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1. Introduction

In this Letter we consider the scattering in the nonlinear Lamb
system

{
ü(x, t) = u′′(x, t), x ∈ R \ {0},
mÿ(t) = F (y(t)) + u′(+0, t) − u′(−0, t); y(t) ≡ u(0, t),

(1.1)

where m > 0. Here u̇ := ∂u
∂t , u′ := ∂u

∂x . The case m = 0 was consid-
ered in [22]. The solutions u(x, t) take the values in R

d with d � 1.
Physically, the problem (1.1) describes small crosswise oscilla-

tions of an infinite string stretched parallel to the 0x-axis; a parti-
cle of mass m > 0 is attached to the string at the point x = 0; F (y)

is an external (nonlinear) force field perpendicular to 0x, the field
subjects the particle (see Fig. 1).

The system (1.1) has been introduced originally by H. Lamb
[21] in the linear case when F (y) = −ω2 y. The Lamb system
with general nonlinear F (y) and the oscillator mass m � 0 has
been considered in [13] where the questions of irreversibility and
nonrecurrence were discussed. The system was studied further in
[14–17] where the global attraction to stationary states has been
established for the first time, and in [6] where metastable regimes
were studied for the stochastic Lamb system.

The Lamb system (1.1) is used in all the papers cited above as
an example of simplest nontrivial nonlinear time reversible conser-
vative system allowing an effective analysis of various questions. In
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Fig. 1. String coupled to an oscillator.

present Letter, we study the nonlinear scattering for the Lamb sys-
tem with a nontrivial attractor. We consider the Cauchy problem
for the system (1.1) with the initial conditions

u|t=0 = u0(x), u̇|t=0 = v0(x), ẏ|t=0 = p0 (1.2)

where y(t) := u(0, t). Let us denote Y (t) = (u(x, t), u̇(x, t), ẏ(t)).
Then the Cauchy problem (1.1), (1.2) formally reads

Ẏ (t) = F
(
Y (t)

)
for t ∈ R, Y (0) = Y0, (1.3)

where Y0 = (u0, v0, p0), and

F
(
Y (t)

) = (
u̇(·, t), u′′(x, t)|x�=0, F

(
u(0, t)

) + u′(+0, t) − u′(−0, t)
)
.

An exact statement of the Cauchy problem will be formulated in
next section.

We will establish the scattering asymptotics

Y (t) ∼ S± + W (t)Ψ±, t → ±∞, (1.4)
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where S± = (s±,0,0) are the limit stationary states with s± ∈ Z :=
{s ∈ R : F (s) = 0}, W (t) is the dynamical group of the free wave
equation, and Ψ± ∈ E are the corresponding asymptotic states. The
asymptotics (1.4) hold in the global energy norm of a Hilbert phase
if the following limits exist:

u+
0 := lim

x→+∞ u0(x), u−
0 := lim

x→−∞ u0(x),

I0 :=
∞∫

−∞
v0(y)dy. (1.5)

Let us comment on related works. The scattering asymptotics
(1.4) are inspired by the Niels Bohr postulates (1913) on transitions
between quantum stationary states:

I. The first postulate states the “transitions” S− 
→ S+ between
the stationary states which suggests the attraction Y (t) → S±
as t → ±∞ in the local energy norms that has been proved in
[14–17].

II. The second postulate states that the transition is followed by
“radiation” which suggests to include (in [18,22]) the disper-
sive wave W (t)Ψ± into the asymptotics (1.4) which holds now
in the global energy norm.

The asymptotics of type (1.4) with S± = 0 were studied in scat-
tering theory for the linear and nonlinear wave, Schrödinger and
Klein–Gordon equations by many authors (see e.g. [24] and [23,
27]).

First scattering asymptotics (1.4) with a nontrivial set of sta-
tionary states is established for the first time in present paper.

The scattering asymptotics similar to (1.4) were proved in [1–5,
20,25,26] for the nonlinear Schrödinger and Klein–Gordon equa-
tions, and in [10–12,19] for the Schrödinger, Klein–Gordon and
Maxwell equations coupled to a particle. However, all the results
concern the solutions with the initial states sufficiently close to the
solitary manifold. In [7–9] similar asymptotics were proved for all
finite energy solutions to 3D wave, Klein–Gordon and Maxwell
equations coupled to a particle. In these papers, S± in the asymp-
totics of type (1.4) stand for the solitons of the coupled systems.

