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Long-time asymptotics are established for finite energy solutions of the scalar
Klein—Gordon equation coupled to a relativistic classical particle: any “scattering”
solution is asymptotically a sum of a soliton and of a dispersive free wave packet as
t— * . These asymptotics mean the nonlinear scattering of free wave packets by
the soliton. ©2003 American Institute of Physic§DOI: 10.1063/1.1539900

I. INTRODUCTION: KLEIN-GORDON FIELD COUPLED TO A CLASSICAL PARTICLE

In this paper we consider the classical scalar Klein—Gordon equation co(qedovari-
antly) to a relativistic classical particle subjected to an external potevitief compact support.

The system is a finite-range perturbation of the corresponding translation-invariant system without
V that admits soliton-type solutions describing a particle traveling with constant velocity that is
dressed by a comoving wave field. The set of all such solutions forms a finite-dimensional mani-
fold, called thesoliton manifold in the phase spada Hilbert spacgof the unperturbed system.

We are interested iscatteringsolutions of the perturbed system in which the particle travels to
infinity ast— *o,

The reason for the nansoliton manifoldresides the fact, proven in this paper, that it is an
attracting set for the scattering solutions of the perturbed dynamical system. The attraction holds
in the Frehet topology defined by the local energy seminorms.

Our main result is the long-time asymptotics in the global energy norm: each scattering
solution is asymptotically the sum of a soliton and a dispersive free watre-aso. This means
that the solution is scattering of the free wave by a soliton. This representation of the solutions
gives a mathematical description of the wave-particle dualityt for-c such solution is a union
of a “‘particle’”” =soliton and ‘‘photon’’=free wave, for finitet the solution in general does not
admit such a representation, and fer« the representation again appears.

Previously similar results have been proved for relativistic charged particles coupled, respec-
tively, to the wave equation corresponding mo=0 (Refs. 11 and 18 and to Maxwell's
equations:1%1® The proof of these results is based on the nonautonomous integral inequality
method?® that uses essentially the strong Huygen’s principle. In the case of the Klein—Gordon
equation withm>0 the strong Huygen’s principle fails. That is why we develop a new more
general version of the integral inequality method that does not use the strong Huygen’s principle.
An important role play the known time decay of the Green function for the Klein—Gordon equa-
tion and a sufficiently fast spatial decay of the solitons in the cas®.
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We consider a scalar wave fielg(x) e R, xe R3, coupled to a relativistic particle with
positionq and momentunp, governed by

PO, =m(x1),  T(X,)=AP(X,1)—mZh(x,t)— p(x—q(t)),
(1)
() =pW/(L+p3(1) ¥, p(t)=—VV(q(1))+ f d3x (x,1) Vp(x—q(t))

subject to appropriate initial conditions determining the dynamics. This is a Hamiltonian system
with the Hamiltonian functional

1
Hw,w,q,p)=<1+p2)1’2+V<q>+Ef dx(| VOO [2+ me| g ()4 [ ()[?)

+f A3 p(X)p(x—q). 2

We have set the mechanical mass of the particle and the speed of wave propagation equal to one.
The case of the point particle correspondsp{x) = J(x) and then the interaction term in the
Hamiltonian is simply(q). This would result however in an energy which is not bounded from
below implying for the scattering theory the well-known ultraviolet divergence. Therefore we
smooth the coupling by the functign(x) following the strategy proposed by Abrahtior the

Maxwell field. Respectively, the systertl) is not relativistic covariant. In analogy to the
Maxwell-Lorentz equations we callthe “charge distribution.” We assume the real-valued func-

tion p to be in the Sobolev spadé’ and of compact support, i.e.,

p,VpelL?(R®, p(x)=0 for |X|>Rp. (C)
An important assumption is that the normmfn L? is sufficiently small,
Yp=lpll2<1 3)

meaningweakfield-particle interaction.
For the potentiaV we introduce two sets of assumptions: smooth and bounded from below,

VeC¥R%), Vgi=inf V(q)>—x; (Prmin)
qeR3
and of a compact support,
V(x)=0 for |x|>Ry>0. (K)

Consider the corresponding nonperturbed system Wit0:

lﬂ(X,t) = 7T(X,t), 7T(X,t) = Alﬂ(X,t) - mzlﬂ(x-t) —p(X— q(t))l
4

aH)=p(O/(1+ P20 p(t)= f a3 p(x,) Vo(x—a(t).

