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Abstract—A space-periodic ground state is shown to exist for lattices of point ions in R3

coupled to the Schrödinger and scalar fields. The coupling requires renormalization due to
the singularity of the Coulomb self-action. The ground state is constructed by minimizing the
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is positive. The elementary cell is necessarily neutral.
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1. INTRODUCTION

We consider 3-dimensional crystal lattices in R3,

Γ := {x(n) = a1n1 + a2n2 + a3n3 : n = (n1, n2, n3) ∈ Z3}, (1.1) {Ga3}

al ∈ R3 are linearly independent periods. Born and Oppenheimer [1] developed the quantum
dynamical approach to the crystal structure, separating the motion of “light electrons” and of
“heavy ions”. As an extreme form of this separation, the ions could be considered as classical
nonrelativistic particles governed by the Lorentz equations neglecting the magnetic field, while the
electrons could be described by the Schrödinger equation neglecting the electron spin. The scalar
potential is the solution to the corresponding Poisson equation.

We consider a crystal with N ions per cell. Let σj(y) = |e|Zjδ(y) be the charge density and
Mj > 0 be the mass of the corresponding ion, j = 1, . . . , N . Then the coupled equations read

i~ψ̇(x, t) = − ~2

2m
∆ψ(x, t) + eφ(x, t)ψ(x, t), x ∈ R3, (1.2) {LPS1}

−∆φ(x, t) = ρ(x, t) :=

N∑
j=1

∑
n∈Z3

σj(x− x(n)− qj(n, t)) + e|ψ(x, t)|2, x ∈ R3, (1.3) {LPS2}

Mj q̈j(n, t) = −|e|Zj∇φnj(x(n) + qj(n, t)), n ∈ Z3, j = 1, . . . , N. (1.4) {LPS}

Here, e < 0 is the electron charge, m is its mass, ψ(x, t) denotes the wave function of the electron
field, and φ(x, t) is the potential of the scalar field generated by the ions and the electrons. Further,
(·, ·) stands for the Hermitian scalar product in the Hilbert space L2(R3), and

∇φnj(x(n) + qj(n, t)) := ∇y
[
φ(x(n) + qj(n, t) + y)− |e|Zj

4π|y|

] ∣∣∣∣∣
y=0

. (1.5) {phinj}
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2 KOMECH

All the derivatives here and below will be understood in the sense of distributions. The system is
nonlinear and translation invariant; i.e., ψ(x − a, t), φ(x − a, t), qj(n, t) + a is also a solution for
any a ∈ R3.

A dynamical quantum description of the solid state as a many-body system gas not yet been
rigorously established (see the introduction of [2] and the preface of [3]). Up-to-date rigorous results
are concerned only with the ground state in different models (see below).

The classical Bethe–Sommerfeld’s “one-electron” theory, which depends on periodic Schrödin-
ger equation, does not take into account the oscillations of ions. Moreover, the choice of a periodic
potential in this theory is very problematic and corresponds to the fixation of ion positions (which
are unknown).

System (1.2)–(1.4) eliminates these difficulties. However, it does not respect the electron spin like
the periodic Schrödinger equation. To circumvent this deficiency one should replace the Schrödinger
equation by the Hartree–Fock equations as the next step towards a more realistic model. However,
we expect that the techniques developed for system (1.2)–(1.4) will be also useful for more realistic
dynamical models of crystals. These goals were our main motivation in writing this paper.

Here, we make the first step at proving the existence of the ground state, which is a Γ-periodic
stationary solution ψ0(x)e−iω

0t, φ0(x), q = (q0
1 , . . . , q

0
N ) to system (1.2)–(1.4):

~ω0ψ0(x) = − ~2

2m
∆ψ0(x) + eφ0(x)ψ0(x), x ∈ T 3, (1.6) {LPS3}

−∆φ0(x) = ρ0(x) := σ0(x) + e|ψ0(x)|2, x ∈ T 3, (1.7) {LPS4}

0 = −|e|Zj∇φ0
nj(q

0
j ), j = 1, . . . , N. (1.8) {LPS3g}

Here, T 3 := R3/Γ denotes the ‘elementary cell” of the crystal, 〈·, ·〉 stands for the Hermitian scalar
product in the complex Hilbert space L2(T 3) and its different extensions, and

