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Abstract. We show that for decaying solutions of the Ablowitz–Ladik sys-
tem, the leading asymptotic term is time independent. In addition, two ar-

bitrary bounded solutions of the Ablowitz–Ladik system which are asymptot-

ically close at the initial time stay close. All results are also derived for the
associated hierarchy.

1. Introduction

When solving completely integrable wave equations via the inverse scattering
transform, a method developed by Gardner et al. [12] in 1967 for the Korteweg–
de Vries (KdV) equation, one intends to prove existence of solutions within the
respective class. In particular, short-range perturbations of the background solution
should remain short-range during the time evolution. So to what extend are spatial
asymptotical properties time independent?

For the KdV equation, this question was answered by Bondareva and Shubin [9],
[10], who considered the Cauchy problem for initial conditions which have a pre-
scribed asymptotic expansion in terms of powers of the spatial variable and showed
that the leading term of the expansion is time independent. Teschl [18] considered
the initial value problem for the Toda lattice in the class of decaying solutions and
obtained time independence of the leading term.

In this note we want to address the same question for the Ablowitz–Ladik (AL)
system, an integrable discretization of the AKNS-ZS system derived by Ablowitz
and Ladik ([3]–[6]) in the mid seventies. The AL system is given by

−iαt − (1− αβ)(α− + α+) + 2α = 0,

−iβt + (1− αβ)(β− + β+)− 2β = 0,
(1.1)

where α = α(n, t), β = β(n, t), (n, t) ∈ Z × R, are complex valued sequences and
f±(n, t) = f(n± 1, t). In the defocusing (β = α) and focusing case (β = −α), (1.1)
is a discrete analog of the nonlinear Schrödinger (NLS) equation

iqt + qxx ± 2q|q|2 = 0.

We refer to the monographs [2], [7], or [13] for further information.
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Our main result in Theorem 2.4 yields that the dominant term of suitably de-
caying solutions α(n, t), β(n, t) of (1.1), for instance weighted `2p sequences whose
spatial difference is in `p, 1 ≤ p <∞, is time independent. For example,

α(n, t) =
a

nδ
+O

( 1

nmin(2δ,δ+1)

)
, β(n, t) =

b

nδ
+O

( 1

nmin(2δ,δ+1)

)
, n→∞,

(1.2)
holds for fixed t, provided it holds at the initial time t = t0. Here a, b ∈ C and
δ ≥ 0. A similar expression is valid for n→ −∞.

The inverse scattering transform for the AL system with vanishing boundary
conditions was studied in [4]. Ablowitz, Biondini, and Prinari [1] (compare also
Vekslerchik and Konotop [19]) considered nonvanishing steplike boundary condi-
tions α(n)→ α0e

iθ± as |n| → ∞, α0 > 0, in the class

±∞∑
j=n

(α(j)− α0e
iθ±) <∞ (1.3)

for the defocusing discrete NLS equation. Quasi-periodic boundary conditions for
the AL hierarchy will be considered in Michor [17]. As mentioned, a crucial step
is to show that short-range perturbations like (1.3) of solutions stay short-range.
Here we show in general that arbitrary bounded solutions of the AL system which
are asymptotically close at the initial time stay close.

In Section 2 we derive our results for the AL system and extend them in Sec-
tion 3 to the AL hierarchy, a completely integrable hierarchy of nonlinear evolution
equations whose first nonlinear member is (1.1).

2. The initial value problem for the Ablowitz–Ladik system

Let us begin by recalling some basic facts on the system (1.1). We will only
consider bounded solutions and hence require

Hypothesis H.2.1. Suppose that α, β : Z× R→ C satisfy

sup
(n,t)∈Z×R

(
|α(n, t)|+ |β(n, t)|

)
<∞,

α(n, · ), β(n, · ) ∈ C1(R), n ∈ Z, α(n, t)β(n, t) /∈ {0, 1}, (n, t) ∈ Z× R.
(2.1)

The AL system (1.1) is equivalent to the zero-curvature equation

Ut + UV − V +U = 0, (2.2)

where

U(z) =

(
z α
βz 1

)
, V (z) = i

(
z − 1− αβ− α− α−z−1
β−z − β 1 + α−β − z−1

)
(2.3)

for the spectral parameter z ∈ C \ {0}. The AL system can also be formulated in
terms of Lax pairs, see [15]. Then (1.1) is equivalent to the Lax equation

d

dt
L(t)− [P (t), L(t)] = 0, t ∈ R, (2.4)
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where L reads in the standard basis of `2(Z) (abbreviate ρ = (1− αβ)1/2)

L =


. . .