The systen(4) has solutions traveling with constant velocityjv|<1. Up to spatial translations
they are given by

Sv(t):(lﬂU(X—Ut),’ITU(X—Ut),Ut,pv) (5)

with
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1 e_ml(y_x)\\+)\(y_X)J_lp(y)dsy
%(X)——EJ [y =)+ My —=x)|

(6)
m,(X)=—v-Viy,(X), p,=v/\.

Here we seh = J1—v? andx=x,+x, , wherev|x, e R® andv_L x, € R® for xe R3. We callS,(t)
the soliton with velocity v centered at(t) =vt.

Let us discuss and summarize now our main results, the precise theorems to be stated in the
following sections. Consider the set of scattering solution&lidor which |g(t)|— ast—ce.
Below we discuss the properties of these solutions. Since only a finite amount of energy can be
dissipated to infinity, we shall show the relaxation of acceleration,

g(t)—0, t— oo, (7)

More precisely, we shall establish the rate of converggfj¢g|~t~1~ ¢ with a o>0. This is a
crucial point of our asymptotic analysis. It implies that

Also we show that the fields are asymptotically traveling waves in the sense
(X0, 7 (X, 0) ~ (¢, _(X=q(1), 7, (X—q(1))), t—*e. 9)

Since the energy is conserved, the convergence here is in the sense of local energy seminorms, cf.
Sec. Il. Further, we shall establish the corresponding asymptotics iglabal energy norm,

(PO, (D)~ (4, (X— (), (X—G() +UO T, toxo, (10

whereU(t) is the unitary group generated by the free Klein—Gordon equationYandre the
scattering states. At last we suggest simple sufficient conditions for solutions to be scattering. Note
that all finite energy solutions are scatteringVif(x)=0. We prove(8), (9), and (10) with the
assumption(3), however we suggest the same asymptotics hold in more general framework.

We mention now some previous results which reflect the gradual progress in investigating the
long-time asymptotics for coupled field-particle equations.

The results of Ref. 14 for the wave equations= 0, imply the long-time convergence to the
set of solitons of typd5) in the sense of local energy seminorms, a$9n

Soliton-type asymptotics were proved for certain translation invariant completely integrable
1D equations?® Soliton-type asymptotics ifocal energy seminorms was proved for a translation
invariant 3D system of a scalar field coupled to a partickend for translation invariant 1D
kinetic-reaction systents.

Soliton-type asymptotics of typel0) in global energy norm were proved initially fasmall
perturbationsof soliton-type solutions of 1D nonlinear Sckiinger equationd?

Soliton-type asymptotics of typélO) in the energy norm for all finite energy scattering
solutions is proved here for the first time for coupled particle-field equatbndhe asymptotics
is provided by radiation of the energy to infinity which leads to the relaxdfionThe relaxation
in classical electrodynamics is known as “radiative damping” studied by Loréniirac’®
Feynman and others.

Note that a lot of numerical experimettsonfirm the long-time convergence of an arbitrary
finite energy solution of a general relativistic equation to a finite sum of solitons with velocities
less than the light speed and of “photons” propagating at the light speed. Nevertheless the proof
remains an absolutely open problem.
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II. EXISTENCE OF DYNAMICS, A PRIORI ESTIMATES

To formulate our results precisely, we need some definitions. We introduce the phase space
suitable for the Cauchy problem correspondingXpand (2). Let L2 be the real Hilbert space
L2(R3) with scalar product-,-) and norm|-|, and letH! be the Sobolev spackl!={y
eLZ |Vy| e L2 with the norm| ] =|¢|+|V | Let ||z denote the norm in?(Bg) for R>0,
whereBg={x e R3:|x|<R}. Then the seminormi/||g= ||z + |V #/|r are continuous oi?.