The paper is organized as follows. In Section 2 we introduce
the phase space and formulate well posedness. In Section 3 we de-
scribe stationary states, formulate the main results and prove the
existence of dynamics and basic lemma on relaxation. In Section 4
we give some examples. In Sections 5, 6 we prove the main result
on the scattering asymptotics.

2. Phase space and dynamics

Let us introduce a phase space E of finite energy states for the
system (1.1). Denote by ‖ · ‖ resp. ‖ · ‖R the norm in the Hilbert
space L2 := L2(R,R

d) resp. L2((−R, R);R
d).

Definition 2.1. (i) E is the Hilbert space of the triples (u(x), v(x),
p) ∈ C(R,R

d) ⊕ L2 ⊕ R
d with u′(x) ∈ L2 and the global energy norm∥∥(u, v, p)

∥∥
E = ‖u′‖ + ∣∣u(0)

∣∣ + ‖v‖ + |p|. (2.1)

(ii) EF is the space E endowed with the topology defined by the
local energy seminorms∥∥(u, v, p)

∥∥
E,R ≡ ‖u′‖R + ∣∣u(0)

∣∣ + ‖v‖R + |p|, R > 0. (2.2)

We assume that

F (u) ∈ C1(
R

d,R
d), F (u) = −∇V (u), (2.3)

V (u) → +∞, |u| → ∞. (2.4)

Then the system (1.1) is formally Hamiltonian with the phase space
E and the Hamilton functional

H(u, v, p) = 1

2

∫ [∣∣v(x)
∣∣2 + ∣∣u′(x)

∣∣2]
dx + m

|p|2
2

+ V
(
u(0)

)
(2.5)

for (u, v, p) ∈ E . We consider solutions u(x, t) such that Y (t) =
(u(·, t), u̇(·, t), ẏ(t)) ∈ C(R, E), where y(t) ≡ u(0, t).

Let us discuss the definition of the Cauchy problem (1.1), (1.2)
for the trajectories Y (t) ∈ C(R, E). At first, u ∈ C(R2,R

d) due to
Y (t) ∈ C(R, E). Then the first equation in (1.1) is equivalent to the
d’Alembert decomposition

u(x, t) = f±(x − t) + g±(x + t), ±x > 0, (2.6)

where

f±, g± ∈ C
(
R,R

d). (2.7)

Therefore,

u̇(x, t) = − f ′±(x − t) + g′±(x + t),

u′(x, t) = f ′±(x − t) + g′±(x + t) for ± x > 0, (2.8)

where all the derivatives are understood in the sense of distribu-
tions. The assumption Y (t) ∈ C(R, E) implies

f ′±, g′± ∈ L2
loc

(
R,R

d). (2.9)

We now explain the second equation of (1.1).

Definition 2.2. In the second equation of (1.1) we set

u′(0±, t) := f ′±(−t) + g′±(t) ∈ L2
loc

(
R,R

d), (2.10)

while the derivative ÿ(t) of y(t) ≡ u(0, t) ∈ C(R,R
d) is understood

in the sense of distributions.

Note that the functions f± and g± in (2.6) are unique up to an
additive constant. Hence definition (2.10) is unambiguous.

Proposition 2.3. (Cf. [15].) Let the conditions (2.3), (2.4) hold, m > 0,
and d � 1. Then

(i) For every Y0 ∈ E the Cauchy problem (1.3) admits a unique solution
Y (t) ∈ C(R, E).

(ii) The map U (t) : Y0 
→ Y (t) is continuous in E .
(iii) The energy is conserved,

H
(
Y (t)

) = const, t ∈ R. (2.11)

(iv) The a priori bounds hold,

sup
t∈R

∥∥Y (t)
∥∥
E < ∞.

3. Main results

The stationary states S = (s(x),0,0) ∈ E for (1.3) are evidently
determined: the set S of all stationary states S ∈ E is given by

S = {
Sz = (z,0,0): z ∈ Z

}
, (3.1)

where Z = {z ∈ R
d: F (z) = 0}. The main result means that the set

S is the minimal global point attractor of the system (1.1) in the
space EF . Let us denote E0 = {(u, v,0) ∈ E}, and W̃ (t)(u, v,0) :=
(W (t)(u, v),0), where W (t) is the dynamical group of free wave
equation corresponding to F (u) ≡ 0.