. . .
. . .

. . .
. . . 00 −α(0)ρ(−1) −β(−1)α(0) −α(1)ρ(0) ρ(0)ρ(1)

ρ(−1)ρ(0) β(−1)ρ(0) −β(0)α(1) β(0)ρ(1) 0
0 −α(2)ρ(1) −β(1)α(2) −α(3)ρ(2) ρ(2)ρ(3)

0
ρ(1)ρ(2) β(1)ρ(2) −β(2)α(3) β(2)ρ(3) 0

. . .
. . .

. . .
. . .

. . .

 (2.5)

and P is given by

P = i
2

(
L+ − L− + (L−1)− − (L−1)+ + 2Qd

)
.

HereQd is the doubly infinite diagonal matrixQd =
(
(−1)kδk,`

)
k,`∈Z and L± denote

the upper and lower triangular parts of L,

L± =
(
L±(m,n)

)
(m,n)∈Z2 , L±(m,n) =

{
L(m,n), ±(n−m) > 0,

0, otherwise.
(2.6)

The Lax equation (2.4) implies existence of a propagator W (s, t) such that the
family of operators L(t), t ∈ R, is similar,

L(s) = W (s, t)L(t)W (s, t)−1, s, t ∈ R.

By [13, Sec. 3.8] or [15], existence, uniqueness, and smoothness of local solutions
of the AL initial value problem follow from [8, Thm 4.1.5], since the AL flows are
autonomous.

Theorem 2.2. Let t0 ∈ R and suppose (α0, β0) ∈ M = `p(Z) ⊕ `p(Z) for some
p ∈ [1,∞) ∪ {∞}. Then there exists T > 0 and a unique local integral curve
t 7→ (α(t), β(t)) in C∞((t0−T, t0 +T ),M) of the Ablowitz–Ladik system (1.1) such
that (α, β)

∣∣
t=t0

= (α0, β0).

Our first lemma shows that the leading asymptotics as n → ±∞ are preserved
by the AL flow. We only state the result for the AL system, whose proof follows as
the one of Lemma 3.2. Define

‖(α, β)‖w,p =


( ∑
n∈Z

w(n)
(
|α(n)|p + |β(n)|p

))1/p

, 1 ≤ p <∞,

sup
n∈Z

w(n)
(
|α(n)|+ |β(n)|

)
, p =∞.

(2.7)

Lemma 2.3. Let w(n) ≥ 1 be some weight with supn(|w(n+1)
w(n) | + |

w(n)
w(n+1) |) < ∞.

Fix 1 ≤ p ≤ ∞ and suppose (α(n, t), β(n, t)) and (α̃(n, t), β̃(n, t)) are arbitrary
bounded solutions of the AL system (1.1). If

‖(α(t)− α̃(t), β(t)− β̃(t))‖w,p <∞ (2.8)

holds for one t = t0 ∈ R, then it holds for all t ∈ (t0 − T, t0 + T ).

But even the leading term is preserved by the time evolution.

Theorem 2.4. Let w(n) ≥ 1 be some weight with supn(|w(n+1)
w(n) |+ |

w(n)
w(n+1) |) <∞.

Fix 1 ≤ p ≤ ∞ and suppose α0, β0 and α̃0, β̃0 are bounded sequences such that

‖(α0, β0)‖w,2p <∞, ‖(α0 − α+
0 , β0 − β

+
0 )‖w,p <∞,

‖(α̃0, β̃0)‖w,p <∞,
if 1 ≤ p <∞,
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‖(α0, β0)‖w,∞ <∞, ‖(α0 − α+
0 , β0 − β

+
0 )‖w2,∞ <∞,

‖(α̃0, β̃0)‖w2,∞ <∞, if p =∞.

Let (α(t), β(t)), t ∈ (−T, T ), be the unique solution of the Ablowitz–Ladik sys-
tem (1.1) corresponding to the initial conditions

α(0) = α0 + α̃0, β(0) = β0 + β̃0. (2.9)

Then this solution is of the form

α(t) = α0 + α̃(t), β(t) = β0 + β̃(t), (2.10)

where ‖(α̃(t), β̃(t))‖w,p <∞, respectively, ‖(α̃(t), β̃(t))‖w2,∞ <∞.