Definition 1: (i) The phase spacé is the Hilbert space PXL2XR3XR?3 of states Y
= (¢, 7,q,p) with finite norm

IYlle= 4+l +[al +[p] .
(ii) & is the spacef endowed with the Fiehet topology defined by the local energy seminorms
IYlr=ll#lr+|7lr+|al+|p], VR>0.
(i) Fis the Hilbert space Hx L? of fieldsW = (4, ) with finite norm
Wil =[] + [ ar] -
(iv) Fr is the spaceF endowed with the Fiehet topology defined by the local energy seminorms
I¥[r=ll¥lr+|mlr, VR>0.
Note that both space$and&r are metrisable. Fog e L? we have

1., m? 5 m?+1 , 1
~ orzlel’= S Yl +(gp(- —a)=—5—1yI*+ 5 ol" (11

Thereforef is the space of finite energy states. The Hamiltonian functidhial continuous on the
spacef and the lower bound ifil1) implies that the energy functioné?) is bounded from below,
namely,

1
i R PN i
er;fg’l—{(Y)ZlJrVO 52lol’ (12)

We consider the Cauchy problem for the Hamiltonian syst&mwhich we write as
Y()=Vo(Y(1)+Vi(Y(1), teR, Y(0)=Y°. (13

All derivatives are understood in the sense of distributions. F&te= (i (t),7(t),q(t),p(t)),
YO=(4°,7°,q%p% €& andVy:Y—(m,Ay—m?4,0,0). Recall that we are interested in situa-
tions where the particle is allowed to travel to infinity, e.g., when the external potéfftigl
vanishes identically. The existence of dynamics is true under such conditgfs. (

Theorem 2: Let (C) and (P, hold. Then (i) for every Ye £ the Cauchy problem (13) has
a unique solution Yt) e C(R,&). (ii) For every te R the map W: Y%= Y(t) is continuous both on
& and oné&g . (iii) The energy is conserved, i,e.

H(Y(t))=H(Y®) for teR. (14)
(iv) The speed is bounded
lg(t)|sv<1 for teR. (15

Proof: We follow Ref. 14, where the case=0 is considered. Let us fix an arbitrapy-0 and
prove (i)—(iii ) for |Y°|;<b and|t|<s=¢(b) for some sufficiently smalt(b)>0.
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ad (i) Fourier transform provides the existence and unigueness of soMgidghe C(R,&) to
the linear problen{13) with V;=0. LetW?: Y% Y(t) be the corresponding strongly continuous
group of bounded linear operators én Then uniqueness of solution to tlimhomogeneoys
linear problem implies thatl3) for Y(t) e C(R,£) is equivalent to

Y (1) =WYO+ f;dsv\{lswv(s)), (16)

becausd’;(Y(-)) e C(R,€) in this case. The latter follows from a local Lipschitz continuity of the
mapV; in & for eachb>0 there exist ac=x(b)>0 such that for allY,Z e & with ||Y|¢,||Z| ¢

<D,
Vi(Y) = V(D) e=< k[ Y= Z]|¢. (17

For example, we have

‘f d3X (1(X) = (X)) Vp(X—= )| < |V (1= ¢) || p].

Moreover, by the contraction mapping principle, E46) has a unique local solutioiY(-)
e C([ —&,e],€) with e>0 depending only o. Then the existence of the global dynamics will
follow from the a priori estimate, see iad (iii) below.

ad (i) The mapW,:Y%=Y(t) is continuous in the normi- | for |t|<e and|Y?|<b. To
prove continuity ofW, in &, let us consider Picard’s successive approximation scheme

YN(t) =WOY0+ Jotds WV (YN"X(s)), N=12,....

