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A conjecture

Symmetrizer: Symp(z1,...,zn) = % p(:ca(l), . ,xa(n))
oc n

Conjecture (F., Riegler). For integers s,t > 0, consider the following
rational function in zq1,...,2544_1

25— 2i—t+1 i1 T o 1
Ps,t — H 2 s—2i—t+ (1 o Zz_ )@— H 2 1— S—t(l o Zz_ )5
=1 1=s+1

]_ _
% H Zp + Zpzq

1<p<q<s+t—1 4~ ?p
and let Rg(21,...,254¢-1) = Sym Ps 4(21,...,2544-1). If s <t then

Rs,t(zla ceey Ry e '7Zs—|—t—1) — Rs,t(zla ceeyRi—15%; HRi4+1 - '723—|—t—1)
forallie{1,2,...,s+t—1}.



Example: s=1,t =3

Pr3=27%25%(20 — 1)(23 — 1)
(1 — 21+ 2122)(1 — 21 + 2123)(1 — 20 + 2223)
(20 — 21)(23 — 21)(23 — 22)
_3—|—zl_ — 4z —I—z —|—...32terms...—|—z2z§

(220 — 21)(23 — 21)(23 — 22)

Riz=-3+z21+2 +2+25 + 2342351



Outline

e How did we come up with the conjecture: a refined enumeration
of vertically symmetric alternating sign matrices.

e Partial result: it suffices to consider the cases s =t and s+1 = ¢!

e Some remarks on the case s = 0.



ASM=AIlternating Sign Matrix

Quadratic 0,1,—1 matrix such that in
each row and each column

O 0 1 0O

e the non—zero entries appear with al- 1 0 -1 0 1
ternating signs and O 0O 1 0 O

O 1 -1 1 O

O 0 1 0O

e the sum of entries is 1, that is the
first and the last non-zero entry is a
1.

VSASM=Vertically symmetric ASM: a; ; = a; 11—

VSASMs
- exist only for odd dimensions and
- the middle column is always (1,—1,1,-1,...,—-1,1)%.



Enumeration of VSASMs

Theorem (Kuperberg, 2002). The number of 2n+ 1) x 2n+ 1)
VSASMS is

no(3i—1)(2i — 1)1(6i — 3)!

1 (47 — 2)1(47 — 1)! '

i=1
Conjecture (F., 2009). The number B, ; of (2n + 1) x (2n + 1)

VSASMs where the first 1 in the second row is in columns 7 is

(522 (500 T 3= D~ 1)I(6; - 3)!
(ggj) =1 (45 — 2)1(45 — 1)! '




Refined enumeration with respect to the first column

Theorem (Razumov, Stroganov, 2004). The number of (2n+ 1) x
(2n 4+ 1) VSASMs where the first column’s unique 1 is located in
row 1 is

(35 - 1)(25 — 1)1(65 — 3)!
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(4 —2)1(45 - 1)

Sy o) (5050
—1 - =. B .,
& )

i=1,2,....2n+1.

Relation: Bn,i:B;;i—l—B;’jLHl, 1=1,2,...,n



Bijective proof 7
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Approach to attack the conjecture on the refined
enumeration of VSASMs

Alternative proof of the Refined Alternating sign matrix theorem:
An,i = # of n Xx n ASMSs with alq; = 1

The vector (An,i)lgz‘gn is uniquely determined by the following linear
equation system:



Computer experiments suggest...

...that there is a similar linear equation system for B, ;:

Bpn—it1 = > < i )(—1) Bpp—j+1, —n+1<1<mn,
j=i
Bn,n—i—l—l — Bn,n—l—ia —n+1<71<n.

But: (Bn,n—i—l—l)—n+1§i§n = (BTL,]-’ e ooy Bn,ﬂa Bn,n—i—la R Bn,Qn)

n

1

2n+l -1

1 =position of the first 1 in the second row
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We have extended the combinatorial interpretation of B, ; to
r=n+1,n+2,...,2n.

In fact, we have two combinatorial extensions.

If the conjecture on the symmetrized rational functions were true
then we would know that the number of objects is the same for
the two different combinatorial extensions...

...and this would conclude our proof of the refined enumeration
of VSASMs.
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First half of the linear equation system
Theorem (F., Riegler).

