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The Schrödinger–Poisson–Newton equations for crystals with a cubic lattice and 
one ion per cell are considered. The ion charge density is assumed i) to satisfy the 
Wiener and Jellium conditions introduced in our previous paper [25], and ii) to 
be exponentially decaying at infinity. The corresponding examples are given. We 
study the linearized dynamics at the ground state. The dispersion relations are 
introduced via spectral resolution for the non-selfadjoint Hamilton generator using 
the positivity of the energy established in [25]. Our main result is the dispersion 
decay in the weighted Sobolev norms for solutions with initial states from the 
space of continuous spectrum of the Hamilton generator. We also prove the absence 
of singular spectrum and limiting absorption principle. The multiplicity of every 
eigenvalue is shown to be infinite. The proofs rely on novel exact bounds and 
compactness for the inversion of the Bloch generators and on uniform asymptotics 
for the dispersion relations. We derive the bounds by the energy positivity from [25]. 
We also use the theory of analytic sets.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

First mathematical results on the stability of matter were obtained by Dyson and Lenard in [14,15], 
where the energy bound from below was established. The thermodynamic limit for the Coulomb systems 
was first studied by Lebowitz and Lieb [32,33], see the survey and further development in [36]. These results 
were extended by Catto, Le Bris, Lions, and others to the Thomas–Fermi and Hartree–Fock models [7–9]. 
Further results in this direction are due to Cancés, Lahbabi, Lewin, Sabin, Stoltz, and others [5,6,31,34,
35]. All these results concern either the convergence of the ground state of finite particle systems in the 
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thermodynamic limit or the existence of the ground state for infinite particle systems. Cancès and Le Bris 
proved the well-posedness for the Hartree–Fock molecular system [4].

However, no attention was paid to the dynamical stability of crystals with moving ions. This stability 
is necessary for a rigorous analysis of fundamental quantum phenomena in the solid state physics: heat 
conductivity, electric conductivity, thermoelectronic emission, photoelectric effect, Compton effect, etc., 
see [3].

We consider the simplest Schrödinger–Poisson model for the crystal with one ion per cell. The electron 
cloud is described by the one-particle Schrödinger equation; the ions are looked upon as particles that 
correspond to the Born and Oppenheimer approximation. The ions interact with the electron cloud via the 
scalar potential, which is a solution to the corresponding Poisson equation.

This model does not respect the Pauli exclusion principle for electrons. Nevertheless, it provides a con-
venient framework to introduce suitable functional tools that might be instrumental for physically more 
realistic models (the Thomas–Fermi, Hartree–Fock, and second quantized models).

The Schrödinger–Poisson equations are extensively studied for molecular systems since P.-L. Lions paper 
[37], see [1,10,38] and the references therein. In present paper, we establish the dispersion decay for the 
linearized Schrödinger–Poisson equations at the ground state for infinite crystals. The decay is proved 
under the Jellium and Wiener conditions on the ion charge density introduced in [25]. The ground state for 
this model was constructed in [21].

We denote by σ(x) the charge density of one ion, and define Z > 0 by the identity
∫

R3

σ(x) dx = eZ > 0, (1.1)

where e > 0 is the elementary charge. We assume throughout the paper that

(∆ − 1)σ ∈ L1(R3) (1.2)

which provides a suitable decay for the Fourier transform of σ. In particular, the series (1.15) are converging. 
Moreover, we assume the exponential decay of the ion charge density

|σ(x)| ≤ Ce−ε|x|, x ∈ R3, (1.3)

where ε > 0. The cubic lattice Γ = Z3 is chosen for the simplicity of notations. Let ψ(x, t) be the wave 
function of the electron field, q(n, t) denote the ions displacements, and Φ(x, t) be the electrostatic potential 
generated by the ions and electrons. We assume that ! = c = m = 1, where c is the speed of light and m is 
the electron mass. The coupled Schrödinger–Poisson–Newton equations read as

iψ̇(x, t) = −1
2∆ψ(x, t) − eΦ(x, t)ψ(x, t), x ∈ R3, (1.4)

−∆Φ(x, t) = ρ(x, t) :=
∑

n∈Z3

σ(x− n− q(n, t)) − e|ψ(x, t)|2, x ∈ R3, (1.5)

Mq̈(n, t) = −⟨∇Φ(x, t),σ(x− n− q(n, t))⟩, n ∈ Z3. (1.6)

Here t ∈ R, the brackets stand for the Hermitian scalar product on the real Hilbert space L2(R3) and for 
its various extensions, the series (1.5) converges in a suitable sense, and M > 0 is the mass of one ion. All 
the derivatives here and below are understood in the sense of distributions. The potential Φ(x, t) can be 
eliminated using the operator G := (−∆)−1 defined by
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Gρ(x) := 1
4π

∫
ρ(y)dy
|x− y|

, x ∈ R3. (1.7)

Then equations (1.4)–(1.6) can be formally written as a Hamilton system with the Hamilton functional 
(energy)

E(ψ, q, p) = 1
2

∫

R3

[|∇ψ(x)|2 + ρ(x)Gρ(x)]dx +
∑

n

p2(n)
2M , (1.8)

where q := (q(n) : n ∈ Z3), p := (p(n) : n ∈ Z3), ρ(x) is defined similarly to (1.5). Namely, system 
(1.4)–(1.6) can be formally written as

iψ̇(x, t) = ∂ ψ(x)H , q̇(n, t) = ∂p(n)H , ṗ(n, t) = −∂q(n)H , (1.9)

where ∂ z := 1
2 (∂z1 + i∂z2) with z1 = Re z and z2 = Im z.

A ground state of a crystal is a Γ-periodic solution

ψ0(x)e−iω0t , Φ0(x) , q0(n) = q0 and p0(n) = 0 for n ∈ Z3 (1.10)

with a real ω0 and minimal energy per cell. Such ground state was constructed in [21] for general lattice 
with several ions per cell. In our case the ion position q0 ∈ R3 can be chosen arbitrarily, and we set q0 = 0
everywhere below. In our framework ψ0(x) will be a real function up to a phase factor, see (1.10) below. This 
factor can be neglected due to U(1)-symmetry of equations (1.4)–(1.6), and respectively, we will consider 
the real ground states ψ0(x).

