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We consider the dynamics of a harmonic crystatinimensions withn compo-
nents,d,n arbitrary,d,n=1, and study the distributiop; of the solution at time

te R. The initial measureuy has a translation-invariant correlation matrix, zero
mean, and finite mean energy density. It also satisfies a Rosenblatt—resp.
Ibragimov—Linnik type mixing condition. The main result is the convergencge, of

to a Gaussian measuretas . The proof is based on the long time asymptotics of
the Green’s function and on Bernstein’s “room-corridors” method.2@03 Ameri-

can Institute of Physics][DOI: 10.1063/1.1571658

I. INTRODUCTION

Despite considerable efforts, the convergence to equilibrium for a mechanical system has
remained as an extremely difficult problem. It has been recognized early on that for an infinitely
extended system, possibly on top of local hyperbolicity, the flow of statistical information to
infinity serves as a mechanism for relaxation. The two prime examples are the ideal gas and the
harmonic crystal. We consider here the latter case. In the harmonic approximation the crystal is
characterized by the displacement fielfx), wherexeT', T is a regular lattice inRY, and
u(x) e R" with n depending on the number of atoms in the unit cell. The figk) is governed by
a dLscrete wave equation. We will consider arbitrahyy and for notational simplicity sel’
=Z“

Our motivation to return to a well studied model is to a much wider class of initial measures
than before. This project requires novel mathematical techniques. They have been developed for
the wave and Klein—Gordon equation B in Refs. 6—8, but the discrete structure poses extra
difficulties.

Let us briefly comment on previous work. In Ref. 14 a general criterion is given which
ensures mixing and Bernoulliness of the corresponding mechanical flow. Thereby the convergence
to equilibrium is established for initial measures which are absolutely continuous with respect to
the canonical Gaussian measure. In Ref. 14 moments of the displacement field are studied. This
allows us to reduce the spectral analysis of the Liouvillian flow to the spectral properties of the
dynamical group defined on solutions of finite energy. Since the crystal is assumed to be homo-
geneous, these spectral properties are determined by the dispersion relafiofls k
=1,... . The Liouvillian flow is mixing and even Bernoulli, if, except for crossing points, each
wi(0) is a real-analytic function which is not identically constant. In particular, the Lebesgue
measure of the sée T Vw,(6) =0} is equal to zero. In Ref. 20, for the cade:n=1, initial
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measures are considered which have distinct temperatures to the left and to the right. In Ref. 2,
againd=n=1, the convergence to equilibrium is proved for a more general class of initial
measures characterized by a mixing condition of Rosenblatt—resp. lbragimov—Linnik type and
which are asymptotically translation-invariant to the left and to the right.

The detailed stationary phase analysis of Ref. 2 does not directly generatizeoRather,
we have to develop a novel “cutoff strategy” which more carefully exploits the mixing condition
in Fourier space. This approach allows us todlithin essence the same conditions for the
dispersion relations as in Ref. 14. Our extension requires the technique of holomorphic functions
of several complex variables.

In parentheses we remark that, for the ideal gas, Dobrushin and Siitsivrealized the
importance of a mixing condition on the initial measure. In Ref. 9 it is replaced by the condition
of finite entropy per unit volume thus establishing convergence whenever the specific particle
number, energy, and entropy are finite. No such general result seems to be available for the
harmonic crystal.

We outline our main result and strategy of proof. The displacementdigdylis the deviation
of the configuration of crystal atoms from their equilibrium positions. Assuming them to be small
and expanding the forces to linear order yields the discrete linear wave equation,

ux,=—2 yezdVX=Y)U(Y,);  Uli—o=Uo(X), Ul—o=vo(X), xeZ%  (1.1)

Here u(x,t) = (u1(x,t), . . . ,uy(X,1)),ug=(Ugy, - - - ,Ugn) € R™ and correspondingly fov,. V(x)
is the interactior(or force matrix, (V,(x)), k,/=1,... n. The dynamicg1.1) is invariant under
lattice translations.

Let us denote by (t) = (Y°(t),Y1(t))=(u(-,t),u(-,t)), Yo=(Y3,Y3)=(Uo(-),vo(-)). Then
(1.1) takes the form of an evolution equation,

Y(t)=AY(t), teR; Y(0)=Y,. 1.2

Formally, this is the Hamiltonian system since

(v 0) - _( 0 1)
Ay=3{ o L |Y=IVHY), o= ] (1.3

HereV is a convolution operator with the matrix kernélandH is the Hamiltonian functional,
H(Y)=3(v,v)+ :(Vu,u), Y=(u,v), (1.4

where(v,v) =2, zdv(X)|? and(Vu,uy=3, , . za(V(X—Yy)u(y),u(x)),(- ,-) being the real sca-
lar product in the Euclidean spaé&€'.
We assume that the initial datulfy is a random element of the Hilbert spatg, of real
sequences; see Definition 2My is distributed according to the probability measurg of mean
zero and satisfying the conditioi&l-S3 below. Givent e R, denote byw, the probability mea-
sure forY(t), the solution td1.2) with random initial datay,. We study the asymptotics @f, as
t— * oo,
The correlation matrices of the initial data are supposed to be translation-invariant, i.e., for
i,j=0,1,

J(x,y) =E(Yh(x)@Yh(y)=qd(x—y), x,yeZzZ", (1.5

though our methods require in fact much weaker conditions. We also assume that the initial mean
“energy” density is finite,

€o=E[|ug(X)|*+[vo(x)|?]=tr g5 0) + tr g (0)<ee, xeZ*. (1.6
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Finally, it is assumed that the measyig satisfies a mixing condition of a Rosenblatt—resp.
Ibragimov—Linnik type, which means that

Yo(x) and Yy(y) are asymptotically independent ds—y|—c. 1.7

Our main result is théweak convergence of the measurgs on the Hilbert spacé{, with «
<-—d/2,

i— Mo @S t— 00, (1.9

M IS a Gaussian measure @i, . A similar convergence result holds for— —o0. Explicit
formulas for the correlation functions of the limit measwrg are given in(2.18—(2.22. As an
application of the results, we show that the initial “white noise”-correlations provide the limit
measureu.. which coincides with the Gibbs canonical measure with the temperatere Re-
spectively,u., is close to the canonical measure if the initial correlations are close to the white
noise.

To prove the convergendd.8) we follow general strategd*®’ There are three steps.

I.  The family of measureg,, t=0, is weakly compact irt, with a<—d/2.

Il. The correlation functions converge to a limit, fiqf =0,1,
[0y~ [ Y@ Yi(y) (@)~ Qlixy) as tce. w9

Ill. The characteristic functionals converge to a Gaussian one,

1
;Lt(qf)zf exr(i(Y,\If)),ut(dY)—>exp‘—EQOC(\P,\I’)] as t—. (1.10

Here W=(¥° W) e D=Da®D, D=Cy(Z%)®R", whereCy(Z%) denotes the space of the real
sequences with finite suppofty,¥)=3;_q 12« za(Y'(x),¥'(x)) and Q.. is the quadratic form
with the matrix kernekQ:l(x,y))i j-o.1.

(VW)= > | QU(x,y), ¥(x)@Wi(y)). (1.1

=01 yyez

Note that(1.1) is the translation-invariant convolution equation and admits a simple structure in
the Fourier space. As a consequence, Fourier representation plays a central role in our proofs of
propertiesl andll. On the other hand, Fourier transform alone does not suffice in praiing
since our main conditiofil.7) is stated in the coordinate space and its equivalent interpretation in
Fourier space is obscure.

Propertyl follows by the method? we prove a uniform bound for the covariancegfand
refer to the Prokhorov Theorem. Propetityis deduced from an analysis of the oscillatory integral
representation of the correlation function in Fourier space. An important role is attributed to
Lemma 3.1 reflecting the properties of the Fourier transformed correlation functions which is
derived from the mixing condition. To provBl we exploit the dispersive properties of the
dynamics(1.1) in coordinate space. The dispersion follows from a stationary phase method ap-
plied to the oscillatory integral representation of the Green’s function in Fourier space. The
dispersion allows us to represent the solution as a sum of weakly dependent random variables by
the Bernstein-type “room-corridor” partition.