σ0(x) :=

N∑
j=1

σj(x− q0
j ), σj(y) := |e|Zjδ(y). (1.9) {rrr}

The right-hand side of (1.8) is defined similarly to (1.5):

∇φ0
nj(q

0
j ) := ∇y

[
φ(q0

j + y)− |e|Zj
4π|y|

] ∣∣∣∣∣
y=0

(1.10) {phinj0}

Similarly to (1.2)–(1.4), system (1.6)–(1.8) is translation invariant. Note that ω0 must be real,
because Imω0 6= 0 means the instability of the ground state: a decay as t → ∞ if Imω0 < 0 and
an explosion if Imω0 > 0. We have∫

T 3

σ0(x) dx = Z|e|, Z :=
∑
j

Zj . (1.11) {intro}

The total charge per cell should be zero (cf. [4]):∫
T 3

ρ0(x) dx =

∫
T 3

[σ0(x) + e|ψ0(x)|2] dx = 0. (1.12) {neu10}

This neutrality condition follows directly from equation (1.7) by integration and using the Γ-perio-
dicity of φ0(x). Equivalently, the neutrality condition can be written as the normalization∫

T 3

|ψ0(x)|2 dx = Z. (1.13) {neuZ}
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CRYSTAL GROUND STATE IN THE SCHRÖDINGER–POISSON MODEL 3

Our main condition is the following:

Positivity condition: Zj > 0, j = 1, . . . , N. (1.14) {Zp}

Let us comment on our approach. The neutrality condition (1.13) defines the submanifold M in
the space H1(T 3) × (T 3)N of space-periodic configurations (ψ0, q0). We construct a ground state
as a minimizer over M of the energy per cell (2.3). Previously, we have established similar results
[?] for crystals with 1D, 2D and 3D lattices of smeared ions in R3.

Our main novelties in the present paper are as follows.

I. We extend our results [?]to the point ions subtracting the infinite self-action in the renormalized
equations.

II. We renormalize the energy per cell subtracting the infinite Coulomb self-action of the point
ions.

III. We put forward a bound from below for the renormalized energy under the assumption (1.14).

The minimization strategy ensures the existence of a ground state for any lattice (1.1). One could
expect that a stable lattice should provide a local minimum of the energy per cell for fixed N and
Zj , but this is still an open problem.

Some comment on related works are worth making. For atomic systems in R3, a ground state
was constructed by Lieb, Simon and P. Lions in the case of the Hartree and Hartree–Fock models
[5],[6], [7], and by Nier for the Schrödinger–Poisson model [8]. The Hartree–Fock dynamics for
molecular systems in R3 was constructed by Cancès and Le Bris [9].

A mathematical theory of the stability of matter emerges from the pioneering works of Dyson,
Lebowitz, Lenard, Lieb and others for the Schrödinger many-body model [10], [11], [12], [13]; see
the survey in [14]. Recently, the theory was extended to the setting of quantized Maxwell field [15].

These results and methods were developed in the last two decades by Blanc, Le Bris, Catto,
P. Lions and others to justify the thermodynamic limit for the Thomas–Fermi and Hartree–Fock
models with space-periodic ion arrangement [16],[17],[18],[19] and to construct the corresponding
space-periodic ground states [20], see the survey and further references in [21].

Recently, Giuliani, Lebowitz and Lieb have established the periodicity of the thermodynamic
limit in the 1D local mean field model without the assumption of periodicity of the ion arrange-
ment [22].

The paper is organized as follows. In Section 2, we renormalize the energy per cell and prove
that the renormalized energy is bounded from below. In Section 3, we prove the compactness of
the minimizing sequence, and in Section 4 calculate the energy variation. In the final Section 5, we
prove the Schrödinger equation.

Acknowledgments. The author thanks H. Spohn for useful remarks and E. Kopylova for
helpful discussions.

2. THE RENORMALIZED ENERGY PER CELL

We consider system (1.6), (1.7) for the corresponding functions on the torus T 3 = R3/Γ and for
q0j mod Γ ∈ T 3. For s ∈ R, we denote by Hs the Sobolev space on the torus T 3, and for 1 ≤ p ≤ ∞,
we denote by Lp the Lebesgue space of functions on T 3.