Proof. The proof relies on the idea to consider our differential equation in two
nested spaces of sequences, the Banach space of all (α(n), β(n)) with sup norm,

and the Banach space with norm ‖.‖w,p, as follows. Plugging (α0 + α̃(t), β0 + β̃(t))

into the AL equations (1.1) yields a differential equation for (α̃(t), β̃(t))

iα̃t(t) = −
(
1− (α0 + α̃(t))(β0 + β̃(t))

)(
α̃+(t) + α+

0 + α̃−(t) + α−0
)

+ 2α̃(t) + 2α0

= α0 − α−0 + α0 − α+
0 + α0β0(α+

0 + α−0 )

+ α̃(t)
(
2 + (β0 + β̃(t))(α̃+(t) + α+

0 + α̃−(t) + α−0 )
)

+ β̃(t)α0

(
α̃+(t) + α+

0 + α̃−(t) + α−0
)

+ α̃+(t)(α0β0 − 1) + α̃−(t)(α0β0 − 1),

iβ̃t(t) =
(
1− (α0 + α̃(t))(β0 + β̃(t))

)(
β̃+(t) + β+

0 + β̃−(t) + β−0
)
− 2β̃(t)− 2β0

= β+
0 − β0 + β−0 − β0 − α0β0(β+

0 + β−0 )

− β̃(t)
(
2 + (α0 + α̃(t))(β̃+(t) + β+

0 + β̃−(t) + β−0 )
)

− α̃(t)β0
(
β̃+(t) + β+

0 + β̃−(t) + β−0 )
)

− β̃+(t)(α0β0 − 1)− β̃−(t)(α0β0 − 1). (2.11)

The requirement on w(n) implies that the shift operators are continuous with re-
spect to the norm ‖.‖w,p and the same is true for the multiplication operator with
a bounded sequence. Therefore, using the generalized Hölder inequality yields that
(2.11) is a system of inhomogeneous linear differential equations in the Banach space
with norm ‖.‖w,p and has a local solution with respect to this norm (see e.g. [11]
for the theory of ordinary differential equations in Banach spaces). Since w(n) ≥ 1,

this solution is bounded and the corresponding coefficients (α̃, β̃) coincide with the
solution (α, β) of the AL system (1.1) from Theorem 2.2.

Moreover, (α̃(t), β̃(t)) are uniformly bounded for t ∈ (−T, T ), as writing (2.11)
in integral form yields

‖(α̃(t), β̃(t))‖w,p ≤ ‖(α̃(0), β̃(0))‖w,p + tC‖(α0, β0)‖w,2p + C

∫ t

0

‖(α̃(s), β̃(s))‖w,pds

for some constants C. �

Example (1.2) in the introduction follows if we let α̃0 = β̃0 ≡ 0 and

α0(n) =
a

nδ
, β0(n) =

b

nδ
, a, b ∈ C, δ ≥ 0,
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for n > 0, α0(n) = β0(n) = 0 for n ≤ 0. Now choose p =∞ with

w(n) =

{
(1 + n)min(δ,(δ+1)/2), n > 0,

1, n ≤ 0,

and apply Theorem 2.4.
Finally, we remark that if a solution (α(n, t), β(n, t)) vanishes at two consecutive

points n = n0, n = n0 + 1 in an arbitrarily small time intervall t ∈ (t1, t2), then it
vanishes identically for all (n, t) in Z×R, see [16]. In particular, a compact support
of the solution is not preserved. The corresponding result for the AL hierarchy is
derived in [16] as well.