Theorem 3.1. (Cf. [15].) Let all assumptions of Proposition 2.3 hold and
an initial state Y0 ∈ E . Then
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(i) The corresponding solution Y (t) ∈ C(R, E) to the Cauchy problem
(1.3) converges to the set S in the local energy seminorms:

Y (t)
EF−→ S as t → ±∞.

(ii) Let additionally the set Z be a discrete subset in R
d. Then there exist

the limit stationary states S± ∈ S depending on the solution Y (t):

Y (t)
EF−→ S±, t → ±∞. (3.2)

Theorem 3.2. Let all assumptions of Proposition 2.3 hold, and addition-
ally, the finite limits (1.5) there exist. Then the scattering asymptotics
hold

Y (t) = S± + W̃ (t)Ψ± + r±(t) (3.3)

with S± ∈ S , and some asymptotic states Ψ± ∈ E0; the remainder is
small in the global energy norm:∥∥r±(t)

∥∥
E → 0, t → ±∞. (3.4)

Remark 3.3.

(i) It suffices to prove both Theorems 3.1 and 3.2 for t → ∞ since
the Lamb system (1.1) is time reversible.

(ii) The “weak” convergence (3.2) and (2.4), (2.5) imply that

H(S±) � H
(
Y (t)

) ≡ H(Y0), t ∈ R (3.5)

by the Fatou theorem.

Let us note that Proposition 2.3 and Theorem 3.1 are proved in
[15] for one-dimensional oscillator with d = 1 for initial conditions
u′

0(x) = v0(x) = 0 for |x| > const. Here we consider more general
initial conditions of finite energy, and arbitrary finite-dimensional
oscillator with d � 1. The proof of Proposition 2.3 in this general
case is similar to the corresponding one-dimensional Theorem 1.1
in [15]. We give a sketch of the proof since we need the construc-
tions for the proof of Theorems 3.1 and 3.2.

3.1. Existence of dynamics

We recall briefly the construction [15] of the solution to the
Cauchy problem (1.3) with the initial conditions Y0 = (u0, v0, p0) ∈
E . We construct unique solution u(x, t) such that Y (t) = (u(·, t),
u̇(·, t)) ∈ C(R, E). The solution admits the d’Alembert represen-
tation (2.6) where f±(z), g±(z) for ±z > 0 are defined by the
d’Alembert formulas

f±(z) := u0(z)

2
− 1

2

z∫
0

v0(y)dy,

g±(z) := u0(z)

2
+ 1

2

z∫
0

v0(y)dy, ±z > 0. (3.6)

These formulas imply that

f ′±(z), g′±(z) ∈ L2(
R

±,R
d) (3.7)

since (u0, v0) ∈ E . The “outgoing waves” f+(z) for z < 0 and g−(z)
for z > 0 are given by

f+(−t) := y(t) − g+(t), g−(t) := y(t) − f−(−t), t > 0 (3.8)

since y(t) := u(0, t) = f+(−t) + g+(t) = f−(−t) + g−(t). Hence,

u(x, t) =

⎧⎪⎨
⎪⎩

y(t − x) + g+(x + t) − g+(t − x),
0 < x < t,

y(t + x) + f−(x − t) − f−(−x − t),
−t < x < 0,

t > 0. (3.9)

Finally, the function y(t) can be determined from the Cauchy prob-
lem for the “reduced equation” (see [15])

mÿ(t) = F
(

y(t)
) − 2 ẏ(t) + 2ẇ in(t), t > 0,

y(0) = u0(0), ẏ(0) = p0, (3.10)

where

w in(t) = g+(t) + f−(−t) (3.11)

for t > 0 is the “incident wave”. Note that

ẇ in ∈ L2(
R

+,R
d) (3.12)

by (3.7), hence the Cauchy problem (3.10) admits a unique solution
for all t > 0, and the a priori bound holds:

supt>0 |y(t)| + sup
t>0

∣∣ ẏ(t)
∣∣ +

∞∫
0

∣∣ ẏ(t)
∣∣2

dt � B < ∞, (3.13)

where B is bounded for bounded ‖(u0, v0, p0)‖E . These arguments
imply (see [15]) that the Cauchy problem (1.3) admits a unique so-
lution Y (t) = (u(x, t), u̇(x, t), ẏ(t)) ∈ C(R, E) for any Y0 ∈ E , where
u(x, t) is defined by (2.6), (3.6), and (3.9).

