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Time-dependent scattering of generalized
plane waves by a wedge

A.I. Komecha,b, A.E. Merzonc*† and J.E. De la Paz Méndezc

Communicated by V. V. Kravchenko

We obtain explicit formulas for the scattering of plane waves with arbitrary profile by a wedge under Dirichlet, Neumann
and Dirichlet-Neumann boundary conditions. The diffracted wave is given by a convolution of the profile function with
a suitable kernel corresponding to the boundary conditions. We prove the existence and uniqueness of solutions in
appropriate classes of distributions and establish the Sommerfeld type representation for the diffracted wave.
As an application, we establish (i) stability of long-time asymptotic local perturbations of the profile functions and (ii) the
limiting amplitude principle in the case of a harmonic incident wave. Copyright © 2015 John Wiley & Sons, Ltd.
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1. Introduction

In this paper, we extend our results [1–6] on scattering of harmonic plane waves by the two-dimensional wedge

W :D fy D . y1, y2/ 2 IR2 : y1 D � cos � , y2 D � sin � , � � 0, 0 � � � �g,

with angle � 2 .0,�/. In those papers, scattering was studied for harmonic incident waves

uin. y, t/ D e�i!0.t�n0�y/f .t � n0 � y/ for t 2 IR and y 2 Q, (1.1)

where n0 D .cos˛, sin˛/ and Q :D IR2 nW is the angle of magnitudeˆ :D 2� � �, ˆ 2 .� , 2�/. The boundary is @Q D �1 [ �2 [ 0,
where�1 :D f. y1, 0/ : y1 > 0g and �2 :D f.� cos�, � sin�/ : � > 0g. Further, the profile function f is a Heaviside-type smooth function:

f 2 C1.IR/, supp f � Œ0,1/, and f .s/ D 1 for s � s0 (1.2)

where s0 > 0. The diffraction is described by the mixed problem

�
�u. y, t/ D 0, y 2 Q; Bu. y, t/j�1[�2 D 0, t 2 IR
u. y, t/ D uin. y, t/, y 2 Q, t < 0.

(1.3)

Here� D @2
t �4, B D .B1, B2/ and Buj�1[�2 D .B1uj�1 , B2uj�2 /, where B1,2 are equal to either the identity operator I or to @=@n, where

n is the outward normal to Q. The DD problem corresponds to B1 D B2 D I, the NN problem corresponds to B1 D B2 D @=@n, and
the DN problem corresponds to B2 D I, B1 D @=@n. We gave an explicit formula for the solution to (1.3) and proved the uniqueness,
existence and the limiting amplitude principle in [1–6]. Now we generalize those results to the case of nonsmooth and nonperiodic
incident wave
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uin. y, t/ D F.t � n0 � y/, y 2 IR2, t 2 IR, (1.4)

where F is a tempered distribution with support in IRC. Our main results are formulas for the solutions to nonstationary problems (1.3)

u D uin C us; us D Fı � Js, .y; t/ 2 Q � IR, (1.5)

where Js is a suitable distribution corresponding to the type of boundary conditions either Dirichlet (DD) or Neumann (NN) or Dirichlet
in a side of the angle and Neumann on the other side of the angle (DN). Here Fı. y, t/ :D F.t/ı. y/, and the convolution is well defined
in the sense of distributions (see Theorem 3.4 for the DD case).

Moreover, we give an explicit formula for the solution when F.s/ D ı.s/. We study also the case when F is a locally summable function
such that

F.s/ D 0, s < 0, sup.1C jsj/pjF.s/j <1, s 2 IR (1.6)

for some p 2 IR. We analyze the stabilization of solutions as t!1. Namely, we prove that the solution locally tends to a limit as t!1,
if and only if F.s/! C as s!1.

We also generalize the limiting amplitude principle that was proved for smooth Heaviside-type incident waves: in [2, 3] for the DD
case, in [4, 5] for the DN case, and in [6] for the NN case. Namely, we consider the incident waves with F.s/ � a0e�i!0s ! 0, as s ! 1,
and write the corresponding nonstationary solution in the form

u. y, t/ D A. y, t/e�i!0t .