In present paper, we prove the dispersion decay for the formal linearization of the nonlinear system 
(1.4)–(1.6) at the ground state (1.10). The linearization is obtained on substituting ψ(x, t) = [ψ0(x) +
Ψ(x, t)]e−iω0t into the nonlinear equations (1.4), (1.6) with Φ(x, t) = Gρ(x, t) and retaining the linear terms 
in Y (t) = (Ψ(·, t), q(·, t), p(·, t)). For the real ground state the linearized equation reads as follows (see [25, 
(1.14)]):

Ẏ (t) = AY (t), A =

⎛

⎜⎜⎜⎜⎝

0 H0 0 0

−H0 − 2e2ψ0Gψ0 0 −S 0
0 0 0 M−1

−2S ∗ 0 −T 0

⎞

⎟⎟⎟⎟⎠
. (1.11)

Here, we denote Y (t) = (Ψ1(·, t), Ψ2(·, t), q(·, t), p(·, t)), where Ψ1(x, t) := Re Ψ(x, t), Ψ2(x, t) := Im Ψ(x, t), 
H0 := −1

2∆ − eΦ0(x) − ω0, the operators S and T are defined in Appendix, and ψ0 denotes the operators 
of multiplication by the real function ψ0(x). From the Hamilton representation (1.9) we have

A = JB, B =

⎛

⎜⎜⎜⎜⎜⎝

2H0 + 4e2ψ0Gψ0 0 2S 0

0 2H0 0 0

2S ∗ 0 T 0
0 0 0 M−1

⎞

⎟⎟⎟⎟⎟⎠
, J =

⎛

⎜⎜⎜⎝

0 1
2 0 0

−1
2 0 0 0

0 0 0 1
0 0 −1 0

⎞

⎟⎟⎟⎠
. (1.12)

The results [25] imply that the energy operator B is densely defined and is selfadjoint on the Hilbert space

X 0(R3) := L2(R3) ⊕ L2(R3) ⊕ l2(Z3) ⊕ l2(Z3). (1.13)

Our main goal is to show the dispersion decay of solutions to (1.11) in the weighted norms
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∥X∥α := ∥⟨x⟩α Ψ1(x)∥L2(R3) + ∥⟨x⟩α Ψ2(x)∥L2(R3) + ∥⟨n⟩α q(n)∥l2(Z3) + ∥⟨n⟩α p(n)∥l2(Z3) (1.14)

with α < 0 for X = (Ψ1, Ψ2, q, p) ∈ X 0(R3). We will prove the decay under two following conditions C1 
and C2 on σ introduced in [25].

C1. The Wiener Condition: Σ(θ) :=
∑

m

[ξ ⊗ ξ

|ξ|2 |σ̂(ξ)|2
]

ξ=2πm+θ
> 0 , for a.e. θ ∈ Π∗ \ Γ∗. (1.15)

Here σ̂(ξ) stands for the Fourier transform 
∫

eiξxσ(x) dx, Π∗ := [0, 2π]3 is the Brillouin zone, Γ∗ := 2πZ3

and ξ ⊗ ξ denotes the matrix ξiξj . The series of the matrices converges by (1.2), and the sum is a positive 
definite matrix.

This condition is an analog of the Fermi Golden Rule for crystals. It means a strong coupling of the ions 
to the electron field.

C2. The Jellium Condition: σ̂(2πm) = 0, m ∈ Z3 \ 0. (1.16)

This condition cancels the negative energy which is provided by the electrostatic instability (‘Earnshaw’s 
Theorem’ [44], see [25, Remark 10.2]). It implies that the periodized ions charge density corresponding to 
the ground state is a positive constant everywhere in the space.

The simplest example of such a σ is a constant over the unit cell of a given lattice, which is what physicists 
usually call Jellium [19]. Moreover, this condition holds for a broad class of functions σ, see [26, Section B.2]. 
Here we study this model in the rigorous context of the Schrödinger–Poisson equations.

Under condition (1.16), the minimum of energy per cell corresponds to the opposite uniform negative 
electronic charge. So these ion and electronic densities cancel each other, and the potential Φ(x, t) vanishes 
by (1.5), see Lemma 2.1 in [25]:

ψ0(x) ≡ eiφ
√
Z, φ ∈ [0, 2π]; Φ0(x) ≡ 0, ω0 = 0. (1.17)

We give examples satisfying all our conditions (1.2), (1.3), (1.15), and (1.16), (see Example 3.2).
The key result of [25] is the positivity B > 0 of the energy operator (1.12) under the Wiener and Jellium 

conditions C1 and C2. Denote by W the completion of the space X 1(R3) := H1(R3) ⊕H1(R3) ⊕ l2(Z3) ⊕
l2(Z3) with the norm

∥Y ∥W := ∥ΛY ∥X 0(R3), Λ := B1/2 > 0. (1.18)

In [25] we have proved that for any Y (0) ∈ W there exists a unique weak solution Y (t) ∈ C(R, W ) to (1.11). 
The main result of the present paper is the following theorem.

Theorem 1.1. Let conditions (1.2), (1.3), (1.15), and (1.16) hold. Then every solution Y (t) ∈ C(R, W ) to 
(1.11) splits as follows

Y (t) =
M∑

1
Yke

−iω∗
kt + Yc(t), (1.19)

where M ≤ ∞ and Yk ∈ W . Moreover,

|ω∗
k| → ∞, k → ∞, (1.20)
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if M = ∞. The remainder Yc(t) decays in the weighted norms: for any α < −3/2,

∥ΛYc(t)∥α → 0, |t| → ∞. (1.21)

This theorem means the linear asymptotics stability of the ground state (1.17) when M = 0.
Let us comment on our approach. We develop our methods [25] relying on the Bloch transform. Namely, 

the generator A commutes with translations by vectors from Γ. Hence, the equation (1.11) can be reduced 
using the Fourier–Bloch–Gelfand–Zak transform Y (t) .→ Ỹ (·, t) ∈ L2(Π∗, X 0(T)), where T := R3/Γ is the 
periodic cell, and

X s(T) := Hs(T) ⊕Hs(T) ⊕ C3 ⊕ C3, s ∈ R. (1.22)

In the Bloch transform equation (1.11) formally reads

˙̃Y (θ, t) = Ã(θ)Ỹ (θ, t) for a.e. θ ∈ Π∗, t ∈ R, (1.23)

where Ỹ (·, t) ∈ X 0(T) (see [25, (8.6)]). The Hamilton representation (1.12) implies that

Ã(θ) = JB̃(θ), θ ∈ Π∗ \ Γ∗, (1.24)

where the Bloch energy operators B̃(θ) are selfadjoint in X 0(T). The main crux here is that the generator 
Ã(θ) is not selfadjoint and even is not symmetric in the Hilbert space X 0(T). Hence we cannot diagonalize 
it using the von Neumann spectral theorem. Thus, even an introduction of the ‘dispersion relations’ ωk(θ), 
which are the eigenvalues of Ã(θ), is a nontrivial problem in our situation. Let us denote

Π∗
+ := {θ ∈ Π∗ \ Γ∗ : Σ(θ) > 0}. (1.25)

This is an open set of the complete Lebesgue measure, i.e., mes (Π∗ \ Π∗
+) = 0, by (1.15). The key role in 

our approach is played by the positivity

⟨Ỹ , B̃(θ)Ỹ ⟩ ≥ κ(θ)∥Ỹ ∥2
X 1(T), Ỹ ∈ X 1(T), θ ∈ Π∗

+, (1.26)

with κ(θ) > 0, the brackets denoting the scalar product in X 0(T). We have proved this bound in [25] under 
conditions (1.15)–(1.16) on the ion charge density σ.

