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Central question

Which enumeration problems have a solution in terms of a closed

formula that (for instance) only involves the basic arithmetic

operations?
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Some facts

• Only very few enumeration problems have a nice solution in terms of a
closed formula.

• More surprising: combinatorialists can still hardly predict when this rare
event occurs.

• One indication to this is that such problems (that admit nice formulas) are
often found by chance.

• It is often possible to guess these formula easily by considering small in-
stances of the parameters involved.

• Although these guesses are always correct, many of these formulas (still)
require highly non-trivial proofs, which do not provide much insight...

• ...and in this sense these proofs act more as confirmations than as expla-
nations.
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An example in this respect: alternating sign matrices

Quadratic 0,1,−1 matrices, such that in every
row and every column

• the non–zero entries appear with alternat-
ing signs and

• the sum of entries is 1, that is the first and
the last non-zero entry is a 1.











0 1 0 0 0
0 0 1 0 0
1 -1 0 0 1
0 1 -1 1 0
0 0 1 0 0










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The origin of ASMs: λ–determinant

Notation: For a matrix M let M
j1,...,jn
i1,...,im

denote the matrix that

remains when the rows i1, . . . , im and the columns j1, . . . , jn of M

are deleted.

The Desnanot–Jacobi identity:

det(M) det(M
1,n
1,n) = det

(

det(M1
1) det(Mn

1)

det(M1
n) det(Mn

n)

)

Charles L. Dodgson (Lewis Carroll) used this to devise an al-

gorithm for calculating determinants that required only 2 × 2

determinants. (Condensation of determinants, 1866)
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3 × 3 determinants

det







a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3





 =
1

a2,2

× det













det

(

a2,2 a2,3
a3,2 a3,3

)

det

(

a2,1 a2,2
a3,1 a3,2

)

det

(

a1,2 a1,3
a2,2 a2,3

)

det

(

a1,1 a1,2
a2,1 a2,2

)












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4 × 4 determinants

det







a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4






=

1

det

(

a2,2 a2,3

a3,2 a3,3

)

× det

















det





a2,2 a2,3 a2,4

a3,2 a3,3 a3,4

a4,2 a4,3 a4,4



 det





a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

a4,1 a4,2 a4,3





det





a1,2 a1,3 a1,4

a2,2 a2,3 a2,4

a3,2 a3,3 a3,4



 det





a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3





















3 × 3 determinants are expressible in terms of 2 × 2 determi-

nants...and so are 4 × 4 determinants!
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Robbins and Rumsey in the 1980s: What happens if we gener-

alize the definition of a 2 × 2 determinant to

detλ

(

a11 a12
a21 a22

)

= a11a22 + λa12a21

and, furthermore, use the previous observations to generalize the

n × n determinant?

Theorem (Robbins and Rumsey). Let M be an n×n matrix with

entries ai,j, An the set of n × n alternating sign matrices, I(B)

the inversion number of B and N (B) the number of −1s in B

then

detλ(M) =
∑

B∈An

λI(B)(1 + λ−1)N (B)
n
∏

i,j=1

a
Bi,j
i,j .
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Inversion number of a matrix B: Generalizes the inversion number

of a permutation(-matrix).

I(B) =
∑

(i1,j1),(i2,j2)
i1>i2,j1<j2

bi1,j1bi2,j2

Special case λ = −1 (ordinary determinant):

det(M) =
∑

B∈An

(−1)I(B)0N (B)
n
∏

i,j=1

a
Bi,j
i,j

=
∑

B∈An,bi,j 6=−1

(−1)I(B)
n
∏

i,j=1

a
Bi,j
i,j =

∑

σ∈Sn

sgnσ
n
∏

i=1

ai,σ(i)

This is the well-known Leibniz formula!
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How many n × n alternating sign matrices are there?

(1)

(

1 0
0 1

)

,

(

0 1
1 0

)

Six 3 × 3 permutation matrices +







0 1 0
1 −1 1
0 1 0







42
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Conjecture (Mills, Robbins, Rumsey, early 1980s). The number

of n × n alternating sign matrices is

n−1
∏

j=0

(3j + 1)!

(n + j)!
.