3. Extension to the Ablowitz–Ladik hierarchy

In this section we show how our results extend to the AL hierarchy. The hi-
erarchy can be constructed by generalizing the matrix V (z) in the zero-curvature
equation (2.2) to a 2 × 2 matrix Vr(z), r = (r−, r+) ∈ N2

0, with Laurent polyno-
mial entries, see [13, Sec. 3.2] or [14]. Suppose that U(z) and Vr(z) satisfy the
zero-curvature equation

Ut + UVr − V +
r U = 0. (3.1)

Then the coefficients {f`,±}`=0,...,r±−1, {g`,±}`=0,...,r± , and {h`,±}`=0,...,r±−1 of the
Laurent polynomials in the entries of Vr(z) are recursively defined by

g0,+ = 1
2c0,+, f0,+ = −c0,+α+, h0,+ = c0,+β,

g`+1,+ − g−`+1,+ = αh−`,+ + βf`,+, 0 ≤ ` ≤ r+ − 1,

f−`+1,+ = f`,+ − α(g`+1,+ + g−`+1,+), 0 ≤ ` ≤ r+ − 2,

h`+1,+ = h−`,+ + β(g`+1,+ + g−`+1,+), 0 ≤ ` ≤ r+ − 2,

(3.2)

and

g0,− = 1
2c0,−, f0,− = c0,−α, h0,− = −c0,−β+,

g`+1,− − g−`+1,− = αh`,− + βf−`,−, 0 ≤ ` ≤ r− − 1,

f`+1,− = f−`,− + α(g`+1,− + g−`+1,−), 0 ≤ ` ≤ r− − 2,

h−`+1,− = h`,− − β(g`+1,− + g−`+1,−), 0 ≤ ` ≤ r− − 2.

(3.3)

Note that g`,± are only defined up to summation constants {c`,±}`=0,...,r± by the
difference equations in (3.2), (3.3). In addition, the zero-curvature equation (3.1)
is equivalent to

0 = i

 0
−iαt − α(gr+,+ + g−r−,−)

+fr+−1,+ − f−r−−1,−
z
(
− iβt + β(g−r+,+ + gr−,−)

−hr−−1,− + h−r+−1,+
) 0

 .

Varying r ∈ N2
0, the collection of evolution equations

ALr(α, β) =

(
−iαt − α(gr+,+ + g−r−,−) + fr+−1,+ − f−r−−1,−
−iβt + β(g−r+,+ + gr−,−)− hr−−1,− + h−r+−1,+

)
= 0,

t ∈ R, r = (r−, r+) ∈ N2
0,

(3.4)
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then defines the time-dependent Ablowitz–Ladik hierarchy. Explicitly, taking r− =
r+ for simplicity, the first few equations are

AL(0,0)(α, β) =

(
−iαt − c(0,0)α
−iβt + c(0,0)β

)
= 0,

AL(1,1)(α, β) =

(
−iαt − γ(c0,−α

− + c0,+α
+)− c(1,1)α

−iβt + γ(c0,+β
− + c0,−β

+) + c(1,1)β

)
= 0,

AL(2,2)(α, β) =


−iαt − γ

(
c0,+α

++γ+ + c0,−α
−−γ−

−α(c0,+α
+β− + c0,−α

−β+)− β(c0,−(α−)2 + c0,+(α+)2)
)

−iβt + γ
(
c0,−β

++γ+ + c0,+β
−−γ−

−β(c0,+α
+β− + c0,−α

−β+)− α(c0,+(β−)2 + c0,−(β+)2)
)


+

(
−γ(c1,−α

− + c1,+α
+)− c(2,2)α

γ(c1,+β
− + c1,−β

+) + c(2,2)β

)
= 0, etc., (3.5)

where we abbreviated cr = (cr,− + cr,+)/2 and γ = 1 − αβ. Different ratios of
c0,+/c0,− lead to different hierarchies. The AL system (1.1) corresponds to the
case r = (1, 1), c0,± = 1, and c(1,1) = −2. The special choices β = ±α, c0,± = 1
lead to the discrete NLS hierarchy, the choices β = α, c0,± = ∓i yield the hierarchy
of Schur flows. The AL hierarchy is invariant under the scaling transform

{(α(n), β(n))}n∈Z → {(c α(n), β(n)/c)}n∈Z, c ∈ C\{0}. (3.6)

Hence choosing c = eicrt it is no restriction to assume cr = 0.
By [15], the AL hierarchy is equivalent to the Lax equation

d

dt
L(t)− [Pr(t), L(t)] = 0, t ∈ R, r ∈ N2

0, (3.7)

where L is the doubly infinite five-diagonal matrix (2.5) and (recall (2.6))

Pr =
i

2

r+∑
`=1

cr+−`,+
(
(L`)+ − (L`)−

)
− i

2

r−∑
`=1

cr−−`,−
(
(L−`)+ − (L−`)−

)
− i

2
crQd.