In present paper we use this positivity to show that the eigenvectors of Ã(θ) span the Hilbert space 
X 0(T) by our spectral theory of the Hamilton operators with positive energy [23,24]. This is a special 
version of the Gohberg–Krein–Langer theory of selfadjoint operators in the Hilbert spaces with indefinite 
metric [20, Ch. VI] and [29,30]. Namely, setting Λ̃(θ) := B̃1/2(θ), we obtain that

Ã(θ) = −iΛ̃−1(θ)K̃(θ)Λ̃(θ), θ ∈ Π∗
+, (1.27)

where K̃(θ) = Λ̃(θ)iJΛ̃(θ) is a selfadjoint operator in X 0(T). Hence, all solutions to (1.23) admit the 
representation

Ỹ (θ, t) = Λ̃−1(θ)e−iK̃(θ)tΛ̃(θ)Ỹ (θ, 0), t ∈ R, θ ∈ Π∗
+. (1.28)

We prove that the spectrum of K̃(θ) is discrete and obtain the lower estimate for the eigenvalues ωk(θ)
which are also the eigenvalues of Ã(θ) and are called the dispersion relations (or the Floquet eigenvalues).

Further, we represent the solution Y (t) as the inversion of the Bloch transform (1.28). This inversion is 
the series of oscillatory integrals with the phase functions ωk(θ). Using the decay (1.3) we show that
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i) ωk(θ) are piecewise real-analytic in θ ∈ Π∗ \ Γ∗ for every k;
ii) If ωk(θ) ̸≡ const, then the set

{θ ∈ Π∗ \ Γ∗ : ∇ωk(θ) = 0, det Hessωk(θ) = 0} (1.29)

has the Lebesgue measure zero;
iii) In the case M = ∞ the limit (1.20) holds for the constant dispersion relations ωk(θ) ≡ ω∗

k.

These properties of the phase functions provide the asymptotics (1.19) and (1.21). Finally, we establish the 
absence of singular spectrum and the limiting absorption principle for the selfadjoint operator K := iΛAΛ−1.

Note that all our methods and results extend obviously to equations (1.4)–(1.6) in the case of a general 
lattice

Γ = {n1a1 + n2a2 + n3a3 : (n1, n2, n3) ∈ Z3}, (1.30)

where the generators ak ∈ R3 are linearly independent. In this case the condition (1.16) becomes

σ̂(γ∗) = 0, γ∗ ∈ Γ∗ \ 0. (1.31)

Here Γ∗ denotes the dual lattice Γ∗ = {m1b1 + m2b2 + m3b3 : (m1, m2, m3) ∈ Z3}, where ⟨ak, bj⟩ = 2πδkj . 
The condition (1.31) relates the properties of the ions with the crystal geometry.

Let us comment on previous results in these directions.
The Schrödinger–Poisson equations for crystal were introduced in [21,22], where the existence of the 

ground states was established for infinite crystals. Recently we have proved the linear stability of these 
ground states [25]. In [26,27] we have proved the orbital stability of the ground states for the Schrödinger–
Poisson equations with one-particle and many-particle Schrödinger equation in the case of finite crystals 
with periodic boundary conditions.

In the Hartree–Fock model the crystal ground state was constructed for the first time by Catto, Le Bris, 
and Lions [8,9]. For the Thomas–Fermi model, see [7].

In [5], Cancés and Stoltz established the well-posedness for the dynamics of local perturbations of the 
ground state density matrix in the random phase approximation for the reduced Hartree–Fock equations 
with the Coulomb pairwise interaction potential w(x − y) = 1/|x − y|. However, the space-periodic nuclear 
potential in the equation [5, (3)] does not depend on time that corresponds to the fixed nuclei positions.

The nonlinear Hartree–Fock dynamics with the Coulomb potential and without the random phase ap-
proximation was not studied previously, see the discussion in [31] and in the introductions of [5,6].

In [6] E. Cancès, S. Lahbabi, and M. Lewin considered the random reduced HF model of crystal when 
the ions charge density and the electron density matrix are random processes, and the action of the lattice 
translations on the probability space is ergodic. They obtained suitable generalizations of the Hoffmann–
Ostenhof and Lieb–Thirring inequalities for ergodic density matrices, and constructed a random potential 
satisfying the Poisson equation with the corresponding stationary stochastic charge density. The main result 
of [6] is the coincidence of this model with the thermodynamic limit in the case of the short-range Yukawa 
interaction.

In [34], Lewin and Sabin showed the well-posedness for the reduced von Neumann equation, describing the 
Fermi gas, with density matrices of infinite trace and pairwise interaction potentials w ∈ L1(R3). Moreover, 
they proved the asymptotic stability of translation-invariant stationary states for 2D Fermi gas [35].

The traditional one-electron Bethe–Bloch–Sommerfeld mathematical model of crystals is known to be 
the linear Schrödinger equation with a space-periodic static potential, which corresponds to the standing 
ions. The corresponding spectral theory is well developed, see [41] and the references therein. The scattering 
theory for short-range and long-range perturbations of such ‘periodic operators’ was constructed in [17,18].
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The first results on the dispersion decay ∼ t−1 were obtained by Firsova [16] for 1D Schrödinger equation 
with space-periodic potential for finite band case. The proofs rely on Korotyaev’s results [28] on stationary 
points of the dispersion relations.

The decay ∼ t−ε with a small ε > 0 for the 1D Schrödinger equation with an infinite band potential 
was established by Cuccagna [12]. This decay was applied to the asymptotic stability of standing waves in 
presence of small nonlinear perturbations [11].

The absence of constant dispersion relations for the periodic Schrödinger equations was established by 
Thomas [45], see also Lemma 2 (c) of [41], p. 308.