Why do these strange objects have such a simple closed enumer-

ation formula, whereas for other objects with a definition of less

complexity it is simply impossible to write down just any explicit

formula?
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How to guess such a formula ?

An = Number of n × n ASMs = 1,2,7,42,429,7436,218348,

10850216, 911835460, 129534272700, . . .

An+1/An = 2, 7
2,6, 143

14 , 52
3 , 323

11 , 646
13 , 2185

26 , 2415
17 , 310155

1292 , . . .

(An+2/An+1)/(An+1/An) = 7
4, 12

7 , 143
84 , 56

33, 969
572, 22

13, 115
68 , 546

323, 899
532, 272

161, . . .

Rational interpolation:

(An+2/An+1)/(An+1/An) =
3(3n + 2)(3n + 4)

4(2n + 1)(2n + 3)

Beauty is truth!
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In 1996, Doron Zeilberger finally succeeded in proving the for-

mula! His proof is based in constant term identities and is 84

pages long.

The final breakthrough: Jim Propp realizes that physicists had

been studying a model (square ice/six-vertex model) for years,

which is equivalent to alternating sign matrices. Greg Kuper-

berg was able to use this to give another, shorter, proof of the

alternating sign matrix theorem.
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ASMs in statistical physics























0 0 1 0

0 1 0 0

1 −1 0 1

0 1 0 0























ASM

H

H

H

H

H H

H

O H H O H

H

H

H O H H

H

H

H

HH OH O

H

H

HO

OH O H O

H

H

H

H

H

O

H

O

OOO

O O

Square ice
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The story is not yet over: symmetry classes of ASMs

Vertically symmetric alternating sign matrices (Kuperberg 2001):










0 0 1 0 0
1 0 −1 0 1
0 0 1 0 0
0 1 −1 1 0
0 0 1 0 0











AV
2n+1 =

n−1
∏

j=0

(3j + 2)(2j + 1)!(6j + 3)!

(4j + 2)!(4j + 3)!

Half-turn symmetric alternating sign matrices: Kuperberg 2001 (even order),
Razumov/Stroganov 2005 (odd order):















0 0 1 0 0 0
1 0 −1 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 −1 0 1
0 0 0 1 0 0















AHT
2n =

n−1
∏

j=0

(3j+2)(3j+1)!2

(3j+1)(n+j)!2

AHT
2n+1 =

n
∏

j=1

4(3j)!2j!2

3(2j)!4
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Other cases

Quarter-turn symmetric ASMs. Kuperberg 2001 (even order),

Razumov/Stroganov 2005 (odd order).

Vertically and horizontally symmetric ASMs. Okada 2005.

Diagonally and antidiagonally symmetric ASMs of odd order.
















0 1 0 0 0
1 −1 1 0 0
0 1 −1 1 0
0 0 1 −1 1
0 0 0 1 0

















ADA
2n+1

ADA
2n−1

=

(

3n
n

)

(

2n−1
n

)

Open??
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Now: an approach to refined

enumerations of ASMs!

joint work with Dan Romik
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A (very first) refined enumeration of ASMs

An ASM has a unique “1” in the top row as

• the top row must contain at least one “1” and

• two “1”s would force a “−1” to be in the top row.

Example.
















0 1 0 0 0
0 0 1 0 0
1 -1 0 0 1
0 1 -1 1 0
0 0 1 0 0
















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Refined alternating sign matrix theorem

Theorem (Zeilberger 1996). The number of n × n alternating

sign matrices where the unique 1 in the top row is in column k

is

(n + k − 2

n − 1

)(2n − k − 1)!

(n − k)!

n−2
∏

j=0

(3j + 1)!

(n + j)!
=: An,k.

