constraints
only (so that some violation is tolerated), one may pick a transformation that in-
corporates prescribed tolerances into the reformulated simply constrained problem:
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Theorem 8.1. (Soft optimality theorem). For suitable ∆ > 0, σi, σi > 0, f0 ∈
R, let

q(x) =
f(x)− f0

∆ + |f(x)− f0|
,

δi(x) =


(Fi(x)− F i)/σi if Fi(x) ≤ F i,
(Fi(x)− F i)/σi if Fi(x) ≥ F i,
0 otherwise,

r(x) = 2
(∑

δ2i (x)
)/(

1 +
∑

δ2i (x)
)
.

Then the merit function

fmerit(x) = q(x) + r(x)

has its range bounded by ]−1, 3[, and the global minimizer x̂ of fmerit in [u, v] either
satisfies

Fi(x̂) ∈ [F i − σi, F i + σi] for all i, (10)

f(x̂) ≤ min{f(x) | F (x) ∈ F, x ∈ [u, v]}, (11)

or one of the following two conditions holds:

{x ∈ [u, v] | F (x) ∈ F} = ∅, (12)

f0 < min{f(x) | F (x) ∈ F, x ∈ [u, v]}. (13)

Proof. Clearly, q(x) ∈ ]−1, 1[ and r(x) ∈ [0, 2[, so that f(x) ∈ ]−1, 3[. If there
is a feasible point x with f(x) ≤ f0 then q(x) ≤ 0, r(x) = 0 at this point. Since
fmerit is monotone increasing in q + r, we conclude from fmerit(x̂) ≤ fmerit(x) that

q(x̂) ≤ q(x̂) + r(x̂) ≤ q(x) + r(x) = q(x),

−1 + r(x̂) ≤ q(x̂) + r(x̂) ≤ q(x) + r(x) ≤ 0,

hence f(x̂) ≤ f(x), giving (11), and r(x̂) ≤ 1,

δ2i (x̂) ≤
∑

δ2i (x̂) ≤ 1,

giving (10).

Since the merit function is bounded by ] − 1, 3[ even if f and/or some Fi are
unbounded, the formulation is able to handle so-called hidden constraints. There,
the conditions for infeasibility are not known explicitly but are discovered only
when attempting to evaluate one of the functions involved. In such a case, if the
function cannot be evaluated, the merit function value can be simply set to 3.

(12) and (13) are degenerate cases that do not occur if a feasible point is already
known and we choose f0 as the function value of the best feasible point known
(at the time of posing the problem). A suitable value for ∆ is the median of the
|f(x) − f0| for an initial set of trial points (in the context of global optimization
often determined by a space-filling design [McKay et al. 1979; Owen 1992; 1994;
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Sacks et al. 1989; Tang 1993]). The number σi measures the degree to which
the constraint Fi(x) ∈ Fi may be softened; suitable values are in many practical
applications available from the meaning of the constraints.

Of course there are other choices for q(x), r(x), fmerit(x) with the same proper-
ties. The choices given are simple and lead to a continuously differentiable merit
function with Lipschitz-continuous gradient if f and F have these properties. (The
denominator of q(x) is nonsmooth, but only when the numerator vanishes, so that
this only affects the Hessian.)

9. NUMERICAL RESULTS

In this section we present some numerical results. In Subsection 9.1 a set of ten well-
known test functions is considered in the presence of additive noise as well as for the
unperturbed case. In Section 9.2, two examples of the six-hump camel function with
additional hidden constraints are investigated. Finally, in Subsection 9.3 the theory
of Section 8 was applied to some problems from the Hock–Schittkowski collection.

Since Snobfit has no stopping rules, the stopping tests used in the numerical
experiments were chosen (for easy comparison) by reaching a condition depending
on the (known) optimal function values.

9.1 Testing noisy function evaluations

In this subsection we report results of Snobfit on the 9 test functions used in
[Jones et al. 1993], where an extensive comparison of algorithms is presented; this
test set was also used in [Huyer and Neumaier 1999]. Moreover, we also consider
the well-known two-dimensional Rosenbrock function. Let n be the dimension of
the problem, and the default box bounds [u, v] from the literature were used. We
set ∆x = 10−5(v − u) and p = 0.5. The algorithm was started with n + 6 points
chosen at random from [u, v] and their ith coordinates were rounded to integral
multiples of ∆xi. In each call to Snobfit, n+ 6 points in [u, v] were generated.

In order to simulate the presence of noise (issue (I3) from the Introduction), we
considered

f̃(x) := f(x) + σN,

where N is a normally distributed random variable with mean 0 and variance 1,
and ∆f was set to max(3σ,

√
ε), where ε := 2.22 · 10−16 is the machine precision.