Let us explain in more detail the main idea for the prooflbf First let us consider the case
n=1 and the nearest neighbor crystal for which the potential energy has the form
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d

1 1

5 2 (Vx=yuy)u)=5 2 | 2 Jux+e)=ueof+miucol?f, (112

x,yeZd xezd \1=1
wherem=0 ande;=(6;1,...,04). The solution is represented through the Green’s function,
g(t,x),
YOO = 2 G(tx=y)Yo(y). (1.13
yeZ

The long-time asymptotics of the Green’s function is analyzed by the stationary phase method
based on the dispersion relation

d 1/2
w(0):=VY9)=| 2> (1-cosf)+m?| , 6eT, (1.14
=1

whereT¢ is the reald-torus andV(6) stands for the Fourier transform W{x). The main features
of w for m>0 are

(i) w(6)#0, 6T, and (i) mesC=0, (1.15

whereC is thecritical set{ e T%:det Hesso(#) =0} and “mes” stands for the Lebesgue measure
in T9. The Green’s function has distinct asymptotic behavior in three zonesttgpace: inside,
resp., outside the light cone and in the “buffer zone,” which is a small conical neighborhood of the
boundary of the light cone. The light cone is determined by the group velogiti¢g) of the
phonons, and its boundary is determined by the group velogitgg) with “critical” e C, since
they correspond to the maximal values|&fw( )| with a fixed direction ofV w(6) [cf. (1.16)].
Therefore, the buffer zone is determined by the velocitieg6) with the 8 from a small neigh-
borhood of the critical sef. The Green’s function decays rapidly outside the light cone, &2
inside the light cone except for the buffer zone, and more slowly in the buffer zond;.t8.

Now let us discuss the general case wimenl. For n>1 an additional important feature
occurs. In this case we hawedispersion relations,(6), k=1, ... n, which are the eigenvalues

of the matrile’z( 0). Thus there can be “crossing points” where two or more dispersion relations
wi(0) coincide which implies that they are not differentiable, in general. In this case the decay of
the Green’s function generally is slower thar’? everywhere in X,t)-space. We estimate the
decay by the stationary phase method, hence we need smooth branches of the dispersion relations
wi(0) at least locally ind. We establish the existence of the branches outside a set of the Lebesgue
measure zero iiY (see Lemma 2)2 For the proof we use the advanced variant of the Weierstrass
Preparation Theorem from Ref. 15 and the analytic stratification of analyti¢?sets.

For n=1 we define the critical se€ as the subset of® which is the union overk
=1,... n of all the pointsé either with a nondifferentiable(#), or with a degenerate Hessian
of w,(#), or with w, (6)=0. Lemmas 2.2, 2.3 imply that mé€s=0 which plays the central role in
all proofs in the paper. The critical set is never empty. For example, let us=fik,. .. n and
consider the poin®e T¢ with the maximal group velocityV w,(6)|>0. Then det Hess,(6)
=0 since Hess(0) Vw,(6)=0:

. (92(Dk( 0) (9wk( 0) _
(Hesswy(0) Vo (6))i= EJ: 96,96, 96,

(1.19

provided the derivatives exist. Thus even tbrn=1 theuniform in xe R decay of the Green’s
function is slower than ™2 sincew”(#6) vanishes in some points. To overcome this difficulty, in
Ref. 2 it is required thatw” (0)#0 at points withe”(8)=0. Then the uniform decay of the
Green'’s function i$~ 3 which suffices in the cas#=1 together with an additional assumption on
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the higher moments of the initial measure. In contrast, the critical set and the slow decay of the
Green’s function do not occur for the Klein—Gordon equation analyzed in Refs. 4, 6.

For d,n=1 Suhov and Shuhov have proved in Ref. 19 the convergence of the covariance,
(1.9), for a simple singularityof w,(6) (in Arnold’s terminology) in the pointsée C with the
degenerate Hessian. However, a similar detailed analysis of all degenerate poidi{s ot
seems to be impossible. We avoid it by a novel “cutoff” strategy which allows us to cover the
general case when the Lebesgue measure of the criticél isezero. Namely, we choose an
>0 and split the Fourier transform of the solution in two compone?i(ﬁ,t)=\?f(0,t)

+Y,4(0,t) whereY(6,t)=0 outside thes-neighborhood of the critical st while Y4(6,t)=0

inside thee/2-neighborhood of. First, we use the mixing condition to estimate the contribution
from the “critical” componentY;: we prove that it is small in the mean, i.e., its dispersion is
negligible uniformly int=0, if e>0 is sufficiently small. This follows from the identity me&s

=0 since the Fourier transforms of the initial correlation functions are absolutely continuous due
to the mixing condition. A further step is to develop a Bernstein type argument to prove the
Gaussian limit for the main “noncritical” componei, . We write it in the form(1.13:

Yo(x0)= 2 Gy(tX=y)Yo(Y), (1.17)
yeZ

whereGy(t,x—y) is the “truncated” Green’s function which is defined similarly ¥g(x,t): its
Fourier transforrr@g(t,a) is zero inside the:/2-neighborhood o€. Then all the dispersion rela-

tions wy(#) are smooth and nondegenerate on the suppc@g(@f #), hence the truncated Green'’s
function has the standard decay,

Ct 92 |y—x|=<ct,

Co(lt|+[x—y[+1)7P, |y—x|=ct, (118

Gy(t,x—y)=

with somec>0 and anyp>0; cf. (5.2), (5.3). Therefore, the representati¢h.17) demonstrates
that for a fixedxeZ9 the main contribution tov4(x,t) comes from the sectioB(x)={y
e 2% |y—x|=<ct} of the light cone at timé. The “volume” of the sectiorfi.e., the number of the
pointsy e Z9NB(x)] is |By(x)| ~t9. Therefore,(1.17) becomes, roughly speaking,

Ey € Bt(x)YO(y)

o

This implies the Gaussian limit by the Ibragimov—Linnik Central Limit Theoféraince the
random value¥ ((y) are weakly dependent because of the mixing conditiof).

Remarks 1.1:(i) Physically, the asymptotic$1.18 reflects the isotropic propagation of
phonons in the noncritical spectrum. The isotropy provides a “dynamical mixing” which leads to
the Gaussian behavior by the statistical mixing condifibsT). So the convergence to the statis-
tical equilibrium (1.8) is provided by both kinds of the mixing simultaneously: the statistical
mixing condition(1.7) and the dynamical mixingl1.18.

(ii) The degree-d/2 in (1.18 is related to the energy conservation since the Hamiltonian
(1.4) is a quadratic form. Roughly speaking,18 means the “energy diffusion,” and the degree
—d/2 resembles the diffusion kernel.

Finally, let us comment on our conditions concerning the interaction méfetx. We assume
the conditionsE1-E4 below which in a similar form appear also in Refs. 2, EA means the
exponential space-decay of the interaction in the cry&2).resp.E3, means that the potential
energy is real, resp. non-negati&s eliminates the constant part of the spectrum and ensures that
mesC=0 [cf. (1.15]. We also introduce a new simple conditifb for the casen>1 which
eliminates thediscretepart of the spectrum for the covariance dynamics. It can be considerably
weakened to the conditidB5’ from Remark 2.10ifi ). For example, the conditioB5’ holds for

Yq(X,t)~ (1.19

Downloaded 16 Jul 2003 to 194.95.184.202. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



J. Math. Phys., Vol. 44, No. 6, June 2003 On the convergence to statistical equilibrium 2601

the canonical Gaussian measures which are considered in Ref. 14. We show that the cdedlitions

and E5 hold for “almost all” matrix-functionsV(-) with the finite range of the interaction.
Furthermore, we do not require thag(6) #0, 8 TY: note thatw(0)=0 for the elastic lattice

(1.14 in the casen=0. Our results hold whenever r{#s= T9: w,(6) =0}=0. To cover this case

we impose the new conditiokS which is roughly speaking necessary and sufficient for the

uniform bounds of the covariance. It can be simplified to the stronger condition

IV=1(o)] e LX(TY), (1.20

from Ref. 14, which holds for the elastic latti¢k.14) if eitherd=3 orm>0. The condition(1.20
is equivalent tES for the canonical Gibbs measures considered in Ref. 14. Howgv2€) does
not hold in some particular interesting cases: for instance, for the elastic Idttice in the case
d=1,2 andm=0, as it is pointed out in Ref. 14.

The main results of our paper are stated in Sec. II: ThegkémSec. I D, and its application
in Sec. IIE4. The convergendé.9) and the compactnedsare established in Sec. Ill, and the
convergencél.10 in Secs. IV=VIII. Section IX concerns the ergodicity and the mixing properties
of the limit measure. In the Appendix we analyze the crossing points of the dispersion relations.