Recently Prill [40] proved the decay ∼ t−p with p = 3/2 and p = 1/2 (under distinct assumptions) for 
the 1D Klein–Gordon equation with a periodic Lamé potential and its short range perturbations.

The dispersion decay for the periodic Schrödinger and Klein–Gordon equations in higher dimensions 
n ≥ 2 was not obtained previously.

Our paper is organized as follows. In Section 2 we recall some formulas from [25] for the Bloch represen-
tation. In Section 3 we introduce the dispersion relations and prove their properties. In Section 4 we prove 
the asymptotics (1.19), (1.21), and in Section 5 we justify the limiting absorption principle. In Appendix A
we collect some formulas from [25] which we need in our calculations.

Acknowledgments The authors are grateful to Herbert Spohn for discussions and remarks.

2. The Bloch representation of the dynamics

In this section we recall some notations from [25] and establish novel exact bounds and compactness for 
the inversion of the Bloch generators.

2.1. The Bloch representation of the dynamics

We set S+ := ∪ε>0Sε, where Sε is the space of functions Ψ ∈ S (R3) whose Fourier transforms Ψ̂(ξ)
vanish in the ε-neighborhood of the lattice Γ∗, and let lc be the space of compactly supported sequences 
q(n) ∈ R3.

Definition 2.1. Let D := {Y = (Ψ1, Ψ2, q, p) : Ψ1, Ψ2 ∈ S+, q, p ∈ lc}.

Note that the space D is dense in X 0(R3), and A : D → X 0(R3) by Theorem 4.2 of [25]. Denote by Π
the primitive cell Π := [0, 1]3 and X 0(Π) := L2(Π) ⊕ L2(Π) ⊕ R3 ⊕ R3. For Y = (Ψ1, Ψ2, q, p) ∈ X 0(R3)
and n ∈ Z3 we set

Y (n) = (Ψ1(n, ·),Ψ2(n, ·), q(n), p(n)), where Ψj(n, y) = Ψj(n + y) for a.e. y ∈ Π. (2.1)

Obviously,

∥Y ∥2
X 0(R3) =

∑

n∈Z
∥Y (n)∥2

X 0(Π). (2.2)

Definition 2.2. We will call the sequence Y (n) as the cell representation of Y ∈ X 0(R3).

The ground state (1.10) is invariant with respect to translations of the lattice Γ, and hence the generator 
A commutes with these translations. Therefore, the operator A can be reduced using the discrete Fourier 
transform
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Ŷ (θ) = Fn→θY (n) :=
∑

n∈Z3

einθY (n) = (Ψ̂1(θ, ·), Ψ̂2(θ, ·), q̂(θ), p̂(θ)) for a.e. θ ∈ Π∗. (2.3)

By the Parseval–Plancherel theorem the series converge in L2(Π∗, X 0(Π)) for Y ∈ X 0(R3).

Definition 2.3. (see [13,39,41], and [25]) The Bloch transform of Y ∈ X 0(R3) is defined as

Ỹ (θ) = [FY ](θ) := M (θ)Ŷ (θ) := (Ψ̃1(θ, ·), Ψ̃2(θ, ·), q̂(θ), p̂(θ)) for a.e. θ ∈ Π∗, (2.4)

where Ψ̃j(θ, y) = M(θ)Ψ̂j := eiθyΨ̂j(θ, y) are Γ-periodic functions in y ∈ R3.

The transform F : X 0(R3) → L2(Π∗, X 0(T)) is an isomorphism by the Parseval–Plancherel identity. 
The inversion is given by

Y (n) = |Π∗|−1
∫

Π∗

e−inθM (−θ)Ỹ (θ)dθ, n ∈ Z3. (2.5)

In the Bloch transform one has ÃY (θ) = Ã(θ)Ỹ (θ) for Y ∈ D and θ ∈ Π∗ \ Γ∗. Here Ã(θ) denotes the 
operator matrix

Ã(θ) =

⎛

⎜⎜⎜⎜⎝

0 H̃0(θ) 0 0

−H̃0(θ) − 2e2ψ0G̃(θ)ψ0 0 S̃(θ) 0
0 0 0 M−1

−2S̃ ∗(θ) 0 −T̃ (θ) 0

⎞

⎟⎟⎟⎟⎠
, θ ∈ Π∗ \ Γ∗, (2.6)

where the operator entries are given by (A.2)–(A.4). The operator Ã(θ) admits the representation

Ã(θ) = JB̃(θ), B̃(θ) =

⎛

⎜⎜⎜⎜⎜⎝

2H̃0(θ) + 4e2ψ0G̃(θ)ψ0 0 2S̃(θ) 0

0 2H̃0(θ) 0 0

2S̃ ∗(θ) 0 T̃ (θ) 0
0 0 0 M−1

⎞

⎟⎟⎟⎟⎟⎠
, θ ∈ Π∗ \ Γ∗. (2.7)

Lemma 2.4. Let conditions (1.2) and (1.15), (1.16) hold. Then

i) For θ ∈ Π∗ \ Γ∗ the operator B̃(θ) is selfadjoint in X 0(T) with the domain X 2(T); the quadratic form 
⟨B̃(θ)Ỹ , Ỹ ⟩ extends by continuity to Ỹ ∈ X 1(T):

⟨B̃(θ)Ỹ , Ỹ ⟩ ≤ C∥Ỹ ∥2
X 1(T), Ỹ ∈ X 1(T). (2.8)

ii) For θ ∈ Π∗
+

∥Ỹ ∥2
X 1(T) ≤

1
κ(θ) ⟨B̃(θ)Ỹ , Ỹ ⟩, Ỹ ∈ X 1(T). (2.9)

Proof. i) The representation Ã(θ) = JB̃(θ) follows from (1.12). The operator B̃(θ) is symmetric on the 
domain X 2(T). Moreover, all operators in (2.7), except for H̃0(θ), are bounded by (1.2). Finally, H̃0(θ) is 
selfadjoint in L2(T) with the domain H2(T). Hence, B̃(θ) is selfadjoint on the domain X 2(T).

ii) The bound (2.9) holds by (1.26). ✷



872 A. Komech, E. Kopylova / J. Math. Anal. Appl. 464 (2018) 864–882

Corollary 2.5. Under conditions (1.2) and (1.15), (1.16)

i) The operator Λ̃(θ) := B̃1/2(θ) : X 1(T) → X 0(T) is bounded.
ii) For θ ∈ Π∗

+ the operator Λ̃(θ) is invertible in X 0(T). Moreover,

∥Λ̃−1(θ)Z̃∥2
X 1(T) ≤

1
κ(θ)∥Z̃∥2

X 0(T), Z̃ ∈ X 0(T) (2.10)

