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Abstract. Gog and Magog trapezoids are certain arrays of positive integers that generalize
alternating sign matrices (ASMs) and totally symmetric self-complementary plane partitions
(TSSCPPs) respectively. Zeilberger used constant term formulas to prove that there is the same
number of (n, k)-Gog trapezoids as there is of (n, k)-Magog trapezoids, thereby providing so
far the only proof for a weak version of a conjecture by Mills, Robbins and Rumsey from 1986.
About 20 years ago, Krattenthaler generalized Gog and Magog trapezoids and formulated an
extension of their conjecture, and, recently, Biane and Cheballah generalized Gog trapezoids
further and formulated a related conjecture. In this paper, we derive constant term formulas
for various refined enumerations of generalized Gog trapezoids including those considered by
Krattenthaler and by Biane and Cheballah. For this purpose we employ a result on the enumer-
ation of truncated monotone triangles which is in turn based in the author’s operator formula
for the number of monotone triangles with prescribed bottom row. As a byproduct, we also
generalize the operator formula for monotone triangles by including the inversion number and
the complementary inversion number for ASMs. Constant term formulas as well as determinant
formulas for the refined Magog trapezoid numbers that appear in Krattenthaler’s conjecture
are also deduced by using the classical approach based on non-intersecting lattice paths and
the Lindström-Gessel-Viennot theorem. Finally, we review and partly extend a few existing
tools that may be helpful in relating constant term formulas for Gogs to those for Magogs to
eventually prove the above mentioned conjectures.

1. Introduction

When Robbins and Rumsey [RR86] introduced alternating sign matrices in the 1980s, this
was exciting for several reasons. On the one hand, they formulated a conjecture together with
Mills [MRR82] which states that the number of n× n ASMs is given by the compelling simple

product formula
n−1∏
i=0

(3i+1)!
(n+i)!

. This conjecture turned out to be difficult to prove [Zei96, Kup96]

and still deserves to be better understood. On the other hand, it was soon realized that
the product formula has appeared before as the counting formula for two classes of plane
partitions, namely for totally symmetric self-complementary plane partitions in an 2n×2n×2n
box [MRR86] and for descending plane partitions whose parts do not exceed n [MRR83]. This
gave rise to the search for explicit bijections between the three classes of objects to prove these
facts directly. However, up to this day, no one was able to provide these bijections, and to find
them is for many people the most important open problem in this field.

As part of their attempt to provide a bijection between ASMs and TSSCPPs, Mills, Rob-
bins and Rumsey [MRR86, Conjecture 7] introduced two new classes of objects, one of which
generalizes ASMs, while the other generalizes TSSCPPs and they conjectured equinumeracy
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between the two classes. In his proof of the ASM counting formula, Zeilberger [Zei96] proved
their conjecture. Following Zeilberger, the two types of objects are since then called (n, k)-Gog

trapezoids and (n, k)-Magog trapezoids n and k being arbitrary non-negative integers. Bijec-
tions exist only for the cases k = 1, 2, see [CB12, BC13, Bet16]. Already Mills, Robbins and
Rumsey introduced a pair of statistics on Gog trapezoids as well as a pair of statistics on Ma-
gog trapezoids, and they conjectured that these pairs have the same joint distribution [MRR86,
Conjecture 7’]. In 1996, Krattenthaler [Kra96, Kra16] generalized Gog trapezoids and Magog
trapezoids by introducing a third parameter m and formulated an extension of the (strong
version of the) conjecture by Mills, Robbins and Rumsey. Recently, Biane and Cheballah intro-
duced Gog pentagons and GOGAm pentagons, for which they also conjecture equinumeracy,
and they have provided a bijective proof of their conjecture in the special cases when k = 1, 2.

In this article, we deduce constant term formulas for refined enumerations of Gogs includ-
ing those that appear in the conjectures of Krattenthaler and of Biane and Cheballah. The
derivation is based on the main result of [Fis11] which provides a formula for the number of
truncated monotone triangles. This result is a generalization of the operator formula for the
number of monotone triangles with prescribed bottom row [Fis06]. In fact, in order to include
as many refinement parameters as possible, we extend the main results from [Fis11] and from
[Fis06] by introducing the inversion number as well as the complementary inversion number of
ASMs, see Section 2. In order to be able to compare Gogs to Magogs, we also derive constant
term formulas for refined enumerations of Magog trapezoids, see Section 4. In the final section,
we mention (and partly extend) some known tools that may be helpful to relate constant term
formulas for Gogs to those for Magogs.

In general, the purpose of our results is twofold: On the one hand, they provide a framework
for computational proofs of the conjectures of Krattenthaler, and of Biane and Cheballah,
but, on the other hand, they can also be useful in the (experimental) search for statistics on
the two classes of objects that have the same distribution to eventually construct an explicit
bijection between Gogs and Magogs. In particular, the presentation aims at illustrating a
certain versatility of the result on truncated monotone triangles from [Fis11] and possibly
indicates how to include other statistics on Gogs when it turns out to be useful.

Before we present the preliminaries in Section 2, which are then applied in Section 3 to
derive the constant term formulas for Gogs, we recall the definition of Gog trapezoids and
Magog trapezoids, and state Krattenthaler’s extension of [MRR86, Conjecture 7’].

Gog trapezoids, Magog trapezoids and Krattenthaler’s conjecture.

Gog trapezoids. In [Kra96, Kra16], Krattenthaler generalizes Zeilberger’s Gog trapezoids [Zei96]
(which appeared unnamed for the first time in [MRR86, Conjecture 7]) as follows: For m,n, k
non-negative integers with k ≤ n, an (m,n, k)-Gog trapezoid is defined as an arrangement of
positive integers of the following form (the bullets correspond to the integers)

•
• •

• • •
• • • •

• • • • •
• • • • •

• • • • •

,
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where n is the number of rows (n = 7 in the example), k is the number of north-east diagonals
(k = 5 in the example) and the entries in the i-th south-east diagonal (1 ≤ i ≤ n, counted from
the left) are bounded from above by m+ i such that

• the entries are weakly increasing along NE-diagonals and SE-diagonals, and
• strictly increasing along rows.

(By the strict increase along rows, it suffices to require that the entries in the i-th SE-diagonal
are bounded from above by m+ i for k ≤ i ≤ n.) A (3, 7, 5)-Gog trapezoid is given next.

4
3 5

2 5 8
2 4 7 9

1 4 6 7 10
1 4 5 8 8

1 3 5 6 8

Zeilberger’s original n×k-Gog trapezoids are just (0, n, k)-Gog trapezpoids as defined by Krat-
tenthaler. According to [MRR86, Kra96, Kra16], we define minima and maxima of Gog trape-
zoids as follows:

• A minimum is an entry equal to 1. (The minima are located at the bottom of the
leftmost NE-diagonal.)

• A maximum is an entry in the k-th NE-diagonal that is equal to the upper bound for
the entries in its SE-diagonal.

In the example, we have 3 minima (indicated in red) and 2 maxima (indicated in blue).

Magog trapezoids. In [Kra96, Kra16], Krattenthaler generalized also Zeilberger’s Magog trape-
zoids [Zei96] (the latter also appeared essentially for the first time in [MRR86, Conjecture 7]):
For m,n, k non-negative integers with k ≤ n, an (m,n, k)-Magog trapezoid is defined as an
arrangement of positive integers of the following form

•
• •

• • •
• • • •

• • • • •
• • • • •

• • • • •

,

where n is the number of rows (n = 7 in the example), k is the number of SE-diagonals (k = 5
in the example) and the entries in the i-th NE-diagonal (1 ≤ i ≤ n, counted from the left) are
bounded from above by m + i such that the entries are weakly increasing along NE-diagonals
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and SE-diagonals. Next we display a (2, 7, 5)-Magog trapezoid.

3
2 3

2 3 4
1 3 4 5

1 2 3 5 7
1 3 4 6 7

2 3 4 7 9

(1.1)

Zeilberger’s n×k-Magog trapezoids are (0, n, k)-Magog trapezoids as defined by Krattenthaler.
According to [MRR86, Kra96, Kra16], we define minima and maxima of Magog trapezoids as
follows:

• A minimum is an entry equal to 1 that is located in the leftmost SE-diagonal.
• A maximum is an entry in the rightmost SE-diagonal that is equal to the upper bound
for the entries in its NE-diagonal.

In the example, we have 2 minima (indicated in red) and 3 maxima (indicated in blue).
Krattenthaler [Kra96, Kra16] conjectures the following relation between Gog trapezoids and

Magog trapezoids.

Conjecture 1. The number of (m,n, k)-Gog trapezoids with p minima and q maxima is equal

to the number of (m,n, k)-Magog trapezoids with p maxima and q minima.

The case m = 0 is Conjecture 7’ in [MRR86]. Conjecture 1 implies in particular that the
number of (m,n, k)-Gog trapezoids is equal to the number of (m,n, k)-Magog trapezoids. In
[Zei96], Zeiberger proved this for m = 0.

2. Preliminaries: monotone triangles and truncated monotone triangles

2.1. Inversion numbers. The inversion number of an ASM A = (ai,j)1≤i,j≤n, as defined in
[RR86, Eq. (18)], is given by

inv(A) =
∑

1≤i′<i≤n,1≤j′≤j≤n

ai′,jai,j′ .

It generalizes the inversion number of permutations, that is, for a permutation matrix A, inv(A)
is the number of inversions of the permutation π = (π1, . . . , πn), where πi is the column of the
unique 1 in row i. Define the complementary inversion number inv′(A) as follows.

inv′(A) =
∑

1≤i′<i≤n,1≤j≤j′≤n

ai′,jai,j′

If A is the permutation matrix of π = (π1, . . . , πn), then inv′(A) is clearly the number of
inversions of (πn, πn−1, . . . , π1), and so we have inv(A)+inv′(A) =

(
n
2

)
for permutation matrices.

It is a well-known fact [Bre99] that n × n alternating sign matrices correspond to Gelfand-

Tsetlin patterns with strictly increasing rows and bottom row 1, . . . , n. Recall that a Gelfand-
Tsetlin pattern is a triangular array (mi,j)1≤j≤i≤n of integers, where the elements are usually
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arranged as follows

m1,1

m2,1 m2,2

. . . . . . . . .
mn−2,1 . . . . . . mn−2,n−2

mn−1,1 mn−1,2 . . . . . . mn−1,n−1

mn,1 mn,2 mn,3 . . . . . . mn,n

(2.1)
such that there is a weak increase in northeast and southeast direction, i.e., mi+1,j ≤ mi,j ≤
mi+1,j+1 for all i, j with 1 ≤ j ≤ i < n. Throughout this paper, we use the indexing of
the entries of triangular arrays and partial triangular arrays as given here. A Gelfand-Tsetlin
pattern in which each row is strictly increasing except for possibly the bottom row is said to
be a monotone triangle. (This definition deviates from the standard definition where also the
bottom row needs to be strictly increasing.) Monotone triangles of order n where also the
bottom row is increasing and the entries are positive integers no greater than m + n are just
(m,n, n)-Gog trapezoids.

Suppose M = (mi,j)1≤j≤i≤n is the monotone triangle corresponding to the ASM A =
(ai,j)1≤i,j≤n, then it is not hard to see that

inv(A) = #{(i, j) : mi,j = mi+1,j+1} and inv′(A) = #{(i, j) : mi,j = mi+1,j}.

Since the −1’s of an n × n ASM A correspond to the entries mi,j of the associated monotone
triangle with i < n and mi+1,j < mi,j < mi+1,j+1, it follows that

inv(A) + inv′(A) =

(
n

2

)
− (# of −1’s in A). (2.2)

We use this to extend the definition of the inversion number and the complementary inversion
number to all monotone triangles, that is,

inv(M) = #{(i, j) : mi,j = mi+1,j+1} and inv′(M) = #{(i, j) : mi,j = mi+1,j}.

In [Fis16, Corollary 3.1], it was shown that the number of monotone triangles with bottom row
b1, . . . , bn is the constant term of

n∏

i=1

(1 + xi)
bix−n+1

i

∏

1≤i<j≤n

(xi − xj)(1 + xj + xixj). (2.3)

(This derivation was based on [Fis06].) In this section, we aim at generalizing this in order
to obtain a constant term expression for the generating function of monotone triangles with
respect to the two inversion numbers. For an increasing sequence b = (b1, . . . , bn), we define
the generating function

MTb(u, v) =
∑

M

uinv(M)vinv
′(M),

where the sum is over all monotone triangles with bottom row b.
We say that the two non-decreasing sequences b = (b1, . . . , bn) and a = (a1, . . . , an−1) are

interlacing (in symbols: a ≺ b), if

b1 ≤ a1 ≤ b2 ≤ a2 ≤ . . . ≤ an−1 ≤ bn.
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Consecutive rows of monotone triangles are obviously interlacing sequences, and we can write
down the following recursion for MTb(u, v):

MTb(u, v) =
∑

a≺b

a strictly increasing

MTa(u, v)u
#{i : ai=bi+1}v#{i : ai=bi}

We fix some notation that is needed in the following: We use the shift operator Ex, the
forward difference ∆x and the backward difference ∆x, which are defined as follows.