The theorem on the total number of n × n alternating sign ma-

trices follows from this after summing over all k and consulting

the appropriate hypergeometric identity.
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Towards another proof: ASMs ⇒ Monotone triangles











0 1 0 0 0
0 0 1 0 0
1 −1 0 0 1
0 1 −1 1 0
0 0 1 0 0











⇒











0 1 0 0 0
0 1 1 0 0
1 0 1 0 1
1 1 0 1 1
1 1 1 1 1











⇒

2
2 3

1 3 5
1 2 4 5

1 2 3 4 5
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Monotone triangles are triangular integer arrays of the fol-

lowing shape

an,n

an−1,n−1 an−1,n

an−2,n−2 an−2,n−1 an−2,n

. . . . . . . . . . . .
a2,2 a2,3 . . . . . . a2,n

a1,1 a1,2 a1,3 . . . . . . a1,n

,

that are monotone increasing in ր direction and in ց direction

and strictly increasing along rows.

n × n ASMs ↔ MTs with bottom row 1,2, . . . , n

=: n–complete MTs

n× n ASMs where the unique 1 in the top row is in column k ↔
n–complete MTs with top row k.
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Important ingredient: the operator formula

Theorem (F). The number of monotone triangles with n rows

and prescribed bottom row k1, k2, . . . , kn is




∏

1≤p<q≤n

(id+EkpEkq − Ekp)





∏

1≤i<j≤n

kj − ki

j − i
=: α(n; k1, . . . , kn),

where Exp(x) = p(x + 1).

A new type of formula: the shift operator is used in addition to

the basic arithmetic operations!
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Follows from the operator formula: α(n; k1, . . . , kn) is a polyno-

mial in k1, k2, . . . , kn of degree ≤ n − 1 in every ki.

We consider the following specialization

gn(x) = α(n; 1,2, . . . , n − 1, n + x).

Since gn(x) is a polynomial in x of degree ≤ n − 1, it has an

expansion in terms of the polynomial basis
((

x+k−1
k−1

))

k≥1
:

gn(x) =
n
∑

k=1

An,k

(x + k − 1

k − 1

)

Surprisingly, the coefficients An,k are the numbers in the refined

alternating sign matrix theorem.
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How does the proof proceed?

The following three properties of α(n; k1, . . . , kn)

• α(n; k1, k2, k3, . . . , kn) = (−1)n−1α(n; k2, . . . , kn, k1 − n)

• α(n; k1, k2, . . . , kn) = α(n;−kn,−kn−1, . . . ,−k1)

• α(n; k1, . . . , kn) = α(n; k1 + t, . . . , kn + t) (t ∈ Z)
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...imply the following symmetry property of gn(x):

gn(x) = α(n; 1,2, . . . , n − 1, n + x)

= (−1)n−1α(n; 2n + x,1,2, . . . , n − 1)

= (−1)n−1α(n;−n + 1,−n + 2, . . . ,−1,−2n − x)

= (−1)n−1α(n; 1,2, . . . , n − 1,−n − x)

= (−1)n−1gn(−2n − x)

25



Therefore...

n
∑

k=1

An,k

(x + k − 1

k − 1

)

= gn(x)

= (−1)n−1gn(−2n − x) = (−1)n−1
n
∑

j=1

An,j

(−x − 2n + j − 1

j − 1

)

By the Vandermonde summation the right-hand side is equal to

(−1)n−1
n
∑

j=1

An,j

j
∑

k=1

(−1)k−1
(x + k − 1

k − 1

)(−2n + j

j − k

)

and, by comparing coefficients, this implies, for 1 ≤ k ≤ n,

An,k =
n
∑

j=k

An,j(−1)n−k
(−2n + j

j − k

)

=
n
∑

j=k

An,j(−1)n+j
(2n − k − 1

j − k

)

.
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This is a system of linear equations for the numbers An,k!

n = 4:










−1 6 −15 20
0 1 −5 10
0 0 −1 4
0 0 0 1











·











An,1
An,2
An,3
An,4











=











An,1
An,2
An,3
An,4











Unfortunately, it does not determine the An,k’s uniquely! Not

even up to a constant, as the (algebraic and geometric) multi-

plicity of the eigenvalue 1 is 2.
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This can be repaired!

An,k =
n
∑

j=k

An,j(−1)n+j
(2n − k − 1

j − k

)

Fact. An,j = An,n+1−j (reflect ASM along the vertical axis)

Replace j by n + 1 − j and use the fact to see that

An,k =
n
∑

j=1

An,j(−1)j+1
( 2n − k − 1

n − j − k + 1

)

for 1 ≤ k ≤ n.
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Proposition. This system of linear equations together with An,1 =

An−1 =
n−1
∑

k=1
An−1,k determines the numbers An,k uniquely (induc-

tively with n).