The a priori bound (3.13) implies that y(t) ∈ C(R+). Hence
f+(−0) = f+(0) and g−(−0) = g−(+0) since

f+(−0) = y(0) − g+(0) = u0(0)

2
, f+(+0) = u0(0)

2
(3.14)

and

g−(−0) = u0(0)

2
, g−(+0) = y(0) − f−(−0) = u0(0)

2
(3.15)

by (3.8) and (3.6).

Corollary 3.4. (3.13) and (3.8) imply that

f ′+ ∈ L2(
R

−,R
d), g′− ∈ L2(

R
+,R

d) (3.16)

by (3.7). Hence, (3.14) and (3.15) imply that

f ′+, g′− ∈ L2(
R,R

d). (3.17)

3.2. Relaxation for reduced equation

The following lemma on relaxation for the reduced equation
plays a crucial role in the proofs of Theorem 3.1 and Theorem 3.2.
The lemma extends to all d � 1 the [15, Lemma 2.1] corresponding
to d = 1. Let us note that the proof of the Lemma 2.1 in [15] is
essentially one-dimensional.

Let us denote Z = {(z,0) ∈ R
2d: z ∈ Z}.

Lemma 3.5. Let all assumptions of Theorem 3.1 hold. Then

(i) For every solution y(t) to the equation (3.10)(
y(t), ẏ(t)

) → Z, t → ∞. (3.18)

(ii) Let, additionally, Z be a discrete subset in R
d. Then there exists a

(z,0) ∈ Z such that(
y(t), ẏ(t)

) → (z,0), t → ∞.

Proof. Obviously, (ii) follows from (i). Let us check that (i) follows
from (3.13). Namely, (3.18) is equivalent to the system

y(t) → Z , t → ∞, (3.19)

ẏ(t) → 0, t → ∞. (3.20)
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• First let us prove (3.20). Assume the contrary, that

| ẏ(tk)| � ε > 0 (3.21)

for a sequence tk → ∞. Integrating the equation (3.10), we get that

m
(

ẏ(t) − ẏ(s)
) =

t∫
s

F
(

y(τ )
)

dτ − 2

t∫
s

ẏ(τ )dτ + 2

t∫
s

ẇin(τ )dτ ,

s, t � 0. (3.22)

Let us estimate each of three integrals in the RHS. The first is
O(|t − s|) since y(τ ) is a bounded function by (3.13). The sec-
ond and third integrals are O(|t − s|1/2) by (3.13), (3.12) and the
Cauchy–Schwartz inequality. Hence, (3.22) implies that ẏ(t) is a
Hölder function of degree 1/2, i.e.∣∣ ẏ(t) − ẏ(s)

∣∣ � C |t − s|1/2, s, t � 0, |t − s| � 1. (3.23)

Therefore,
∫ ∞

0 ẏ2(t)dt = ∞ by (3.21) which contradicts (3.13).
• Now we can prove (3.19). Again assume the contrary. Then

F
(

y(tk)
) → F �= 0 (3.24)

for a sequence tk → ∞ since y(t) is a bounded function. Moreover,
(3.20) implies the uniform convergence

F
(

y(τ )
) → F̄ , |τ − tk| � T (3.25)

for any T > 0. Now (3.22) and (3.20), (3.12) imply that

m
(

ẏ(tk + T ) − ẏ(tk − T )
) = 2T F̄ + o(1), tk → ∞, (3.26)

which contradicts (3.20) since T F̄ �= 0. �
4. Examples

Let us illustrate Lemma 3.5 by an example. For simplicity let us
assume that

u0(x) = C±, v0(x) = 0, ±x > r0 (4.1)

with some C± ∈ R and r0 � 0. Then (3.11) implies that ẇ(t) ≡ 0
for t > r0 and (3.10) is an autonomous equation for t > r0. In the
phase plane (y, ẏ) the orbits of the reduced equation (3.10) are
determined by the following system:{

ẏ(t) = v(t),
mv̇(t) = F (y(t)) − 2v(t),

t > r0. (4.2)

Let us compare this system with a free oscillator which is not cou-
pled to a string,{

ẏ = v,

mv̇ = F (y).
(4.3)

Let us establish some simple relationships between phase portraits
of these two systems.