Ex p(x) := p(x+ 1)

∆x := Ex− Id

∆x := Id−E−1
x

We also need the following operator.

Strictx,y = E−1
x Ey +u∆x Ey −v E−1

x ∆y = uEy +v E−1
x +(1− u− v) E−1

x Ey

Moreover, we need to work with the following extended definition of the summation

b∑

i=a

f(i) =





f(a) + f(a+ 1) + . . .+ f(b), a ≤ b,

0, b = a− 1,

−f(b+ 1)− f(b+ 2)− . . .− f(a− 1), b+ 1 ≤ a− 1

.

The crucial property of the operator is the following: (Here we use the Iversion bracket, i.e.,
[statement] = 1 if the statement is true and [statement] = 0 otherwise.)

∑

(ai−1,ai)≺(bi−1,bi,bi+1)
ai−1<ai

f(ai−1, ai)u
[ai−1=bi]v[ai=bi] =


Strictb(1)i ,b

(2)
i

b
(1)
i∑

ai−1=bi−1

bi+1∑

ai=b
(2)
i

f(ai−1, ai)




∣∣∣∣∣∣∣
b
(1)
i =b

(2)
i =bi

,

which is true provided that bi−1 < bi < bi+1. (Here, we need to work with the following extended
definition of the summation

b∑

i=a

f(i) =





f(a) + f(a+ 1) + . . .+ f(b), a ≤ b,

0, b = a− 1,

−f(b+ 1)− f(b+ 2)− . . .− f(a− 1), b+ 1 ≤ a− 1

.

Furthermore, we use the Iversion bracket, i.e., [statement] = 1 if the statement is true and
[statement] = 0 otherwise.) In case u = v = 1, it is also true if bi−1 ≤ bi ≤ bi+1. However, note
that also

bi+1∑

ai=bi

f(li)v
[ai=bi] =


Strictb(1)i ,b

(2)
i

bi+1∑

ai=b
(2)
i

f(ai)




∣∣∣∣∣∣∣
b
(1)
i =b

(2)
i =bi

(2.4)

and
bi+1∑

ai=bi

f(ai)u
[ai=bi+1] =


Strictb(1)i+1,b

(2)
i+1

b
(1)
i+1∑

ai=bi

f(ai)




∣∣∣∣∣∣∣
b
(1)
i+1=b

(2)
i+1=bi+1

(2.5)
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whenever bi ≤ bi+1. This implies
∑

a≺b

a strictly increasing

f(a)u#{i : ai=bi+1}v#{i : ai=bi}

=


Strictb(1)1 ,b

(2)
1

. . . Strict
b
(1)
n ,b

(2)
n

b
(1)
2∑

a1=b
(2)
1

b
(1)
3∑

a2=b
(2)
2

· · ·
b
(1)
n∑

an−1=b
(2)
n−1

f(a)




∣∣∣∣∣∣∣
b
(1)
i =b

(2)
i =bi

whenever b1 < b2 < . . . < bn, and, under the assumption that u = v = 1, it is suffices to require
b1 ≤ b2 ≤ . . . ≤ bn. For x = (x1, . . . , xn), we define

GTn(x) =
∏

1≤i<j≤n

xj − xi + j − i

j − i
and Mn(u, v,x) =

∏

1≤p<q≤n

Strictxq ,xp
GTn(x).

Theorem 2.1 in [Fis16] can be generalized as follows.

Theorem 2. Suppose b = (b1, . . . , bn) is a strictly increasing sequence of integers, then the

generating function of monotone triangles with bottom row b1, . . . , bn w.r.t. the two inversion

numbers is the evaluation of the polynomial Mn(u, v,x) at (x1, . . . , xn) = (b1, . . . , bn). When

considering the special case u = v = 1, it suffices to require that (b1, . . . , bn) is weakly increasing.

The proof is analogous to the proof of Theorem 2.1 in [Fis16]. Moreover, using the fact that

Strictx,y = E−1
x (Id+u∆x + (1− v)∆y + u∆x∆y),

the following generalization of Corollary 3.1 in [Fis16] can be proved.

Corollary 3. Suppose b = (b1, . . . , bn) is a strictly increasing sequence of integers, then the

generating function of monotone triangles with bottom row b1, . . . , bn w.r.t. the two inversion

numbers is the constant term in x1, . . . , xn of the following Laurent polynomial.

n∏

i=1

(1 + xi)
bix−n+1

i

∏

1≤i<j≤n

(xi − xj)(1 + (1− v)xi + u(xj + xixj))

When considering the special case u = v = 1, it suffices to require that (b1, . . . , bn) is weakly

increasing.

In Appendix A, we elaborate on the case v = 1− u, which is an interesting case since there
exist certain combinatorial tools to handle it. Also note the we can recover the generating
function with respect to number of −1 in the ASM proved in [Fis10] by setting u = v = 1/Q

and multiplying with Q(n2). This follows from (2.2).

Remark 2.1. There exist two alternative constant term expressions for the number of mono-
tone triangles with bottom row b = (b1, . . . , bn) that could replace (2.3) in all what follows in
the special case u = v = 1. Both of them are also based on [Fis06]. First, it was shown in
[Fis09, Theorem 3] that the constant term of

n∏

i=1

x−n+1−bi
i (1− xi)

−n
∏

1≤i<j≤n

(xj − xi)(1− xj + xixj) (2.6)
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is the number of monotone triangles with bottom row b = (b1, . . . , bn). Note that this is not a
Laurent polynomial but a rational function, and so we need to clarify how we expand it into a
Laurent series. Here and throughout the remainder of the paper, unless stated otherwise, we
expand in powers with non-negative exponents, in particular, we have

(1− xi)
−n =

∞∑

j=0

(
−n

j

)
(−1)jxj

i

in (2.6). In order to present the second alternative formula, we define ASx1,...,xn
to be the

antisymmetrizer w.r.t. x1, . . . , xn, that is

ASx1,...,xn
p(x1, . . . , xn) :=

∑

σ∈Sn

sgn σ p(xσ(1), . . . , xσ(n)). (2.7)

In [FR15] is was shown that the number of monotone triangles with bottom row b = (b1, . . . , bn)
is given by the constant term of the following expression.

ASx1,...,xn

[
n∏

i=1

(1 + xi)
bi

∏

1≤i<j≤n

(1 + xj + xixj)

] ∏

1≤i<j≤n

(xj − xi)
−1 (2.8)

Note that this expression is a polynomial in x1, . . . , xn (and not only a Laurent polynomial).
It should be noted that (2.6) and (2.8) could actually be generalized to arbitrary u and v.

2.2. Refined enumeration with respect to the top entry. For a positive integer n, non-
negative integers min ≤ a ≤ max and x = (x1, . . . , xn), we define

GTn,a,min,max(x) =
max−min∑

b=0

(−1)a+min+b

(
b

a−min

)
det

1≤i,j≤n

((
xi + i−min−1

j − 1 + b[j = n]

))
.

Suppose min ≤ b1 ≤ b2 ≤ . . . ≤ bn ≤ max is a sequence of integers, then GTn,a,min,max(b1, . . . , bn)
is the number of Gelfand-Tsetlin patterns with bottom row b1, . . . , bn and top row a. This
follows, for instance, from a result in [Fis10, Theorem 3, S = ∅, P = Q = 1], as

∏

min≤i≤max,i 6=a

x− i

a− i
=

max−min∑

b=0

(−1)a+min+b

(
b

a−min

)(
x−min

b

)
.

Further, we define

Mn,a,min,max(u, v,x) =
∏

1≤p<q≤n

Strictxq ,xp
GTn,a,min,max(x),

then it follows from [Fis10, Theorem 3] and this ideas above that the evaluation ofMn,a,min,max(u, v,x)
at x = (b1, . . . , bn) is the generating function of monotone triangles with bottom row b1, . . . , bn
and top row a, provided that min ≤ b1 < b2 < . . . < bn ≤ max. The refined version of
Corollary 3 is then the following.

Theorem 4. Suppose b = (b1, . . . , bn) is a strictly increasing sequence of integers and min ≤
a ≤ max are integers with min ≤ b1 and bn ≤ max. Then the generating function of monotone
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t9

t10s1 s2 s3 t

Figure 1. Shape of an (s, t)-tree.

triangles with bottom row b1, . . . , bn and top row a is the constant term of the rational function

one obtains by multiplifying the Laurent polynomial in Corollary 3 with

max−min∑

b=0

(−1)a+min+b

(
b

a−min

) n∏

i=1

(1 + xi)
−min〈zb〉

n∏

i=1

1

1− x−1
i z

,

where 〈zb〉 means that we take the coefficient of zb and 1
1−x−1

i z
=

∞∑
k=0

zkx−k
i . Again, when

considering the special case u = v = 1, it suffices to require that b = (b1, . . . , bn) is weakly

increasing.

2.3. Truncated monotone triangles: (s, t)-trees. Next we turn to certain partial monotone
triangles. Let l, r, n be non-negative integers with l + r ≤ n. Suppose s = (s1, s2, . . . , sl),
t = (tn−r+1, tn−r+2, . . . , tn) are sequences of non-negative integers, where s is weakly decreasing,
while t is weakly increasing. An (s, t)-tree of order n is an integer array whose shape is obtained
from the shape of a monotone triangle with n rows when deleting the bottom si entries from
the i-th NE-diagonal for 1 ≤ i ≤ l (NE-diagonals are counted from the left) and the bottom ti
entries from the i-th SE-diagonal for n − r + 1 ≤ i ≤ n (SE-diagonals are also counted from
the left), see Figure 1. We assume in the following that there is no interference between the
deletion of the entries in the l leftmost NE-diagonals (as prescribed by s) with the deletion of
the entries from the r rightmost SE-diagonals (as prescribed by t).

In an (s, t)-tree, an entry mi,j is said to be regular if it has a SW neighbour mi+1,j and a SE
neighbour mi+1,j+1. We require the following monotonicity properties in an (s, t)-tree:

(1) Each regular entry mi,j has to fulfill mi+1,j ≤ mi,j ≤ mi+1,j+1.
(2) Two adjacent regular entries mi,j,mi,j+1 in the same row have to be distinct.

This extends the notion of monotone triangles, as a monotone triangle of order n is just an
(s, t)-tree, where l, r are any two numbers with l + r ≤ n, s = (0, . . . , 0︸ ︷︷ ︸

l

) and t = (0, . . . , 0︸ ︷︷ ︸
r

).

We extend the definition of the two inversion numbers as follows. Suppose M = (mi,j) (using
the indexing indicated in (2.1)) is an (s, t)-tree of order n and define

inv(M) = #{mi,j regular : mi,j = mi+1,j+1},

inv′(M) = #{mi,j regular : mi,j = mi+1,j}.

We define further generalizations of the inversion numbers that are useful for our purposes: The
generalization of inv depends on a subset J ⊆ {j|tj < tj+1} ∪ {n} of exceptional SE-diagonals
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and is defined as

invJ(M) = #{mi,j regular : mi,j = mi+1,j+1

and mi+1,j+1 is not the bottom entry of an exceptional SE-diagonal}.

The generalization of the complementary inversion number inv′ depends on a subset I ⊆ {1}∪
{i|si−1 > si} of exceptional NE-diagonals and is defined as

inv′I(M) = #{mi,j regular : mi,j = mi+1,j

and mi+1,j is not the bottom entry of an exceptional NE-diagonal}.

Next we define generalizations of the forward difference operator and of the backward differ-
ence operator, namely the v-forward difference operator ∆[v]x(w.r.t. the variable x) and the
u-backward difference operator ∆[u]x.

∆[v]x = (1 + (1− v)∆x)
−1∆x and ∆[u]x = (1 + (u− 1)∆x)

−1∆x

These operators are well-defined in our context, since

(1 + (1− v)∆x)
−1 =

∞∑

i=0

(v − 1)i∆
i

x and (1 + (u− 1)∆x)
−1 =

∞∑

i=0

(1− u)i∆i
x

and the sums are finite if applied to polynomials, because for each polynomial p(x) of degree d

we have ∆
i

xp(x) = ∆i
xp(x) = 0 for all i > d. The following property of ∆[v]x is crucial:

−∆[v]b1


Strictb(1)1 ,b

(2)
1

. . . Strict
b
(1)
n ,b

(2)
n

b
(1)
2∑

a1=b
(2)
1

b
(1)
3∑

a2=b
(2)
2

· · ·
b
(1)
n∑

an−1=b
(2)
n−1

f(a)




∣∣∣∣∣∣∣
b
(1)
i =b

(2)
i =bi

= −∆b1


Strictb(1)2 ,b

(2)
2

. . . Strict
b
(1)
n ,b

(2)
n

b
(1)
2∑

a1 = b1

b
(1)
3∑

a2=b
(2)
2

· · ·
b
(1)
n∑

an−1=b
(2)
n−1

f(a)




∣∣∣∣∣∣∣
b
(1)
i =b

(2)
i =bi

=


Strictb(1)2 ,b

(2)
2

. . . Strict
b
(1)
n ,b

(2)
n

b
(1)
3∑

a2=b
(2)
2

· · ·
b
(1)
n∑

an−1=b
(2)
n−1

f(b1, a2, . . . , an−1)




∣∣∣∣∣∣∣
b
(1)
i =b

(2)
i =bi

A similar identity is true for ∆[u]x. These observations imply almost immediately the following
result. The case u = v = 1 appeared first in [Fis11], however the proof given there can be
generalized easily, see also [Fis16].