Proof. i) Λ̃(θ) is bounded by (2.8), since

⟨Λ̃(θ)Ỹ , Λ̃(θ)Ỹ ⟩ = ⟨B̃(θ)Ỹ , Ỹ ⟩, Ỹ ∈ X 2(T). (2.11)

ii) Λ̃(θ) is invertible by the positivity (1.26), and (2.10) follows by (2.9) as applied to Ỹ = Λ̃−1(θ)Z̃. ✷

2.2. Reduction to selfadjoint generator

Definition 2.6. A function Y (t) ∈ C(R, X 1(R3)) is a weak solution to (1.11) if, for every V ∈ D ,

⟨Y (t) − Y (0), V ⟩ =
t∫

0

⟨Y (s), A∗V ⟩ds, t ∈ R. (2.12)

In the Bloch transform the weak solution satisfies (1.23) in the sense of X 1(T)-valued distributions, 
see [25]. Applying Λ̃(θ) to both sides of (1.23), we obtain the equivalent equation ˙̃Z(θ, t) = −iK̃(θ)Z̃(θ, t)
for θ ∈ Π∗

+ in the sense of vector-valued distributions, where Z̃(θ, t) := Λ̃(θ)Ỹ (θ, t) and K̃(θ) := Λ̃(θ)iJΛ̃(θ)
is formally symmetric operator in X 0(T). The main crux is that the domain of K̃(θ) is unknown, since the 
ion density σ(x) is not smooth in general, and so the PDO machinery does not apply. The following lemma 
plays a key role in our approach.

Lemma 2.7. (cf. Lemma 8.2 of [25]) Let conditions (1.2) and (1.15), (1.16) hold. Then for θ ∈ Π∗
+

i) K̃(θ) is a selfadjoint operator in X 0(T) with dense domain D(K̃(θ)) ⊂ X 1(T);
ii) K̃−1(θ) is a compact selfadjoint operator in X 0(T), and

∥K̃−1(θ)Z̃∥2
X 1(T) ≤

C

κ(θ)∥Z̃∥2
X 0(T), Z̃ ∈ X 0(T). (2.13)

Proof. i) The operator Λ̃(θ) is injective. Moreover, Ran Λ̃(θ) = X 0(T). Hence, Ran K̃(θ) = X 0(T). 
Consider the inverse operator

R̃(θ) := K̃−1(θ) = iΛ̃−1(θ)J−1Λ̃−1(θ). (2.14)

This operator is selfadjoint, since it is bounded and symmetric. Hence, D(R̃(θ)) = Ran K̃(θ) = X 0(T). 
Therefore, K̃(θ) = R̃−1(θ) is a densely defined selfadjoint operator by Theorem 13.11 (b) of [42]:

K̃∗(θ) = K̃(θ) , D(K̃(θ)) = Ran R̃(θ) ⊂ Ran Λ̃−1(θ) ⊂ X 1(T),

where the last inclusion follows from (2.10).
ii) Estimate (2.13) follows from (2.10) and (2.14). Hence, K̃−1(θ) is a compact operator in X 0(T) by 

the Sobolev embedding theorem. ✷
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As a consequence,

Z̃(θ, t) = e−iK̃(θ)tZ̃(θ, 0), Z̃(θ, 0) := Λ̃(θ)Ỹ (θ, 0). (2.15)

The definition (1.18) implies that the operator Λ := F−1Λ̃(θ) is the isomorphism W → X 0(R3).

Proposition 2.8. (Corollary 8.5 of [25]) Let the positivity (1.26) hold. Then, for every initial state Y (0) ∈ W , 
there exists a unique weak solution Y (·) ∈ Cb(R, W ) to equation (1.11). The solution is given by for-
mula (1.28).

3. Dispersion relations

Here we establish the properties of the eigenvalues of K̃(θ) which play the key role in the proof of the 
dispersion decay. Lemma 2.7 implies the spectral resolution

K̃(θ) =
∞∑

k=1
ωk(θ)Pk(θ), θ ∈ Π∗

+, (3.1)

where ωk(θ) are the eigenvalues (dispersion relations) counted with their multiplicities,

|ω1(θ)| ≤ |ω2(θ)| ≤ . . . ,

and Pk(θ) are the corresponding orthogonal projections.

Lemma 3.1. Let conditions (1.2) and (1.15), (1.16) hold and Q be a compact subset of Π∗
+. Then

|ωk(θ)| ≥ ε(Q)k2/3, k ≥ 1, θ ∈ Q, (3.2)

where ε(Q) > 0.

Proof. The key role in the proof of (3.2) is played by the estimate [25, (7.23)]:

b(Q) := inf
θ∈Q

κ(θ) > 0 (3.3)

for any compact subset Q ⊂ Π∗
+. The expansion (3.1) implies that

|K̃−1(θ)| =
∞∑

k=1
|ωk(θ)|−1Pk(θ), θ ∈ Π∗

+. (3.4)

Moreover, by duality we have from estimate (2.13)

∥K̃−1(θ)Z̃∥2
X 0(T) ≤

C

b(Q)∥Z̃∥2
X −1(T), Z̃ ∈ X 0(T), θ ∈ Q (3.5)

due to (3.3), since the operator K̃−1(θ) is selfadjoint. At last, the norm in the right-hand side of (3.5) can 
be written as ∥gZ̃∥X 0(T), where

g =

⎛

⎜⎜⎜⎝

(−∆ + 1)−1/2 0 0 0
0 (−∆ + 1)−1/2 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎟⎠
(3.6)
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is the positive selfadjoint operator in X 0(T). Now (3.5) gives that

∥|K̃−1(θ)|Z̃∥X 0(T) ≤ C(Q)∥gZ̃∥X 0(T), Z̃ ∈ X 0(T), θ ∈ Q. (3.7)

Hence, the Rayleigh–Courant–Fisher theorem ([2, Theorem 1, p. 110] and [41, Theorem XIII.1, p. 91]) 
implies that

|ωk(θ)|−1 ≤ C(Q)gk, k ≥ 1, θ ∈ Q, (3.8)

where g1 ≥ g2 ≥ . . . are the eigenvalues of g counted with their multiplicities. Therefore, (3.2) holds, since 
gk ≤ Ck−2/3. The last inequality is obvious, in as much as k ≤ #(n ∈ Z3 : n2 + 1 ≤ g−1

k ) ≤ C1g
−3/2
k . ✷

Further we use the exponential decay of the ion charge density (1.3). It is easy to construct examples 
of densities σ satisfying all conditions of Theorem 1.1: (1.2), (1.3) and the Wiener and Jellium conditions 
(1.15), (1.16).