We prove that A. y, t/! A1. y/ as t!1, where A1. y/ is a solution to the corresponding stationary Helmholtz equation.
The key role in this asymptotic analysis plays the Sommerfeld–Maluzhinetz type representation for the diffracted wave

ud.�, � , t/ :D
i

4ˆ

Z
IR

Z.ˇ C i�/F.t � � coshˇ/dˇ, � 2 ‚ :D Œ�, 2�� n f�1, �2g (1.7)

in the case of a locally summable incident wave. We will use it for analysis of long-time asymptotic behavior of the diffracted wave.
The representation was justified first in [2–6] for the Heaviside-type smooth incident wave (1.1) using the method of complex char-

acteristics [7–9]. Here we extend this representation to locally summable incident waves. The representation was used in [6] and [10]
to find convergence rate to the limiting amplitude.

Let us comment on previous works. Nonstationary scattering of the incident wave (1.4) by wedge was considered for the first time in
the case F.s/ D h.s/ by Sobolev [11–13] in 1934, by Keller and Blank [14] in 1951, by Kay [15] in 1953, by Oberhettinger [16] in 1958, by
Borovikov [17] in 1966, by Bernard [18–20] in 1991–1993, and by Rottbrand [21, 22] in 1998. For the step function, Sobolev constructed
in [11] a particular solution in the form

u. y, t/ D g.�. y, t//. (1.8)

Here �. y, t/ is an ‘algebraic’ function defined by the equation

bt �m.�/y1 � n.�/y2 � 	.�/ D 0,

where m.�/, n.�/ and 	.�/ are suitable complex analytic functions related by m2.�/C n2.�/ D 1. Sobolev refers to formula (1.8) as the
Sobolev–Smirnov representation [23] and relates it to dilation invariance of the problem. The problem is solved explicitly using confor-
mal mappings onto unit circle and Schwarz’s reflection principle: antisymmetric reflections in the DD case and symmetric reflections in
the NN case. The resulting formulas read as (1.5), and we will show it in a subsequent paper.

In the next paper [12] (mainly included in [13]), Sobolev relates this process of reflections with the wave propagation on logarithmic
Riemann surface served as in a spirit of Sommerfeld’s ideas cited in [13]. In these papers, Sobolev introduced his famous discontinuous
‘weak solutions’ to the wave equations served as the cornerstone for the Theory of Distributions developed later by L. Schwartz.

Keller and Blank [14] also considered the diffraction of Heaviside incident wave by a wedge developing Busemann’s ‘conical flow
method’, which is similar to Sobolev’s approach: the dilation invariance of the wave equation allows to reduce the problem to Laplace
equation on a circle with piecewise constant boundary values. The obtained solution [14] coincides with the Sobolev formula (and with
our solution) as we have shown in [24].

Kay’s approach [15] relies on a separation of variables. Any solution of the wave equation is represented in a form of Whittaker
functions series [25, p. 279]. The author proves that the series coincide with Keller–Blank solution in the case of Heaviside incident wave
(see p. 434 of [15]).

In [16], Oberhettinger has considered time-dependent problems in wedges with the DD and NN boundary conditions and a general
profile function F. The problem is reduced to F.t/ D h.t/ei!t by the Laplace transform. The particular solution to the corresponding sta-
tionary problem is constructed in an integral form using modified Hankel function [16, (11)]. The final formula for the time-dependent
problem is a convolution with the corresponding kenel (formula (108) of [16])

In [18–20], Bernard developed Oberhettiger’s results in the Sommerfeld type representation for impedance wedges using the
Malyuzhinetz method.
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A solution for incident wave with F.s/ D s�1=2
C

has been constructed by Borovikov [17], who used the obtained formula to reproduce
Sobolev’s solution.

Rottbrand [21, 22] considered the diffraction of the plane wave (1.4) with F.s/ D

Z s

0
g.
/d
 where g 2 L1.IR/, supp g � .0,1/. The

problem is reduced by a conformal map to the Rawlins’s mixed problem, and the solution is represented by an infinite series of Bessel
functions [21, Section 3].

The formulas obtained in [11–21] appear quite different. All these works concern a solution of some particular form: Sommerfeld
type representation in [17–20] or some algebraic form in [11–15]. The uniqueness of the time-dependent solution in an appropriate
functional class was not established up to now. Moreover, it is well known that the solution is not unique if its singularity is not spec-
ified. A systematic mathematical analysis of the nonstationary scattering of plane harmonic waves in the cases of the DD, DN, and NN
problems was developed in [1–6, 24]. The case of general nonperiodic profile function is analyzed in the present paper.

In our paper, we construct the solution in a suitable space of distributions for general incident wave (1.4) with any tempered distri-

bution F with the support in IRC. Moreover, we prove that the solution is unique in this class and is given by the convolution (1.5). Let
us stress that we deduce the existence and uniqueness of solutions from our previous results [2, 3].