Theorem 5. Let n, l, r be non-negative integers with l+ r ≤ n. Suppose b1, . . . , bn is a strictly

increasing sequence of integers, and s = (s1, s2, . . . , sl), t = (tn−r+1, tn−r+2, . . . , tn) are a weakly

decreasing and a weakly increasing sequence of non-negative integers, respectively. Then the

evaluation of the following polynomial

(−∆[v]x1)
s1 · · · (−∆[v]xl

)sl∆[u]tn−r+1
xn−r+1

· · ·∆[u]tnxn
Mn(u, v,x) (2.9)

at (x1, . . . , xn) = (b1, . . . , bn) is the generating function with respect to inv and inv′ of (s, t)-trees
of order n with the following properties:



GOG AND MAGOG TRAPEZOIDS 11

• For 1 ≤ i ≤ n− r, the bottom entry of the i-th NE-diagonal is bi.
• For n− r + 1 ≤ i ≤ n, the bottom entry of the i-th SE-diagonal is bi.

Furthermore, suppose I ⊆ {1} ∪ {i|si−1 > si} and J ⊆ {j|tj < tj+1} ∪ {n}, then the generating

function with respect to invJ and inv′I of these (s, t)-trees is obtained from (2.9) by applying

∏

i∈I

(
1 + (1− v)∆xi

)−1∏

j∈J

(
1 + (u− 1)∆xj

)−1

,

and then evaluating at (x1, . . . , xn) = (b1, . . . , bn). Finally, suppose min ≤ a ≤ max are integers

with min ≤ b1 and bn ≤ max, then we obtain the generating function of the above mentioned

(s, t)-trees that have a in the top row if Mn(u, v,x) is replaced by Mn,a,min,max(u, v,x).
When considering the special case u = v = 1, all results are true also if we only require that

b1, . . . , bn is weakly increasing.

In order to prove the modification concerning the generalized inversion numbers invJ and
inv′I , it has to be noted that

Strictx,y = 1 + (1− v)∆y

when applied to functions that are independent of x, while

Strictx,y = 1 + (u− 1)∆x

when applied to functions that are independent of y. Compare also to (2.4) and (2.5).
We translate the formula in the theorem into a constant term expression generalizing the

constant term expression of Corollary 3: To this end, we first observe that the application
of ∆bi to the constant term expression in Corollary 3 corresponds to the multiplication with
(1+xi)− 1 = xi, while the application of ∆bi

corresponds to the multiplication with 1− 1/(1+
xi) = xi/(1 + xi). This implies the following relations:

∆[u]bi ∼
xi

1 + (1− v)xi

and ∆[u]bi ∼
xi

1 + uxi

.

Corollary 6. The generating function of (s, t)-trees as described in the theorem is given by the

constant term in x1, . . . , xn of the following expression:

l∏

i=1

(
xi

(v − 1)xi − 1

)si n∏

i=n−r+1

(
xi

uxi + 1

)ti n∏

i=1

(1 + xi)
bix−n+1

i

×
∏

1≤i<j≤n

(xi − xj)(1 + (1− v)xi + u(xj + xixj))

If I, J are two sets as described in the theorem, then the generating function with respect to

invJ , inv
′
I is the constant term in x1, . . . , xn of the expression one obtains by multiplying the

rational function above with
∏

i∈I

1

1 + (1− v)xi

∏

j∈J

1 + xj

1 + uxj

.

If min ≤ a ≤ max are integers with min ≤ b1 and bn ≤ max, then the generating function of

the above mentioned (s, t)-trees whose top row is a is the constant term of the rational function

which is obtained by multiplying the respective expression by Pn,a,min,max(x).



12 ILSE FISCHER

3. Application: constant term formula for the generating function of

(m,n, k)-Gog trapezoids

Using the terminology of the previous section, (m,n, k)-Gog trapezoids with bottom row
b1, . . . , bk correspond to (s, t)-trees of order n, where s = ∅, t = (0, 1, . . . , n− k − 1), such that

(1) the bottom entries of the first k NE-diagonals are b1, . . . , bk,
(2) the bottom entries of the last n− k SE-diagonals are m+ k + 1, . . . ,m+ n.

In order to obtain the Gog trapezoid from the (s, t)-tree, one has to delete the (k + 1)-st
NE-diagonal from the (s, t)-tree.

Corollary 6 now implies the following formulas.

Theorem 7. The number of (m,n, k)-Gog trapezoids with bottom row b1, . . . , bk is the constant

term of

k∏

i=1

(1 + xi)
bix−n+1

i

n∏

i=k+1

(1 + xi)
m+k+1x−n+i−k

i

∏

1≤i<j≤n

(xi − xj)(1 + xj + xixj).

If m = 0, then the bottom row is necessarily 1, 2, . . . , k, and so the number of (0, n, k)-Gog

trapezoids is the constant term of

k∏

i=1

(1 + xi)
ix−n+1

i

n∏

i=k+1

(1 + xi)
k+1x−n+i−k

i

∏

1≤i<j≤n

(xi − xj)(1 + xj + xixj).

We are interested in the refined enumeration of (m,n, k)-Gog trapezoids with respect to four
parameters.

3.1. Inversion numbers. The two inversion numbers are defined in the obvious way: Suppose
M = (mi,j) is an (m,n, k)-Gog trapezoid, then

inv(M) = #{mi,j : mi,j = mi+1,j+1},

inv′(M) = #{mi,j : mi,j = mi+1,j}.

So, in order for the entry mi,j to contribute to inv(A), it must have a SE neighbor in the
(m,n, k)-Gog trapezoid and this neighbor must be equal to mi,j; however, mi,j need not to
have a SW neighbor. Similar for the complementary inversion number. Corollary 6 implies the
following.

Theorem 8. The generating function of (m,n, k)-Gog trapezoids with bottom row b1, . . . , bk
w.r.t. inv and inv′ is the constant term of

k∏

i=1

(1+xi)
bix−n+1

i

n∏

i=k+1

(1+xi)
m+i+1(1+uxi)

k−ix−n+i−k
i

∏

1≤i<j≤n

(xi−xj)(1+(1−v)xi+u(xj+xixj))

(3.1)
in x1, . . . , xn.

The additional factor
n∏

i=k+1

1+xi

1+uxi
is caused by the fact that the u-weight should not take into

account the entries in the k-th NE-diagonal that are equal to their upper bound.
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3.2. Minima and maxima. In order to involve the number of minima and the number of max-
ima in the Gog-trapezoids, we have to apply the version of Corollary 6 where the requirement
on b1, b2, . . . , bn is only that it is weakly increasing, and thus we cannot involve the inversion
numbers at the same time.

An (m,n, k)-Gog trapezoids with p minima can be identified with (s, t)-trees of order n,
where s = (p − 1), t = (0, 1, . . . , n − k − 1) and where the bottommost entry of the first NE-
diagonal is set to 2. In order to see this, delete in the (m,n, k)-Gog trapezoids with p minima
the occurences of 1 except for the topmost which is replaced by 2. In order to obtain a formula
for the number we have to multiply (3.1) by (−x1)

p−1 and set b1 = 2. We obtain

(−1)p−1(1 + x1)
2xp−n

1

k∏

i=2

(1 + xi)
bix−n+1

i

n∏

i=k+1

(1 + xi)
m+k+1x−n+i−k

i

×
∏

1≤i<j≤n

(xi − xj)(1 + xj + xixj). (3.2)

The case p = 0 is not covered by this formula. In that case, we use (3.1) with the appropriate
b1 > 1.

Now let M ⊆ {k + 1, . . . , n} and suppose we require to have a maximum in the i-th SE-
diagonal precisely if i ∈ M (and possibly in the k-th SE-diagonal, in which case we have
bk = m+ k). Then we need to multiply (3.2) by

∏

i∈M

xi

1 + xi

∏

i∈{k+1,k+2,...,n}\M

1

1 + xi

.

If we sum over all subsets M with cardinality q, we obtain
n∏

i=k+1

1

1 + xi

eq (xk+1, . . . , xn) ,

where eq denotes the q-th elementary symmetric function. As eq(xk+1, . . . , xn) is the coefficient

of Qq in
n∏

i=k+1

(1 +Qxi), we obtain the following theorem.

Theorem 9. The generating function of (m,n, k)-Gog trapezoids with bottom row 1, b2, . . . , bk
w.r.t. the weight

P#of minima Q#of maxima not including bk

is the constant term of

P (1 + Px1)
−1(1 + x1)

2x−n+1
1

k∏

i=2

(1 + xi)
bix−n+1

i

n∏

i=k+1

(1 +Qxi) (1 + xi)
m+kx−n+i−k

i

×
∏

1≤i<j≤n

(xi − xj)(1 + xj + xixj) (3.3)

in x1, . . . , xn, while the generating function of (m,n, k)-Gog trapezoids with bottom row b1, b2, . . . , bk
w.r.t. the weight

Q#of maxima not including bk
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is the constant term of

k∏

i=1

(1 + xi)
bix−n+1

i

n∏

i=k+1

(1 +Qxi) (1 + xi)
m+kx−n+i−k

i

∏

1≤i<j≤n

(xi − xj)(1 + xj + xixj) (3.4)

in x1, . . . , xn.

The generating functions in Theorems 8 and 9 can be restricted further to Gog trapezoids
with fixed top entry by multiplying with the Laurent series provided in Theorem 4.

In case m = 0, there is always a minimum and the bottom row is forced. Also note that the
last entry of the bottom row is a maximum in this case.

Corollary 10. The generating function of (0, n, k)-Gog trapezoids w.r.t. the number of minima

and maxima is the constant term of

PQ(1 + Px1)
−1(1 + x1)

2x−n+1
1

k∏

i=2

(1 + xi)
ix−n+1

i

n∏

i=k+1

(1 +Qxi) (1 + xi)
m+kx−n+i−k

i

×
∏

1≤i<j≤n

(xi − xj)(1 + xj + xixj).

In order to obtain the number of all (m,n, k)-Gog trapezoids with p minima and q maxima
also if m 6= 0, one has to sum over all possible bottom rows and take into account whether
the rightmost entry in the bottom row is a maximum. In the expressions in Theorem 9, the

bottom row appears only through the factors
k∏

i=2

(1 + xi)
bi and

k∏
i=1

(1 + xi)
bi , respectively.

3.3. Gog pentagons. In this section, we consider generalizations of Gog trapezoids (so-called
Gog pentagons) that were recently introduced by Biane and Cheballah [BC16]. In that paper
also certain Magog-type objects were introduced (so-called GOGAm pentagons) along with
the conjecture that there is the same number of Gog pentagons of a given type as there is of
GOGAm pentagons of the same type and that this is still true if we restrict to pentagons that
have a prescribed bottom entry. In this section, we use Corollary 6 to derive constant term
expressions for various refined countings of Gog pentagons including fixing the bottom entry.

Letm,n, kL, kR be non-negative integers with n+1 ≤ kL+kR. An (m,n, kL, kR)-Gog pentagon

is an arrangement of positive integers of the following form

•
• •

• • •
• • • •

• • • • •
• • • • •

• • • •

,

where n is the number of rows (n = 7 in the example), kL is the number of NE-diagonals (kL = 5
in the example) and kR is the number of SE-diagonals (kR = 6 in the example). Moreover,
the entries in the i-th NE-diagonal, 1 ≤ i ≤ kL (counted from the left), are bounded from
below by i and the entries in the i-th SE-diagonal, 1 ≤ i ≤ kR (counted from the right), are
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bounded from above by m + n + 1 − i. The entries are weakly increasing along NE-diagonals
and SE-diagonals, and strictly increasing along rows. (By the strict increase along rows, it
suffices to require that the entries in the i-th NE-diagonal are bounded from below by i for
1 ≤ i ≤ n − kR + 1 and that the entries in the i-th SE-diagonal are bounded from above by
m+ n+ 1− i for 1 ≤ i ≤ n− kL + 1.) A (3, 7, 5, 6)-Gog pentagon is displayed next.

4
3 5

2 5 8
2 4 7 9

1 4 6 7 10
1 4 5 8 8

3 5 6 8

Obviously, (m,n, k)-Gog trapezoids are (m,n, k, n)-Gog pentagons. Gog pentagons were first
defined by Biane and Cheballah in [BC16]; they use different parameters: (m,n, kL, kR)-Gog
pentagons as defined here correspond to their (m + n, kR, kL, n)-Gog pentagons. Also, as we
reflected their pentagons along a horizontal axis, the bottom entry in their pentagons is the
top entry of the pentagons as defined here.