The case σ = 0 corresponds to the unperturbed problems.
Let f∗ be the known optimal function value, which is 0 for Rosenbrock and 6= 0

for the other test functions. The algorithm was stopped if (fbest − f∗)/|f∗| < 10−2

for f∗ 6= 0; in the case f∗ = 0 it was stopped if fbest ≤ 10−5.
Since a random element is contained in the initial points as well as the function

evaluations, 10 jobs were computed with each function and each value of σ, and
the median of function calls needed to find a global minimizer was computed. In
Table I, the dimensions n, the standard box bounds [u, v], the numbers Nlocal and
Nglobal of local and global minimizers in [u, v], respectively, and the median of
function values for σ = 0, 0.01, and 0.1 are given. In the case Nlocal > Nglobal, we
have to deal with issue (I4) from the Introduction.

Apart from the three outliers mentioned in a moment, it took the algorithm less
than 3000 function evaluations to fulfil the stopping criterion. One job with Shekel
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n [u, v] Nlocal Nglobal σ = 0 σ = 0.01 σ = 0.1

Branin 2 [−5, 10]× [0, 15] 3 3 56 52 48
Six-hump camel 2 [−3, 3]× [−2, 2] 6 2 68 56 48

Goldstein–Price 2 [−2, 2]2 4 1 132 144 184
Shubert 2 [−10, 10]2 760 18 220 248 200
Hartman 3 3 [0, 1]3 4 1 54 59 54

Hartman 6 6 [0, 1]6 4 1 110 666 348
Shekel 5 4 [0, 10]4 5 1 490 515 470
Shekel 7 4 [0, 10]4 7 1 445 455 485

Shekel 10 4 [0, 10]4 10 1 475 445 480
Rosenbrock 2 [−5.12, 5.12]2 1 1 432 576 272

Table I. Dimensions, box bounds, numbers of local and global minimizers and results with Snobfit
for the unperturbed and perturbed problems

5 and σ = 0 required 9910 function values since the algorithm was trapped for
a while in the low-lying local minimizer (8, 8, 8, 8), one job with Hartman 6 and
σ = 0.01 required 5004 function values, and one job with Rosenbrock and σ = 0.1
even required 16688 function values to satisfy the stopping criterion. However,
due to the nature of the Rosenbrock function (ill-conditioned Hessian at small
function values), the points found for the perturbed problems are often far away
from the minimizer (1, 1) of the unperturbed problem since the stopping criterion
is fulfilled by finding a negative function value caused by perturbations. The points
found ranged from (0.81142, 0.65915) to (1.1611, 1.35136) for σ = 0.01 and from
(0.64234, 0.4173) to (1.38506, 1.94155). As expected, we obtained less accurate
points for larger σ, and for all these points we have x2 ≈ x2

1.
In the case of the unperturbed problem (σ = 0), the results are competitive with

results of noise-free global optimization algorithms (see [Jones et al. 1993], [Huyer
and Neumaier 1999], and [Hirsch et al. 2006]).

9.2 Hidden constraints

We consider the six-hump camel function on the standard box [−3, 3] × [−2, 2].
Its global minimum is f∗ = −1.0316284535, attained at the two points x∗ =
(±0.08984201,∓0.71265640), and the function also has two pairs of nonglobal local
minimizers. We consider two different hidden constraints; each one cuts off the
global minimizers:

(a) 4x1 + x2 ≥ 2

(b) 4x1 + x2 ≥ 4

For the constraint (a), we obtain a global minimizer x∗ ≈ (0.316954, 0.732185)
at the boundary of the feasible set with function value f∗ ≈ −0.381737. We com-
puted 10 jobs similarly as in the previous subjection, and the median of function
evaluations needed to find the new f∗ with a relative error of at most 1 % was 708.

For the constraint (b), the global minimizer is x∗ ≈ (1.703607,−0.796084), which
is a local minimizer of the original problem, with function value f∗ ≈ −0.215464.
In this case, the median of function evaluations needed to solve the problem with
the required accuracy taken from 10 jobs was 92.
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As expected, the problem where the minimizer is on the boundary of the feasible
set is harder, i.e., requires a larger number of function evaluations, since the detailed
position of the hidden boundary is needed here, which is difficult to find.