A. These system have the same stationary points.
B. The vertical component v̇ of the phase velocity vector of (4.2)

is less than that of (4.3) if v > 0, and is greater if v < 0. The
horizontal components of these vectors are equal.

C. Hence the orbits of (4.2) intersect those of (4.3) from above
in the halfplane v > 0 and from below in the halfplane v <

0. Let us consider, for instance, a nondegenerate potential of
Ginzburg–Landau type

V (y) = 1

4

(
y2 − 1

)2
, y ∈ R. (4.4)

It satisfies conditions (2.3) and (2.4). Then the system (4.3) has the
following orbits:

Fig. 2. Hamiltonian system.

Fig. 3. System with a friction.

• closed curves corresponding to periodic solutions,
• two separatrices both leaving and entering the point (0,0),
• three stationary points: a saddle at the point (0,0) and two

centers at the points (±1,0), see Fig. 2. Taking into account
the property C, we see that for the system (4.2) with potential
(4.4):
– the points (±1,0) are stable foci,
– the point (0,0) is a saddle, see Fig. 3.

5. Convergence to global attractor

Now we can prove Theorem 3.1 for t → ∞.

Lemma 5.1. Let all the assumptions of Theorem 3.1 hold. Then Y (t)
EF−→

S as t → ∞.

Proof. It suffices to construct z(t) ∈ Z for t � 0 such that∥∥Y (t) − Sz(t)
∥∥

R → 0 as t → ∞.

The convergence (3.19) means that there exists a function z(t) ∈ Z ,
t � 0, such that∣∣y(t) − z(t)

∣∣ → 0, t → ∞. (5.1)

By definitions (2.2) and (3.1),∥∥Y (t) − Sz(t)
∥∥

R = ∥∥u′(·, t)
∥∥

R + ∣∣u(0, t) − z(t)
∣∣ + ∥∥u̇(·, t)

∥∥
R + ∣∣ ẏ(t)

∣∣.
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Here both norms ‖ · · · ‖R → 0 due to (2.6), (3.7), (3.16) and (3.17).
Therefore, (5.1) and (3.20) complete the proof. �

Now Theorem 3.1(i) is proved. Then Theorem 3.1(ii) follows
since the set S , isomorphic to Z , is discrete.

Remark 5.2. The bound (3.13) is provided by the friction term in
the reduced equation (3.10) for the nonlinear oscillator. The friction
means the energy radiation by the oscillator, and the integral in
(3.13) represents the energy radiated to infinity. Thus, our proof of
Theorem 3.1 relies on the energy radiation to infinity.

6. Divergent wave

Here we prove Theorem 3.2 for t → ∞. First, let us construct
the divergent wave

W̃ (t)Ψ+ = (
wout(x, t), ẇout(x, t),0

)
, t � 0. (6.1)

Here wout(x, t) is a finite energy solution to the free d’Alembert
equation. Let us set

wout(x, t) = C0 + f+(x − t) + g−(x + t), (6.2)

where the constant C0 will be chosen below. It remains to check
(3.3) and (3.4) for t → ∞ that means the representation(
u(x, t), u̇(x, t), ẏ(t)

)
= (

s+(x),0,0
) + (

wout(x, t), ẇout(x, t),0
) + r+(t), t > 0, (6.3)

where

s+(x) ≡ z+ := lim
t→+∞ y(t), (6.4)

and∥∥r+(t)
∥∥
E → 0, t → +∞. (6.5)

By definition of the norm (2.1), (6.5) is equivalent to∥∥u′(·, t) − w ′
out(·, t)

∥∥
L2

(
R,Rd

) + ∣∣u(0, t) − z+ − wout(0, t)
∣∣

+ ∥∥u̇(·, t) − ẇout(·, t)
∥∥

L2
(
R,Rd

) → 0, t → ∞ (6.6)

since ẏ(t) → 0 by (3.20).