II. MAIN RESULTS

A. Dynamics

We assume that the initial dat, belongs to the phase spakg,, a« € R, defined below.
Definition 2.1:'H,, is the Hilbert space of pairs ¥ (u(x),v(x)) of R"valued functions of
x e Z% endowed with the norm

IY]2= Ed (u(x) |2+ o (0)]2)(1+]x]|2)*< 0. 2.1

XeZ

We impose the following condition&1-E5 on the matrixV.

C!El There exist constant€,a>0 such that|V,(z)|<Ce *?, klel,:={1,...n}, z
eZ".

Let us denote by(60):=(Vy(6)), 11, Where Vi (0)=2,.zaV((2)€"*’, 6T, and T
denotes thel-torus T9=RY/27Z2¢.

E2 V is real and symmetric, i.e\;(—2)=V\(2) eR, k,l el,,, ze Z4.

The condition implies thaf/(a) is a real-analytic Hermitian matrix-function ific T¢.

E3 The matrixV(#6) is non-negative definite for eache T¢.
The condition means that EqL.1) is a hyperbolic like wave and Klein—Gordon equations
considered in Refs. 6-8. Let us define the Hermitian non-negative definite matrix,

Q(6):=(V(6))V*=0, (2.2)

with the eigenvaluess (6)=0, kel,, the dispersion relations. For eaéke T the Hermitian
matrix () has the diagonal form in the basis of the orthogonal eigenveft(®):kel, }:

w(6) -+ 0
Q(0)=B(0) 0 0 B*(6), (2.3
0 o wn(0)

whereB(6) is a unitary matrix. It is well known that the functions(#) and B(¢) are real-
analytic outside the set of the “crossing” poinés : wy(6,)=w(6,) for somel #k. However,
generally the functions are not smooth at the crossing poinig(if) # w,(#). Therefore, we need
the following lemma which we prove in the Appendisf. Ref. 21, Lemma 1)1
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Lemma 2.2: Let the conditiors1, E2 hold. Then there exists a closed sub@eC T% such
that we have the following:

0] the Lebesgue measure @f is zero:
meg’, =0. 2.4

(i)  For any point ® e TAC, there exists a neighborhoo®(®) such that each dispersion
relation w,(6) and the matrix B6) can be chosen as the real-analytic functionsi(®).

(i)  The eigenvaluess,(6) have constant multiplicity iT\C, , i.e., it is possible to enumerate
them so that we have fate TA\C, ,

wy(0)="" ‘Ewrl(ﬁ), wr1+1(0)5' ’ 'Ewrz(e)v cee wrs+1(0)5' “=awy(6), (2.5
wr(r(a)séwru(a) if o#Fv, 1<r_,,r,<rg,q:=n. (2.6

(iv)  The spectral decomposition holds,
s+1

Q(e)zg w (OT1,(6), 0eTNC, (2.7)

wherell () is the orthogonal projection ifR" which is real-analytic function of e TAC, .
Below we denote byw,(6) the local real-analytic functions from Lemma 2.R)( Our next
condition is the following:

E4 D (6)%0, Vkel,, whereD,(6) :=detPw,(6)/36, aej)ﬁjzl, feTNC, .

Let us denotely:={fe T4 det/(A)=0} and C:={fec TNC, : D(6)=0}, kel,. The following
lemma is also proved in the Appendix.

Lemma 2.3: Let the conditioris1-E4 hold. ThenmesC, =0 for k=0,1,... ,n.

Our last condition orV is the following:

E5 For eachk#1 the identity w,(6) — w,(8)=const., #e T does not hold with const=0,
and the identityw,( 6) + w;(#)=const. does not hold with congt40.

This condition holds trivially in the case=1.

We show that the condition&4 and E5 hold for “almost all” functions V satisfying the
conditionsEl, E2. More precisely, let us fix an arbitrafy=1 and denote byR the set of the
“finite range” interaction matrices/ with V(x)=0 for max|x|>N, and satisfying the condition
E2. In the Appendix we prove the following lemma.

Lemma 2.4: For any B 1 the conditionsE4 and E5 hold for the matrix-functions V from an
open and dense subset®f .

The following proposition is proved in Ref. 14, p. 150 and Ref. 2, p. 128.

Proposition 2.5: Lett1 and E2 hold, anda € R. Then

0] for any Y,e H, there exists a unique solution( € C(R,H,) to the Cauchy problem
(1.2).
(i)  The operator Ut):Yy—Y(t) is continuous irH,, .

Proof: Applying the Fourier transform t@l.2), we obtain

Y(0,0=A(0)Y(0,0), teR, Y(0)=Y,, (2.9
where
i ( 0 1) |
A(0)= e o) heTd. (2.9
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Note thatY(-,t)eD’(TY for teR. On the other handy(6) is a smooth function byE1.
Therefore, the solutiofY(6,t) of (2.8) exists, is unique and admits the representaif@,t)

=exp(A(6)t)Yo(6). It becomeg1.13 in the coordinate space, where the Green’s funafiinz)
admits the Fourier representation

G(t,2):=F , 1 [exp(A( 9)t)]=(2w)—dJTde—‘Z"exp(A( 6)t)dé. (2.10

Hence, by the partial integratiogi(t,z)~|z| P as|z|]—« for any p>0 and boundedt| since
A(6) is the smooth function offe T9. Therefore, the convolution representatidnl3 implies
Y(t)eH,. O

B. The convergence to statistical equilibrium

Let (2,%,P) be a probability space with expectatiéh and let B(+,) denote the Borel
o-algebra inH,. We assume thaY,=Yy(w,-) in (1.2) is a measurable random function with
values in(H,,, B(H,)). In other words, for eacte Z9 the mapw+—Yy(w,x) is a measurable
map Q— R?" with respect to thécompleted o-algebras, and B(R?"). ThenY(t)=U(t)Y, is
again a measurable random function with value$#f), ,/5(H,)) owing to Proposition 2.5. We
denote byuo(dYy) a Borel probability measure dH,, giving the distribution of ther,. Without
loss of generality, we assumeQ(2,P)=(H,,B(H,) no) and Yo(w,X)=w(x) for
wo(dw)—almost allw e H,, and eachx e Z¢.

Definition 2.6: u, is a Borel probability measure ift{, which gives the distribution of Y(t):

ui(B)=po(U(—t)B), VBeB(H,), teR. (2.11

Our main goal is to derive the convergence of the measufesst—«. We establish the
weak convergence g, in the Hilbert space${, with a<—d/2:

Ha
Mt — Mo @S t—oo, (2.12

whereu,, is a limit measure on the spaé¢,, a«<—d/2. This means the convergence

f f(Y)Mt(dY)HJ f(Y) ueo(dY), t—e, (2.13

for any bounded continuous functionfabon +,, .
Definition 2.7: The correlation functions of the measureare defined by

YOGy =E(Y (xD@Yi(y,), i,j=01, x,yeZ’, (214
if the expectations on the rhs are finite. Her&x(t) are the components of the random solution
Y(t) = (YO( : 1t)!Yl( . vt))

For a probability measurg on H, we denote bya the characteristic functiondFourier
transform,

ﬁ(«lf)=f expli(Y, %)) u(dY), ¥eD.

A measureu is called Gaussiafof zero meaiif its characteristic functional has the form
a(W)=exp[—39(V,¥)}, ¥eD, (2.15

where@ is a real non-negative quadratic formZh A measureu is called translation-invariant if
w(TpB)=wu(B), BeB(H,), heZz9 whereT,Y(x)=Y(x—h), xeZ4.

Downloaded 16 Jul 2003 to 194.95.184.202. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



2604 J. Math. Phys., Vol. 44, No. 6, June 2003 Dudnikova, Komech, and Spohn

C. The mixing condition

Let O(r) denote the set of all pairs of the subsgts BCZ® at distance distdl, B)=r and
o(A) be theo-algebra inH, generated by (x) with x e A. Define the Ibragimov—Linnik mixing
coefficient of a probability measung, on H, by (cf. Ref. 13, Definition 17.2.,2

| Lo(ANB) = o(A) o(B)|

o(r):= sup sup (2.16
(A,B)cO(r) Aca(A),Bea(B) o(B)
mo(B)>0

Definition 2.8: The measurg, satisfies a strong, uniform Ibragimelzinnik mixing condition
if ¢(r)—0 as r—ow,
Below, we specify the rate of decay ¢f(see conditiorS3).