The ground state will be constructed by minimizing the energy in the cell T 3. To this aim, we
will minimize the energy with respect to q := (q1, . . . , qN ) ∈ (T 3)N and ψ ∈ H1 satisfying the
neutrality condition (1.12), ∫

T 3

ρ(x) dx = 0, ρ(x) := σ(x) + ν(x), (2.1) {neu1}
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4 KOMECH

where we set

σ(x) :=
∑
j

σj(x− qj), ν(x) := e|ψ(x)|2 (2.2) {rrr2}

similarly to (1.9). Let us note that the charge densities σ and ρ are finite Borel measures on T 3

for ψ ∈ H1, since ψ ∈ L6 by the Sobolev embedding theorem.
For sufficiently smooth (smeared) ion densities σ(x) the energy in the periodic cell is defined as

in [23],

E(ψ, q) :=
~2

2m
〈∇ψ(x),∇ψ(x)〉+

1

2
〈φ, ρ〉, φ := Qρ, (2.3) {HamsT}

where 〈·, ·〉 is the Hermitian scalar product in L2, and Qρ := (−∆)−1ρ is well-defined by (2.1).
Namely, consider the dual lattice

Γ∗ = {k(n) = b1n1 + b2n2 + b3n3 : n = (n1, n2, n3) ∈ Z3}, (2.4) {Ga3d}

where blak′ = 2πδkk′ . Every finite measure ρ on T 3 admits the Fourier representation

ρ(x) =
1√
|T 3|

∑
k∈Γ∗

ρ̂(k)e−ikx, ρ̂(k) =
1√
|T 3|

∫
T 3

eikxρ(x) dx, (2.5) {Fou}

where the Fourier coefficients ρ̂(k) are bounded. Respectively, we define the Coulomb potential

φ(x) = Qρ(x) :=
1√
|T 3|

∑
k∈Γ∗\0

ρ̂(k)

k2
e−ikx. (2.6) {Fou2}

The function φ lies in L2 and satisfies the Poisson equation −∆φ = ρ, since ρ̂(0) = 0 due to the
neutrality condition (2.1). Finally, ∫

T 3

φ(x) dx = 0. (2.7) {Fou3}

For the smeared ions the energy (2.3) can be rewritten as

E(ψ, q) =
~2

2m
〈∇ψ,∇ψ〉+

1

2
〈Qσ, σ〉+ 〈Qσ, ν〉+

1

2
〈Qν, ν〉. (2.8) {HamsTf}

Let us show that for the point ions the Coulomb self-action energy

〈Qσ, σ〉 =

N∑
j,l=1

〈Qσj , σl〉

is infinite. Namely, according to (2.6), the Coulomb potential of the ions reads as

φion(x) := Qσ(x) =
1√
|T 3|

∑
k∈Γ∗\0

σ̂(k)

k2
, σ̂(k) =

|e|√
|T 3|

∑
j

Zje
ikqj . (2.9) {Fou2n}

Hence, for the point ions,

φion(x)=
∑
j

φj(x), φj(x :=Qσj(x−qj)= |e|ZjG(x−qj), G(x)=
∑

k∈Γ∗\0

e−ikx

k2
, (2.10) {Fou2h}
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CRYSTAL GROUND STATE IN THE SCHRÖDINGER–POISSON MODEL 5

where G(x) is the Green function introduced in [18]. Obviously,

∫
T 3

G(x) dx = 0 and −∆G(x) =

δ(x). Therefore, by the elliptic regularity,

G ∈ C∞(T 3 \ 0), D(x) := G(x)− 1

4π|x|
∈ C∞(|x| < ε) (2.11) {G}

for sufficiently small ε > 0. As a result, the self-action terms 〈Qσj(x−qj), σj(x−qj)〉 = |e|2Z2
jG(0)

are infinite, while 〈Qσj(x− qj), σl(x− ql)〉 = |e|2ZjZlG(qj − ql) are finite for j 6= l.
{rD0}

Remark 2.1. Let us note that G(x) is symmetric with respect to the reflection x 7→ −x of the
torus T 3. Therefore, the difference D(x) is symmetric in the ball |x| < ε with respect to this
reflection, and hence

∇D(0) = 0. (2.12) {G0}

From now on we consider the point ions (1.9); the energy (2.8) will be renormalized by sub-
tracting the infinite self-action terms:

Er(ψ, q) =
~2

2m
〈∇ψ,∇ψ〉+

1

2

∑
j 6=l

〈Qσj(x− qj), σl(x− ql)〉+ 〈Qσ, ν〉+
1

2
〈Qν, ν〉. (2.13) {HamsTr}

Note that ν ∈ L2 for ψ ∈ H1 by the Sobolev embedding theorem, and besides Qσ ∈ L2. Hence,
the renormalized energy is finite for ψ ∈ H1. Next step is to check that the renormalized energy is
bounded from below. We set

X := {q ∈ (T 3)N : qj 6= ql for j 6= l}, d(q) := min
j 6=l

dist(qj , ql). (2.14) {cX}

Definition 2.2. We set M := M ×X , where M denotes the manifold (cf. (1.13))

M =
{
ψ ∈ H1 :

∫
T 3

|ψ(x)|2 dx = Z
}

(2.15) {MZ}

endowed with the topology of H1 ×X .
{lf}

Lemma 2.3. Let condition (1.14) hold. Then the functional Er is continuous on M, and the
bound holds

Er(ψ, q) ≥ ε‖ψ‖2H1 +
q

d(q)
+

1

2
〈Qν, ν〉 − C, (ψ, q) ∈M, (2.16) {HamsTr2}

where q, ε > 0.

Proof. First, ν := e|ψ(x)|2 ∈ L2, since ‖ν‖L2 = e2‖ψ‖2L4 ≤ C1‖ψ‖2H1 by the Sobolev embedding
theorem [24], [25]. Further, Qσ ∈ L2, since σ is a finite Borel measure on T 3 by (2.2). Hence, for
any δ > 0,

|〈Qσ(x), ν(x)〉| ≤ C‖ψ‖2L4 ≤ δ‖ψ‖2L6 + C(δ)‖ψ‖2L2 ≤ C2δ‖ψ‖2H1 + C(δ)Z. (2.17) {f}

Here, the second inequality follows in view of the Young inequality from the inequality ‖ψ‖L4 ≤
‖ψ‖3/4L6 ‖ψ‖1/4L2 , which holds by the M. Riesz convexity theorem. This theorem can be derived using
the Hölder inequality, but in our case the Cauchy–Schwarz inequality is sufficient:∫

|ψ(x)|3|ψ(x)| dx ≤ [

∫
|ψ(x)|6 dx]1/2[

∫
|ψ(x)|2 dx]1/2.

Therefore, the functional (ψ, q) 7→ 〈Qσ, ν〉 is continuous on M in the topology of H1 ×X .

On the other hand, ‖ψ‖2H1 =

∫
T 3

|∇ψ(x)|2 dx + Z for ψ ∈ M . Hence, the bound (2.16) follows

if we take C2δ < ~2/(2m). �
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6 KOMECH

3. COMPACTNESS OF A MINIMIZING SEQUENCE

The energy is finite and bounded from below on the manifold M by Lemma 2.3. Hence, there
exists a minimizing sequence (ψn, qn) ∈M such that

Er(ψn, qn)→ E0
r := inf

M
E(ψ, q), n→∞. (3.1) {min}

Remark 3.1. For sufficiently smooth charge densities σj the energy (2.8) is also finite, and its
difference from (2.13) is

∑
〈Qσj(x− qj), σj(x− qj)〉 =

∑
〈Qσj , σj〉 up to the constant factor 1/2.

This difference does not depend on ψ and q. Hence, the corresponding minimizers coincide.

Our main result is the following
{t3}

Theorem 3.2. i) There exists (ψ0, q0) ∈M such that

Er(ψ
0, q0) = E0

r . (3.2) {U0min}

ii) Moreover, ψ0 satisfies equations (1.6)–(1.8) with a real potential φ0 ∈ L2 and ω0 ∈ R.

To prove i) we set

ρn(x) := σn(x) + e|ψn(x)|2, σn(x) :=
∑
j

µper
j (x− qnj), νn(x) := e|ψn(x)|2. (3.3) {ron}

The sequence ψn is bounded in H1 by (3.1) and (2.16), and hence the corresponding sequence νn
is bounded in L2 by the Sobolev embedding theorem [24], [25]. Respectively, the corresponding
sequences Qσn and φn := Qρn are bounded in L2.