Step (i). Let us start with the second term in the LHS of (6.6).
Since u(0, t) = y(t) → z+ , it suffices to prove that

wout(0, t) = C0 + f+(−t) + g−(t) → 0, t → +∞. (6.7)

First, (1.5) and (3.6) imply that

lim
t→∞ f−(−t) = u−

0

2
− 1

2

−∞∫
0

v0(y)dy,

lim
t→+∞ g+(t) = u+

0

2
+ 1

2

∞∫
0

v0(y)dy. (6.8)

Second, we have by (3.8) and (6.4) that

lim
t→∞ f+(−t) = z+ − lim

t→+∞ g+(t),

lim
t→+∞ g−(t) = z+ − lim

t→∞ f−(−t). (6.9)

Substituting (6.8), we obtain⎧⎨
⎩ limt→∞ f+(−t) = z+ − u+

0
2 − 1

2

∫ ∞
0 v0(y)dy,

limt→+∞ g−(t) = z+ − u−
0
2 + 1

2

∫ −∞
0 v0(y)dy.

(6.10)

Hence, (6.7) holds if we choose

C0 := u+
0

2
+ u−

0

2
+ I0

2
− 2z+, (6.11)

where I0 is defined in (1.5).

Step (ii). Now, let us consider the first term in the LHS of (6.6).
It suffices to prove for example that∥∥u′(·, ) − w′

out(·, t)t
∥∥

L2(R+,Rd)
→ 0, t → ∞. (6.12)

Using (6.2) and the d’Alembert representation (2.6) for x > 0, we
get

u′(x, t) − w′
out(x, t) = g′+(x + t) − g′−(x + t), x � t. (6.13)

Finally, (3.7) and (3.16) imply that∥∥g′+(x + t) − g′−(x + t)
∥∥2

L2(R+,Rd)

� C

∞∫
0

[|g′+(x + t)|2 + |g′−(x + t)|2]dx

= C

∞∫
t

[|g′+(z)|2 + |g′−(z)|2]dz → 0, t → ∞. (6.14)

Step (iii). The third term in the LHS of (6.6) can be handled
similarly. �
Definition 6.1. E∞ is the space of (u, v, p) ∈ E such that the limits
(1.5) exist.

Let us express the asymptotic states in initial data and the func-
tion y(t). The asymptotic state Ψ+(x) := (Ψ0(x),Ψ1(x),0) is deter-
mined by

Ψ0(x) := wout(x,0), Ψ1(x) := ẇout(x,0). (6.15)

Substituting the expression (3.6), (3.8) into (6.2), we obtain

Corollary 6.2. For (u0, v0, p0) ∈ E∞ the asymptotic state Ψ+ =
(Ψ0,Ψ1,0) is expressed by the formulas:

Ψ0(x) = C0 +
{

y(x) + u0(x)−u0(−x)
2 − 1

2

∫ x
−x v0(y)dy, x � 0,

y(−x) + u0(x)−u0(−x)
2 + 1

2

∫ x
−x v0(y)dy, x � 0,

Ψ1(x) =
⎧⎨
⎩ y′(x) − u′

0(x)−u′
0(−x)

2 + v0(x)−v0(−x)
2 , x � 0,

y′(−x) + u′
0(x)−u′

0(−x)
2 + v0(x)−v0(−x)

2 x � 0,

(6.16)

where C0 is given by (6.11).

Remark 6.3. The outgoing wave wout admits the D’Alembert rep-
resentation

wout(x, t) = W (t)(Ψ0,Ψ1)

= Ψ0(x − t) + Ψ0(x + t)

2
+ 1

2

x+t∫
x−t

Ψ1(y)dy,

y, t ∈ R, (6.17)

because wout is a solution to the D’Alembert equation.

Definition 6.4. Let Y (t) = (u(x, t), u̇(x, t), ẏ(t)) ∈ C(R, E∞) with
Y (0) = Y0 ∈ E∞ be such that the asymptotics (3.3) holds with
S+ = (s+(x),0,0), where s+(x) ≡ z+ ∈ Z , and Ψ+ ∈ E0. Let us set

W+Y0 = (Ψ+, z+) ∈ E0 × Z . (6.18)

The map W+ : E∞ → E0 × Z is called wave operator, and (Ψ+, z+)

– scattering data, corresponding to Y0.
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