Proof. It suffices to show that the geometric multiplicity of

the eigenvalue 1 of the matrix
(

(−1)j+1
(

2n−i−1
n−i−j+1

))

1≤i,j≤n
is 1.

Equivalently: the rank of
(

(−1)j
( 2n − i − 1

n − i − j + 1

)

+ δi,j

)

1≤i,j≤n

is n − 1.
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This follows after we have showed that

det2≤i,j≤n

(

(−1)j
( 2n − i − 1

n − i − j + 1

)

+ δi,j

)

6= 0.

By conjugating the matrix, this determinant is equal to a deter-

minant which was computed by Andrews to compute the number

of descending plane partitions.

Incidentally, there is the same number of descending plane parti-

tions with largest part less than or equal to n as there is of n×n

alternating sign matrices.
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Three years later, Dan Romik observed that this all generalizes

to a certian doubly–refined enumeration...

Consider

gn(x, y) = α(n; 1,2, . . . , n − 2, n − 1 + x, n + y)

and its expansion

gn(x, y) =
n
∑

i=1

n
∑

j=1

An,i,j

(x + i − 1

i − 1

)(y + j

j − 1

)

.
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A monotone (d, n)–trapezoid is a monotone triangle with n rows

where the first d − 1 rows were removed. For instance,

2 3 5
1 2 4 6

1 2 3 5 6

is a monotone (3,5)–trapezoid.

Theorem (F., Romik). If 1 ≤ i < j ≤ n then the coefficient An,i,j

is the number of monotone (2, n)–trapezoids with bottom row

1,2, . . . , n and top row i, j.
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In terms of ASMs...

The coefficient An,i,j enumerates n×n ASMs with respect to the

two top rows: k is fixed, lies in {i, i + 1, . . . , j − 1, j} and is the

position of the unique 1 in the top row.

i k j




0 0 0 1 0 0
0 1 0 −1 1 0

...





i=k j




0 1 0 0 0 0
0 0 0 0 1 0

...





i k=j




0 0 0 0 1 0
0 1 0 0 0 0

...




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System of linear equations for the numbers An,i,j

A symmetry property for gn(x, y)

gn(x, y) = α(n; 1,2, . . . , n − 2, n − 1 + x, n + y)

= α(n;−n − y,−n + 1 − x,−n + 2,−n + 3, . . . ,−1)

= (−1)n−1α(n;−n + 1 − x,−n + 2,−n + 3, . . . ,−1,−2n − y)

= α(n;−n + 2,−n + 3, . . . ,−1,−2n − y,−2n + 1 − x)

= α(n; 1,2, . . . , n − 2, n − 1 + (−2n − y), n + (−2n − x))

= gn(−2n − y,−2n − x)

leads to the following system of linear equations

An,i,j =
n
∑

p=i

n
∑

q=j

(−1)p+q
(2n − i − 2

p − i

)(2n − j − 2

q − j

)

An,q,p

for 1 ≤ i, j ≤ n.
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Near–symmetry of the numbers An,i,j

Theorem (F., Romik). The numbers An,i,j satisfy the symmetry

property

An,i,j = An,n+1−j,n+1−i

for all 1 ≤ i, j ≤ n, except when (i, j) = (n−1,1) or (i, j) = (n,2),

in which case we have

An,n−1,1 = An,n,2 + An−1.

!! In this case the proof does not follow from the combinatorial

interpretation of An,i,j as we do not have one if i ≥ j !! (Is there

any?)
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The sufficiency conjecture

Conjecture (F., Romik). The linear equations given above to-

gether with the near symmetry and the special values An,i,n =

An−1,i determine the numbers An,i,j uniquely.

One strategy for proving this conjecture is to compute the de-

terminant of a reduced system of linear equations and to show

that it is non–zero. Surprisingly, the determinant can conjec-

turally be represented by a simple product formula (this is due

to Krattenthaler). In principal, the latter conjecture could be

attacked by Krattenthaler’s “identifications of factors” method

for computing determinants.
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A conjectural formula for An,i,j

Conjecture.