We plan to obtain in the future the Sobolev formula for theta-function incident wave under the DD and NN boundary conditions
[12]. This justification of the Sobolev diffraction formula was one of our main motivations in writing this paper.

Let us outline the plan of our paper. In Section 2, we reduce the problem (1.3) using the Fourier–Laplace transform. In Section 3,
we prove the existence and uniqueness of solutions in suitable classes of distributions and establish the convolution formula and
the Sommerfeld type representation for the diffracted wave. In Sections 4 and 5, we apply our results to establish (i) the stability of
solution long-time asymptotics under local perturbations of the profile functions and (ii) the limiting amplitude principle in the case of
a harmonic incident wave. In Appendix A, we give some facts from the Paley–Wiener theory and calculate some Fourier transforms.

2. Formulation of the scattering problem

The front of incident wave uin. y, t/ at any moment of time t � 0 is a straight line fy : t � n0 � y D 0g in IR2. For n0 � y > t, we have
uin. y, t/ D 0 by (1.6). We impose the following conditions on vector n0. First, we suppose that � � �=2 < ˛ < �=2. Then the front of
uin. y, t/ lies in Q for t < 0.

Second, we suppose that the incident wave is reflected by both sides of the wedge. This is equivalent to the condition 0 < ˛ < �.
These two conditions on vector n0 are expressed by the following inequalities:

max.0,� � �=2/ < ˛ < min.�=2,�/ (2.1)

(see Figure 1). The extension of our results to other angles � and ˛ does not pose any new conceptual difficulties. In particular, formulas
(1.7)–(A4) remain valid for all anglesˆ and ˛.

Let us denote by u. y, t/ a solution of problem (1.3) and by us. y, t/ :D u. y, t/ � uin. y, t/ the scattered wave. Then us is a solution to
the following mixed problem:

�
�us. y, t/ D 0, y 2 Q, Bus. y, t/j�1[�2 D �Buin. y, t/j�1[�2 , t 2 IR,

us. y, t/ D 0, y 2 Q, t < 0.
(2.2)

Let us define the meaning of this mixed problem. First, let us introduce the space of solutions to (2.2). By S0.Q � IRC/, we denote the

space of tempered distributions in IR3 with supports in Q � IRC.

Figure 1. An incident plane wave.
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Definition 2.1 (see Def 2.1 [2])
(i) E" is the Banach space of functions u. y/ 2 C.Q/ \ C1. PQ/ with finite norm kuk" D sup

y2Q
ju. y/j C sup

y2PQ

fyg"jru. y/j < 1, where

fyg :D jyj
1Cjyj and PQ :D Q n 0.

(ii) M" is the space of tempered distributions u. y, t/ 2 S0.Q � IRC/ such that its Fourier–Laplace transform Ou. y,!/ is a holomorphic
function of ! 2 CC with the values in E".

Roughly speaking, M" is the space of functions with the asymptotics jru. y, t/j 	 jyj�" at the vertex, that is, as jyj ! 0.
For u 2M", the Fourier transform of the system (2.2) is

8<
:
.�C !2/Ous. y,!/ D 0 y 2 Q
Ous. y,!/ D �OF.!/ei!y1 cos˛ , y 2 �1

Ous. y,!/ D �OF.!/e�i!y2Œcos.˛Cˆ/= sinˆ�, y 2 �2

ˇ̌̌
ˇ̌̌! 2 CC (2.3)

in the case of the DD problem, and similar equations hold for the NN and DN problems (see Appendix A1).
Let us note that the boundary conditions in (2.3) are well defined for Ous. y,!/ 2 E" in contrast to the boundary conditions in (2.2),

which are not well defined for tempered distributions us. y, t/. This suggests the following definition.

Definition 2.2
We call us. y, t/ 2M" a solution to (2.2) if Ous. y,!/ is a solution to (2.3).

3. Existence and uniqueness

In this section, we prove the uniqueness and existence of solution to the scattering problem (1.3) in the class M", using methods and
results of [2–6]. We will assume that

F 2 S0.IR/, supp F � IRC. (3.1)

We will prove the existence and uniqueness of a solution to problem (2.2) with any fixed boundary operators B1 and B2.

3.1. Uniqueness

Theorem 3.1
A solution to problem (2.2) is unique in the class M" for any " 2 .0, 1/.