Since the AL flows are autonomous and fr±−1,±, gr±,±, and hr±−1,± depend
polynomially on α, β and their shifts, [8, Thm 4.1.5] implies local existence, unique-
ness, and smoothness of the solution of the initial value problem of the hierarchy
as well (see [13, Sec. 3.8], [15]).

Theorem 3.1. Let t0 ∈ R and suppose α0, β0 ∈ `p(Z) for some p ∈ [1,∞) ∪ {∞}.
Then the rth Ablowitz–Ladik initial value problem

ALr(α, β) = 0, (α, β)
∣∣
t=t0

= (α0, β0) (3.8)

for some r ∈ N2
0, has a unique, local, and smooth solution in time, that is, there

exists a T > 0 such that α( · ), β( · ) ∈ C∞((t0 − T, t0 + T ), `p(Z)).

Next we show that short-range perturbations of bounded solutions remain short-
range. In fact, we will be more general to include perturbations of steplike back-
ground solutions as for example (1.3).

Lemma 3.2. Let w(n) ≥ 1 be some weight with supn(|w(n+1)
w(n) | + |

w(n)
w(n+1) |) < ∞

and fix 1 ≤ p ≤ ∞. Suppose (α(t), β(t)) and (α`,r(t), β`,r(t)) are arbitrary bounded
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solutions of some equation ALr in the AL hierarchy and abbreviate

α̃(n, t) =

{
αr(n, t), n ≥ 0,

α`(n, t), n < 0,
β̃(n, t) =

{
βr(n, t), n ≥ 0,

β`(n, t), n < 0.
(3.9)

If

‖(α(t)− α̃(t), β(t)− β̃(t))‖w,p <∞ (3.10)

holds for one t = t0 ∈ R, then it holds for all t ∈ (t0 − T, t0 + T ).

Proof. Without loss we assume that t0 = 0. First we derive the differential equation
for the differences δ(n, t) =

(
α(n, t)− α̃(n, t), β(n, t)− β̃(n, t)

)
in the Banach space

of pairs of bounded sequences δ = (δ1, δ2) for which the norm ‖δ‖w,p is finite.

Let us show by induction on r± that fr±−1,±(t)− f̃r±−1,±(t), gr±,±(t)− g̃r±,±(t),

and hr±−1,±(t) − h̃r±−1,±(t) can be written as a linear combination of shifts of δ
with the coefficients depending only on (α(t), β(t)) and (α`,r(t), β`,r(t)). It suffices
to consider the homogeneous case where cj,± = 0, 1 ≤ j ≤ r±, since all involved
sums are finite. In this case [14, Lemma A.3] yields that fj,+, gj,+, and hj,+ can
be recursively computed from f0,+ = −α+, g0,+ = 1

2 , and h0,+ = β via

f−`+1,+ = f`,+ − α(g`+1,+ + g−`+1,+),

h`+1,+ = h−`,+ + β(g`+1,+ + g−`+1,+),

g`+1,+ =
∑̀
k=0

f`−k,+hk,+ −
∑̀
k=1

g`+1−k,+gk,+,

and similarly for the minus sign and f̃j,±, g̃j,±, and h̃j,±. The fact that (α̃, β̃) does
not solve ALr only affects finitely many terms and gives rise to an inhomogeneous
term Br(t) which is nonzero only for a finite number of terms.

Hence δ satisfies an inhomogeneous linear differential equation of the form

i
d

dt
δ(t) =

∑
|j|≤max(r−,r+)

Ar,j(t)(S
+)jδ(t) +Br(t)

Here S±(δ1(n, t), δ2(n, t)) = (δ1(n± 1, t), δ2(n± 1, t)) are the shift operators,

Ar,j(n, t) =

(
A11
r,j(n, t) A12

r,j(n, t)

A21
r,j(n, t) A22

r,j(n, t)

)
,

are multiplication operators with bounded 2 × 2 matrix-valued sequences, and
Br(n, t) =

(
Br,1(n, t), Br,2(n, t)

)
with Br,i(n, t) = 0 for |n| > max(r−, r+). All

entries of Ar,j(t) and Br(t) are polynomials with respect to (α(n+ j, t), β(n+ j, t)),
(α`,r(n + j, t), β`,r(n + j, t)), |j| ≤ max(r−, r+). Thus ‖Br(t)‖w,p ≤ Dr, where
the constant depends only on the sup norms of (α(t), β(t)) and (α`,r(t), β`,r(t)).
Moreover, by our assumption the shift operators are continuous,