D. Statistical conditions and results

We assume that the initial measuyig satisfies the following conditionS0-S3
SO0 g has zero expectation valugYy(x)=0, x e Z¢.
S1 ug has translation-invariant correlation matrices, i.e., @cp) holds forx,y e Z¢.
S2 ug has a finite mean energy density, i.e., Ef6) holds.
S3 ug satisfies the strong uniform Ibragimov—Linnik mixing condition with

+ oo
a::fo rd=1oY2(r) dr<oe. (2.17)

We will deduce fromS0-S3thatg] € C(TY), i,j=0,1(see Lemma 3)1 This makes sense of our
last conditionES concerning the initial covariance and the matflxd). We need it only in the
case wherCy#0, i.e., detV(§)=0 for some points e TY:
ES|Q'(0)ad(0)Q '(8)] eLY(TY) fori,j=0,1.
This condition follows fromS0-S3if i=j=0 or C;=20.

Next introduce the correlation matrix of the limit measwe. It is translation-invariancf.

1.5]
Qu(x,Y)=@L(X—=Y)i j=0,1- (2.18
In the Fourier transform we have locally outside the criticalGe{see Lemma 2)2
§3(6)=B(o)M1(6)B*(6), i,j=0,1, (2.19

whereB(6) is the smooth unitary matrix from Lemma 2.2 andMl(6) is annx n-matrix with
the smooth entrieéM ! (60))= xi(B* ()Mg (8)B(6)), . Here we sefsee(2.5)]

1, if Kle(ryo_q,ry], o=1,...s+1,
X710, otherwise, 2.29
with rg:=0, rg, 1:=n, and
y (0)_1(q8°<0>+ﬂ—1<e>qél(em—l(e) 80'(6)— Q7 1(6) G X(6) (6) 21
U2l e -eago e ale+reoae e )T
The local representatiof2.19 can be expressed globally as
s+1
ql()= 2 T (OMY(OTT(0), 6eTAC,, i,j=0.1, (2.22
o=1
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wherell () is the spectral projection frorf2.7).

Remark 2.9The conditionES implies that M{), e LY(TY), k,I €l,,. Therefore(2.22 and
(2.4) imply that also ), eL}(TY), k,lel,.

Theorem A: Let d,n=1, a<—d/2 and assume that the conditioBl—E5, SO-S3 hold. If
Co# 0, then we assume also th&s holds. Then

(i)  the convergence in (2.12) holds.
(i)  The limit measurew., is a Gaussian translation-invariant measure #f), .
(i)  The characteristic functional of.. is the Gaussian,

f(W)=exp{— 1 Q.(¥, W)}, WeD, (2.23

where Q.. is the quadratic form defined in (1.11).
(iv)  The measurew., is invariant, i.e.,[U(t)]* o= tt.., teR.

Remarks 2.10() In the casen=1, the formulag2.21), (2.22 become

A 16+ 20l ad-al
Qe=Mo=75 N N N N .
21 a%-ad" G+’

(i) Theuniform Rosenblatt mixing conditiofi also suffices, together with a higher poveep
in the bound(1.6): there exists5>0 such that

E(Juo(x)[** °+]v(x) 2 ) <ee.

Then (2.17) requires a modificationf § “r4 taP(r)dr<, with p=min(&/(2+6),1/2), where
a(r) is the Rosenblatt mixing coefficient defined ag 2116 but without uqo(B) in the denomi-
nator. With these modifications, the statements of Theokeamd their proofs remain essentially
unchanged.

(iii ) The arguments with conditioB5 in Proposition 3.2see(3.7)—(3.13 below] demonstrate
that the condition could be considerably weakened. Namely, it suffices to aghimk for some
k#| we have eithew,(6)+ w,(8)=const.#0 or w(0) — w () =const #0, then

(B*(0)§(0)B(0)) =0, 6eT9 i,j=0,1. (2.24)

The assertiongi)—(iii) of TheoremA follow from Propositions 2.11 and 2.12.
Proposition 2.11: The family of the measuigs; , t € R} is weakly compact irH, with any
a<—d/2, and the bounds hold

SUFE]|U(t) Yo < 0. (2.29

t=0

Proposition 2.12: For every’’ € D, the convergence (1.10) holds

Proposition 2.11 ensures the existence of the limit measures of the family € R}, while
Proposition 2.12 provides the uniqueness. Propositions 2.11 and 2.12 are proved in Secs. lll and
IV=VIII, respectively.

Theorem A (v) follows from (2.12) since the groupJ(t) is continuous ir{, by Proposition
2.5 (ii).

E. Examples and applications

Let us give the examples of the equatighsl) and measureg which satisfy all conditions
E1-E5, SO-S3 andES.
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1. Harmonic crystals

All conditions E1-E5 hold for a one-dimensionalL-D) crystal withn=1 considered in Ref.
2. For anyd=1 andn=1 consider the simple elastic lattice corresponding to the quadratic form
(1.12 with m#0. ThenV(x)=ngxw2(0) with w(6) defined by(1.14), satisfiesE1-E4 with
C, =0. In these examples the g&{is empty, hence the conditideS is superfluous. ConditioB5
holds trivially sincen=1.

2. Gaussian measures

We considern=1 and construct Gaussian initial measuggg satisfying SO-S3 We wiill
define uq by the correlation functiongg (x—y) which are zero foi #j, while fori=0,1,

A(0)=F,_,ah(2) e LX(T), al(6)=0. (220

Then by the Minlos theoreth there exists a unique Borel Gaussian meagweon H,, a<
—d/2, with the correlation functiongd (x—y). The measure., satisfiesS0-S2 Further, let us
provide, in addition t02.26), that

ay(2)=0, |z|=r,. (2.27)

Then the mixing conditios3follows with ¢(r) =0, r=r, since for Gaussian random values the
orthogonality implies the independence. For exam(#26) and (2.27) hold if we setqg(z)
=f(zy)f(zp)- -+ -f(z4), Where f(2)=vo—|z| for |z|<v, and f(2)=0 for |z|=v, with v,
:=[ro/\/d] (the integer pait Then by the direct calculation we obtafif) = (1— cos,6)/(1
—Ccos6), 6e T, and(2.26 holds. The measurg, is nontrivial if r,=+/d: otherwiser,=0, so
gd(z)=0, and the measurgy(dY,) is concentrated at the poiivy=0.

3. Non-Gaussian measures

Let us choose some odd bounded nonconstant functfgri¢ e C(R) and consider a random
function (Y°(x),Y(x)) with the Gaussian distributiop, from the previous example. Let us
defineuf as the distribution of the random functiof®(Y°(x)), f1(Y*(x)). ThenS0-S3hold for
wo with corresponding mixing coefficients* (r) =0 forr=r,. The measurg§ is not Gaussian
if the functionsf®, f! are bounded and nonconstant.

4. From statistical chaos to the Gibbs measure

Let us consider the initial measures which satiSf-S3 and with the correlation functions

(A (X=Y) =EXV(x,0Y|(y,0)=Ti&jdadyy, 1,j=0,1, klel, xyez® (2.28

Xy
whereT,,=0. These correlations correspond to the “chaos” with the zero correlation radius and
uncorrelated components. Such measures exig{pmwith «<—d/2 by the Minlos Theorem?!
for example, the “white noise” which is the corresponding Gaussian measure. Let us consider the
crystal satisfying the condition&1-E4 and (1.20. Then also the conditiong5’, ES hold, so
TheoremA is applicablg see Remark 2.1(ii)]: it implies the convergenc.12) to the Gaussian
measureu., with the covariancé2.21), (2.22.

Additionally, let us assume thdt=0 which physically means that only the initial velocities
contribute, and initial deviations are adjusted to zero. Then the forng2la3), (2.22 become

VL(6) 0
0 (Skkiel,)

= E (2.29
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According to(1.3), this means that the limit measuge, coincides with theGibbs canonical
measurecorresponding to the temperatut€l’ ;. In a more general framework, the limit measure

is close to the Gibbs measure if the radius of the initial correlations is small in a suitable scaling
limit (cf. Ref. 6, Proposition 4)2

I1l. CONVERGENCE OF COVARIANCE AND COMPACTNESS

A. Mixing condition in terms of spectral density

The next Lemma reflects the mixing property in the Fourier transfcﬁjgnsf initial correla-
tion functionsqy . ConditionS2implies thatqd(z) is a bounded function. Therefore, its Fourier
transform generally belongs to the Schwartz space of tempered distributions.