Proof
Let us. y, t/ 2 M" satisfy (2.2). By Definition 2.2, it suffices to prove the uniqueness of the solution Ou. y,!/ to problems (2.3) for any
! 2 CC in the space E". This uniqueness is proved in Sections 7 and 8 of [2] for the DD problem, in [4, 5] for the DN problem, and [6] for
the NN problem.

3.2. Existence

Let us recall the functionsSs. y,!/,Sd. y,!/,Sr. y,!/ introduced in [3,4] and in [6] for the DD, DN, and NN problems, respectively, which
are the densities of the scattered, diffracted, and reflected waves, respectively, and

Sr.�, � ,!/ :D

8<
:
�ei!� cos.���1/, � < � < �1

0, �1 < � < �2

�ei!� cos.���2/, �2 < � < 2�

Sd.�, � ,!/ :D
i

4ˆ

Z
IR

ei!� coshˇZ.ˇ C i�/dˇ, � 6D �1,2

Ss.�, � ,!/ :D Sr.�, � ,!/C Sd.�, � ,!/, � 6D �1,2

ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌
� > 0, ! 2 CC. (3.2)

Here

�1 :D 2� � ˛, �2 :D 2� � ˛ (3.3)

are the ‘critical’ directions (see [3, Def. 7.1]), and

Z.ˇ/ D �H

�
�

i�

2
C ˇ

�
C H

�
�

5i�

2
C ˇ

�
, ˇ 2 C, (3.4)
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where H is the Malyuzhinetz type kernel for the DD, NN, and DN problems (see Appendix A2). The formulas for Sr for the DN and NN
problems are given in Appendix A3.

By [3, Thm 8.1], the function Ss. y,!/ 2 Cb.Q � CC/, and it is analytic in ! 2 CC. This implies that

Ss 2 HP.CC, S0.Q// (3.5)

by Definition A.2 from Appendix A0.
Let us define

Z.ˇ/ :D Z.ˇ/C Z.�ˇ/, l.�/ D

8<
:

ln.�C
p
�2 � 1/ , � � 1

0 , � 2 .0, 1/.
(3.6)

In Appendix A4, we calculate the inverse Fourier transforms F!!t of Sr and Sd that we denote by Jr.�, � , t/ and Jd.�, � , t/,
respectively,

Jr.�, � , t/ D

8<
:
ı.t � � cos.� � �1//, � < � < �1

0, �1 < � < �2

ı.t � � cos.� � �2//, �2 < � < 2�

Jd.�, � , t/ D
i

4ˆ

Z.l.t=�/C i�/p
t2 � �2

h.t � �/

Js.�, � , t/ D Jr.�, � , t/C Jd.�, � , t/, � 6D �1,2

ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌
� > 0, t 2 IR, (3.7)

where h.�/ denotes the Heaviside function. Let us note that Jr.�, � , t/ D Jd.�, � , t/ D 0 for t < 0. For the NN and DN problems, the
functions Jr and Jd are calculated in Appendix A5.

For our application, it is crucially important that Jd , Jr Js 2 S0.Q� IRC/. This follows immediately from Lemma A.1, (3.5) and the fact
that Js is the inverse Fourier transform of Ss.

To prove the main theorem, we need the following Lemma collecting the basic results of [2–6].

Lemma 3.2
Let F be a smooth profile function (1.2). Then the unique solution Ous. y,!/ 2 E" to (2.3) is given by

Ous.�, � ,!/ D OF.!/Ss.�, � ,!/, ! 2 CC, (3.8)

where OF.!/ D Of .! � !0/, and the parameter " is given by

" D

8<
:

1 �
�

ˆ
for the DD and NN cases

1 �
�

2ˆ
for the DN case.

(3.9)

Formula (3.8) is proved in [3, (3.15)], while (3.9) was given in Section 10 of [3] for the DD problem, in Section 6 of [6] for the NN
problem, and in Section 16 of [4] for the DN problem.

This lemma implies, in particular, that

Ss.�,!/ 2 E", ! 2 CC, (3.10)

as for any ! 2 CC we can choose a smooth profile function (1.2) such that Of .! � !0/ 6D 0.

Corollary 3.3
The function Ss. y,!/ is a solution to problem (2.3) with OF 
 1.

Our main result is the following theorem.

Theorem 3.4
Let F satisfy (3.1). Then
(i) There exists a generalized solution us. y, t/ 2M" to problem (2.2) with " given by (3.9).
(ii) The solution is given by the convolution

us D Fı � Js, . y, t/ 2 Q � IR, (3.11)

where Fı. y, t/ :D F.t/ı. y/, and the convolution is well defined in the sense of distributions.