9.3 Soft constraints and change of the objective function

In this subsection we apply the theory of Section 8 to some problems from the
well-known collection [Hock and Schittkowski 1981]. Since Snobfit only works for
bound-constrained problems and we do not want to introduce artificial bounds, we
selected from the collection a few problems with finite bounds for all variables. Let
n be the dimension of the problem. In addition to the standard starting point from
[Hock and Schittkowski 1981], n + 5 random points were sampled from a uniform
distribution on [u, v]. If there is any feasible point among these n + 6 points, we
choose f0 as the objective function value of the best feasible point in this set;
otherwise we set f0 := 2fmax − fmin, where fmax and fmin denote the largest and
smallest of the objective function values, respectively. Then we set ∆ to the median
of |f(x) − f0|. When the first point x with merit function value fmerit(x) < 0 has
been found, we update f0 and ∆ by the same recipe if a feasible point has already
been found. This results in a change of the objective function (issue (I10)), which
is handled as described in Section 6.

We use again p = 0.5, ∆x = 10−5(v − u), ∆f =
√
ε and generate n+ 6 points in

each call to Snobfit. We consider σi = σi = σbi, i = 1, . . . ,m, where the values
for the vectors b are given in Table II. Basically, bi is the absolute value of the
additive constant contained in the ith constraint; if no such additive term exists,
set bi = 1. Only for the only problem HS41 containing an equality constraint we
chose the value b = 10 instead of b = 1.

Since the optimal function values on the feasible sets are known for the test
function, we stop when a point satisfying (10) and (11) has been found (which need
not be the current best point of the merit function). For σ = 0.05, 0.01, and 0.005,
one job is computed (with the same set of input points for the initial call). In
Table II, the numbers of the Hock–Schittkowski problems, their dimensions, their
numbers mi of inequality constraints, their numbers me of equality constraints,
their global minimizers x∗, and the vectors b are listed. In Table III, the results for
the three values of σ are given, i.e., the points x obtained and the corresponding
numbers nf of function evaluations.

n mi me x∗ b

HS18 2 2 0 (
√

250,
√

2.5) (25, 25)
HS19 2 2 0 (14.095, 0.84296079) (100, 82.81)

HS23 2 5 0 (1, 1) (1, 1, 9, 1, 1)

HS31 3 1 0 ( 1√
3
,
√

3, 0) 1

HS36 3 1 0 (20, 11, 15) 72

HS37 3 2 0 (24, 12, 12) (72, 1)

HS41 4 0 1 ( 2
3
, 1
3
, 1
3
, 2) 10

HS65 3 1 0 (3.650461821, 3.65046169, 4.6204170507) 48

Table II. Problem number, dimension, number of inequality constraints, number of equality con-

straints, and global minimizer of some Hock–Schittkowski problems
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σ = 0.05 σ = 0.01 σ = 0.005

nf x nf x nf x

HS18 78 (13.9, 1.74) 265 (16.2, 1.53) 4778 (16.0, 1.55)

HS19 841 (13.9, 0.313) 1561 (14.1, 0.793) 353 (13.7, 0.111)
HS23 729 (0.968, 0.968) 1745 (0.996, 1.00) 1497 (0.996, 0.996)
HS31 30 (0.463, 1.16, 0.0413) 30 (0.459, 1.16, 0.0471) 30 (0.458, 1.16, 0.0474)

HS36 76 (20, 11, 15.6) 370 (20, 11, 15.2) 586 (19.8, 11, 15.3)
HS37 329 (27.5, 13.3, 10.4) 487 (20.6, 13.0, 13.0) 397 (23.5, 12.9, 11.5)
HS41 52 (0.423, 0.350, 0.504, 1.70) 264 (0.796, 0.223, 0.424, 2) 1364 (0.599, 0.425, 0.296, 2.00)
HS65 1468 (3.62, 3.55, 4.91) 1585 (3.58, 3.69, 4.68) 874 (3.71, 3.59, 4.64)

Table III. Results with the soft optimality theorem for some Hock–Schittkowski problems (x

rounded to three significant digits for display)

10. CONCLUDING REMARKS

An earlier version of Snobfit was used successfully for a real life constrained opti-
mization application involving the calibration of nanoscale etching equipment with
expensive measured function values, in which most of the problems mentioned in
the introduction were present.

The numerical examples show that Snobfit can handle successfully noisy func-
tions and hidden constraints and that the soft optimality approach described in
Section 8 is feasible. Several variants of a number of details in Snobfit were tried
out. The present version turned out to be the best one; in particular, it improves
a version put on the web in 2004. Numerical experience with further tests suggests
that Snobfit should be used primarily with problems of dimension ≤ 10.

The Matlab code of the version of Snobfit described in this paper is available
on the web at http://www.mat.univie.ac.at/~neum/software/snobfit/v2/.
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