3.4. Inversion numbers. We observe that (m,n, kL, kR)-Gog pentagons with bottom row
bn−kR+1, bn−kR+2, . . . , bkL correspond to (s, t)-trees of order n, where s = (n− kR − 1, n− kR −
2, . . . , 0) and t = (0, 1, . . . , n − kL − 1). This implies that the number of (m,n, kL, kR)-Gog
pentagons with bottom row bn−kR+1, . . . , bkL is equal to

(−1)(
n−kR

2 )
n−kR∏

i=1

(1 + xi)
ix1−kR−i

i

kL∏

i=n−kR+1

(1 + xi)
bix−n+1

i

n∏

i=kL+1

(1 + xi)
m+kL+1x−n+i−kL

i

×
∏

1≤i<j≤n

(xi − xj)(1 + xj + xixj).

If we define the inversion numbers for Gog pentagons in the obvious way, it follows that the
generating function of (m,n, kL, kR)-Gog pentagons with bottom row bn−kR+1, . . . , bkL and w.r.t.
the two inversion numbers are

(−1)(
n−kR

2 )
n−kR∏

i=1

(1 + xi)
i(1 + (1− v)xi)

−n+kR+i−1x1−kR−i
i

kL∏

i=n−kR+1

(1 + xi)
bix−n+1

i

×
n∏

i=kL+1

(1 + xi)
m+i+1(1 + uxi)

kL−ix−n+i−kL
i

∏

1≤i<j≤n

(xi − xj)(1 + (1− v)xi + u(xj + xixj)).

In order to obtain the generating function of (m,n, kL, kR)-Gog pentagons with top row a,
one has to multiply the expression with Pn,a,min,max(x), where min ≤ a ≤ max and min ≤ 1
and max ≥ m+ n.

3.5. Minima and maxima. A bottom-minimum is an entry in the leftmost SE-diagonal that
is equal to the lower bound of its SE-diagonal, while a bottom-maximum is an entry in the
rightmost NE-diagonal that is equal to the upper bound of its NE-diagonal. A top-minimum is
an entry equal to 1 and such entries can only be in the leftmost NE-diagonal. A top-maximum is
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an entry equal tom+n and such entries can only be in the rightmost SE-diagonal. Observe that
minima (resp. maxima) as defined for Gog trapezoids are top-minima (resp. bottom-maxima)
as defined for Gog pentagons.

Also in this case, it is not possible to include both, the inversions numbers, and the numbers
of maxima and minima because for the numbers of minima and maxima we need to apply
Corollary 6 in instances where b1, . . . , bn is not necessarily strictly increasing.

Corollary 6 implies in a similar way as for Gog trapezoids that the generating function of
(m,n, kL, kR)-Gog pentagons with bottom row bn−kR+1, . . . , bkL w.r.t. the weight

Q
#of bottom minima not including bn−kR+1

L Q
#of bottom maxima not including bkL

R

is the constant term of

(−1)(
n−kR

2 )
n−kR∏

i=1

(
1−QL

xi

1 + xi

)
(1 + xi)

i+1x1−kR−i
i

kL∏

i=n−kR+1

(1 + xi)
bix−n+1

×
n∏

i=kL+1

(1 +QRxi)(1 + xi)
m+kLx−n+i−kL

i

∏

1≤i<j≤n

(xi − xj)(1 + xj + xixj)

w.r.t. x1, . . . , xn. Finally, the generating function of (m,n, kL, kR)-Gog pentagons with bottom
row bn−kR+1, . . . , bkL that have at least one top-minimum and at least one top-maximum w.r.t.
the weight

P#of top minima
L P#of top maxima

R Q
#of bottom minima not including bn−kR+1

L Q
#of bottom maxima not including bkL

L

is the constant term of the following expression in x1, . . . , xn.

(−1)(
n−kR

2 )+1PL(1 + PLx1)
−1(1 + x1)

2x−kR+1
1 PR(1 + xn − PRxn)

−1x−kL+1
n (1 + xn)

kL+m

×QLQR

n−kR∏

i=2

(
1−QL

xi

1 + xi

)
(1 + xi)

i+1x1−kR−i
i

kL∏

i=n−kR

(1 + xi)
bix−n+1

i

×
n−1∏

i=kL+1

(1 +QRxi)(1 + xi)
m+kLx−n+i−kL

i

∏

1≤i<j≤n

(xi − xj)(1 + xj + xixj).

In order to obtain the generating functions of Gog pentagons where the top row is fixed, one
has to proceed as in the previous subsection.

4. Constant term formula for the number of (m,n, k)-Magog trapezoids with

prescribed numbers of minima and maxima

In this section we derive constant term formulas for the number of (m,n, k)-Magog trapezoids
with p maxima and q minima. Together with Theorem 9, where a constant term formula for
the number of (m,n, k)-Gog trapezoids with p minima and q maxima is provided, this could
serve as a framework to give a computational proof of Conjecture 1.

In special cases such constant term formulas have been derived before: Zeilberger gave a con-
stant term expression for the unrestricted enumeration of (0, n, k)-Magog trapezoids in [Zei96]
(see also [Zei94]), Krattenthaler extended this to (m,n, k)-Magog trapezoids in [Kra96], and
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Ishikawa finally included the number of maxima [Ish07]. Their formulas are different from ours
as the rational functions underlying the constant term formulas involve in general determinants.

4.1. First version. Using a standard technique, we can transform (m,n, k)-Magog trapezoids
with prescribed bottom row (bn−k+1, bn−k+2, . . . , bn) into families of non-intersecting lattice
paths as follows: We start by adding a new leftmost SE-diagonal consisting entirely of 1’s
and a new rightmost SE-diagonal consisting of (m+ 1,m+ 2, . . . ,m+ n) as indicated in green
in our running Example 1.1:

3
3 4

2 3 5
2 3 4 6

1 3 4 5 7
1 2 3 5 7 8

1 1 3 4 6 7 9
1 2 3 4 7 9

.

Next, we add i − 1 to the i-th NE-diagonal, counted from the left, for all 1 ≤ i ≤ n. Then
we associate with each NE-diagonal a lattice path with north steps and east steps where the
entries of the NE-diagonals are the heights of the paths, and, as long as 1 ≤ i ≤ n− k− 1, the
x-coordinate of the starting point is shifted by one unit to the left when passing from the i-th
NE-diagonal to the (i+1)-st NE-diagonal, while these x-coordinates are the same for the k+1
rightmost NE-diagonals. The family of non-intersecting lattice paths in Figure 2 corresponds
to the Magog in (1.1). Note that each of the paths starts and ends with a horizontal step and
thus we cut off these horizontal steps in the following.

Now it can be deduced that (m,n, k)-Magogs with bottom row (bn−k+1, bn−k+1, . . . , bn) corre-
spond to the families of non-intersecting lattice paths starting at (−i+1, i), 1 ≤ i ≤ n−k, and
(−n+k+1, bi+i−1), n−k+1 ≤ i ≤ n, and ending at (k−j+1,m+2j−1), 1 ≤ j ≤ n, allowing
steps in north direction and east direction. The last entry of a NE-diagonal is a maximum if the
last step of the respective lattice path is horizontal, while the first entry of the n− k leftmost
NE-diagonals is a minimum if the first step of the respective path is horizontal. The following
generating function of lattice paths starting at (a, b) and ending at (c, d)

∑

lattice path (a, b) → (c, d)

Q[first step is horizontal]P [last step is horizontal]

allowing steps in north direction and east direction is

N ((a, b+ 1) → (c, d− 1)) +QN ((a+ 1, b) → (c, d− 1))+

P N ((a, b+ 1) → (c− 1, d)) + PQN ((a+ 1, b) → (c− 1, d)),

where N ((a, b) → (c, d)) denotes the number of lattice paths starting at (a, b) and ending at
(c, d) (which is equal to

(
c+d−a−b

d−b

)
). Thus, this generating function is

(
c+ d− a− b− 2

d− b− 2

)
+ (P +Q)

(
c+ d− a− b− 2

d− b− 1

)
+ PQ

(
c+ d− a− b− 2

d− b

)
,
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111

2 222

3 3 3

4 444

55 5

6 66

7 7

8 88

9

10

11 11

1212

13

1515

(0, 0)

Figure 2. Non-intersecting lattice paths

which evaluates to (
c+ d− a− b− 1

d− b− 1

)
+ P

(
c+ d− a− b− 1

d− b

)

if Q = 1. If we use (
n

k

)
=

{
n(n−1)···(n−k+1)

k!
k ≥ 0

0 k < 0
,

then the formulas for the generating functions are true for any choice of integers a, b, c, d (in
particular also when there is no path from (a, b) to (c, d)) if whenever the upper parameter of
each binomial coefficient is negative, then also the lower parameter is negative. The Lindström-
Gessel-Viennot theorem [Lin73, GV85] now implies that the generating function of (m,n, k)-
Magog trapezoids that have bottom row (bn−k+1, . . . , bn) is

det
1≤i,j≤n

({(
j+k+m−3
2j+m−i−3

)
+ (P +Q)

(
j+k+m−3
2j+m−i−2

)
+ PQ

(
j+k+m−3
2j+m−i−1

)
, i = 1, . . . , n− k(

j+m+n−bi−i−1
2j+m−bi−i−1

)
+ P

(
j+m+n−bi−i−1

2j+m−bi−i

)
, i = n− k + 1, . . . , n

)
,
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where the weight is

P# of maxima ·Q# of minima not contained in the bottom row.

In case 1 ≤ i ≤ n − k, the upper parameter of a binomial coefficient in the matrix is negative
only if j = 1, k = 1,m = 0; then all lower parameters are also negative, except the one
after PQ if i = 1 which is 0 and it can be checked that also in this case we have the correct
generating function. In case n−k+1 ≤ i ≤ n, the upper parameters are either no less than the
lower parameters or non-negative or the lower parameters are negative, except for the binomial
coefficient after P when j +m + n − bi − i − 1 = −1 and 2j +m − bi − i = 0, and it can be
checked that also in this case we obtain the correct result.

Using
(
n
k

)
= (−1)k

(
k−n−1

k

)
, this is equal to

(−1)
(m−1)n+(n+1

2 )+
n∑

i=n−k+1
bi

× det
1≤i,j≤n

({(
j−i−k−1
2j+m−i−3

)
− (P +Q)

(
j−i−k

2j+m−i−2

)
+ PQ

(
j−i−k+1
2j+m−i−1

)
, i = 1, . . . , n− k(

j−n−1
2j+m−bi−i−1

)
− P

(
j−n

2j+m−bi−i

)
, i = n− k + 1, . . . , n

)
.

Now, as CTx
(1+x)n

xk =
(
n
k

)
, where CTx denotes the constant term in x, this is equal to

CTx1,...,xn
(−1)

(m−1)n+(n+1
2 )+

n∑

i=n−k+1
bi

× det
1≤i,j≤n







(1+xi)
j−i−k−1

x2j+m−i−3
i

− (P +Q) (1+xi)
j−i−k

x2j+m−i−2
i

+ PQ (1+xi)
j−i−k+1

x2j+m−i−1
i

, i = 1, . . . , n− k

(1+xi)
j−n−1

x
2j+m−bi−i−1
i

− P (1+xi)
j−n

x
2j+m−bi−i

i

, i = n− k + 1, . . . , n


 .

After pulling out the factor
n−k∏

i=1

(1 + xi)
−i−k

xm−i+1
i

(xi − P (1 + xi)) (xi −Q(1 + xi))
n∏

i=n−k+1

(1 + xi)
−n

xm−bi−i+2
i

(xi − P (1 + xi))

of the determinant, it remains

det
1≤i,j≤n

(
(x−1

i + x−2
i )j−1

)
=

∏

1≤i<j≤n

(
x−1
j + x−2

j − x−1
i − x−2

i

)
=

∏

1≤i<j≤n

(xi − xj)(xi + xj + xixj)

x2
ix

2
j

,

which can be computed using the Vandermonde determinant evaluation.
We obtain the following theorem.

Theorem 11. The generating function of (m,n, k)-Magog trapezoids with bottom row bn−k+1, . . . , bn
and w.r.t. the weight

P#of maximaQ#of minima not including bn−k+1

is the constant term of the following expression in x1, . . . , xn.

(−1)
(m−1)n+(n+1

2 )+
n∑

i=n−k+1
bi

n−k∏

i=1

(1 + xi)
−i−kx−m−2n+i+1

i (xi − P (1 + xi)) (xi −Q(1 + xi))

×
n∏

i=n−k+1

(1 + xi)
−nx−m−2n+bi+i

i (xi − P (1 + xi))
∏

1≤i<j≤n

(xi − xj)(xi + xj + xixj). (4.1)
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We set

Mm,n,k(x1, . . . , xn)

= (−1)(m−1)n+(n−k+1
2 )

n−k∏

i=1

(1 + xi)
−i−kx−m−2n+i+1

i (xi − P (1 + xi)) (xi −Q(1 + xi))

×
n∏

i=n−k+1

(1 + xi)
−nx−m−2n

i (xi − P (1 + xi))
∏

1≤i<j≤n

(xi − xj)(xi + xj + xixj),

so that the generating function is

n∏

i=n−k+1

(−xi)
bi+iMm,n,k(x1, . . . , xn).