Copyright © 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2015, 38 4774–4785
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Proof

(i) By Definition 2.2, the problem (2.2) is equivalent to (2.3). For any distribution (3.1), it is natural to define the solution to (2.3) again
by (3.8). Indeed, Ous.�,!/ 2 E" for ! 2 CC as Ss.�,!/ 2 E" by (3.10). Moreover, Ous is a solution to (2.3) by Corollary 3.3. It remains to
prove that

us. y, t/ :D F�1
!!t Ous. y,!/ 2M".

It suffices to check that us 2 S0.Q� IRC/, or equivalently, Ous 2 HP.CC, S0.Q// by Lemma A.1 of Appendix A0. First, OF satisfies (A1) by
(1.6). Second, Ss 2 HP.CC, S0.Q// by (3.5). Hence, the product (3.8) also belongs to HP.CC, S0.Q// by Lemma A.1 and bound (A2).

(ii) The convolution representation (3.11) follows from (3.8). The convolution is well defined as the intersection of the supports of
Fı. y0, t0/ and Js. y � y0, t � t0/ is a bounded set for any fixed y 2 Q and t 2 IR.

3.3. Sommerfeld type representation of the diffracted wave

Let us substitute the splitting from the last line of (3.7) into (3.11). Then we obtain the corresponding splitting us D urC ud . By (3.8), we
obtain for the DD case

ur D F�1
!!tŒ

OFSr� D Fı � Jr , ud D F�1
!!tŒ

OFSd� D Fı � Jd .

Similar formulas hold for the NN and DN cases. The explicit expressions of ur for all types of boundary conditions are given in
Appendix A6.

Lemma 3.5
Suppose that

F 2 L1
loc.IR/ (3.12)

and (1.6) holds. Then the diffracted wave ud admits the representation (1.7) with a suitable kernel Z for any boundary conditions of the
DD, NN, or DN types.

Proof
It suffices to prove that

Oud.�, � ,!/

D OF.!/Sd.�, � ,!/ D
i

4ˆ

Z
IR

ei!t

�Z
IR

Z.ˇ C i�/F.t � � coshˇ/dˇ

�
dt, ! 2 CC.

(3.13)

Let us denote

q D
�

2ˆ
.

From (3.4), (A3), and (A4), we obtain the decay

jZ.ˇ C i�/j � C.�/e�2qjˇj , � 2 ‚ (3.14)

for the DD and NN problems, and

jZ.ˇ C i�/j � C.�/e�qjˇj , � 2 ‚ (3.15)

for the DN problem. Hence, (1.6) and the Fubini Theorem imply that

i

4ˆ

Z
IR

ei!t

�Z
IR

Z.ˇ C i�/F.t � � coshˇ/dˇ

�
dt

D
i

4ˆ

Z
IR

Z.ˇ C i�/

�Z
IR

ei!tF.t � � coshˇ/dt

�
dˇ D OF.!/Sd.�, � ,!/, ! 2 CC

by formula (3.2) for Sd .
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4. Stabilization of the diffracted wave

Let lk be the critical rays lk :D f.�, �k/ : � > 0g, where �k are given by (3.3), k D 1, 2.

Lemma 4.1
Let (2.1), (3.12), and (1.6) hold. Then for any type of the boundary conditions (DD, NN, and DN) and t 2 IR, there exist the limits

ud.�, �k ˙ 0, t/ :D lim
"!0C

ud.�, �k ˙ ", t/, � > 0, k D 1, 2

in the sense of distribution of � > 0, and the jumps of ud on the critical rays are given by

Œud�k.�, t/ :D ud.�, �k C 0, t/ � ud.�, �k � 0, t/ D .�1/kC1F.t � �/, � > 0, k D 1, 2. (4.1)

Proof
We will use representation (1.7) and consider the DD case for concreteness. The cases of the NN and DN problems are analyzed similarly
(see Appendix A6). Formulas (3.4) and (A3) imply the following representation:

Z.ˇ C i�/
D � coth .qˇ C ic0/� coth .qˇ C ic1/˙ coth .qˇ C ic2/C coth .qˇ C ic3/

(4.2)

for the DD and NN cases, respectively, where

ck :D q.� � pk/; p0 D ˛, p1 D �1, p2 D �2, p3 D 2� C ˛.