Example 3.2. For example, all these conditions hold for σ(x1, x2, x3) := σ1(x1)σ1(x2)σ1(x3), where

σ̃1(ξ) := sin ξ
2

ξ
e−ξ2

, ξ ∈ R.

In particular, (1.3) holds by the Paley–Wiener theorem.

The condition (1.3) implies that the function σ̃(θ, y) is analytic with respect to θ in the complex tube

Π∗
ε := {θ ∈ [Π∗ \ Γ∗] ⊕ iR3 : |Imθ| < ε}.

Hence, the finite rank operators S̃(θ) and T̃ (θ) defined in (A.2)–(A.4) are also analytic in θ ∈ Π∗
ε. Therefore, 

K̃(θ) is real-analytic on Π∗
+. Denote the set

R := {(θ,ω) : θ ∈ Π∗
+, ω ∈ Spec K̃(θ)}. (3.9)

The eigenvalues ωk(θ) and the projections Pk(θ) become single-valued functions on R: for R = (θ, ωk(θ))

θ(R) := θ, ω(R) := ωk(θ), P (R) := Pk(θ). (3.10)

These functions are continuous on the manifold R endowed with natural topology by the inclusion R ⊂
Π∗ ×R. They are piecewise analytic on R by the following lemma, which extends [43, Lemma 1.1] from the 
Schrödinger equation with periodic potential to the system (1.11).

Lemma 3.3. Let all conditions of Theorem 1.1 hold. Then for every point R∗ = (θ∗, ω∗) ∈ R there exists a 
neighborhood U = U(R∗) ⊂ R with its projection V = V (R∗) onto Π∗

+, and a critical subset C = C (R∗) ⊂
Π∗

ε, which is a finite union of analytic submanifolds of positive complex codimension in Π∗
ε, with the following 

properties:

i) For any point R = (θ, ω) ∈ U we have ω(R) := ω ∈ Spec K̃(θ).
ii) For any point θ′ ∈ V \C there exists a neihborhood W = W (θ′) ⊂ V \C such that R = (θ, ω) ∈ U with 

θ ∈ W if and only if ω = ωl(θ) with some l = 1, ..., L = L(R∗).
iii) The eigenvalues ωl(·) and the corresponding projections Pl(·) are real-analytic functions on W and 

admit an analytic continuation outside C in a complex neighborhood of θ∗ in Π∗
ε.
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iv) For each l = 1, ..., L(R∗), either

∇ωl(θ) ̸= 0, θ ∈ W, (3.11)

or

ωl(θ) ≡ ω∗, θ ∈ W. (3.12)

v) If (3.12) holds with some l for a point R∗ = (θ∗, ω∗), then the constant eigenvalue also exists for (θ, ω∗)
with any θ ∈ Π∗

+.

Proof. Let us set r := dist (ω∗, Spec K̃(θ∗) \ ω∗) > 0. Then

P (θ) = − 1
2πi

∫

|ω−ω∗|=r/2

[K̃(θ) − ω]−1dω (3.13)

is a finite-rank Riesz projection, which is analytic in a complex neighborhood of θ∗. Its range Ran P (θ) is 
invariant under K̃(θ), and hence the bifurcated from ω∗ eigenvalues of K̃(θ) coincide with the roots of the 
characteristic equation

det[M(θ) − ω] = 0, (3.14)

where M(θ) := K̃(θ)|Ran P (θ). The coefficients of this polynomial are analytic functions of θ in a complex 
neighborhood of θ∗, and hence i)–iv) follow by the arguments from the proof of Lemma 1.1 of [43].

Finally, v) follows from the fact that the set of the corresponding θ ∈ Π∗
+ is closed and open at the same 

time by the analyticity of each ωl(θ) in a connected open region of Π∗
ε \ C . ✷

Definition 3.4. Ω∗ is the set of all ω∗ which are constant eigenvalues (3.12) at least for one point R∗ ∈ R.

4. Dispersion decay

Here we prove our main Theorem 1.1. Recall that Λ : W → X 1(R3) is an isomorphism by the definition 
(1.18), and hence, it suffices to check the corresponding asymptotics for Z(t) := ΛY (t) ∈ C(R, X 0(R3)):

Z(t) =
M∑

1
Zke

−iω∗
kt + Zc(t); ∥Zc(t)∥α → 0 , |t| → ∞, (4.1)

where Zk ∈ X 0(R3) and α < −3/2. Substituting (2.15) for Z̃(θ, t) into the inversion formula (2.5) we obtain 
the corresponding cell representation

Z(n, t) = |Π∗|−1
∫

Π∗

e−inθM (−θ)e−iK̃(θ)tZ̃(θ, 0)dθ, n ∈ Z3. (4.2)

The weighted norms (1.14) are equivalent to the modified norms

|||Z|||2α :=
∑

n∈Z3

(1 + |n|)2α∥Z(n)∥2
X 0(Π), Z ∈ X 0(R3), (4.3)

where Z(n) are defined by (2.1). Hence, the decay (4.1) for Zc(t) is equivalent to
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∑

n∈Z3

(1 + |n|)2α∥Zc(n, t)∥2
X 0(Π) → 0, t → ∞. (4.4)

The spectral resolution (3.1) implies that

Z(n, t) = |Π∗|−1
∫

Π∗

e−inθM (−θ)[
∑

k

e−iωk(θ)tPk(θ)]Z̃(θ, 0)dθ, n ∈ Z3. (4.5)

Equivalently,

Z(n, t) = |Π∗|−1
∫

R

e−inθM (−θ)e−iωtP (θ,ω)Z̃(θ, 0)dθ, n ∈ Z3, (4.6)

where θ, ω and the projection P (θ, ω) are the single-valued continuous functions (3.10) on R. We denote 
by dθ is the corresponding differential form on R. The integral is well defined by Lemma 3.3.

4.1. Discrete spectral component

We define the series of oscillating terms of (4.1) by its cell representation

∑

k

Zk(n)e−iω∗
kt = |Π∗|−1

∫

{(θ,ω)∈R:ω∈Ω∗}

e−inθM (−θ)e−iωtP (θ,ω)Z̃(θ, 0)dθ, n ∈ Z3. (4.7)

Now (1.20) follows from (3.2).