It will be crucial that Mn,n,k(x1, . . . , xn) is an antisymmetric function in xn−k+1, . . . , xn. It
follows that the generating function of (m,n, k)-Magogs w.r.t. the weight

P# of maxima ·Q# of minima

is the constant term of

Q


 ∑

1≤bn−k+2≤bn−k+3≤...≤bn

yn−k+2
n−k+1

n∏

i=n−k+2

ybi+i
i


+


 ∑

2≤bn−k+1≤bn−k+2≤...≤bn

n∏

i=n−k+1

ybi+i
i






×Mm,n,k(x1, . . . , xn)

=

(
Q+

∏n
i=n−k+1 yi

1−
∏n

i=n−k+1 yi

) ∏n
i=n−k+1 y

i+1
i

∏n
i=n−k+2

(
1−

∏n
j=i yj

)Mm,n,k(x1, . . . , xn), (4.2)

where we set yi = −xi. We use the following notation: Suppose F (xr+1, . . . , xr+s) is a function
in xr+1, . . . , xr+s and σ ∈ Ss, then

σ[F (xr+1, . . . , xr+s)] := F (xσ(r+1), . . . , xσ(r+s)).

Now the constant term of the expression in (4.2) is

1

(k − 1)!

∑

σ∈Sk−1

Qyn−k+2
n−k+1Mm,n,k(x1, . . . , xn) sgn σ · σ

[
n∏

i=n−k+2

yi+1
i

1−
∏n

j=i yj

]

+
1

k!

∑

σ∈Sk

Mm,n,k(x1, . . . , xn) sgn σ · σ

[
n∏

i=n−k+1

yi+2
i

1−
∏n

j=i yj

]
. (4.3)

We need the following lemma from [Zei96, Subsublemma 1.1.3].

Lemma 12. Let r ≥ 1 be an integer. Then

∑

σ∈Sr

sgn σ · σ

[
r∏

i=1

yi−1
i

1−
∏r

j=i yj

]
=

r∏

i=1

(1− yi)
−1

∏

1≤i<j≤r

yj − yi
1− yiyj

.
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From the lemma it now follows that the expression in (4.3) is equal to

Q · yn−k+2
n−k+1Mm,n,k(x1, . . . , xn)

∏n
i=n−k+2 y

n−k+3
i (1− yi)

−1

(k − 1)!

∏

n−k+2≤i<j≤n

yj − yi
1− yiyj

+
Mm,n,k(x1, . . . , xn)

∏n
i=n−k+1 y

n−k+3
i (1− yi)

−1

k!

∏

n−k+1≤i<j≤n

yj − yi
1− yiyj

.

This can also be written as

Q · yn−k+2
n−k+1Mm,n,k(x1, . . . , xn)

∏n
i=n−k+2(1− yi)

−1

(k − 1)!

∏

n−k+2≤i<j≤n

1

1− yiyj

∑

σ∈Sk−1

sgn σ σ

[
n∏

i=n−k+2

yi+1
i

]

+
Mm,n,k(x1, . . . , xn)

∏n
i=n−k+1(1− yi)

−1

k!

∏

n−k+1≤i<j≤n

1

1− yiyj

∑

σ∈Sk

sgn σ σ

[
n∏

i=n−k+1

yi+2
i

]
.

We again employ the antisymmetry of Mm,n,k(x1, . . . , xn) to see that this is equal to

Q · yn−k+2
n−k+1Mm,n,k(x1, . . . , xn)

n∏

i=n−k+2

yi+1
i (1− yi)

−1
∏

n−k+2≤i<j≤n

1

1− yiyj

+Mm,n,k(x1, . . . , xn)
n∏

i=n−k+1

yi+2
i (1− yi)

−1
∏

n−k+1≤i<j≤n

1

1− yiyj

= (−1)(
n+3
2 )+(n−k+3

2 )Mm,n,k(x1, . . . , xn)
n∏

i=n−k+1

xi+2
i

1 + xi

∏

n−k+1≤i<j≤n

1

1− xixj

×

(
(−1)kQ(1 + x−1

n−k+1)
n∏

j=n−k+2

(x−1
j − xn−k+1) + 1

)
.

We summarize our result in the following theorem.

Theorem 13. The generating function of (m,n, k)-Magog trapezoids w.r.t. the weight

P#of maxima Q#of minima
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Figure 3. An (2, 7, 5)-Magog trapezoids and its separating lattice paths

is the constant term in x1, . . . , xn of the following expression.

(−1)(m−1)n+(n+1
2 )

(
(−1)kQ(1 + x−1

n−k+1)
n∏

j=n−k+2

(x−1
j − xn−k+1) + 1

)

×
n−k∏

i=1

(1 + xi)
−i−kx−m−2n+i+1

i (xi − P (1 + xi)) (xi −Q(1 + xi))

×
n∏

i=n−k+1

(1 + xi)
−n−1x−m−2n+i+2

i (xi − P (1 + xi))

×
∏

1≤i<j≤n

(xi − xj)(xi + xj + xixj)
∏

n−k+1≤i<j≤n

1

1− xixj

4.2. Second version. There are other options to encode (m,n, k)-Magog trapezoids as fam-
ilies of non-intersecting lattice paths, see for instance [Kra96]. We derive the constant term
expression for a second possibility in this subsection, following an encoding that was used for
instance in [FZJ08]. Instead of interpreting NE-diagonals as lattice paths, we now consider the
lattice paths that separate the entries that are less than or equal to i in the Magog trapezoid
from the entries that are greater than or equal to i + 1, 1 ≤ i ≤ m + n − 1, see Figure 3. By
rotating the picture and shifting the paths appropriately, these paths can be transformed into a
family of non-intersecting lattice paths, see Figure 4 (the leftmost separating path in Figure 3,
i.e. the one separating the 1’s from 2’s, corresponds to the bottom path in Figure 4).

It can be worked out that (m,n, k)-Magog trapezoids correspond to families of non-intersecting
lattice paths with starting points (−i + 1, i − 1), i = 1, . . . ,m − 1, and (−i + 1, 2i − m − 1),
m ≤ i ≤ m + n− 1, and end points (k − bj + 1, n − k + bj − 1), 1 ≤ j ≤ m + n− 1, for some
1 ≤ b1 < b2 < . . . < bm+n−1 ≤ m+ n+ k − 1, with north steps and east steps. The maximums
correspond to the lattice paths with starting points (−i + 1, 2i−m− 1), m ≤ i ≤ m + n− 1,
such that the first step is horizontal, while the number of minima is just the height of the last
horizontal step of the path ending at (k−b1+1, n−k+b1−1) if b1 = 1, otherwise it is n−k+1.
It follows that the number of (m,n, k)-Magog trapezoids with q minima is equal to the number
of the following family of lattice paths depending on whether or not q = n− k + 1.
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Figure 4. Non-intersecting lattice paths for the second version

Case q ≤ n − k: In this case, we need to count families of non-intersecting lattice paths
starting at (−i+ 1, i− 1), i = 1, . . . ,m− 1, and (−i+ 1, 2i−m− 1), m ≤ i ≤ m+ n− 1, and
with ending points (k − 1, q) and (k − bj + 1, n − k + bj − 1), 2 ≤ j ≤ m + n − 1, for some
2 ≤ b2 < . . . < bm+m−1 ≤ m+ n+ k − 1.

Case q = n−k+1: Here, we need to count families of non-intersecting lattice paths starting
at (−i+1, i−1), i = 1, . . . ,m−1, and (−i+1, 2i−m−1), m ≤ i ≤ m+n−1, and with ending
points (k−bj+1, n−k+bj−1), 1 ≤ j ≤ m+n−1, for some 2 ≤ b1 < . . . < bm+m−1 ≤ m+n+k−1.

First we assume q ≤ n− k.
The generating function of lattice paths starting at (a, b) and ending at (c, d) with respect

to the weight

P [first step is horizontal]

allowing steps in north direction and east direction is

P · N ((a+ 1, b) → (c, d)) +N ((a, b+ 1) → (c, d))

= P

(
c+ d− a− b− 1

c− a− 1

)
+

(
c+ d− a− b− 1

c− a

)
.

The formula is true whenever c + d − a − b > 0. It is also true when c + d − a − b = 0 and
c− a = 0. If c+ d− a− b = 0 and c− a 6= 0 or c+ d− a− b < 0, then the generating function
vanishes. It follows that the generating function of (m,n, k)-Magog trapezoids with q minima
and w.r.t. the number of maxima is

det
1≤i,j≤m+n−1




(
k+q−1
k+i−2

) (
n

i+k−bj

)
{
P
(
k+m+q−i−2

k+i−3

)
+
(
k+m+q−i−2

k+i−2

)
, i ≤ k +m+ q − 2

0, i ≥ k +m+ q − 1
P
(
m+n−i−1
i+k−bj−1

)
+
(
m+n−i−1
i+k−bj

)


 ,

where we need to distinguish between 1 ≤ i ≤ m − 1 and m ≤ i ≤ m + n − 1 concerning the
row, and between j = 1 and 2 ≤ j ≤ m+n−1 concerning the columns, and we have to exclude
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the case when k = 1 and m+ q = 1. This is equal to the constant term of

det
1≤i,j≤m+n−1




(1+xi)
k+q−1

xi+k−3
i

(1+xi)
n

x
i+k−bj
i{

P (1+xi)
k+m+q−i−2

xi+k−3
i

+ (1+xi)
k+m+q−i−2

xi+k−2
i

i ≤ k +m+ q − 2

0 i ≥ k +m+ q − 1
P (1+xi)

m+n−i−1

x
i+k−bj−1

i

+ (1+xi)
m+n−i−1

x
i+k−bj
i


 .

We pull out the factor

P [m=0]

m+n−1∏

i=1

(1 + xi)
nx−i−k

i

m+n−1∏

i=max(1,m)

(1 + xi)
m−i−1 (Pxi + 1) ,

and we obtain the following determinant

det
1≤i,j≤m+n−1

( {
(1 + xi)

k+q−n−1x2
i , i ≤ k +m+ q − 2

0, i ≥ k +m+ q − 1
x
bj
i

)
,

where we now only have to distinguish between j = 1 and 2 ≤ j ≤ m + n − 1 concerning
the columns, while we have a homogeneous definition in the rows. We expand w.r.t. the first
column and obtain

k+m+q−2∑

l=1

(−1)l+1(1 + xl)
k+q−n−1x2

l det
2≤j≤m+n−1

1≤i≤m+n−1,i 6=l

(
x
bj
i

)
. (4.4)

Now we aim to sum over all 2 ≤ b2 < . . . < bm+n−1 ≤ m + n + k − 1. However, since the
constant term is zero if bm+n−1 ≥ m+n+k, we can simply sum over all 2 ≤ b2 < . . . < bm+n−1.
Observe that by Lemma 12 we get

∑

b≤b1<b2<...<br

det
1≤i,j≤r

(
x
bj
i

)
=

∑

b≤b1<b2<...<br

∑

σ∈Sr

sgn σ · σ
[
xb1
1 · · · xbr

r

]

=
l∏

i=1

xb
i

∑

σ∈Sr

sgn σ · σ

[ ∑

0≥b1<b2<...<br

xb1
1 · · · xbr

r

]
=

r∏

i=1

xb
i

∑

σ∈Sr

sgn σ · σ




r∏

i=1

xi−1
i(

1−
∏r

j=i xj

)




=
r∏

i=1

xb
i(1− xi)

−1
∏

1≤i<j≤r

xj − xi

1− xixj

. (4.5)

We sum (4.4) over all b2, . . . , bm+n−1 with 2 ≤ b2 . . . < bm+n−1 and obtain

k+m+q−2∑

l=1

(−1)l+1(1 + xl)
k+q−n−1x2

l

∏

1≤i≤m+n−1
i 6=l

x2
i (1− xi)

−1
∏

1≤i<j≤m+n−1
i,j 6=l

xj − xi

1− xixj
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It follows that the generating function of (m,n, k)-Magog trapezoids with q Minima w.r.t. the
weight P# of maxima is the constant term of

P [m=0]

m+n−1∏

i=1

(1 + xi)
nx−i−k

i

m+n−1∏

i=max(m,1)

(1 + xi)
m−i−1 (Pxi + 1)

×

k+m+q−2∑

l=1

(−1)l+1(1 + xl)
k+q−n−1x2

l

m+n−1∏

1≤i≤m+n−1
i 6=l

x2
i (1− xi)

−1
∏

1≤i<j≤m+n−1
i,j 6=l

xj − xi

1− xixj

if we assume q ≤ n− k.
In case q = n− k + 1, the number of Magog trapezoids is the constant term of

det
1≤i,j≤m+n−1







(1+xi)
n

x
i+k−bj
i

, i = 1, . . . ,m− 1

P (1+xi)
m+n−i−1

x
i+k−bj−1

i

+ (1+xi)
m+n−i−1

x
i+k−bj
i

, i = m, . . . ,m+ n− 1


 .

Again we pull out the factor

P [m=0]

m+n−1∏

i=1

(1 + xi)
nx−i−k

i

m+n−1∏

i=max(m,1)

(1 + xi)
m−i−1 (Pxi + 1) ,

and, in this case, we obtain the following simple determinant.

det
1≤i,j≤m+n−1

(
x
bj
i

)
,

Finally, we sum over all 2 ≤ b1 < b2 < . . . < bm+n−1, and, by (4.5), we obtain

P [m=0]

m+n−1∏

i=1

(1 + xi)
nx−i−k+2

i (1− xi)
−1

m+n−1∏

i=max(m,1)

(1 + xi)
m−i−1 (Pxi + 1)

∏

1≤i<j≤m+n−1

xj − xi

1− xixj

.