First, let us consider the case when F.s/ is a Hölder function of s � 0 satisfying (1.6). Then the Sokhotski–Plemelj formulas imply

Œud�k.�, t/

D

Z 1

�1
F.t � � coshˇ/ Œcoth.qˇ C i0/ � coth.qˇ � i0/� dˇ D .�1/kC1F.t � �/, � < t,

because coth.qˇC ick/with k D 0 and k D 3 are continuous on the critical rays for ˛ satisfying (2.1). For F satisfying (1.6), (4.1) holds in
the sense of distributions.

Theorem 4.2
Let the incident wave profile F satisfy (1.6), and

F.s/! C, s!1. (4.3)

Then
(i) The diffracted wave converges in the long-time limit:

ud.�, � , t/ ���!
t!1

ud.� ,1/ :D
iC

4ˆ

Z
IR

Z.ˇ C i�/dˇ, � > 0, � 2 ‚, (4.4)

and in particular,

Œud�k.�, t/ ���!
t!1

C, for � > 0, k D 1, 2. (4.5)

(ii) Conversely, (4.5) implies (4.3).

Proof
We can use (1.7) by Lemma 3.5.

(i) Conditions (1.6) and (1.7) imply that

ud.�, � , t/ D
i

4ˆ

Z l.t=�/

�l.t=�/
Z.ˇ C i�/F.t � � coshˇ/dˇ, � 2 ‚,

where l.�/ is defined by (3.6). Then (4.4) follows from (3.14) by the Lebesgue Dominate Convergence Theorem. Convergence (4.5)
follows from (4.1) and (4.3).

(ii) Equation (4.3) follows from (4.1) and (4.5).

Corollary 4.3
For any type of boundary conditions (DD, NN, or DN), the function ud.� ,1/ is a piecewise constant function of � 2 ‚ with the jumps
at � D �1 and � D �2.
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Proof
For the DD and NN cases, formula (4.2) implies that Z.ˇ/ is a holomorphic function on Cn P, where P D [lD0,1,2,3fipl C 2ikˆ : k 2 ZZg.
Moreover, p0, p3 62 ‚ by (2.1). Hence, Z.ˇ C i�/may have a pole ˇ 2 IR only at ˇ D 0, and it holds only for � D �1 or � D �2. Therefore,
the corollary follows from decay (3.14) and the Cauchy Theorem.

For the DN case, the proof is similar, relying on decay (3.15).

5. Limiting amplitude principle

Consider the incident wave

F0.t/ :D a0e�i!0th.t/, t 2 IR,

where !0 6D 0 (the case of !0 D 0 is covered by Theorem (4.2)). By (1.7), the corresponding diffracted wave is given by

u0
d.�, � , t/ D i

e�i!0t

4ˆ

Z l.t=�/

�l.t=�/
ei!� coshˇZ.ˇ C i�/dˇ,

where Z is given by (4.2) for the DD and NN problems (and by (A4) for the DN problem) and l.�/ is defined by (3.6). The limiting amplitude
of this wave is

A0.�, �/ D
i

4ˆ

Z
IR

a0ei!0� coshˇZ.ˇ C i�/dˇ. 8� 2 ‚ (5.1)

because l.t=�/!1, as t!1, while Z satisfies (3.14) for the DD and NN problems and (3.15) for the DN problem.
For general incident wave (1.4), the diffracted wave (1.7) can be written as ud.�, � , t/ D e�i!0tA0.�, �/with amplitude

Ad.�, � , t/ :D ei!0t i

4ˆ

Z l.t=�/

�l.t=�/
Z.ˇ C i�/F.t � � coshˇ/dˇ, � > 0, � 2 ‚, t > 0. (5.2)

In the following theorem, we prove that the amplitude is asymptotically close to the amplitude (5.1) if F is asymptotically close to F0.

Theorem 5.1 (Limiting amplitude principle)
Suppose that

R.t/ :D F.t/ � F0.t/! 0, t!1. (5.3)

Then for any ı > 0,

ud.�, � , t/ � e�i!0tA0.�, �/! 0, t!1,

uniformly in bounded � > 0 and � � �k � ı.

Proof
By definitions (5.1) and (5.2),

Ad.�, � , t/ � A0.�, �/

D �
i

4ˆ

Z
jˇj�l.t=�/

F0.�� coshˇ/Z.ˇ C i�/dˇ C
i

4ˆ

l.t=�/Z
�l.t=�/

ei!0tZ.ˇ C i�/R.t � � coshˇ/dˇ.

