Übungen zur Einführung in die Lineare Algebra und Geometrie (3)

Sommer-Semester 2008, K. Auinger

- 46. Zeige: ist ein Vektorraum nicht endlich erzeugt, dann besitzt er eine unendliche linear unabhängige Teilmenge.
- 47. Die Funktionen sin und cos sind linear unabhängig (als Elemente des R-Vektorraumes aller Funktionen $\mathbb{R} \to \mathbb{R}$).
- 48. Gilt dasselbe für die Funktionen $\mathbf{1}: x \mapsto 1$, sin, cos, $\sin^2 : x \mapsto (\sin x)^2$, $\cos^2 : x \mapsto (\cos x)^2$?
- 49. Das Cartesische Produkt $V \times W$ von K-Vektorräumen V und W wird durch die komponentenweise Definition der Operationen zu einem K-Vektorraum: (v,w)+(v',w'):=(v+v',w+w')und $\lambda(v, w) := (\lambda v, \lambda w)$ für alle $v, v' \in V, w, w' \in W$, $\lambda \in K$. Bestimme $\dim(V \times W)$, wenn $\dim V = n$ und $\dim W = m$. Finde Unterräume V' und W' von $V \times W$, sodass $V \cong V'$, $W \cong W'$ und $V' \oplus W' = V \times W$.
- 50. Finde eine Basis für den \mathbb{C} -Vektorraum $M_{nm}(\mathbb{C})$ aller komplexen $n \times m$ -Matrizen und bestimme seine Dimension.
- 51. Sei A eine $n \times n$ -Matrix über einem Körper K. Zeige: es gibt ein nichttriviales Polynom $p(t) = \sum_{k=1}^{m} a_k t^k$ über K (i.e. $a_i \in K$, nicht alle $a_i = 0$) mit $m \le n^2 + 1$, sodaß p(A) = 0 gilt.
- 52. Zeige: die Menge $B = \{(1,1,0), (1,0,1), (0,1,1)\}$ bildet eine Basis von \mathbb{R}^3 . Finde die Koordinaten der Vektoren der Standardbasis $E = \{(1,0,0), (0,1,0), (0,0,1)\}$ bezüglich der geordneten Basis B = ((1, 1, 0), (1, 0, 1), (0, 1, 1)).
- 53. Finde die Matrizen zum Basiswechsel $E \to B$ und zum Basiswechsel $B \to E$, E und B wie im obigen Beispiel, E geordnet als ((1,0,0),(0,1,0),(0,0,1)).
- 54. Für den Raum $M_{2,2}(\mathbb{R})$ aller 2×2 -Matrizen über \mathbb{R} betrachte die zwei geordneten Basen: B = $\left(\left(\begin{array}{cc}1&0\\0&0\end{array}\right),\left(\begin{array}{cc}0&2\\0&0\end{array}\right),\left(\begin{array}{cc}0&1\\0&1\end{array}\right),\left(\begin{array}{cc}0&0\\1&0\end{array}\right)\right),E=\left(\left(\begin{array}{cc}1&0\\0&0\end{array}\right),\left(\begin{array}{cc}0&1\\0&0\end{array}\right),\left(\begin{array}{cc}0&0\\1&0\end{array}\right),\left(\begin{array}{cc}0&0\\0&1\end{array}\right)\right).$
 - (a) Bestimme die Matrizen zum Basiswechsel $B \to E$ und zum Basiswechsel $E \to B$.
 - (b) Bestimme die Koordinatenvektoren $[A]_E$ und $[A]_B$ für $A = \begin{pmatrix} 2 & -1 \\ 3 & 5 \end{pmatrix}$.
- 55. Welche der folgenden Abbildungen sind linear?

 - (a) $\mathbb{R}^4 \to \mathbb{R}^4$, f(x) = -x + (0, -1, 0, 1)(b) $\mathbb{R}^2 \to \mathbb{R}^4$, $f(x_1, x_2) = (0, x_1, x_2, x_2 x_1)$.
 - (c) $\mathbb{R}^2 \to \mathbb{R}^3$, $(x_1, x_2) \mapsto (x_1 + x_2, \sqrt{2}x_1 x_2, 2x_2)$ (d) $\mathbb{R}^2 \to \mathbb{R}$, $(x_1, x_2) \to x_1 x_2$

 - (e) $\mathbb{R}^3 \to \mathbb{R}^3$, $(x_1, x_2, x_3) \mapsto (x_2, 2x_3, 0)$ (f) $\mathbb{R}^2 \to \mathbb{R}^2$, $(x_1, x_2) \mapsto (x_1^2, x_1 x_2)$
- 56. Sei $B = \{(0,1,1), (0,2,1), (1,5,3)\}$; überprüfe, daß B eine Basis von \mathbb{R}^3 ist. Gib eine explizite Formel $f(x_1, x_2, x_3) = ?$ an für die eindeutig bestimmte lineare Abbildung $f: \mathbb{R}^3 \to \mathbb{R}^4$, für die f(0,1,1) = (1,-3,2,4), f(0,2,1) = (5,-3,0,2) und f(1,5,3) = (-2,0,1,1) gilt.
- 57. Sei $f: \mathbb{R}^2 \to \mathbb{R}^3$ eine beliebige lineare Abbildung und $p, v \in \mathbb{R}^2, v \neq 0$. Was kann über das Bild der Geraden $x = p + \lambda v \ (\lambda \in \mathbb{R})$ gesagt werden?
- 58. Sei $\{v_1,v_2\}$ linear unabhängig in \mathbb{R}^2 und sei $f:\mathbb{R}^2\to\mathbb{R}^2$ die lineare Abbildung gegeben durch $f(e_1) = v_1$, $f(e_2) = v_2$. Bestimme das Bild (unter f) des Rechtecks mit den Eckpunkten (0,1), (3,0), (0,0), (3,1).