We summarize our results in the following theorem.

Theorem 14. Suppose k 6= 1 or m + q 6= 1. The generating function of (m,n, k)-Magog

trapezoids w.r.t. the weight P# of maxima and with q minima is equal to the constant term of

P [m=0]

m+n−1∏

i=1

(1 + xi)
nx−i−k+2

i (1− xi)
−1

m+n−1∏

i=max(m,1)

(1 + xi)
m−i−1 (Pxi + 1)

∏

1≤i<j≤m+n−1

xj − xi

1− xixj

×





k+m+q−2∑
i=1

(1 + xi)
k+q−n−1(1− xi)

∏
1≤j≤m+n−1

j 6=i

1−xixj

xj−xi
, if q ≤ n− k

1, if q = n− k + 1.

5. Connecting Gogs and Magogs

In summary, we have seen that the constant term expressions for the number of Gog-type

objects are all of the following form

s ·
n∏

i=1

fi(xi)
∏

1≤i<j≤n

(xi − xj)(1 + xj + xixj),
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where fi(x) are certain (simple) rational function—often of the form

fi(x) = xai(1 + x)bi ,

ai, bi integers—and s is a sign. These functions usually have (somewhat) homogeneous def-
initions for certain ranges of i: for instance, when considering (m,n, k)-Gog trapezoids, the
definition is homogeneous for 1 ≤ i ≤ k and also for k + 1 ≤ i ≤ n, see Theorem 7. In this
case, a factor 1 + x in fi(x) is replaced by 1 + Qxi for k + 1 ≤ i ≤ n when considering the
number of maxima, and f1(x) has an exceptional definition when considering the number of
minima. When considering the generating function w.r.t. the two inversion numbers, the term
1+xj +xixj is replaced by 1+(1−v)xi+u(xj +xixj) and some fi(x) have an additional factor

1
(1+(1−v)x)ci

, while others have an additional factor 1
(1+ux)di

, ci, di non-negative integers.

Concerning constant term expressions for the number of Magog-type objects we need to
distinguish between the two versions. In the first case (Theorem 13), we have a sum of two
expressions of the form

s ·
n∏

i=1

fi(xi)
∏

1≤i<j≤n

(xi − xj)(xi + xj + xixj)
∏

n−k+1≤i<j≤n

1

1− xixj

,

while in the second case (Theorem 14), we have an expression of the form

s ·
n∏

i=1

fi(xi)
∏

1≤i<j≤m+n−1

xj − xi

1− xixj

if q = n− k + 1 and a slightly more complicated expression otherwise.
In [FZJ08] it was shown that the number of n× n ASMs (which is the same as the number

of (n, n, n)-Gog trapezoids) is the constant term of the following expression

n−1∏

i=1

(1 + xi)
2x−2i+1

i

∏

1≤i<j≤n−1

(xj − xi)(1 + xj + xixj). (5.1)

This is a Gog-type constant term expression as described above. Interestingly, this formula
was derived using the six-vertex model approach, which is different from the approach that was
used here. On the other hand, it was shown that the number of TSSCPPs in an 2n× 2n× 2n
box (which is the same as the number of (n, n, n)-Magogs) is the constant term of

n∏

i=1

(1 + xi)
ix−2i+2

i (1− x2
i )

−1
∏

1≤i<j≤n

xj − xi

1− xixj

, (5.2)

and this is a Magog-type constant term expression. In [FZJ08], Fonseca and Zinn-Justin suc-
ceeded in showing that the constant terms of the two expressions are equal. It can essentially be
deduced from the following theorem, which was conjectured by Di Francesco and Zinn-Justin
[ZJDF08] and first proven by Zeilberger [Zei07].
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Theorem 15. Let S(x1, . . . , xn) be a power series in x1, . . . , xn that is symmetric in x1, . . . , xn.

Then

CTx1,...,xn
S(x1, . . . , xn)

n∏

i=1

x−2i+1
i

∏

1≤i<j≤n

(xj − xi)(1 + txj + xixj)

= CTx1,...,xn
S(x1, . . . , xn)

n∏

i=1

(1 + txi)
i−1x−2i+1

i

1− x2
i

∏

1≤i<j≤n

xj − xi

1− xixj

.

Fonseca and Zinn-Justin [FZJ08] gave another proof of the result, which is discussed next.
The general strategy (which also appeared in [Zei96]) is to compute the symmetrizers of

(5.1) and of (5.2). (The symmetrizer is defined as the antisymmetrizer except for the sign sgn σ
which is omitted, see (2.7).) Clearly, in order to show that the constant terms of the original
expressions are equal, it suffices to show this for the symmetrized expressions.

The computation of the symmetrizer is usually much easier for the Magog-type constant
term expressions, as

∏
1≤i<j≤n

xj−xi

1−xixj
is antisymmetric and therefore it suffices to compute the

antisymmetrizer of
n∏

i=1

fi(xi) (with fi(x) = (1 + xi)
ix−2i+2

i (1 − x2
i )

−1 in this case), which can

often be accomplished using the Vandermonde determinant evaluation.
As for the Gog-type constant term expressions, the following result of Fonseca and Zinn-

Justin [FZJ08] can be used to compute the symmetrizer of (5.1) (and also to prove Theorem 15).
The symmetrization of the Gog-type expression (5.1) causes the “core”

∏
1≤i<j≤n−1(xj−xi)(1+

xj + xixj) to be transformed into
∏

1≤i<j≤n
xj−xi

1−xixj
(which is the “core” of the Magog-type

expression (5.1)), and so the expressions are very similar (but not equal) after symmetrization.1

Theorem 16. Let hq(w, y) = (qw − q−1y)(qwy − q−1). Then the antisymmetrizer of

∏
1≤i<j≤n(qwi − q−1wj)∏

1≤i≤j≤n h1(wj, yi)
∏

1≤j≤i≤n hq(wj, yi)
(5.3)

w.r.t. w1, . . . , wn is

q(
n

2) det1≤i,j≤n

(
1

h1(wi,yj)hq(wi,yj)

)

∏
1≤i<j≤n h1(yi, yj)(1− q2wiwj)

.

1The following identity is often helpful for further manipulations (the proof is left to the reader as we will not
use it here): Suppose P (x1, . . . , xn), S(x1, . . . , xn) are two formal power series and S(x1, . . . , xn) is symmetric.
Then the constant term of

S(x1, . . . , xn)P (x1, . . . , xn)

(x1 · · ·xn)n−1

∏

1≤i<j≤n

(xj − xi)

agrees with the constant term of

S(0, . . . , 0)P (x1, . . . , xn)

(x1 · · ·xn)n−1

∏

1≤i<j≤n

(xj − xi).
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Now in order to compute the constant term of (5.1) using Theorem 16, one sets wi =
(xiq

−1 − 1)/(xiq − 1) in (5.3) and obtains

(q − q−1)(
n

2)
∏

1≤i<j≤n

(1− (q + q−1)xj + xixj)
n∏

i=1

(qxi − 1)n+5

×

(
i∏

j=1

(−1 + yj + xi(q − q−1yj))(1− yj + xi(−q−1 + qyj))

×
n∏

j=i

(−q−1 + qyj + xi(1− yj))(q − q−1yj + xi(−1 + yj))

)−1

. (5.4)

We need to compute the antisymmetrizer of
n∏

i=1

x−2i+1
i

∏

1≤i<j≤n

(1 + xj + xixj) (5.5)

After setting yj = 1 and q = e2iπ/3, (5.4) is up to a factor that is symmetric in x1, . . . , xn equal
to (5.5).

5.1. A variant of Theorem 16 and its application to (2.3) and to (2.6) when bi = i.
Next we state a theorem that is similar to Theorem 16 and that can be proven analogously.

Theorem 17. Let hq(w, y) = (qw − q−1y). Then the antisymmetrizer of∏
1≤i<j≤n hq(wi, wj)∏

1≤i≤j≤n h1(wj, yi)
∏

1≤j≤i≤n hq(wj, yi)
(5.6)

w.r.t. w1, . . . , wn is

det1≤i,j≤n

(
1

h1(wi,yj)hq(wi,yj)

)

∏
1≤i<j≤n h1(yj, yi)

.

Proof. The proof is by induction w.r.t. n. The case n = 1 is easy to check.
Let A(w1, . . . , wn; y1, . . . , yn) denote the antisymmetrizer of (5.6). We have the following

recursion for A(w1, . . . , wn; y1, . . . , yn).

A(w1, . . . , wn; y1, . . . , yn) =
n∑

k=1

(−1)k+n

∏
1≤i≤n,i 6=k

hq(wi, wk)

n∏
i=1

h1(wk, yi)hq(wi, yn)
A(w1, . . . , ŵk, . . . , wn; y1, . . . , yn−1)

By the induction hypothesis, the right-hand side is equal to

n∑

k=1

(−1)k+n det
1≤i≤n,i 6=k

1≤j≤n−1

(
1

h1(wi, yj)hq(wi, yj)

)
∏

1≤i≤n,i 6=k

hq(wi, wk)
∏

1≤i≤n−1

h1(yn, yi)

n∏
i=1

h1(wk, yi)hq(wi, yn)
∏

1≤i<j≤n

h1(yj, yn)
. (5.7)

We define

gl(w1, . . . , wn; y1, . . . , yn) =
∏

1≤i≤n−1,i 6=l

h1(yi, yn)

h1(yl, yi)

n∏

i=1

hq(wi, yl)

hq(wi, yn)
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and claim that

n∑

l=1

gl(w1, . . . , wn; y1, . . . , yn)
1

h1(wk, yl)hq(wk, yl)
=

∏
1≤i≤n,i 6=k

hq(wi, wk)
∏

1≤i≤n−1

h1(yi, yn)

∏
1≤i≤n

h1(wk, yi)hq(wi, yn)
.

(5.8)
Assuming (5.8) is true, we can replace in (5.7) the expression on the right-hand side of (5.8)
by the left-hand side of (5.8). We change the order of summation and obtain

(−1)n−1
∏

1≤i<j≤n

h1(yj, yi)
−1

n∑

l=1

gl det
1≤i,j≤n

(
1

h1(wi, yj)hq(wi, yj)

)∣∣∣∣
yn=yl

and the last expression is equal to the expression in the theorem. In order to prove (5.8), we
rearrange the identity and obtain

n∑

l=1

∏

1≤i≤n−1
i 6=l

h1(yi, yn)

h1(yl, yi)

∏

1≤i≤n

i 6=k

hq(wi, yl)
∏

1≤i≤n

i 6=l

h1(wk, yi) =
∏

1≤i≤n,i 6=k

hq(wi, wk)
∏

1≤i≤n−1

h1(yi, yn).

We consider both sides as polynomials in wk. The degree is in both cases not greater than
n− 1 and so it suffices to show that they agree at the evaluations wk = yp, 1 ≤ p ≤ n. In this
case, each summand on the left-hand side vanishes except for the summand corresponding to
l = p. �

Note that the statement of this theorems differs from the statement of Theorem 16 only in
so far that we set hq(w, y) = (qw − q−1y) instead of hq(w, y) = (qw − q−1y)(qwy − q−1).

We compute the symmetrizer of (2.3): We set wi = (xi + 1 + q−1)/(xi + 1 + q) in (5.6) and
obtain

(
q − q−1

)(n2) ∏

1≤i<j≤n

(q−1 + 2 + q + (q−1 + 1 + q)xi + xj + xixj)
n∏

i=1

(1 + q + xi)
2

×

(
n∏

i=1

i∏

j=1

(
xi(1− yj) + (1 + q−1)(1− qyj)

) n∏

j=i

(
xi(q − q−1yj) + (1 + q)(1− yjq

−1)
)
)−1

.