Lemma 3.1: Let the conditior80-S3 hold. Then'q e C(T9), i,j=0,1.

Proof: It suffices to prove that

qd(2) el*(z9). (3.1)
ConditionsS0-S3imply by Ref. 13, Lemma 17.2.pr Lemma 8.2 () below]:
|ag(2)|=Cepe"(2), 2zeZ°, (32

whereeg, is defined by(1.6). Therefore,(2.17) implies (3.1):

2 lad(z)=Cey X oA(z)<e=.

zeZ zeZ

B. Oscillatory integral arguments

In this section we uniformly estimate and check the convergence of the correlation matrices of
measuregt,; with the help of the Fourier transform. The conditiBh and the translation-invariant
dynamics(1.1) imply that

1= [ YooY m@n=al-y), xyez® 33
Proposition 3.2: (i) The correlation matrices’@z), i,j=0,1, are uniformly bounded

supsup|q (z)| <. (3.9

=0z 74
(i) The correlation matrices 'ﬁ(z), i,j=0,1, converge for each 2Z¢, and
W @—dl@), tow, (3.5
where the functions'f(z) are defined above

Proof: For brevity, we proveg3.4) and(3.5) for i=j=0. In all other cases the proof (8.5
is similar. The solution to the Cauchy problegthl) is

u(x,t)=(277)’ddee’iX"’(coth Y3(6)+sinQt Q~1Y3(6))d,

whereQ)=()(6) is the non-negative definite Hermitian matrix defined(By2). Furthermore, the
translation invariancél.5) implies that

ECYL(0) @Yo )=(2m)5(0+6)gd(6), i,j=0,1. (3.6)
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Hence,
ax—y)=Eu(x,you(y,1))
=(Zw)‘dJTde‘ia(x‘y)[cosﬂt a3 6)cosQrt
+sinQt Q7 1g3% 9)cosQt+cosQt §oi(9)Q LsinQt
+sinQt Q7 1G5%9)Q tsinQt]de. (3.7

Therefore, the boun€3.4) with i=j=0 follows from Lemma 3.1 or conditio&S if Cy# 0.

Let us check that the convergen@?5) with i=j=0 also follows since the oscillatory inte-
grals in(3.7) tend to zero. Consider for example the last term in the integra8. 6f We rewrite
it using (2.3), in the form

Lg(6,t):=sinQt Q71g57(6) Q™ 'sinQt=B(6)(sinwyt Ag(O)sinot) ;. B*(6),
(3.9

whereAY(6) :=B* (6) Q ~g3%(6)Q ~*B(#). However, at this moment we have to choose certain
smooth branches of the functioBg6) andw,(#) since we are going to apply the stationary phase
arguments which require a smoothnesg.imfo make it correctly, we cut off all singularities. First,
we define the combinedritical set,

C:ZUkaUC* UCO (39)
Then Lemmas 2.2, 2.3 imply the following lemma.

Lemma 3.3: Let condition81-E4 hold. ThenmesC=0.
Second, fix are>0 and choose a finite partition of unity,

M
f(0)+g()=1, g(e)=m§1 gm(6), 0eTY, (3.10

wheref,g,, are non-negative functions frofrf;(Td), the supports of),,, are sufficiently small and
supp fC{0eT9: dist(0,0)<e}, supmmC{Oe T dist(6,0)=¢/2}. (3.11)

Now (3.8) can be rewritten as

L' (a0 =f(O)Lg 0.0+ %; Grm( 6)B(0) ((cOS wi— )t
—cog @+ 0)DA(0))y <1, BX(6). (3.12

By Lemma 2.2 and the compactness arguments, we can choose the suppgré®aimall that the
eigenvaluesy,(#) and the matrixB( ) are real-analytic functions inside the sgppfor everym:
we do not mark the functions by the indexto not overburden the notations.

Let us substituté3.12) into the last term 0f3.7) and analyze the Fourier integrals witland
On Separately. The integral witlh converges to zero uniformly it=0, ase—0. Indeed, by
Lemma 3.3 we have

U e_”’(x‘y)f(ﬁ)Lél(G,t)da$CJ 12708562 (6)] d6—0, &0,
Td dist(6,0)<e

since the integrand is summable by Lemma 3.1 or cond&8nf Cy# 0.

Downloaded 16 Jul 2003 to 194.95.184.202. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



J. Math. Phys., Vol. 44, No. 6, June 2003 On the convergence to statistical equilibrium 2609

Below we will prove the convergence for the integrals wgth. We will deduce the conver-
gence from the fact that the identities(6) = w,(#)=const. with the const #0 are impossible
by the conditionE5. Furthermore, the oscillatory integrals with) (0) = w,(#) % const vanish as
t—oo. Hence, only the integrals witlw(6) — w,(6)=0 contribute to the limit sincew,(6)
+ w;(0)=0 would imply w,(8)=w;(08)=0 which is impossible by¥4. A similar analysis of the
three remaining terms in the integrand(8f7) gives

a™(x—y)=(2m) ¢ f £ OLE 0,0 do+ (2m) 0 f ()
T m T

de

. 1
><e-'“x-w[EB(a)(xk'(AE?( 0)+ A ()i <1, B*(6)+- -

=(2w)*df L7 f(OLGN o) d0+(277)’df 9(0)e” g 0) do+- -,
T T

(3.13

according to the notation&.18—(2.21). Here A% 6) :=B* (6)§3°(#)B(6) and “--” stands for
the oscillatory integrals which contain dag(6) = w;(6))t and sifw(0) * w,(6))t with w,(6)
+ w|(6)#const.

The oscillatory integrals converge to zero by the Lebesgue—Riemann Theorem since all the
integrands in *--" are summable andV (w(0)* w;(#))=0 only on the set of the Lebesgue
measure zero. The summability follows from Lemma 3.1 or the condEBrsince the matrices
B*(6) are unitary. The zero measure follows similarly(®4) since w,(60) = w () #const.

At last, let us prove the convergen@b5) with i =j=0. From the last line 0f3.13 we know
that q?o(x—y) is close to the integral witlg if & is small andt is large. Therefore, the limit of
q?o(x—y) ast— o coincides with the limit of the integral as— 0. Finally, this limit coincides
with q%%(x—vy) sinceg®e L}(T%) by Remark 2.9. O

C. Compactness of measures family

Proof of Proposition 2.11The compactness of the measures fanijy, t e R} will follow
from the boundg2.25 by the Prokhorov TheorerfRef. 22, Lemma I1.3.Lusing the method of
Ref. 22, Theorem XII.5.2 since the embeddiRgC 7 is compact ifa> g.

First, the translation invariand®.3) and Proposition 3.2i] imply that forx e Z9 we have

et==f [1Uo(X) [+ [0o(X)[?] m(dYo) =tr g?%(0) + trgi*(0)<e<ee, t=0. (3.14
Hence by the definitiori2.1) we get for anya<<—d/2:

E|U)Yol?=e 2 (1+]|x2)*=C(a)e=C(a)e<x, t=0.
d

xeZ

IV. DUALITY ARGUMENT
To prove Theorem A, it remains to check Proposition 2.12. Let us re\ite) as follows:
Eexpli(Y(1),V)}— 1. (V), t—oo. 4.9

We will prove it in Secs. V-VIII. In this section we evaluat¥(t), V) by using the following
duality arguments. Remember thgte H, with «<—d/2. Fort € R introduce a “formal adjoint”
operatorU’(t) from spaceD to H_,:
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Y, U'()w)=(U)Y,¥), YeD, YeH,. 4.2
Let us denote byb(-,t)=U’(t)¥. Then(4.2) can be rewritten as
(Y(1),¥)y=(Yy,P(-,1)), teR. 4.3

The adjoint grougdJ’(t) admits the following convenient description. Lemma 4.1 below display
that the action of groupJ’(t) coincides with the action dfJ(t), up to the order of the compo-
nents.

Lemma 4.1: For¥ = (¥° ¥1) e D we have

D(-,1):=U" (O =((-,0),8(-,1)), (4.9

where g(x,t) is the solution of Eq. (1.1) with the initial datalg,vo)=(¥1,¥9).
Proof: Differentiating(4.2) in t with Y, ¥ e D, we obtain thatY,U’ (t)¥)=(U(t)Y,¥). The
groupU(t) has the generatod from (1.3). The generator df)’ (t) is the conjugate operator ié:

) 0o -V
A= 1 0l (4.5
Hence, the representatidd.4) holds with j(x,t) = — =, . zaV(X—Y) ¢(y.t). O

The lemma allows us to construct the oscillatory integral representatich (fojt). Namely,
(4.4), (4.5 imply that in the Fourier representation fér(-,t)=U’(t)¥ we have

D(0.0)= A (0)B(0,1), D(6,t)=C*(1,0)W(8).