An,i,j =
An−1(2n − 2 − i)!(2n − 2 − j)!(n + i − 3)!(n + j − 3)!

(3n − 5)!(n − 2)!(i − 1)!(j − 1)!(n − i)!(n − j)!
(

n + j − i − 1 + (2 + 2i + i2 − 3j − ij + j2 − 2n − 2in + jn + n2)

× lim
j ′→j

∞
∑

k=0

(
(

3k−3j ′+4
k

)(

2j ′+i−2k−5
i−1−k

)

(

k−j ′+i
i−1

)

(k − j′ + 3 − n)
−

(

3k−3i+4
k

)(

2i+j ′−2k−5
i−1−k

)

(i − 1 − k)
(

k−i+j ′

i

)

(k − i + 3 − n)i

))

The sufficiency conjecture reduces the proof of this conjecture

to certain hypergeometric identities.

37



A proved formula for An,i,j

Karklinsky and Romik used the six-vertex model approach and

Stroganov’s formula for the number of n × n ASMs with given

top and bottom rows to show that

An,i,j =
n−j
∑

p=0

p
∑

q=0

(−1)q
(p

q

)

Xn(i + q, j + p),

where

Xn(s, t) =
1

An−1

(

An−1,t(An,s+1 − An,s) − An−1,s(An,t+1 − An,t)
)

.
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Much more general...

For non–negative integers c, d with c + d ≤ n, we consider the
following expansion:

α(n; k1, . . . , kc, c + 1, c + 2, . . . , n − d, kn−d+1, kn−d+2, . . . , kn)

=

n
∑

s1=1

n
∑

s2=1

. . .

n
∑

sc=1

n
∑

i1=1

n
∑

i2=1

. . .

n
∑

id=1

A(n; s1, s2, . . . , sc; i1, . . . , id)

× (−1)s1+s2+...+sc+c
(k1 − c − 1

sc − 1

)(k2 − c − 1

sc−1 − 1

)

· · ·
(kc − c − 1

s1 − 1

)

×
(kn−d+1 − n + d − 2 + i1

i1 − 1

)(kn−d+2 − n + d − 2 + i2

i2 − 1

)

· · ·
(kn − n + d − 2 + id

id − 1

)
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Theorem (F). For s1 < s2 < · · · < sc and i1 < i2 < · · · < id the

coefficient A(n; s1, . . . , sc; i1, . . . , id) is the number of monotone

(d, n − c)–trapezoids with (i1, . . . , id) as top row and whose bot-

tom row consists of the numbers in {1,2, . . . , n} \ {s1, s2, . . . , sc},

arranged in increasing order.

Example:

A(9; 2,5,8; 1,4,5,8) = #
1 4 5 8

? ? ? ? ?
1 3 4 6 7 9
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In terms of ASMs...

A (t, n)–partial ASM is a t × n matrix with entries in {0,1,−1}

such that the non–zero entries alternate in each row and column

and the row sums are 1.

Example.

(

1 0 −1 1 −1 1
0 0 1 −1 1 0

)

That is: the restriction on the columnsums has been removed –

1,−1,0 are possible columnsums in a (t, n)–partial ASM.
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Now: A(n; s1, . . . , sc; i1, . . . , id) is the number of (n − c − d, n)–

partial ASMs such that the j–th columnsum is

• 1 iff j /∈ {i1, . . . , id, s1, . . . , sc},

• −1 iff j ∈ {i1, . . . , id} ∩ {s1, . . . , sc},

• 0 and the first non–zero entry in column j is −1 iff j ∈

{i1, . . . , id} and

• 0 and the first non–zero entry in column j is 1 iff j ∈

{s1, . . . , sc}.
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Towards another proof of a formula for An,i,j

The identity

α(n; k1, . . . , kn) = (−1)n−1α(n; k2, . . . , kn, k1 − n)

implies

A(n; s1, . . . , sc; i1, . . . , id) =

n
∑

id+1=sc

n
∑

id+2=sc−1

. . .

n
∑

id+t=sc−t+1

A(n; s1, . . . , sc−t; i1, . . . , id+t)

× (−1)sc−t+1+...+sc+tn
(−2n + d − 1 + id+1 + c

id+1 − sc

)