Hence, the sequence ψn is precompact in Lp for any p ∈ [1, 6) by the Sobolev embedding theorem.
As a result, there exist a subsequence n′ →∞ for which

ψn′
Lp

−→ ψ0, νn′(x)
L2

−→ ν0, φn′
L2

w−⇀ φ0, qn′ → q0 ∈ X , n′ →∞ (3.4) {subs}

with any p ∈ [1, 6). Respectively, the convergences

σn′ → σ0, ρn′ → ρ0, n′ →∞. (3.5) {subs1}

hold in the sense of distributions, where σ0(x) and ρ0(x) are defined by (1.9) and (1.7). Therefore,

Qσn′
L2

w−⇀ Qσ0, n′ →∞. (3.6) {3subs2}

Hence, the neutrality condition (1.12) holds, (ψ0, q0) ∈ M, φ0 ∈ L2, and for these limit functions
we have

−∆φ0 = ρ0,

∫
T 3

φ0(x) dx = 0. (3.7) {phi0}

To prove identity (3.2), we write the energy (2.13) as the sum Er = E1 + E2 + E3 + E4, where

E1(ψ, q) =
~2

2m
〈∇ψ(x),∇ψ(x)〉, E2(ψ, q) =

1

2

∑
j 6=l

〈Qσ(x− qj), σ(x− ql)〉,

E3(ψ, q) = 〈Qσ(x), ν(x)〉, E4(ψ, q) =
1

2
〈Qν(x), ν(x)〉.

Finally, the convergences (3.4) and (3.6) imply that

E1(ψ0, q0) ≤ lim inf
n′→∞

E1(ψn′ , qn′), El(ψ
0, q0) = lim

n′→∞
El(ψn′ , qn′), l = 2, 3, 4.

These limits, together with (3.1), give that Er(ψ
0, q0) ≤ E0

r . Now (3.2) follows from the definition
of E0

r , since (ψ0, q0) ∈M. This proves assertion i) of Theorem 3.2.

We will prove assertion ii) of Theorem 3.2 in next sections.
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CRYSTAL GROUND STATE IN THE SCHRÖDINGER–POISSON MODEL 7

4. VARIATION OF THE ENERGY

Assertion ii) of Theorem 3.2 follows from next result.
{tgs23}

Proposition 4.1. The limit functions (3.4) satisfy equations (1.6)–(1.8) with ω0 ∈ R.

The Poisson equation (1.7) is proved in (3.7). The Lorentz equation (1.8) follows by differentia-
tion of the energy (2.13) in qj . Namely, the derivative at the minimal point (ψ0, q0) should vanish:
taking into account (2.10), we obtain

0 = ∇qjEr(ψ0, q0) =
∑
k 6=j

〈Q∇σj(x− q0
j ), σl(x− q0

l )〉+ 〈Q∇σj(x− q0
j ), ν0〉

= 〈∇σj(x− q0
j ), φ0(x)− φ0

j (x)〉 = −〈σj(x− q0
j ),∇[φ0(x)− φ0

j (x)]〉,

where φ0
j (x) := Qσj(x− q0

j ) as in (2.10). Finally, the last expression coincides with the right-hand
side of (1.8) by its definition (1.10) and in view of (2.12).

It remains to prove the Schrödinger equation (1.6). Let us denote Er(ψ) := Er(ψ, q
0). We derive

(1.6) in next sections, equating the variation of Er(·)|M to zero at ψ = ψ0. In this section we
calculate the corresponding Gâteaux variational derivative.

We should work directly on M introducing an atlas in a neighborhood of ψ0 in M .Let us define
the atlas as the stereographic projection from the tangent plane TM(ψ0) = (ψ0)⊥ := {ψ ∈ H1 :
〈ψ,ψ0〉 = 0} to the sphere (2.15):

ψτ =
ψ0 + τ

‖ψ0 + τ‖L2

√
Z, τ ∈ (ψ0)⊥. (4.1) {3atlas}

Obviously,

d

dε

∣∣∣
ε=0

ψετ = τ, τ ∈ (ψ0)⊥, (4.2) {3tau}

where the derivative exists in H1. We define the “Gâteaux derivative” of Er(·)|M as

DτEr(ψ0) := lim
ε→0

Er(ψετ )− Er(ψ0)

ε
(4.3) {3Gder}

if this limit exists. We should however restrict the set of allowed tangent vectors τ .