Here we denot¢see(2.9)]

Ao [0 =V() . B A*(o)t_( cosQt  —QsinQt
A ()= 1 o |’ g (t6)=e Q7 tsinQt  cosQt 4.6
with Q=Q(0)=Q*(0). Therefore,
@(x,t):(zw)—dJde—“’@*(t,e)\ir(e)de, xezd. 4.7)
T

Sincef(6#)+g(#)=1 by (3.10, we can splitd in two components:

cb(x,t):(zw)—df de-‘”@*(t,a)f(e)\ir(a)daﬂzw)—df &7 17G* (1,0)9(0)¥(6)do
T T

=D(x,1) + Dy(x,t), xeZf, (4.9
where each functiod(x,t) and®4(x,t) admits the representation of typé.4). By (3.11), the

Fourier spectrum ofb; is concentrated near the critical st while the spectrum ofb is
separated frong.

V. STANDARD DECAY IN THE NONCRITICAL SPECTRUM

We prove the decay of typ@.18 for the “noncritical” componentd . The functiond can
be expanded similarly t¢3.12), in the form

Dy(x,1)=2, EK | Im(O)e” 1 PEelDar () ¥ (6)do. (5.1
ely T

m =+,
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By Lemma 2.2 and the compactness arguments, we can choose the eigeaydit)esnd the
matricesa, (#) as real-analytic functions inside the sgppfor everym: we do not mark the
functions by the indexn to not overburden the notations.

Lemma 4.1 means that each compon@ra(x,t), i=0,1, is a solution to Eq1.1). To prove
(4.1), we analyze the radiative properties®f(x,t) in all directions. For this purpose, we apply
the stationary phase method to the oscillatory inte¢fdl) along the raysx=wvt, t>0. Then the
phase becomeéfv + w,(6))t, and its stationary points are the solutions to the equations
=T Vwy(6). We collect all necessary asymptotics in the following lenjcfa(1.18)].

Lemma 5.1: For any fixe® e D and ¢(0) e C§(Td\C) the following bounds hold:

0] sup|dy(x,t)|<Ct™ 92, (5.2)

xezd

(i)  orany p>0 there exist G,y4>0 such that
|Dy(x,)[<Cp([t|+]x[+1) 7P, |x|=y4t. (5.3

Proof: Considerd 4(x,t) along each rax=uvt with arbitraryv e RY. Substituting ta5.1), we
get

Dy(vt,t)=2, %. fdgm(0)e*i<9viwk<ﬂ>>ta§(0)@'(0)010. (5.4)
m =, kel, T

This is a sum of oscillatory integrals with the phase functiggg 6) = 6v + w,(6) and the am-
plitudes a, (#) which are real-analytic functions of the inside the supg,. Since w,(6) is
real-analytic, each functions, has no more than a finite number of stationary poifits
€ supf,,, solutions to the equation=+Vw,(6). The stationary points are nondegenerate for
f e supm,, by (3.11), (3.9), andE4 since

k

P by
det(agi(wj)ztDk(e)#O, 0 e supm, . (5.5

At last, ¥(6) is smooth since¥ e D. Therefore,CDQ(vt,t)zO(t*d’z) according to the standard
stationary phase methd®2’ This implies the boundgs.2) in each conéx|<ct with any finitec.
Further, denote by 4:=max, maX.; MaXcsupg |V @k(6)|. Then for|v|>v, the stationary

points do not exist on the sugpHence, the integration by parts as in Ref. 17 yielggvt,t)
=0O(t"P) for any p>0. On the other hand, the integration by partg5rl) implies similar bound
<I>g(x,t)=(9((t/|x|)') for any 1>0. Therefore,(5.3) follows with any y,>v,. Now the bounds
(5.2 follow everywhere. O

VI. CONTRIBUTION OF CRITICAL SET
We are going to provéd.1). Rewrite it using(4.3):
Eexpli(Yo,P(-,t))}— . (¥)—0, t—oo. (6.7

The splitting(4.8) gives(Yq,P(-,t))=(Yo,P¢(-,1)) +(Yq,P4(-,t)). Our main argument is that
the contribution ofYy,®¢(-,t)) to (6.1 has a small dispersion. We will deduce this from Lem-
mas 3.1, 3.3. At first, let us estimate the differencé@rl) by the triangle inequality:

|E exp(i(Yo,P(-,1))} — f.(W)|<[|Eexp{i(U(1)Yo, W)} —Eexpli(Yo,Pg(-, 1))} +| (V)
— (W) + [E exp{i(Yo, (-, )} — fra (W) | =1 +11 + 111,
(6.2

Where\Ifg::F‘l[g(G)‘if(H)]=(Dg(~ ,0). Let us consider each of the three terms separately.
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l. The first terml =1(e,t) represents the contribution of the neighborhood of the critical set
{6e T dist(9,C)<e} and tends to zero as—O0 uniformly in t=0. Namely, by the
Cauchy—Schwartz inequality,

| =|EM0P(-0)— Ed{Yo 2ol )| <E|dMoP-D—1|<C(E|( Yo, P¢(-,1))[DY2 (6.3
Using the Parseval identity arid.8), we get

EYo,®4(- 1)?=(2m)XE|(Y(6), F(O)D(6,D)[?

=2m) HEN ()@ Yo(6")), F(O)F(6') G (1,0)F(0) @G (t,0") ¥ (6)).
(6.4)

Now take into account thaE(Y,(8)®Y,(8'))=(2m)45(6— 6')8,(6) similarly to (3.6).
Then (6.4), (4.6), (3.11) and the bounds€f(#)<1 imply

E[(Yo,®4(- D)P<C, >, Q- (o)ad(e)QI(6)]| d6—0, £—0,
i,j=0,1 dist(0,C)<e

owing to Lemma 3.3 since the integrand is summable. The summability follows from
Lemma 3.1 or conditioES if Cy# 0.

Il.  The second ternhl =11 (&) tends to zero as—0. Indeed,

l —_—
0¥, ¥ =2m # 3 | @0 g0 ¥ (a0 do—o.cvv),

e—0,
by the Lebesgue Dominated Convergence Theorem sisog(0) <1 andql,i e LY(TY by
Remark 2.9. Hence for the Gaussian meagure we get by(2.23,

|ito(W o) — (V)| =exp{ — 3 Qu( Vg, ¥ o)} —exp{— 3 Q.(¥,¥)}| =0, £—0.
Ill.  To prove Proposition 2.12, it remains to check that for any fixedD, we have
1 (&,)=|Eexpi(Yo,Pg(- )} — feo ¥ )| =0, t—0. (6.5

We prove(6.5) in Sec. VIII using the Bernstein arguments of the next section.

VIl. BERNSTEIN’'S “ROOMS-CORRIDORS” PARTITION

Our proof of(6.5) is similar to the case of the continuous Klein—Gordon equatidR®? all
the integrals oveR® become the series ov&f, etc. Another novelty in the proofs is the follow-
ing: in the case of the Klein—Gordon equation we hd\(g,t) =0 for |x|=t+c(¥), while for the
discrete crystal we havé.3) instead.