‖S±‖ =

{
supn∈Z |

w(n)
w(n±1) |

1/p, p ∈ [1,∞),

supn∈Z |
w(n)
w(n±1) |, p =∞,

and the same is true for the multiplication operators Ar,j(t) whose norms depend
only on the supremum of the entries by Hölder’s inequality, that is, again on the
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sup norms of (α(t), β(t)) and (α`,r(t), β`,r(t)). Consequently, for t ∈ (−T, T ) there
is a constant such that

∑
|j|≤max(r−,r+) ‖Ar,j(t)‖‖(S+)j‖ ≤ Cr. Hence

‖δ(t)‖w,p ≤ ‖δ(0)‖w,p +

∫ t

0

(
Cr‖δ(s)‖w,p +Dr

)
and Gronwall’s inequality implies

‖δ(t)‖w,p ≤ ‖δ(0)‖w,peCrt +
Dr

Cr

(
eCrt − 1

)
.

Since w(n) ≥ 1, this solution is again bounded and hence coincides with the solution
of the AL equation from Theorem 3.1. �

For certain equations in the AL hierarchy, i.e. for certain configurations of sum-
mation coefficients {cj,±}, our main result remains valid.

Theorem 3.3. Let r = (r−, r+) ∈ N2
0\(0, 0) and assume that cj,± ∈ C, j =

0, . . . , r±, satisfy
r+−1∑
j=0

cj,+ +

r−−1∑
j=0

cj,− = 0. (3.11)

Let w(n) ≥ 1 be some weight with supn(|w(n+1)
w(n) |+ |

w(n)
w(n+1) |) <∞. Fix 1 ≤ p ≤ ∞

and suppose α0, β0 and α̃0, β̃0 are bounded sequences such that

‖(α0, β0)‖w,2p <∞, ‖(α0 − α+
0 , β0 − β

+
0 )‖w,p <∞,

‖(α̃0, β̃0)‖w,p <∞,
if 1 ≤ p <∞,

‖(α0, β0)‖w,∞ <∞, ‖(α0 − α+
0 , β0 − β

+
0 )‖w2,∞ <∞,

‖(α̃0, β̃0)‖w2,∞ <∞, if p =∞.

Let (α(t), β(t)), t ∈ (−T, T ), be the unique solution of the equation ALr(α, β) = 0
with summation coefficients {cj,±}r±j=0, corresponding to the initial conditions

α(0) = α0 + α̃0, β(0) = β0 + β̃0. (3.12)

Then this solution is of the form

α(t) = α0 + α̃(t), β(t) = β0 + β̃(t), (3.13)

where ‖(α̃(t), β̃(t))‖w,p <∞, respectively, ‖(α̃(t), β̃(t))‖w2,∞ <∞.

Proof. The proof is similar to the one of Theorem 2.4. From ALr(α, β) = 0 we

obtain an inhomogeneous differential equation for (α̃, β̃). The homogeneous part is

a finite sum over shifts of (α̃, β̃). The inhomogeneous part consists of products of
α0, β0 and their shifts, whose ‖.‖w,p norm is finite by Hölder’s inequality, and of
sums of the form cj,±α0, cj,±β0 and shifts thereof,

−
(
c0,+S

+r+ + c1,+S
+r+−1 + · · ·+ cr+−1,+S

+1 + cr

+ c0,−S
−r− + c1,−S

−r−−1 + · · ·+ cr−−1,−S
−1)α0,

(and analogously for β0) from which restriction (3.11) arises. Again S±j denote the
shift operators S±jα0(n) = α0(n±j). The requirement ‖(α0−α+

0 , β0−β
+
0 )‖w,p <∞

yields the algebraic constraint (3.11) for cj,±. Finally, note that it is no restriction
to assume cr = 0 by (3.6). �
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For example, we obtain such decaying solutions for AL(0,1)(α, β) if c0,+ = 0, for
AL(1,1)(α, β) if c0,+ = −c0,− (or c0,+ + c0,− + c1 = 0 as in Theorem 2.4).

Acknowledgment. The author thanks Armin Rainer and Gerald Teschl for valu-
able discussions on this topic.
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