C,,gc? — # of partial montone triangles of the following shape:

d+1 .

&‘“ﬁ od 34 - (n=1)d nd
Then
@) = d+1)n—-i-1 - (d) o
Critii = ( )(—1)J+”Cn,j+1, i=1,2.....n.
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Partial result

Recall the conjecture: Ps:(21,...,254¢—1) rational function, Rs; =
SymPs ; then

Rs,t(zl, co e g Ry e e ey Zs—l—t—1> — Rs’t(zl, ceey Z,L-_l, . Zs—l—t—1>
if 0 <s<t.

However, to prove the formula for the refined enumeration of VSASMS,
it suffices to show

Rs,t(zla ax -7Zs—|—t—l) — RS,t(zfla SR S—|—t ]_) if 1 <s<t.

We sketch the proof of the following result:

If the latter identity is true for t = s and ¢t = s+ 1 then it is true
for all s,t with s <'t.
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Two rational functions:

Ss,t(Z; Rly« s Z8—|—t—2> = ZQS—t—l H ( ° ZZZ)( i >7
i=1 (z; — 2)

s+t—2
_ _ l—2z, 4+ 22
Ts (2,21, 0y 254¢-2) i = (1 ==z 1ys t=2 | ] : :
’ 5t =1 (z—z)z

Two operators PSs ¢, PIst on functions f in s+t — 2 variables:

PSst[f] .= Sst(z1, 22,y 2544-1) - f(22,. ., 2541—-1),
PTsi[f] :=Ts1(zg41—1: 2155 2s44-2) - [(21, .-, Zs41-2)-

Recursions:

Ps,t — PSS,t[Ps—l,t] and Ps,t — PTS,t[Ps,t—l]-
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Two related operators on functions in s+t — 2 variables:

QSS,t[f] = Ss,t(zs__ﬂ_-t_]_; ZS__&t_Qa Z(S__&t_:ga ) Zil) ) f(zla Tt Z8+t—2)7
QTsi[f] = Tsu(21 s 24y 1025 g0 220 ) - (22, -5 Zs i)

We set Qs (21, .., 254¢-1) = Ps,t(z;jt_l,...,zl_l). The recursions
from the previous transparency immediately imply

Qs,t — QSS,t[Qs—l,t] and Qs,t — QTS,t[Qs,t—l]-

We have to show

Sym Ps 1 (21, ..., 254¢-1) = Sym Qs (21, ., 2Zs4¢-1)-
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Consider words w over the “operator-alphabet” A = {PS, PT,QS,QT}
and depict them as labelled lattice paths with starting pointin (1,1),

step set {(1,0),(0,1)} and labels P, Q.

Example: w = (PT,PS,QT, PT,QS,QT)

T

The letters PS, QS correspond to (1,0) steps, while the letters

PT,QT correspond to (0,1) steps.
16



The endpoint of the path is (|w|g, |w|7), where

lw|g = # of occurrences of PS, QS + 1,
lw|7 = # of occurrences of PT,QT + 1.

Def. To a word w of length n, we assign a function Fy(21,...,2,41)
as follows: For instance, if

w = (PT,PS,QT,PT,QS,QT)
then
Fy(z1,...,27) = QT3 50QS3 40 P15 40QT5 30 PS50 PT7 »[1],

i.e. apply the operators in reverse order; the indices are the integer
points of the lattice path (except for the starting point).

Remark.
e If wis a word over {PS, PT} then Fuy = P ¢ 1w|;-
o If w is a word over {QS,QT} then Fuy = Q| g |w|,-

17



Swapping letters

Key Lemma.

1. Fy, = Fu, if wy =wp, PS PTwgr and wp = wp, PT PSwg.
2. Fy, = Fy, if wy =wp QS QTwgr and wy = wy, QT QSwg.

3. Fyy = Fu, if wy =wp, PT QTwr and wy = wy, QT PTwp.

3.

1. . 2. o Q
’_PI:‘P ’_QI:‘Q P
P Q
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We prove the following more general statement: suppose wi,wo are
two words whose labelled paths have the same endpoint and are
both prefixes of (rotated) Dyck paths. Then

Sym Fyy; = Sym Fy,.