Estimates (3.14) and (3.15) imply that

i

4ˆ

Z
jˇj�l.t=�/

F0.�� coshˇ/Z.ˇ C i�/dˇ D
i

4ˆ

Z
jˇj�l.t=�/

ei!0� coshˇZ.ˇ C i�/dˇ ! 0, t!1

uniformly in � > 0 and � 2 ‚. It remains to prove that

R1.�, � , t/ :D

l.t=�/Z
�l.t=�/

ei!0tZ.ˇ C i�/R.t � � coshˇ/dˇ ! 0, t!1
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uniformly in bounded � > 0 and � � �k � ı > 0. First, (3.14), (3.15), and (5.3) imply that for any " > 0 there exists ˇ."/ s.t.

Z
jˇj�ˇ."/

jZ.ˇ C i�/R.t � � coshˇ/jdˇ < "=2 (5.4)

uniformly in � > 0 and � 2 ‚. Second, (5.3) implies that for 0 < � � b <1 and � � �k � ı > 0 there exists t.", ı, b/ such that

2ˇ."/jZ.ˇ C i�/R.t � � coshˇ/j < "=2, jˇj < ˇ."/, � 2 ‚, t > t.", ı, b/. (5.5)

Then for 0 < � � b <1 and t > t.", ı, b/, we have

jR1.�, � , t/j �

Z
jˇj�ˇ."/

jZ.ˇ C i�/R.t � � coshˇ/jdˇ C

Z
jˇj�ˇ."/

jZ.ˇ C i�/R.t � � coshˇ/jdˇ < "

by (5.5) and (5.4).

Appendix

A.1. The Paley–Wiener theory

For a function u.t/ 2 S.IR/, we denote its Fourier transform as

Ou.!/ :D Ft!!u.!/ :D

Z
IR

ei!tu.t/dt, ! 2 IR.

This transform is extended by continuity to tempered distributions u 2 S0.IR/. When supp u � IRC, the distribution Ou.!/ admits an
analytic extension to the upper half plane CC :D fz 2 C : Im z > 0g and

jOf .!/j � C.1C j!j/mjIm!j�N, ! 2 CC (A1)

for some m, N 2 IN by the Paley–Wiener theorem. We will call this analytic continuation the Fourier–Laplace transform of f . Conversely,
if an analytic function G.!/ in CC satisfies (A1), then there exists its boundary value as Im! ! 0C in the sense of S0.IR/; see [26, Thm
I.5.2].
Let us introduce functional space of distributions and its Fourier–Laplace ‘transform’. First we define the seminorms

k'km,N :D sup
x2IRn ,j˛j�m

.1C jxj/Nj@˛x '.x/j <1

for functions from the Schwartz space S.IRn/. Let us recall that S0.Q � IRC/ denotes the space of tempered distributions in IR3 with

supports in Q � IRC. This space is a subspace of the dual space to a countable-normed space S.IRn/, so for each u 2 S0.Q � IRC/, there
exist m, N 2 IN such that

jhu. y, t/,'. y, t/ij � Ck'km,N , ' 2 S.IR3/.

In fact, this follows from the definition of topology on countable-normed spaces [27, Ch. I, §4, p.34].
From this estimate, we obtain Paley–Wiener type theorem for distributions, which is a straightforward generalization of [26, Thm 5.2,

Ch. II].

Lemma A.1
(i) Let u 2 S0.Q � IRC/. Then its partial Fourier transform Ou. y,!/ extends to an analytic function on CC with values in S0.Q/, and (cf.

(A1)) there exist m, N 2 IN s.t.

jhOu. y,!/,'. y/ij � Ck'km,N.1C j!j/
mjIm!j�N, ' 2 S.Q/. (A2)

(ii) Conversely, let Ou. y,!/ be an analytic function of ! 2 CC with values in S0.Q/, and the bound (A2) holds for some m, N 2 IN. Then
Ou. y,!/ is the Fourier–Laplace transform of a distribution u 2 S0.Q � IRC/.

Definition A.2
We denote by HP.CC, S0.Q// the space of holomorphic functions in CC with values in S0.Q/ satisfying bound (A2) for some m, N 2 IN.