· · ·
(−2n + d − 1 + id+t + c

id+t − sc−t+1

)

for 1 ≤ i1, i2, . . . , id ≤ n.
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Special case t = 1, c = 2, d = 0:

A(n; s1, s2;−) =
n
∑

i1=s2

(−1)n+i1
(2n − 2 − s2

i1 − s2

)

A(n; s1; i1)

On the one hand: An,i,j = A(n; i, j;−) = A(n;−; i, j)

On the other hand: A(n; i; j) = Number of alternating sign ma-

trices M = (mp,q)1≤p,q≤n with m1,i = 1 and mn,j = 1.

Stroganov (2002) has derived an explicit formula for the latter.

Therefore, we have a formula for the first!
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Another proved formula for An,i,j

The number of monotone (2, n)–trapezoids with bottom row

1,2, . . . , n and top row i, j is given by

An,i,j =
1

An−1

n
∑

k=j

i
∑

l=1

(−1)n+k
(2n − 2 − j

k − j

)

×
(

An−1,l−1An,k−i+l − An−1,l−1An,k−i+l−1

+An−1,k−i+l−1An,l − An−1,k−i+l−1An,l−1

)

where An,k is the number of n× n alternating sign matrices that

have a 1 in the first row and k-th column.
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Perspectives:

where to go from here?
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Further project: Formulas for A(n; s1, . . . , sc; i1, . . . , id) – at least

when c and d are small.

• It suffices to consider the case c = 0.

• System of linear equations: for all i1, i2, . . . , id ∈ {1,2, . . . , n} we
have

A(n;−, i1, . . . , id)

=

n
∑

j1=i1,j2=i2,...,jd=id

(−1)dn+j1+j2+...+jdA(n;−; jd, jd−1, . . . , j1)

d
∏

l=1

(2n − il − d

jl − il

)

.

• The system is again dependent! Does the near-symmetry gen-

eralize and does it provide a characterization of the coefficients

A(n;−; i1, . . . , id)? If yes: Cramer’s rule implies a determinantal

formula.

47



Obviously: as is there only one 1 in the top row, there is also

only one 1 in the first column, in the bottom row and in the last

column!

What is about the enumeration of ASMs with respect to

• the first row and first column: seems to be expressible in terms

of A(n;−; i1, i2).

• the first row, first column and bottom row: is likely to be

expressible in terms of A(n;−; i1, i2, i3).

• the first row, first column, bottom row and last column: is

possibly expressible in terms of A(n;−; i1, i2, i3, i4).
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Does this extend to symmetry classes?

Vertically symmetric alternating sign matrices: operator formula

for “halved monotone triangles”:






∏

1≤p<q≤n/2

Ekp(id−Ekq + EkqE
−1
kp

)(id−E−1
kq

+ E−1
kq

E−1
kp

)







∏

1≤i<j≤n/2

(kj − ki)(2x + 2 − ki − kj)

(j − i)(j + i)

n/2
∏

i=1

(x + 1 − ki)

i

Conjecture (F). The number of (2n + 1) × (2n + 1) vertically

symmetric alternating sign matrices, where the first 1 in the

second row is in the i-th column is

(2n + i − 2)!(4n − i − 1)!

2n−1(4n − 2)!(i − 1)!(2n − i − 2)!





n
∏

j=1

(6j − 2)!(2j − 1)!

(4j − 1)!(4j − 2)!



 .
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Essential to this approach: Translate properties of α(n; k1, . . . , kn)

to identities for the refined enumeration numbers.

Examples.

An,k =
n
∑

j=k

An,j(−1)n+j
(2n − k − 1

j − k

)

A2n,1,2 + A2n,3,4 + . . . + A2n,2n−1,2n

= A2n,2,3 + A2n,4,5 + . . . + A2n,2n−2,2n−1

Bijective explanations of such identities would teach us some-

thing about the inner structure of ASMs!
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Call for applications...

...for one doctoral position and two postdoctoral positions in

combinatorics at the Faculty of Mathematics of the University

of Vienna.

Anyone interested should consult my webpage:

http://www.mat.univie.ac.at/~ ifischer/
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