Induction with respect to the length of the word; nothing to prove
for the empty word.

Case 1. The last letters of wy and wo coincide. W.l.0.9. w; = wg PS,
1 =1,2. Then
Sym sz- = Sym PSS’t[ng] = Sym Ss,t(zl; 2Dy uvy ZS_|_t_1)Fw§(Z2, cee Zs—i—t—l)
s+t—1
— Z Z Ss,t(zj;zla---wé\ja--->Zs—|—t—1)Fw;(za(2)a---aza(s—l-t—l))

J=1 0€S8,:0(1)=j
s+t—1

= E 53715(2]';21,...,,2]',...,Z8+t_1)syme;(Z1,...,Zj,...,ZS_H_l)
j=1

and, by the induction hypothesis, Syme/1 = Syme/Q.
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Case 2. The last letters of wy and w» differ.
Endpoint: (|w;|g, |w;|7) =: (s,t)

t=s,s+1:use SymFss = Sym(ss and SymPS,S_H = Smes,s—l—l-

20



s+ 1 < t: The last letter of w;, ¢« = 1,2, is w.l.o.g.in {PT,QT}:
Suppose w; = w; PS and choose w/ such that the path of w/ PT

has the same endpoint as the path of wg. By Case 1 and the Key
Lemma,

Def C.1 K. L
Sym Fy, = Sym ng pg = Sym ng/ prps = SymbFE, 1 pg pp.
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W.l.o.g. wy = wj PT and wp = w5), QT. Choose w{ such that the
path of w{ QT has the same endpoint as the path of w)}. By Case 1
and the Key Lemma,

Def C.1 K.L.
Sym Fy,; = Sym F, W, PT — Sym F, 1 " QT PT — SymFE, . ) pT QT = Sym Fus.
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Some remarks on the case s =0

—1
z.  +z;,—1
—_ 7 J
PO,n—|—l — | | 1 -1
1<i<j<n — RiRy

Question: Are there also other rational functions T'(x,y) such that

symmetrizing I1 T(zi,zj) leads to a Laurent polynomial that is
1<i<g<n

invariant under replacing z; by zz-_l?

Computer experiments:

[a(z=t +y) + bz + vy~ 1) + ]

- +abz ty+4d, a,b,c,deC.
1l —xy—

T(x,y) =

23



Some special cases are easy...for instance:

Sym ' =
—1
1<i<j<n 1 217
n 41 Hl ZZ'QZ_Q
— H (1 + zi2;) H z. ' -Sym ﬁ_ G 2)
1<i<i<n 1=1 1<i<i<n t
det ((z2)— 1)
n i
— 11<4,7<n
= I1 Q) [ =
— i
1<i<g<n 1=1 1<i<i<n
n 41
= J] @+ zizj)(2; + 25) 1] ="
1<i<j<n i=1
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Two final theorems

RO,n—I—l = Sym H

1 n
=: VSASM(1; z1,...,2n) |] zi_n—'_l
1<i<j<n 1 = ZiZ; i=1

Computer experiments: Rg,41(1,1,...,1) is the number of (2n +
1) x (2n + 1) VSASMs.

Theorem. Let VSASM(X;z1) =1 and, forn > 1,

n 1 (X —2 2
j=1 1<i<n, i A
><VSASI\/I(X;zl,...,%,...,zn).

Then the coefficient of 2!X7 in VSASM(X;z,1,1,...,1) is the num-

ber of (2n+1) x (2n+ 1) VSASMs with a; 1 = 1 and j occurrences
of —1 in the first n columns.
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Theorem. Let ASM(X;z1) =1 and, for n > 1,

i 1+ 2;(X —2 2%
ASI\/I(X;zl,...,zn)zz,z;‘_l 11 + 2 ) + 2%
j=1 1<i<n,ij A
X ASM(X; z1,...,%j,...,2n).

Then the coefficient of X7 in ASM(X;z,1,1,...,1) is the number
of n x n ASMs with a1 ; =1 and j occurrences of —1.

To reprove the alternating sign matrix theorem, it would suffice to
show that

n—1 :
ASM(1;1,1,...,1) = [] (35 + 1)

_j=O (n+]>| .
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Thank youl
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