Definition 4.2. C0 is the space of test functions τ ∈ (ψ0)⊥ ∩ C∞(T 3).

Obviously, C0 is dense in (ψ0)⊥ in the norm of H1.
{3lvar}

Lemma 4.3. Let τ ∈ C0. Then the derivative (4.3) exists and

DτEr(ψ0) =

∫
T 3

[ ~2

2m
(∇τ∇ψ0 +∇ψ0∇τ) + eQρ0(τψ0 + ψ0τ)

]
dx. (4.4) {3Gder2}

Proof. Let us denote νετ (x) := e|ψετ (x)|2. Then it suffices to prove the following lemma.
{3lL2}

Lemma 4.4. For τ ∈ C0 we have νετ ∈ L2 and

Dτν := lim
ε→0

νετ − ν0

ε
= e(τψ0 + ψ0τ), (4.5) {3Gder3}

where the limit holds in L2.
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8 KOMECH

Proof. In the polar coordinates

ψετ = (ψ0 + ετ) cosα, α = α(ε) = arctan
ε‖τ‖L2

‖ψ0‖L2

. (4.6) {3al}

Hence,

νετ = e cos2 α|ψ0 + ετ |2 = ν0 + eε cos2 α(τψ0 + ψ0τ) + e[ε2|τ |2 cos2 α− |ψ0|2 sin2 α]. (4.7) {3rod}

It remains to estimate the last term of (4.7),

Rε := Λ[ε2|τ |2 cos2 α− |ψ0|2 sin2 α]. (4.8) {3lt}

Here, |ψ0|2 ∈ L2, since ψ0 ∈ H1 ⊂ L6. Finally, |τ |2 ∈ L2 and sin2 α ∼ ε2. Hence, the convergence
(4.5) holds in L2. �

Now (4.4) follows by differentiation in ε of (2.13) with ψ = ψετ , σ = σ0 and ν = νετ . �

5. THE SCHRÖDINGER EQUATION

Since ψ0 is a minimal point, the Gâteaux derivative (4.4) vanishes, and so∫
T2

[ ~2

2m
(∇τ∇ψ0 +∇ψ0∇τ) + eQρ0(τψ0 + ψ0τ)

]
dx = 0. (5.1) {3GaD}

Substituting iτ instead of τ in this identity and subtracting, we obtain

− ~2

2m
〈∆ψ0, τ〉+ e〈Qρ0, ψ0τ〉 = 0. (5.2) {3GaD2}

Finally,

〈Qρ0, ψ0τ〉 = 〈φ0ψ0, τ〉, (5.3) {3sp}

since ρ0 = −∆φ0. Hence, we can rewrite (5.2) as the variational identity

〈− ~2

2m
∆ψ0 + eφ0ψ0, τ〉 = 0, τ ∈ C0. (5.4) {3GaD22}

Now we can prove the Schrödinger equation (1.6).
{lse}

Lemma 5.1. ψ0 is the eigenfunction of the Schrödinger operator H = − ~2

2m∆ + eφ0 :

Hψ0 = λψ0, (5.5) {3Hpsi}

where λ ∈ R.

Proof. First, Hψ0 is a well-defined distribution, since φ0, ψ0 ∈ L2 by (3.4), and hence φ0ψ0 ∈ L1.
Second, ψ0 6= 0, since ψ0 ∈M and Z > 0. Hence, there exists a test function θ ∈ C∞(T 3)\C0; i.e.,

〈ψ0, θ〉 6= 0. (5.6) {3test}

As a result, we have

〈(H − λ)ψ0, θ〉 = 0. (5.7) {3test2}

for an appropriate λ ∈ C. However, (H−λ)ψ0 also annihilates C0 by (5.4), and hence it annihilates
the whole space C∞(T 3). This implies (5.5) in the sense of distributions with a λ ∈ C. Finally,
(5.5) gives

〈Hψ0, ψ0〉 = λ〈ψ0, ψ0〉, (5.8) {3Hpsi2}

where the left-hand side is well-defined, because ψ0 ∈ H1 and ψ0 ∈ L4, while φ0 ∈ L2. Therefore,
λ ∈ R, since the potential is real. �
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This lemma implies equation (1.6) with ~ω0 = λ. The proof of assertion ii) of Theorem 3.2 is
complete.
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