By setting yi = 1, q = e2iπ/3 and applying Theorem 17, we obtain

ASx1,...,xn

[ ∏

1≤i<j≤n

(1 + xj + xixj)
n∏

i=1

(1 + xi)
ix−n+1

i

]

= (−1)(
n+1
2 )qn(q − q−1)(n+3)n/2

n∏

i=1

(1 + xi)
n+1x−n+1

i (1 + q + xi)
−2

× lim
(y1,...,yn)→1

det
1≤i,j≤n


 1(

yj −
xi+1+q−1

xi+1+q

)(
yj − q2 xi+1+q−1

xi+1+q

)


 ∏

1≤i<j≤n

(yj − yi)
−1. (5.9)
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Next we aim at using the Cauchy determinant

det
1≤i,j≤n

(
1

xi + yj

)
=

∏
1≤i<j≤n(xj − xi)(yj − yi)∏n

i,j=1(xi + yj)

to modify the right-hand side. We use the following partial fraction decomposition

1

(y − a)(y − b)
=

1

a− b

(
1

y − a
−

1

y − b

)

to rewrite the matrix entry of the determinant. We obtain

(−1)(
n

2)(q − q−1)(
n+1
2 )

n∏

i=1

(1 + xi)
n+1x−n+1

i (xi + 1 + q)−1(xi + 1 + q−1)−1

× lim
(y1,...,yn)→1

det
1≤i,j≤n


 1(

yj −
xi+1+q−1

xi+1+q

) −
1(

yj − q2 xi+1+q−1

xi+1+q

)


 ∏

1≤i<j≤n

(yj − yi)
−1

for the right-hand side. The determinant can be written as a sum of 2n Cauchy determinants.

det
1≤i,j≤n


 1(

yj −
xi+1+q−1

xi+1+q

) −
1(

yj − q2 xi+1+q−1

xi+1+q

)


 =

∑

(s1,...,sn)∈{0,1}n
det

1≤i,j≤n


(−1)si

1(
yj − q2si xi+1+q−1

xi+1+q

)




In a similar situation, namely the proof of the equality of the constant terms of (5.1) and (5.2),
only one of theses Cauchy determinants contributes to the constant term. This is not true here,

which is mainly due to the factor
n∏

i=1

x−n+1
i in (2.3). However, it is still possible to get rid of

the extra set of variables y1, . . . , yn and it follows that the right-hand side is equal to

n∏

i=1

(1+xi)
n+1x−n+1

i (xi+1+q−1)−1
∑

(s1,...,sn)∈{0,1}n
(−1)(n−1)(s1+...+sn)+(n2)q−s1−...−sn

n∏

i=1

(1+xi)
−nsi

×
∏

1≤i<j≤n

((1 + xixj)(si − sj) + xi(1− si − 2sj + 3sisj) + xj(−1 + sj + 2si − 3sisj)) ,

and this can also be written as follows.
n∏

i=1

(1 + xi)
n+1x−n+1

i (xi + 1 + q−1)−1 det
1≤i,j≤n

(
xj−1
i − (−1− xi)

−jq−1
)

As for computing the symmetrizer of (2.6) when bi = i, we set wi = (xiq
−1 − 1)/(xiq − 1) in

(5.6) and obtain

(q − q−1)(
n

2)
∏

1≤i<j≤n

(1− (q + q−1)xj + xixj)
n∏

i=1

(qxi − 1)2

×

(
i∏

j=1

(−1 + yj + xi(q
−1 − qyj))

n∏

j=i

(−q + yjq
−1 + xi(1− yj))

)−1

(5.10)
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Furthermore, we set yi = 1 and q = eiπ/3, and Theorem 17 now implies in a similar way as
above

ASx1,...,xn

[ ∏

1≤i<j≤n

(1− xj + xixj)
n∏

i=1

(1− xi)
−nx−n+1−i

i

]
=

n∏

i=1

(1−xi)
−nx−n+1

i (q−1xi−1)−1
∑

(s1,...,sn)∈{0,1}n
(−q)−s1−...−sn(−1)(

s1+...+sn
2 )+(n−s1−...−sn

2 )+n
n∏

i=1

x
n(si−1)
i

×
∏

1≤i<j≤n

((1 + xixj)(si − sj) + xi(−1 + si + 2sj − 3sisj) + xj(1− sj − 2si + 3sisj)) .

This can also be written as
n∏

i=1

(1− xi)
−nx−n+1

i (q−1xi − 1)−1 det
1≤i,j≤n

(
−x−j

i + (1− xi)
j−1q−1

)
.

5.2. The application of Theorem 17 to (2.8) when bi = i. The expression in (2.8) is more
complicated at first glance as it already involves the antisymmetrizer operator. However, as
our approach involves the computation of the antisymmetrizer anyway, this is no disadvantage.

By (5.9), (2.8) is equal to

(−1)(
n+1
2 )qn(q − q−1)(n+3)n/2

n∏

i=1

(1 + xi)
n+1(1 + q + xi)

−2

× lim
(y1,...,yn)→1

det
1≤i,j≤n


 1(

yj −
xi+1+q−1

xi+1+q

)(
yj − q2 xi+1+q−1

xi+1+q

)


 ∏

1≤i<j≤n

(xj − xi)
−1(yj − yi)

−1,

(5.11)

where q = e2π/3. The same procedure as above can be used to show that this is equal to

n∏

i=1

(1 + xi)
n+1(xi + 1 + q−1)−1

∑

(s1,...,sn)∈{0,1}n
(−1)(n−1)(s1+...+sn)+(n2)q−s1−...−sn

n∏

i=1

(1 + xi)
−nsi

×
∏

1≤i<j≤n

(1 + xixj)(si − sj) + xi(1− si − 2sj + 3sisj) + xj(−1 + sj + 2si − 3sisj)

xj − xi

=
n∏

i=1

(1 + xi)
n+1(xi + 1 + q−1)−1 det

1≤i,j≤n

(
xj−1
i − (−1− xi)

−jq−1
) ∏

1≤i<j≤n

(xj − xi)
−1. (5.12)

On the other hand, the advantage of (2.8) is that it is actually a polynomial. This enables
us to use a formula that appeared in [BFZJ12, Eq (43)-(47)] to express the constant term of
(5.11) in terms of a “binomial determinant”. For convenience, we repeat the procedure here.
Suppose f(x, y) is a power series in x and y, then

det1≤i,j≤n (f(xi, yj))∏
1≤i<j≤n(xj − xi)(yj − yi)

= det
1≤i,j≤n

(f [x1, . . . , xi][y1, . . . , yj ]) ,
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where

f [x1, . . . , xi][y1, . . . , yj ] =
∞∑

k,l=0

ci+k−1,j+l−1hk(x1, . . . , xi)hl(y1, . . . , yj),

ci,j is the coefficient of xiyj in f(x, y) and hp(x1, . . . , xq) is the p-th complete symmetric function
in x1, . . . , xq. It follows that

lim
(x1,...,xn)→(x,...,x)
(y1,...,yn)→(y,...,y)

det1≤i,j≤n (f(xi, yj))∏
1≤i<j≤n(xj − xi)(yj − yi)

= det
0≤i,j≤n−1

( ∞∑

k,l=0

ci+k,j+l

(
i+ k − 1

k − 1

)(
j + l − 1

l − 1

)
xkyl

)
,

in particular, if x = y = 0, we simply obtain det
0≤i,j≤n−1

(ci,j). Now, by (5.11), it follows that the

number of n× n ASMs is

lim
(x1,...,xn)→0
(y1,...,yn)→0

(−1)n(q−1 − q)(
n+1
2 )

n∏

i=1

(1 + xi)
n+1(1 + q−1 + xi)

−1
∏

1≤i<j≤n

(xj − xi)
−1(yj − yi)

−1

× det
1≤i,j≤n

(
1

(yj + 1)(xi + 1 + q)− xi − 1− q−1
−

1

(yj + 1)(xi + 1 + q)− q2(xi + 1 + q−1)

)
.

(5.13)

The coefficient of xiyj in

1

(y + 1)(x+ 1 + q)− x− 1− q−1
−

1

(y + 1)(x+ 1 + q)− q2(x+ 1 + q−1)

when considering this expression as a power series in x, y is

(
j

i

)
(1 + q)−i−1(q − 1)−j−1(−1)jqj+1 −

i+j∑

k=i

(
k

j

)(
j

i− k + j

)
(1 + q)k−i−j−1

(1− q)j+1
(−1)k.

It follows that the number of n× n ASMs is given by

(1 + q)−n(−q)−(
n

2) det
0≤i,j≤n−1

((
j

i

)
(−1)jqj+1 +

n−1∑

k=0

(
k + i

j

)(
j

k

)
(−1− q)k+i−j

)
.

Using basis properties of the binomial coefficient and the Chu-Vandermonde summation, it can
be shown that

(
j

i

)
(−1)jqj+1 +

n−1∑

k=0

(
k + i

j

)(
j

k

)
(−1− q)k+i−j

=
n−1∑

k=0

(−1)i
(
i

k

)(
−k − 1

j

)(
qj+1(−1)k + qk(−1)j

)
,
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and it follows that the number of n× n ASMs is given by

det

[((
i

j

)
(−1)i+j

)

0≤i,j≤n−1

·

((
i+ j

j

)
1− (−q)j+1−i

1 + q

)

0≤i,j≤n−1

]

= det
0≤i,j≤n−1

((
i+ j

j

)
1− (−q)j+1−i

1 + q

)
,

provided that q = e2iπ/3. This seems to be a new determinant for the ASM numbers.
In a forthcoming paper, we will compute the more general determinant

det
0≤i,j≤n−1

((
x+ i+ j

j

)
1− (−q)j+1−i

1 + q

)
(5.14)

for all sixth roots of unity q not equal to 1, and study consequences of this for the enumeration of
Gogs. In these cases, the determinants have only integer zeros as a polynomial in x. Moreover,
the determinant is related to the following determinant

det
0≤i,j≤n−1

((
x+ i+ j

j

)
+ q δi,j

)

that was considered by Ciucu, Eisenkölbl, Krattenthaler and Zare [CEKZ01], and computed
for all sixth roots of unity q. To be more precise, the quotient of the first and the second

determinant is (−q)n if q = −1
2
+

√
3
2
i, and it is (−q)−n if q = −1

2
−

√
3
2
i. Other curious

observations such as the following will be studied: For general q, there seems to be a sequence
of functions pn(x, q) that are polynomials in x of degree no greater than

(⌈(n+1)/2⌉
2

)
and Laurent

polynomials in q with highest exponent
(⌊(n+1)/2⌋

2

)
and lowest exponent −

(⌊(n+1)/2⌋
2

)
over Q such

that the determinant in (5.14) is equal to pn−1(x, q)pn(x, q).
Finally, we point out that we could also have worked with (5.12) and have used the following

variant of the formula by Behrend, Di Francesco and Zinn-Justin [BFZJ12, Eq (43)-(47)]:
Suppose fi(x) is for i ∈ {1, . . . , n} a power series in x, then

det1≤i,j≤n (fi(xj))∏
1≤i<j≤n(xj − xi)

= det
1≤i,j≤n

(fi[x1, . . . , xj ]) ,

where

fi[x1, . . . , xj ] =
∞∑

l=0

ci,j+lhl(x1, . . . , xj),

and ci,j is the coefficient of xj in fi(x). It follows that

lim
(x1,...,xn)→(x,...,x)

det1≤i,j≤n (fi(xj))∏
1≤i<j≤n(xj − xi)

= det
1≤i,j≤n−1

( ∞∑

l=0

ci,j+l−1

(
j + l − 1

l

)
xl

)
.

Appendix A. The case v = 1− u

A.1. The cases (u, v) = (0, 1) and (u, v) = (1, 0). The generating function of monotone
triangles with bottom row b1, . . . , bn evaluated at (u, v) = (0, 1) is equal to the number of
monotone triangles with that bottom row, where SE-diagonals are strictly increasing, while the
evaluation at (u, v) = (1, 0) is the number of monotone triangles that are strictly increasing

along NE-diagonals. The number is in both cases
∏

1≤i<j≤n
bj−bi
j−i

as both sets are in bijective
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correspondence with Gelfand-Tsetlin patterns with bottom row b1 − 1, b2 − 2, . . . , bn − n (in
the first case, this follows by subtracting i from the i-th NE-diagonal for all i, counted from
the left, while in the second case, this follows by subtracting i from the i-th SE-diagonal for
all i, also counted from the left), and the number of Gelfand-Tsetlin patterns with bottom row

b1, . . . , bn is
∏

1≤i<j≤n
bj−bi+j−i

j−i
, see [GT50] or [Sta99, Corollary 7.21.4 and Lemma 7.21.1].

A.2. The case (u, v) = (1
2
, 1
2
). On the other hand, the generating function of monotone trian-

gles with bottom row b1, . . . , bn evaluated at (u, v) = (1
2
, 1
2
) is—up to the factor 2(

n

2)—equal to
the 2-enumeration of monotone triangles with respect to the number of entries that lie strictly
between their SW-neighbors and and their SE-neighbors. By [MRR83, Theorem 2], this num-

ber is 2(
n

2)
∏

1≤i<j≤n
bj−bi
j−i

. If (b1, . . . , bn) = (1, . . . , n), this corresponds to the 2-enumeration

of ASMs with respect to the number of −1’s, or, equivalently, to the enumeration of domino
tilings of the Aztec diamond of order n, see [EKLP92] and also [Ciu97, Remark 4.3], where in
order to obtain the number of the latter one has to multiply by 2n.

A.3. The general case. The results mentioned in the previous two paragraphs can also be
deduced from Theorem 2 as follows. In all cases,

∏
1≤p<q≤n Exq

Strictxq ,xp
is a symmetric poly-

nomial in ∆x1 , . . . ,∆xn
with constant term 1, and the enumeration formulas follow from the

fact that the application of an “operator” polynomial with these properties to
∏

1≤i<j≤n
xj−xi

j−i

leaves the polynomial invariant as was shown, e.g., in [Fis16, Lemma 2.5]. In fact, a common
generalization follows if we assume that v = 1 − u, because in this case the same argument
applies and we can conclude that the generating function is

∏
1≤i<j≤n

bj−bj
j−i

. (This result could

also be derived using known proofs for the 2-enumeration of ASMs or the enumeration of perfect
matchings of the Aztec diamonds, see, e.g., [MRR83, EKLP92].) In particular, it follows that
the generating function is independent of u.