Let us introduce a “room-corridor” partition of the balk e Z9: |x|< Y4t} with 4 from (5.3).
Fort>0 we choose below,,p; e N (we will specify the asymptotic relations betweign\,, and
py). Let us seth,=A;+p,; and

al=jh,, bl=al+A, jeZ, N=[(ygt)/h]. (7.1
We call the slabsRl={xeZ%|x|<N;h,, al<x4<b'} the “rooms,” C!={xez%|x|<Nh,, b’
<xg<al "1} the “corridors” andL,={x e Z%|x|>N;h} the “tails.” Here x=(Xy, . . . Xq), A is

the width of a room, ang, is that of a corridor. Let us denote ky the indicator of the roor!,
&l that of the corridorC{, and », that of the tailL,. Then
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2 [0+ 8001+ () =1, xe 2", (7.2
where the sunX, stands forEJ.N;ilNl. Hence we get the following Bernstein’s type representation:
<Yo,®g(-,t)>=2 (Yo XI®g(- 1))+ (Yo, ElPg(- D)+ (Yo, @yl ,1)). (7.9

Let us introduce the random variables c!, I, by

H=(Yo,XI®g(-,1)),  c=(Yo,&D4(-,1)), I;=(Yo,7Py(-,1)). (7.4

Then(7.3) becomes

<Y0,c1>g(.,t)>=2t (ri+ch)+1,. (7.5
Lemma 7.1: LeB0-S3 hold. The following bounds hold fort1:
Elrl|>’<C(¥,) At, Vj, (7.6
Elcl2<C(¥y) plt, Vi, (7.7
El|2<Cy(¥g)(1+1) P, Vp>0. (7.9

Proof: We discuss(7.6), and (7.7), (7.8) can be done in a similar wajthe proof of(7.8)
additionally useg5.3)]. ExpressE|r!|? in the correlation matrices. Definitiof7.4) implies that

Elrl2=(xI () x (y)do(x—y),P4(x,H) @ Dy, 1)). (7.9

According to(5.2), Eq. (7.9) implies that

Elr%lzscrdey xi(x)llq()(x—y)ll:crdg X (%) ; lao(z)|<CA,/t, (7.10

where||qo(2)| stands for the norm of a matrixgf (z)). Therefore,(7.10 follows as|qo(-)]|
el}(z% by (3.2). O

VIII. IBRAGIMOV-LINNIK CENTRAL LIMIT THEOREM

In this section we prove the convergenéeb). As was said, we use a version of the Central
Limit Theorem developed by Ibragimov and Linrfiklf Q.(Vgy,¥,)=0, (6.9 is obvious. In-
deed, |Eexpli(Yo,®g(,)))—L<E[(Yo,Dg(- )| < (E(Yo, Dyl 1)) V2= (Q( ¥y, W)
where Q(V 4,V g)— Q.(V4,¥4) =0, ast—c. Thus, we may assume that for a givéne D,

Q.(Vy,Wy)#0. (8.1
Let us choose € §<1 and

t

~tl-9 A~ ——
Pt Y logt’

t—o0. (8.2

Lemma 8.1: The following limit holds true:
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1/2 o
)+Nt2( oM py)+ Tt)—>0, t—oo. (8.3

Nt(<p(pt)+
Proof: The functione(r) is nonincreasing; hence 4g.17),
r r
rd<p1’2(r)=df s9 1pV(r) dssdJ s 1pY(s) ds<Co< . (8.4
0 0

Furthermore(8.2) implies thath,= A+ p,~t/logt, t—o. Therefore N;~t/h~logt. Then(8.3
follows by (8.4) and(8.2). O
Proof of (6.5):By the triangle inequality,

|E exp{i(Yo, Dy ,t))}—,&m(\lfgﬂs‘ Eexp{i(Yo,®q(-,1))} —E exp‘ i zt: r{]

+

1 ) 1
exp{ - 52 E|rg|2] —exp[ ~5Qu(¥g ,WQ)H

Eexp{ig rj] —exp[ —;Z E|r{|2]

=1,+1,+15. (8.5

+

We are going to show that all the summands|,, |5 tend to zero ag—oe.
Step(i): Equation(7.5) implies

Ilz‘Eexp{iE r{](exp[iz c{+i|t]—1)‘sc2 Elcl|+E[l|<CD) (E|c!|)Y?+(E|l Y2
t t t t

(8.6
From (8.6), (7.7), (7.8), and(8.3) we obtain that
11<Cpt P+CN(p/)?=0, t—co. (8.7
Step(ii): By the triangle inequality,
1 i
=3 Z Elrl|?— Q.(Vy,¥y)
1
$§|Qt(qjgr‘l’g)_gw(‘ygaq,g)|
1 A2 . 1 2
+3E r%) -2 Elrif? +§E<Z r{) ~Q( Vg, V)
=lp1t 155+ 123, (8.9

whereQ; is the quadratic form with the matrix kern@{j(x,y)). (3.5 implies thatl ,;— 0. As for
I5, we first obtain that

lp< > |Err!. (8.9
7k

[l IKI=<Ny

The next lemma is the corollary of Ref. 13, Lemma 17.2.3.
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Lemma 8.2: Let4, BB be the subsets @ with the distancalist(A4,8)=r>0, and let, 5 be
random variables on the probability spa¢¥,, ,B(H,),xo). Let ¢ be measurable with respect to
the o-algebrao(A), and » with respect to ther-algebrao(5). Then

(i) |Eén—EEEn|<Cab ¢'Ar) if (E|&[*)"*<a and(E|5|?)"*<b;

(i) [EEn—EEEn|<Cab ¢(r) if |{[<a and|y|<b, as. .

We apply Lemma 8.2 to deduce tHap—0 ast—o. Note thatr{=(Y(x),x1(x)P4(-,t)) is
measurable with respect to tlealgebrac(R!). The distance between the different rooRjsis
greater or equal tp, according to(7.1). Then(8.9) and(7.6), S3imply by Lemma 8.2 (), that

l,<CNe A py), (8.10

which tends to 0 as—« by (8.3). Finally, it remains to check that;—0, t—c. We have

2

QU Wy, W) =E(Yq,dy(-,1))2= E( Z (ri+ch)+1,

according to(7.5). Therefore, by the Cauchy—Schwartz inequality,

2

2
I23$’E(Er{ —E(E i+ cl+l,
t t t

1/2
<CN.Y, E|cl|?+C;
t

) 2
{31
t
1/2
+CEJl % (8.11)

X

N>, E[cl|2+E]l[2
t

Then(7.6), (8.9), and(8.10 imply

2
sZ E|rl|2+ j;k |ErirK<CNA /t+CN?pY(p)<C,p<oo.
il 1K =<N,

E(Z rl

Now (7.7), (7.8), (8.11), and(8.3) yield
155=<C1NZp /t+ CoNy(p/1)?+ C3t P—0, t—cs. (8.12

So, all the termd,;, 155, 1530 (8.8) tend to zero. Theii8.8) implies that

1 .
=5 |2 Elrl*= Qu(W, W) =0, t—ce. (8.13
t

Step(iii): It remains to verify that

i3 o] of e

Lemma 8.2ii) with a=b=1 yields

—0, t—oo, (8.19
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N—1
Eexp{iE r{]— IT Eexgirl}
t =

N—1 N1
< Eexp{irt_N‘}ex i > r{]—Eexp{irt_N‘}Eex i > r{]
~Ni+1 ~Ner1
N—1 Ny—1
+ Eexp{ir;Nt}Eexp{i > r{}— IT Eexgirl}
~Ni+1 N,
Ne—1 Ny—1
<Co(py) + Eexp{i > r{]— IT Eexglirl}.
N+ 1 —Ng+1

Then we apply Lemma 8.2ji() recursively and get, according to Lemma 8.1,

<CNie(p)—0, t—ce. (8.19

N—1
Eexp{iE r{}— IT Eexgirl}
t =

It remains to check that

N1

_ 1 _
11 Eexp[ir{}—exp{——z E|r{|2]
=N, 249

—0, t—oo, (8.16

According to the standard statement of the Lindeberg Central Limit Theseq) e.g., Ref. 16,
Theorem 4.Y it suffices to verify the Lindeberg conditioW: 5> 0,

iE Es |rj|2—>0 t—oo,
Ot t \/?l t '

Here o,=3E|ri|?, andE,f:=E(X,f ), whereX, is the indicator of the everif|>a?. Note that
(8.13 and(8.1) imply that o— Q..(¥4,¥4) #0, t—c. Hence it remains to verify that

> Eqlrl?>—0, t—w, foranya>0.
t

This follows from the bounds for the fourth order moments as in Ref. 6, Sec. IX. This completes
the proof of Proposition 2.12. O

IX. ERGODICITY AND MIXING FOR THE LIMIT MEASURES

The limit measureu., is invariant by Theorem Aiv). Let E,. denote the integral ovek., .