4.2. Continuous spectral component

It remains to prove the decay (4.1) for the remainder corresponding to the cell representation

Zc(n, t) = |Π∗|−1
∫

V

e−inθM (−θ)e−iωtP (θ,ω)Z̃(θ, 0)dθ, n ∈ Z3, (4.8)

where the integration spreads over the set V := {(θ, ω) ∈ R : ω /∈ Ω∗}. For every ν > 0, we split 
Zc(t) = Zν

−(t) + Zν
+(t), where

Zν
−(n, t) = |Π∗|−1

∫

V ν
−

e−inθM (−θ)e−iωtP (θ,ω)Z̃(θ, 0)dθ, (4.9)

Zν
+(n, t) = |Π∗|−1

∫

V ν
+

e−inθM (−θ)e−iωtP (θ,ω)Z̃(θ, 0)dθ. (4.10)

Here V ν
− := {(θ, ω) ∈ V : |ω| ≤ ν} and V ν

+ := {(θ, ω) ∈ V : |ω| > ν}.

High energy component. By (2.2) and the Parseval–Plancherel theorem

∥Zν
+(t)∥2

X 0(R3) =
∑

n∈Z3

∥Zν
+(n, t)∥2

X 0(Π) = |Π∗|−1
∫

V ν
+

∥P (θ,ω)Z̃(θ, 0)∥2
X 0(T)dθ. (4.11)
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According to definition (1.18) the condition Y (0) ∈ W means that Z = ΛY (0) ∈ X 0(R3). Hence, the 
Parseval–Plancherel identity gives

∥Z(0)∥2
X 0(R3) = |Π∗|−1

∫

Π∗

∥Z̃(θ, 0)∥2
X 0(T)dθ < ∞. (4.12)

Therefore, (4.11) implies that

∥Zν
+(t)∥X 0(R3) → 0, ν → ∞ (4.13)

uniformly in t ∈ R by the σ-additivity since ∩ν>0V ν
+ = ∅.

Low energy component. It remains to prove the decay (4.1) for Zν
−(t) corresponding to the cell representation 

Zν
−(n, t). It suffices to check that every norm ∥Zν

−(n, t)∥X 0(Π) decays to zero as t → ∞, since α < −3/2 and

∑

n∈Z3

∥Zν
−(n, t)∥2

X 0(Π) = ∥Zν
−(t)∥2

X 0 = const, t ∈ R (4.14)

by (2.2) and formula of type (2.15) for Z̃ν
−(θ, t).

Reduction to a compact set and partition of unity. Consider an open precompact subset Q ⊂ Π∗
+ such that 

the Lebesgue measure of Π∗
+ \ Q is sufficiently small, and denote Q̂ν := {R = (θ, ω) ∈ V ν

− : θ ∈ Q}. Then 
the X 0(Π)-norm of the integral of type (4.9) over V ν

− \ Q̂ν is small uniformly in t ∈ R by (4.12). Hence, it 
remains to prove the decay for

Zν
Q(n, t) := |Π∗|−1

∫

Q̂ν

e−inθM (−θ)e−iωtP (θ,ω)Z̃(θ, 0)dθ. (4.15)

The asymptotics (3.2), which are uniform in θ ∈ Q, imply that the set Q̂ν is open and precompact in R. 
Neglecting an arbitrarily small term we can assume that Q does not intersect a small neighborhood of the 
critical submanifold Cj ⊂ V (θj) for every j. Hence, we can cover Q̂ν by a finite number of neighborhoods 
W (Rj) from Lemma 3.3 with Rj = (θj , ωj) ∈ Q̂ν . Then there exists a partition of unity χj ∈ C(R) with 
suppχj ⊂ W (Rj):

∑

j

χj(R) = 1, R = (θ,ω) ∈ Q̂ν . (4.16)

Hence, (4.15) becomes the finite sum

Zν
jl(n, t) =

∑

j,l

|Π∗|−1
∫

W (Rj)

e−inθχj(θ,ωjl(θ))M (−θ)e−iωjl(θ)tPjl(θ)Z̃(θ, 0)dθ, (4.17)

where the functions ωjl and projections Pjl are constructed in Lemma 3.3. Note, that all constant dispersion 
relations (3.12) are excluded from the integration (4.17), and hence, the remaining nonconstant dispersion 
relations ωjl(θ) satisfy (3.11). Let us approximate

i) χj(θ, ωjl(θ)) by χjl(·) ∈ C∞
0 (W (Rj)) and

ii) Pjl(θ)Z̃(θ, 0) by some functions Djl(θ) ∈ C∞(W (Rj), X 0(T)) in the norm of L2(Q, X 0(T)).
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Then the corresponding error in (4.17) is small in the norm X 0(Π) uniformly in n ∈ Z3 and t ∈ R. 
Finally, (3.11) implies by a partial integration the decay of the integrals (4.17) with µjl(θ)Djl(θ) instead of 
χj(θ, ωjl(θ))Pjl(θ)Z̃(θ, 0). !

5. Spectral properties of the selfadjoint generator

Here we study spectral properties of the operator K := F−1K̃F , where K̃ denotes the operator of 
multiplication by K̃(θ) in the Hilbert space L2(Π∗, X 0(T)).

Lemma 5.1. K is a selfadjoint operator in X 0(R3) with a dense domain D(K).

Proof. Lemma 2.7 ii) implies that the operator K̃−1 of multiplication by K̃−1(θ) is selfadjoint and injective 
in L2(Π∗, X 0(T)). Hence, its inverse K̃(θ) is densely defined selfadjoint operator in L2(Π∗, X 0(T)) by 
Theorem 13.11 (b) of [42]. ✷

Corollary 5.2. The Hamilton generator A from (1.11) admits the representation

AY = −iΛ−1KΛY, Y ∈ Λ−1D(K), (5.1)

where Λ := F−1Λ̃(θ) : W → X 0(R3) is the isomorphism.

By (3.1),

KZ(n) = |Π∗|−1
∫

Π∗
+

e−inθM (−θ)
∑

k

ωk(θ)Pk(θ)Z̃(θ)dθ, n ∈ Z3 (5.2)

for any Z ∈ X 0(R3). Similarly

Z(n) = |Π∗|−1
∫

Π∗
+

e−inθM (−θ)
∑

k

Pk(θ)Z̃(θ)dθ, n ∈ Z3. (5.3)

Therefore,

(K − ω)Z(n) = |Π∗|−1
∫

Π∗
+

e−inθM (−θ)
∑

k

(ωk(θ) − ω)Pk(θ)Z̃(θ)dθ. (5.4)

Hence, the discrete spectrum σp(K) consists of constant dispersion relations.