A.3.1. Perfect matchings. The specialization v = 1 − u of the generating function is also the
weighted enumeration of perfect matchings of a certain portion of the square grid: First observe
that, by extending the bijection between monotone triangles with bottom row 1, 2, . . . , n and
n× n ASMs to monotone triangles with arbitrary increasing bottom row of positive2 integers,
say, b1, . . . , bn, we see that the latter are in bijection to n×m matrices, where m is any positive
integer with m ≥ bn that have the same properties as ASMs with the exception that column
sums do not have to be 1, but it is still required that the topmost non-zero entry of each column
is 1, and, in addition, the column sums have to be 1 precisely for the columns b1, . . . , bn.

Now let ARn,m denote the rectangular graph that consists of n rows of sequences of m
consecutive cells of the form ♦, see Figure 5 (left) for AR4,7. It is a well-known fact, see
[Ciu96], that the perfect matchings of ARn,n can be partitioned into classes that are indexed
by n×n ASMs, such that, for a given ASM, the number of perfect matchings in the associated
class is a power of 2, where the exponent is just the number of 1’s in the ASMs. This can be
extended to the “rectangular alternating sign matrices” described in the previous paragraph as
follows. For a given strictly increasing sequence of positive integers b = (b1, . . . , bn) of length
n and m ≥ bn, let ARn,m

b
denote the graph that is obtained from ARn,m by adding vertical

2It is no restriction to confine our considerations to monotone triangles that contain only positive integers
in the bottom row, because every monotone triangle that contains non-positive integers can be transformed to
one that has only positive integers by adding the same positive integer to every entry.
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0

1

1

1 1

1 1 1

−1

−1 −1

0 0 0 0 0 0

0 0 0 0 0 0

0000

0

Figure 5. AR4,7 (left) and an example (right)

edges incident with the bottom vertices of the cells in the bottom row of ARn,m except for the
vertices in columns b1, . . . , bn. For instance, the underlying graph in Figure 5 (right) is AR4,7

1,3,4,7.
Then the perfect matchings of ARn,m

b
can be partitioned such that the classes are indexed by

monotone triangles with bottom row b and the number of elements in each class is a power of
2, where the exponent is the number of 1’s in the corresponding rectangular alternating sign
matrix. The perfect matching in Figure 5 (right) is a perfect matching that lies in the class of
the following monotone triangle.

5
2 5

2 4 6
1 3 4 7

The corresponding rectangular alternating sign matrix can be obtained by counting, for each
cell, the number of edges that are part of the perfect matching and subtract 1, see Figure 5
(right), where we have put the numbers into the appropriate cells. The other perfect matchings
that are in the class of the given monotone triangle are obtained by “rotating” the perfect
matching edges of those cells thatcontain two matching edges independently.

Next we introduce edge weights such that the weighted enumeration of the perfect matchings
of ARn,m

b
associated with a fixed monotone triangle M is just uinv(M)(1−u)inv

′(M): in each cell,
we assign the weights 1, 1, u, 1− u to the edges, where we start at the NW edge and go around
the cell clockwise, see Figure 6 right. As a side remark note that this shows that the special cases
(u, v) = (1, 0) and (u, v) = (0, 1) in the generating function amounts to compute the number of
perfect matchings of a hexagonal grid (since (u, v) = (1, 0) corresponds to the deletion of the
SW edge of each cell, while (u, v) = (0, 1) corresponds to the deletion of the SE edge of each
cell), which is no surprise, because counting perfect matchings of hexagonal grids corresponds
to lozenge tiling enumeration, which in turn is related to the enumeration of semistandard

tableaux and thus of Gelfand-Tsetlin patterns.

A.3.2. Independence of u. We sketch an argument that shows that the weighted enumeration
of our perfect matchings is independent of u, and thus the generating function of monotone
triangles (after setting v = 1 − u): This is done with the help of the local graph operation
urban renewal which was introduced by Kuperberg and Propp, see Figure 6. If we replace a
cell with edge weights a, b, c, d by the configuration indicated in Figure 6 (right), the generating
function of perfect matchings of the original graph is obtained from the generating function of



36 ILSE FISCHER

1

1 1

1

a b

c d
a

ad+bc
b

ad+bc

c
ad+bc

d
ad+bc

1

1

1

1
11

1

1 u

u

1− u

1− u

Figure 6. Urban renewal

the modified graph by multiplication of ad + bc. We perform this operation to every cell of,
say, AR4,7

1,3,4,7.
In the graph that is obtained this way, there are two trivial simplifications that can be made

at several places: If the two edges that are incident with a vertex of degree 2 have weight 1,
they can be contracted without changing the generating function, and each edge with weight 1
that is incident with a vertex of degree 1 can be deleted along with all edges incident with the
other vertex of the edge. This implies that the weighted enumeration of the perfect matchings
of AR4,7

1,3,4,7 is equal to the sum of the weighted enumeration of the perfect matchings of the

following graphs: AR3,6
2,3,6, AR

3,6
1,3,6, AR

3,6
2,3,5, AR

3,6
1,3,5, AR

3,6
2,3,4, AR

3,6
1,3,4. (The sequences arise as

follows: The complement of {1, 3, 4, 7} in {1, . . . , 7} is {2, 5, 6}, and now we allow for each
element i in the complement that either the element itself or i − 1 is an element of the new
complements. If we take complements in {1, . . . , 6}, then we obtain our sequences.) We can
assume by induction with respect to n that the generating function of the perfect matchings of
each of these graphs is independent of u.

References

[BC13] P. Biane and H. Cheballah. Gog, Magog and Schützenberger II: left trapezoids. In 25th International
Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), Discrete Math.
Theor. Comput. Sci. Proc., AS, pages 349–360. Assoc. Discrete Math. Theor. Comput. Sci., Nancy,
2013.

[BC16] P. Biane and H. Cheballah. Gog and GOGAm pentagons. J. Combin. Theory Ser. A, 138:133–154,
2016.

[Bet16] J. Bettinelli. A simple explicit bijection between (n, 2)-Gog and Magog-trapezoids. Sém. Lothar.
Combin., 75:Article B75e, 2016.

[BFZJ12] R.E. Behrend, P. Di Francesco, and P. Zinn-Justin. On the weighted enumeration of alternating sign
matrices and descending plane partitions. J. Comb. Theory Ser. A, 119:331–363, 2012.

[Bre99] D. Bressoud. Proofs and Confirmations: The Story of the Alternating Sign Matrix Conjecture. Cam-
bridge: Mathematical Association of America/Cambridge University Press, 1999.

[CB12] H. Cheballah and P. Biane. Gog and Magog triangles, and the Schützenberger involution. Sém.
Lothar. Combin., 66:Art. B66d, 20, 2011/12.

[CEKZ01] M. Ciucu, T. Eisenkölbl, C. Krattenthaler, and D. Zare. Enumeration of lozenge tilings of hexagons
with a central triangular hole. J. Combin. Theory Ser. A, 95(2):251–334, 2001.

[Ciu96] M. Ciucu. Perfect matchings of cellular graphs. J. Algebraic Combin., 5(2):87–103, 1996.
[Ciu97] M. Ciucu. Enumeration of perfect matchings in graphs with reflective symmetry. J. Combin. Theory

Ser. A, 77(1):67–97, 1997.
[EKLP92] N.D. Elkies, G. Kuperberg, M. Larsen, and J. Propp. Alternating-sign matrices and domino tilings.

I. J. Algebraic Combin., 1(2):111–132, 1992.
[Fis06] I. Fischer. The number of monotone triangles with prescribed bottom row. Adv. Appl. Math., 37:249–

267, 2006.



GOG AND MAGOG TRAPEZOIDS 37

[Fis09] I. Fischer. An operator formula for the number of halved monotone triangles with prescribed bottom
row. J. Comb. Theory Ser. A., 116:515–538, 2009.

[Fis10] I. Fischer. The operator formula for monotone triangles - simplified proof and three generalizations.
J. Comb. Theory. Ser. A, 119:1143, 2010.

[Fis11] I. Fischer. Refined enumerations of alternating sign matrices: monotone (d,m)-trapezoids with pre-
scribed top and bottom row. J. Alg. Combin., 33:239 – 257, 2011.

[Fis16] I. Fischer. Short proof of the ASM theorem avoiding the six-vertex model. J. Comb. Theory Ser. A,
144:139–156, 2016.

[FR15] I. Fischer and L. Riegler. Vertically symmetric alternating sign matrices and a multivariate Laurent
polynomial identity. Elect. J. Combin., 22:P. 1.5, 32 pp. (electronic), 2015.

[FZJ08] T. Fonseca and P. Zinn-Justin. On the doubly refined enumeration of alternating sign matrices and
totally symmetric self-complementary plane partitions. Elect. J. Combin., 15:35pp, 2008.

[GT50] I.M. Gelfand and M.L. Tsetlin. Finite-dimensional representations of the group of unimodular ma-
trices (in russian). Doklady Akad. Nauk. SSSR (N.S.), 71:825–828, 1950.

[GV85] I. Gessel and G. X. Viennot. Binomial determinants, paths, and hook length formulae. Adv. Math.,
58(3):300–321, 1985.

[Ish07] M. Ishikawa. Refined enumerations of totally symmetric self-complementary plane partitions and
constant term identities. Proc. FPSAC’07, 2007.

[Kra96] C. Krattenthaler. A Gog-Magog Conjecture. http://www.mat.univie.ac.at/~kratt/artikel/magog.html,
1996.

[Kra16] C. Krattenthaler. Plane partitions in the work of Richard Stanley and his school. In The mathematical
legacy of Richard P. Stanley, pages 231–261. Amer. Math. Soc., Providence, RI, 2016.

[Kup96] G. Kuperberg. Another proof of the alternating sign matrix conjecture. Int. Math. Res. Notices,
3:139–150, 1996.

[Lin73] B. Lindström. On the vector representations of induced matroids. Bull. London Math. Soc., 5:85–90,
1973.

[MRR82] W.H. Mills, D.P. Robbins, and H.C. Rumsey, Jr. Proof of the Macdonald conjecture. Invent. Math.,
66(1):73–87, 1982.

[MRR83] W. H. Mills, D.P. Robbins, and H.C. Rumsey, Jr. Alternating sign matrices and descending plane
partitions. J. Combin. Theory Ser. A, 34(3):340–359, 1983.

[MRR86] W.H. Mills, D.P. Robbins, and H.C. Rumsey, Jr. Self-complementary totally symmetric plane parti-
tions. J. Combin. Theory Ser. A, 42(2):277–292, 1986.

[RR86] D.P. Robbins and H.C. Rumsey, Jr. Determinants and alternating sign matrices. Adv. Math.,
62(2):169–184, 1986.

[Sta99] R. P. Stanley. Enumerative Combinatorics, Volume 2. Cambridge University Press, 1999.
[Zei94] D. Zeilberger. A constant term identity featuring the ubiquitous (and mysterious) Andrews-Mills-

Robbins-Rumsey numbers 1, 2, 7, 42, 429, · · · . J. Combin. Theory Ser. A, 66(1):17–27, 1994.
[Zei96] D. Zeilberger. Proof of the alternating sign matrix conjecture. Electron. J. Comb., 3:1–84, 1996.
[Zei07] D. Zeilberger. Proof of a conjecture of Philippe Di Francesco and Paul Zinn-Justin

related to the qKZ equations to Dave Robbins’ two favorite combinatorial objects.
http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/diFrancesco.html, 2007.

[ZJDF08] P. Zinn-Justin and P. Di Francesco. The quantum Knizhnik-Zamolodchikov equation, completely
symmetric self-complementary plane partitions, and alternating-sign matrices. Teoret. Mat. Fiz.,
154(3):387–408, 2008.

Ilse Fischer, Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, 1090

Wien, Austria

E-mail address : ilse.fischer@univie.ac.at

http://www.mat.univie.ac.at/~kratt/artikel/magog.html
http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/diFrancesco.html

	1. Introduction
	Gog trapezoids, Magog trapezoids and Krattenthaler's conjecture

	2. Preliminaries: monotone triangles and truncated monotone triangles
	2.1. Inversion numbers
	2.2. Refined enumeration with respect to the top entry
	2.3. Truncated monotone triangles: (s,t)-trees

	3. Application: constant term formula for the generating function of (m,n,k)-Gog trapezoids
	3.1. Inversion numbers
	3.2. Minima and maxima
	3.3. Gog pentagons
	3.4. Inversion numbers
	3.5. Minima and maxima

	4. Constant term formula for the number of (m,n,k)-Magog trapezoids with prescribed numbers of minima and maxima
	4.1. First version
	4.2. Second version

	5. Connecting Gogs and Magogs
	5.1. A variant of Theorem 16 and its application to (2.3) and to (2.6) when bi=i
	5.2. The application of Theorem 17 to (2.8) when bi=i

	Appendix A. The case v=1-u
	A.1. The cases (u,v)=(0,1) and (u,v)=(1,0)
	A.2. The case (u,v)=(12,12)
	A.3. The general case

	References