Copyright © 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2015, 38 4774–4785

4
7

8
2



A. I. KOMECH, A. E. MERZON AND J. E. DE LA PAZ MÉNDEZ

A1. The ‘stationary’ scattering problem takes the forms

8̂<
:̂
.�C !2/ Ous. y,!/ D 0, y 2 Q

@
@y2
Ous. y,!/ D �i! OF.!/ sin˛ ei!y1 cos˛ , y 2 �1

@
@n2
Ous. y,!/ D i! OF.!/ sin.ˆC ˛/e�i!y2

cos.ˆC˛/
sinˆ , y 2 �2

for the NN problem and
8̂̂
<
ˆ̂:

.�C !2/Ous. y,!/ D 0, y 2 Q

@y2
Ous. y,!/ D �i!g.!/ sin˛ei!y1 cos˛ , y 2 �1

Ous. y,!/ D �OF.!/e�i!y2
cos.˛Cˆ/

sinˆ , y 2 �2

ˇ̌̌
ˇ̌̌
ˇ̌ ! 2 CC.

for the DN problem.
A2. The Malyuzhinetz integral kernels are given by

H.ˇ/ D coth

�
q

�
ˇ C

i�

2
� i˛

��
� coth

�
q

�
ˇ �

3i�

2
C i˛

��
(A3)

for the DD and NN problems, respectively, and by

H.ˇ/ D
1

sinh
�

q
�
ˇ C i�

2 � i˛
�� C 1

sinh
�

q
�
ˇ � 3i�

2 C i˛
�� (A4)

for the DN problem (see also [5, 6] where the DN and NN problems were considered in details). Here q D �
2ˆ .

A3. The densities of ‘stationary’ reflected waves Sr are given by

Sr.�, � ,!/ D

8<
:
�ei!� cos.���1/ � � � � �1

0 �1 < � < �2

ei!� cos.���2/, �2 � � � 2�

ˇ̌̌
ˇ̌̌! 2 CC

for the DN problem and by

Sr.�, � ,!/ D

8<
:

ei!� cos.���1/ � � � � �1

0 �1 < � < �2

ei!� cos.���2/, �2 � � � 2�

ˇ̌̌
ˇ̌̌! 2 CC

for the NN problem.
A4. The inverse Fourier transform.

Lemma A.3
(i) The inverse Fourier transforms of the functions Sd and Sr given by (3.2) are the functions Jd. y,!/ and Jr. y,!/, given by (3.7).

Proof

(i) We need to prove that for � 2 ‚

Jd.�, � , t/ D F�1
!!tSd.�, � ,!/ D F�1

!!t

	
i

4ˆ

Z
R

ei!� coshˇZ.ˇ C i�/dˇ



. (A5)

First, we note that

i

4ˆ

Z
IR

ei!� coshˇZ.ˇ C i�/dˇ D

Z 1
0

ei!� coshˇZ.ˇ C i�/dˇ,

where Z is defined by (3.6). The integrals converge by (3.14).

Changing the variables t :D � coshˇ, dˇ D dtp
t2��2

, we obtain

i

4ˆ

Z
IR

ei!� coshˇZ.ˇ C i�/dˇ D Ft!! ŒJd.�, � , t/� ,
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where Jd is given by (3.7). Hence, (A5) follows.
Representation (3.7) for Jr follows from (3.2) directly.

For the DN problem, Jr is

Jr.�, � , t/ :D

8<
:
ı.t � � cos.� � �1//, � < � < �1

0, �1 < � < �2

�ı.t � � cos.� � �2//, �2 < � < 2�

ˇ̌̌
ˇ̌̌ t � 0, Jr.�, � , t/ D 0, t < 0.

For the NN problem,

Jr.�, � , t/ :D

8<
:
�ı.t � � cos.� � �1//, � < � < �1

0, �1 < � < �2

�ı.t � � cos.� � �2//, �2 < � < 2�

ˇ̌̌
ˇ̌̌ t � 0, Jr.�, � , t/ D 0, t < 0.

A5. Expressions for the reflected waves are

ur. y, t/ :D

8<
:
�F.t � n1 � y/, � � � � �1

0 �1 < � < �2

�F.t � n2 � y/, �2 � � � 2�

for the DD and NN problems, respectively, and

ur. y, t/ :D

8<
:

F.t � n1 � y/, � � � � �1

0 �1 < � < �2

�F.t � n2 � y/, �2 � � � 2�

for the DN problem.
A6. Jumps of the diffracted wave in the cases of the NN and DN problems.

For the DN problem, the function Z from (4.2) takes the form

Z.ˇ C i�/ D �
1

sinh .qˇ C ic0/
�

1

sinh .qˇ C ic1/
�

1

sinh .qˇ C ic2/
C

1

sinh .qˇ C ic3/

The jumps of the diffracted wave ud on the critical rays for the NN and DN problems are given by

Œud�k.�, t/ D F.t � �/, � > 0, k D 1, 2

(cf. with (4.1)).
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