Lemma 5.3. Let all conditions of Theorem 1.1 hold. Then

i) σp(K) = Ω∗.
ii) The multiplicity of every eigenvalue is infinite.

Proof. Let ω∗ ∈ Ω∗ is a constant eigenvalue (3.12) corresponding to a point R∗ = (θ∗, ω∗) ∈ R. Let us take 
any Z ∈ X 0(R3) with the Bloch transform Z̃(θ) ∈ Ran P (ω∗) for θ ∈ V (θ∗) and Z̃(θ) ≡ 0 for θ /∈ V (θ∗). 
Then (3.12) and (5.4) imply that (K − ω∗)Z = 0. Obviously, the space of such Z is infinite dimensional.

Conversely, let (K − ω∗)Z = 0 for some Z ∈ X 0(R3), and Z̃(θ∗) ̸= 0. Then (5.4) implies (3.12) with 
some l = 1, ..., L(θ∗, ω∗). ✷
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Let us show that the continuous spectrum of K is absolutely continuous. First, (5.4) implies that the 
resolvent RK(ω) := (K − ω)−1 for Imω ̸= 0 is given by

RK(ω)Z(n) = |Π∗|−1
∫

Π∗
+

e−inθM (−θ)
∑

k

(ωk(θ) − ω)−1Pk(θ)Z̃(θ)dθ, Z ∈ X 0(R3). (5.5)

Denote by Xd the space of discrete spectrum of K.

Lemma 5.4. Let all conditions of Theorem 1.1 hold. Then the singular spectrum of K is empty.

Proof. This follows by Theorem XIII.20 of [41]. Namely, it suffices to check the corresponding criterion

sup
0<ε<1

b∫

a

|Im⟨Z,RK(ω + iε)Z⟩|pdω < ∞ (5.6)

with any a, b ∈ R and some p > 1 for a dense set of Z ∈ X ⊥
d . For example, for the linear span of vectors 

Z ∈ X 0(R3) with the Bloch transform

Z̃(θ) = Pl(θ)D(θ), D ∈ C∞
0 (W,X 0(T)), (5.7)

as constructed in Lemma 3.3 for each R∗ = (θ∗, ω∗) ∈ R, where Pl(θ) is the projection corresponding to 
an eigenvalue ωl(θ) satisfying (3.11). It suffices to check (5.6) only for the vectors of type (5.7). Applying 
Sokhotski–Plemelj’s formula, we obtain for these vectors

Im⟨Z,RK(ω + iε)Z⟩ =
∫

W

Im⟨Pl(θ)D(θ), (ω − ωl(θ) − iε)−1Pl(θ)D(θ)⟩X (T)dθ

→ −π

∫

ωl(θ)=ω

⟨Pl(θ)D(θ), Pl(θ)D(θ)⟩X (T)
|∇ωl(θ)|

dθ, ε → 0+, (5.8)

which implies (5.6) with any p ≥ 1. ✷

In conclusion, let us prove the Limiting Absorption Principle. Let us denote by Xα the Hilbert space of 
functions with the finite norm (4.3).

Lemma 5.5. Let all conditions of Theorem 1.1 hold, and let Z ∈ X ⊥
d be a finite linear combination of the 

vectors with the Bloch transform of type (5.7). Then for any ω ∈ R and α < −7/2

RK(ω ± iε)Z Xα−−→ RK(ω ± i0)Z, ε → +0. (5.9)

Proof. It suffices to prove (5.9) for every vector of type (5.7). By (4.5) the corresponding solution Z(t) with 
Z(0) = Z reads

Z(n, t) = |Π∗|−1
∫

W

e−inθM (−θ)e−iωl(θ)tPl(θ)Z̃(θ)dθ, n ∈ Z3

The partial integration shows the time-decay

∥Z(n, t)∥X 0(Π) ≤ C(1 + |n|)2(1 + |t|)−2.
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Hence,

∥Z(t)∥Xα ≤ C(1 + |t|)−2.

Now the convergence (5.9) follows from the integral representation

RK(ω ± iε)Z =
±∞∫

0

e(iω∓ε)tZ(t)dt. ✷

Appendix A. Matrix entries of the Bloch generators

Let us recall some notations from [25]. For f ∈ C∞
0 (R3) the Fourier transform is defined by

f(x) = 1
(2π)3

∫

R3

e−iξxf̃(ξ)dξ, x ∈ R3; f̃(ξ) =
∫

R3

eiξxf(x) dx, ξ ∈ R3. (A.1)

For the real ground state (1.10) the generator A of the linearized dynamics is given by (1.11), where S
denotes the operator with the ‘matrix’

S(x, n) := eψ0(x)G∇σ(x− n), x ∈ R3, n ∈ Z3

by formula (3.3) of [25] and T is the real matrix with entries

T (n− n′) := −⟨G∇⊗∇σ(x− n′),σ(x− n)⟩ + ⟨Φ0,∇⊗∇σ⟩δnn′

by formula (3.4) of [25]. The operators Gψ0 : L2(R3) → L2(R3) and S : l2 := l2(Z3) ⊗ C3 → L2(R3) are 
not bounded due to the ‘infrared divergence’ at ξ = 0. On the other hand, the operator T is bounded in 
l2(Z3) ⊗ C3 by Lemma 3.1 of [25]. In the Bloch representation all these operators are given by

S̃(θ) = eψ0G̃(θ)(∇− iθ)σ̃(θ, ·), G̃(θ) = (i∇ + θ)−2, (A.2)

H̃0(θ) = 1
2(i∇ + θ)2 − eΦ0 − ω0, T̃ (θ) = T̃1(θ) + T̃2 + O(e4) as e → 0, (A.3)

T̃1(θ) =
∑

m

[ξ ⊗ ξ

|ξ|2 |σ̃(ξ)|2
]

ξ=2πm−θ
, T̃2 = −

∑

m̸=0

[ξ ⊗ ξ

|ξ|2 |σ̃(ξ)|2
]

ξ=2πm
, (A.4)

in accordance with the formulas (6.22)–(6.24), and (10.4), (10.12) of [25].

Remarks A.1.
i) T̃2 = 0 under the Jellium condition (1.16).
ii) The operators G̃(θ) : L2(T) → H2(T) are bounded for θ ∈ Π∗ \ Γ∗; however ∥G̃(θ)∥ ∼ d−2(θ), where 

d(θ) := dist (θ, Γ∗).
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