Theorem 9.1: Let all assumptions of Theorem A hold for the equation (1.1) and the initial
measureuy. Then Ut) is mixing with respect to the corresponding limit measwrg, i.e.,
Vf,geLl?(Ha,pa),

lim E..f(U(t)Y)g(Y)=E..f(Y)E..g(Y). (9.1)

t—o
In particular, the group Ut) is ergodic with respect to the measuysg, :
1 (T
lim TJ f(U)Y)dt=E.f(Y) (modu.). (9.2
0

T—ox
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Proof: Sinceu., is Gaussian, the proof @9.1) reduces to the proof of the following conver-
genceVV,,V,eD,

IME.(Ut)Y, ¥ )Y, ¥,)=0. (9.3
t—oo
Using the Parseval identity arid.8) we obtain similarly to(6.4) that

E(UY, W)Y, Wp)=(2m) 2 de(at.e)qw(e),f(e)\ifl( 0)0W(6)) do

+(2m) [ (G08.00),00018(0) 25 0) do
=1e(t)+14(1). 9.9

Lemma 9.2: The uniform bound holdgi(t, 8)d..(6)||<G(#6), t=0, where G 6) e LY(T9).
Proof: (4.6) implies that

R A cosOt sinQt q%° a2t
G(1,6)0(6)= —sinQt-Q cosQt-Q/\ Qg o) ©9
Therefore,
HG(t,am(a)llsci ;Ol lo-'glo)]. (9.6)

It remains to prove tha® ~'gl () e L1(TY). Sinced..(d) e LY(TY) by Remark 2.9, it suffices to
verify that Q= %(6)g2 (6) e LY(TY), j=0,1. This also follows from Remark 2.9 @,=0. Other-
wise, we will use the conditioES. Namely, owing to(2.22), we have

s+1

QHOFL0)= 2 T1,(0)Q"HOMY(O)T1,(6), 9.7
o=1
sinceQ) ~1(#) commutes with its spectral projectidih,(6). At last, (2.21) andES imply
O7IM’=3(Q 7~ 80 ) e LY(TY),

QM= Q1G5+ 85°Q) e LY(TY).

O
The Lemma 9.2 together witt8.11) and Lemma 3.3 imply that >0 J&>0 such that
[I:(D)]<8, t=0. 9.9
It remains to study the oscillatory integrg)(t). Rewrite it using(5.1), in the form
|g(t)=§ +; | degm( 9)e* da(0)(q.(0),¥1(0)2W,(0))do. (9.9

Here all phase functions,(#) and the amplitudes, (#) are smooth functions in the supp.
FurthermoreV w,(6) =0 only on the set of the Lebesgue measure zero. This follows similarly to
(2.4) sinceVw,(0)#const by the conditiofc4. Hence,

l4()—0 ast—, (9.10
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by the Lebesgue—Riemann Theorem sifce= LY(T9). Finally, (9.49—(9.10 imply (9.3 since
6>0 is arbitrary. O
Remark:A similar result for wave and Klein—Gordon equations has been proved in Refs. 4, 5.
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APPENDIX: CROSSING POINTS
1. Proof of Lemmas 2.2 and 2.3

Step 1:By the conditionE1 the matrix\7(0) is an analytic function in a connected open
(compley neighborhood?,(T%) of T¢ in T¢:=T9®iRY. Consider the analytic functiod( 6, w)
=det(V(0) — w?) in O(TYXC and the analytic subset defined by the equati¢t,w)=0 in
O.(T9XC. The subset consists of the poilits = w,(6)), ke, . It is important thad(6,w)=0
for any fixed e O (TY), hence the functiond satisfies theWeierstrass conditiomf Ref. 15,
Section 2.1.1. Therefore, by the Weierstrass Preparation Theorem in Ref. 15, Thm 2.1, there exists
a proper analytidiscriminant subseA C O(TY) s.t.: for® e O,(TY\A there exists dcomplex
neighborhood®,(0®) of ® in O,(TY where each ofw,(#) can be chosen as a holomorphic
function. More precisely, this is established in the proof of Ref. 15, Proposition 2.1 which is the
main step to the proof of the Weierstrass Theorem. We&setANTY and O(®) =0, (O)NTH
for ® e TAC, . Then Lemma 2.2i{) follows for w,(6).

Step 2:The identity(2.4) will follow from the next general Proposition.

Proposition 10.1: LetM be a proper analytic subset 61,(T%). Then the Lebesgue measure
of the intersection M= MNTY is zera

Proof: Let us use the analytic stratification of the analytic sets which is constructed in Ref. 12,
Thm 19 of Chapter Il.LE and Thm 10 of Chapter Ill.A. Namely, for ed&kl M there exists a
complex neighborhoo®.(0) s.t. MNO(O)=Up<s<q_1Ms, Where eachM is an analytic
submanifold of the complex dimensi@gir=d—1: here we use thal1 is the proper analytic subset
in O(0). Now

MNO(O)= UOsésdfl(Made)-

Lemma 10.2: Le® e M and §=0, ... d— 1. Then there exists a (real) neighborho64®) of
0 in T9 such that the intersectiom ;N O(O) is contained in a smooth submanifold©t of the
real dimension d- 1.

Proof: We may assume th&i) M is defined by the equatiomg(6)=0,j=1,... d— 6, with
the holomorphic functionk; in O.(®); and(ii) V. h;(8) #0, 6 O (0), whereV, stands for the
complex gradient. It is important that— =1 so we have at least one functibn(#). Then
h(6)=f.(6)+ig.(6) with the real smooth functionsf,,g;, and f,(6)=g.(6)=0, @

e M;NO(O). However,V.h;(0) =V, f1(0) +iV, g;(6) #0, whereV; stands for the real gradi-
ent. Therefore, eithey, f,(0)+#0 or V,g,(®) #0. O

Now Proposition 10.1 obviously follows. O

This proposition implieg2.4) sinceA is a proper analytic subset 6T,(TY). Lemma 2.3 also
follows from Proposition 10.1 sincE4 implies that de#(6)#0 in T andD(6)=0 in TAC, .

Step 3:Lemma 2.2(iii) follows from the construction in Ref. 15, Sec. 2.1. Lemma 2 (
follows from (2.6) since the projectiodl ,(#) can be expressed by the Cauchy integral over the
contour surrounding the isolated eigenvatvie (6).

Step 4:It remains to prove Lemma 2.2i{). Let O(0®) denote a small real neighborhood of a
point ® e TN\C, andE,(60)=II,(6)R". It suffices to construct an orthonormal bagig(6):k
e(ry—1,r5]} in E,(6) which depends real-analytically ahe O(0).
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Let us choose an arbitrary ba$l (0):ke (r,_1,r,1} in E;(®). Thenll (6)b,(©) depend
real-analytically ord e O(0®), and{I1,(0)b,(O):ke(r,_1,r,]} is a basis o () for 6 from a
reduced neighborhoo@’ (®). Finally, construct the orthonormal bagis(6):ke (r,_1,r,1} by
the standard Hilbert—Schmidt orthogonalization process applied {Ib,(6)b,(0):k
e(ry_1.r,]} for eache O'(0). O

Remark 10.3Lemma 2.2iii ) also follows from Ref. 15, Sec. 2.1 since the enumeratioh),
(2.6) corresponds to the factorization of the type in Ref. 15,(&d) for the functiond( 6, ), into
the product of the irreducible factors, with the multiplicities—r,_,, which is constructed in
Ref. 15, Thm 2.1.

2. Proof of Lemma 2.4

Step 1:Let us fix arbitraryk,| e I, and considemw,(#) as the functions o¥/ € Ry and of 4
e TY. It suffices to prove thab,(6) andV(wy(6) = w,(#)) are analytic and are not zero in an
open dense subset Ry XTY.

Let us consideV,.(x), k',I" el,, |x]|<N, as the coordinates of the matrix-functidhin
the regionRRy . ConditionE2 allows us to consideY,,.(x) as independent real variables for any
k’,1" el, and the pointx with eitherx;>0, orx;=0 andx,>0, orx;=x,=0 andx3>0, etc. Let
us identify Ry with corresponding rangB™ of the independent real variabl®g,:(x).

Step 2:Considerw,(0) as the functions ofV,..(x)} and 6 in C'V'XTg. As above, each
wi(6) can be chosen as a holomorphic function outside a proper analytic discriminant subset
ACCMXTS. Lemma 10.2 implies that the regidd:=(RMXT)\A is an open dense subset in
RMXTY. Therefore, it suffices to prove that the functiddg and V (w*+ o) are not identically
zero in each connected open component @f However, the region of analyticity®
==(CMXTS)\A is connected. Hence, it remains to construct a poinf.:Pﬂtb(Tgi such that the
functionsD, andV(wy=* w,) are holomorphic and nonidentically zero in a neighborhood of the
point. It is easy to construct such point for ang 1: we can choose an arbitragye T¢ and the
nearest neighbor crystél.12 repeatech times with distinct masses, , kel,. O
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