- 59. Zeige, dass für die Transposition $A \mapsto A^T$ von Matrizen über einem Körper K die folgenden Gesetze gelten (wobei "=" stets so zu verstehen ist, daß eine Seite genau dann definiert ist, wenn die andere definiert ist, und die beiden Seiten in diesem Fall übereinstimmen):
 - (a) $(A^T)^T = A$
 - (b) $(\lambda A)^T = \lambda A^T \ (\lambda \in K)$ (c) $(A+B)^T = A^T + B^T$

 - $(d) (AB)^T = B^T A^T$.
- 60. Finde einen Isomorphismus zwischen \mathbb{R}^3 und \mathcal{P}_2 . Finde einen Teilraum V des Vektorraums $\mathbb{R}^{\mathbb{N}}$ aller reellen Folgen, der zum Vektorraum \mathcal{P} aller Polynomfunktionen isomorph ist.
- 61. Finde injektive lineare Abbildungen $\mathbb{R}^2 \to \mathbb{R}^3$ und $\mathbb{R}^3 \to \mathbb{R}^4$ und surjektive lineare Abbildungen $\mathbb{R}^3 \to \mathbb{R}^2 \text{ und } \mathbb{R}^4 \to \mathbb{R}^3.$
- 62. Zeige: es gibt keine surjektive [injektive] lineare Abbildung $\mathbb{R}^n \to \mathbb{R}^m$, wenn n < m [n > m].
- 63. Zeige: für jede lineare Abbildung $f: V \to W$ ist Ker f ein Teilraum von V und Im f ein Teilraum von W.
- 64. Bestimme Ker f, Im f, rg f und def f für die folgenden linearen Abbildungen:
 - (a) $f: \mathbb{R}^3 \to \mathbb{R}^2$, $(x_1, x_2, x_3) \mapsto (x_1 x_2 + x_3, 2x_1 + x_2)$
 - (b) $f: \mathbb{R}^3 \to \mathbb{R}, (x_1, x_2, x_3) \mapsto x_1 + 2x_2 4x_3$ (c) $f: \mathbb{R}^3 \to \mathbb{R}^3, (x_1, x_2, x_3) \mapsto (x_2, x_3, 0)$
- 65. Sei V n-dimensional und $f:V\to V$ linear mit $\mathrm{Ker} f=\mathrm{Im} f$. Zeige, daß n gerade sein muß und finde ein Beispiel einer solchen linearen Abbildung.
- 66. Seien V ein Vektorraum und $f:V\to V$ linear und $f\circ f=f$. Dann gilt: $V=\mathrm{Ker} f\oplus\mathrm{Im} f$. (Anleitung: jedes $v \in V$ läßt sich darstellen als v = (v - f(v)) + f(v).)
- 67. Sei $V=U\oplus W$; zu jedem $v\in V$ gibt es eindeutig bestimmte $v_U\in U$ und $v_W\in W$ mit $v = v_U + v_W$. Die Abbildung $p_{U,W}: V \to V, v \mapsto v_U$ heißt die Projektion auf U entlang W. Zeige: $p_{U,W}$ ist linear und idempotent (d.h. $p_{U,W} \circ p_{U,W} = p_{U,W}$). Verwende das obige Beispiel, um zu zeigen, dass umgekehrt jede lineare, idempotente Abbildung p eine Projektion ist, d.h., wenn $p \circ p = p$, dann $p = p_{U,W}$ für geeignete Teilräume U und W.
- 68. Seien V endlichdimensional und $f:V\to V$ eine lineare Abbildung; zeige: V wird genau dann von $\operatorname{Im} f \cup \operatorname{Ker} f$ erzeugt, wenn $\operatorname{Im} f \cap \operatorname{Ker} f = \{0\}.$
- 69. Sei $f: \mathbb{R}^3 \to \mathbb{R}^2$ gegeben durch $f(x_1, x_2, x_3) = (x_1 + 2x_2 + x_3, x_1 x_2)$. Wie lautet die Matrixdarstellung von f bezüglich
 - (a) der Standardbasen in \mathbb{R}^3 bzw. \mathbb{R}^2
 - (b) der Basen B = ((0,1,1),(0,2,1),(1,5,3)) (in \mathbb{R}^3) und C = ((2,-1),(1,0)) (in \mathbb{R}^2)?
- 70. Sei $D: \mathcal{P}_n \to \mathcal{P}_n$ gegeben durch (Dp)(t) = p'(t). Finde die Matrixdarstellung von D bezüglich
 - (a) der (geordneten) Basis $B = (1, x, x^2, \dots, x^n)$
 - (b) der (geordneten) Basis $C = (1, 1 + x, 1 + x + x^2, \dots, 1 + x + x^2 \dots + x^n)$.

Finde die Matrizen zu den Basiswechseln $B \to C$ und $C \to B$.

- 71. Dasselbe für den Operator $\Delta: \mathcal{P}_n \to \mathcal{P}_n$, gegeben durch $(\Delta p)(x) = p(x+1)$.
- 72. Verifiziere, dass $[\Delta \circ D]_{B,B} = [\Delta]_{B,B}[D]_{B,B}$ und $[D \circ \Delta]_{C,C} = [D]_{C,C}[\Delta]_{C,C}$ und bestimme $[D \circ \Delta - \Delta \circ D]_{B,B}$.
- 73. Sei $V=M_{2,2}(\mathbb{R})$ und $A\in V$. Zeige: $f_A:V\to V,\,X\mapsto AX$ ist linear. Finde die Matrixdarstellung von f_A für $A = \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}$ bezüglich $E = \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right)$ und $B = \left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right).$