The equation fog" in this system impliesqN(t)| <1 and thereforéq(t)|<|q°|+|t|. Now we fix
teR and chooseR>|q°|+|t|+R, with R, from (C). From the explicit solution of the free
Klein—Gordon equatiorW?Y0 (see Sec. Illwe conclude that every Picard’s approximathoi(t)
and hence the solutioW(t) = ((x,t),m(x,t),q(t),p(t)) for |x| <R depends only on the initial
data (°(x),7°(x),q°%p°% with |[x|<R+]|t|. Thus the continuity ofV, in & follows from the
continuity in&.

ad (iii) Fork=0,1,... denote biZ&(R%) the space of functiong(x) e CK(R®) with compact
support. For initial data°, 7°) e C3(R®) x C?(R?) the solutiony= y(x,t) satisfiesye C?(R3
X R). Indeed, this is well known for the soluticW?Y0 of the linear Klein—Gordon equation. The
integral representatiofi6) then implies the same property fgr In addition, letY® have compact
support, i.e.,

PO(x)=m(x)=0 for |x|>RO (18
with someR%>0. Since|q(t)|<|q°+]t|, (16) implies
p(x,t)=0 for |x|=|t|+maxR% R, +|q°+]t|}.

Thus, for such initial data energy conservation can be shown by integration by parts. (Hience
follows from the continuity oW, and the fact tha€3(RR%) @ CZ(R%) @ R3@ R® is dense ire.

We use now energy conservation to ensure the existence of a global solution and its continuity.
Similar to (11) we have

1 1 m? 1
HY)= S|P+ SV P+ [P+ 12+ Via) = ol

and by energy conservation, fif<e,

Downloaded 16 Jul 2003 to 194.95.184.202. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



J. Math. Phys., Vol. 44, No. 3, March 2003 Scattering of solitons of Klein—Gordon equations 1207

1 1 2 1
SImOP+ S IVeP+ m7|¢|2+ VIFPH 0+ V(D) = —lpP<H(Y(1) =H(Y?). (19

Therefore P,,,) implies thea priori estimate
[+ |7 (O] +[p(t)[<B for te R (20)
with B depending only on the norifiY?||; of the initial data and offp|. Properties(i)—(iii) for
arbitraryt € R now follow from the same properties for smgill and from thea priori bound(20).
ad (iv) Note first that(20) implies |p(t)|<py<c. Hence
GOI/(1= %)= |p(t)[<po<==,

which yields|q(t)|<q,=v<1. O

[ll. INTEGRAL INEQUALITY ARGUMENT

Definition 3: Let0<o<1/2 and let a=(1—-20)/3. The setf” is the set of the states
(#,7,9,p) € € such that

f RO+ [T 90 =O(R ™42 (21
R<|x
and

f ey X IO+ (0 = O(R 4427 (22

as R—+o.
If the soliton-type asymptotics is approximately valid, then the field should be close to the
soliton centered af(t) with velocity v(t)=q(t). We therefore consider the difference

Z(x,1) =W (x,t) =W, (x—q(t)), (23
where
W(x,t)=((x,1),m(X,1))

and V¥, (x)=(¢,(x),7,(x)) is the field part of the soliton. Defining(x)=(0,0(x)) and
A(y, )= (m,Ay—m?y), it follows that ¥ obeys the equations of motion:

W (x,t) =AW (X,t)—p(x—q(t)). (24)

On the other hand, for the soliton field, with a fixedv, the equation

av, _
T (X a()v =AW, (x=q(1) ~p(x—q(1)) (25

holds. Then(24) and (25) imply the following equation foZ:
. _ Cﬁpu(t) i
Z(x,t)=AZ(x,t)— W(X—Q(t))p(t)- (26)

Here, according to the chain rule,
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av, IV, dv

p v dp’

(27)

wheredv/ap is the Jacobi matrix of the map—uv(p) = p/y1+ p>.
Proposition 4: Let(C), (P»), (K) hold, let the solution ¥) to the system (1) be scattering
and Y(0) e £7 for a certaino e (0;1/2). Then for any R-0 and sufficiently smally,:=|p|,

I1Z(- +a(t),t)[r=Cr(Z(0),q°v,R,) (1 +|t|) * . (28)
Proof: First, we prove the estimate wiR=R, . Definition (23) implies Z(-,t) € 7. Solving

the equation$26) we get the mild solution representation,

MW o h(s) | d 29
W('—Q(S))p(s) S, (29

t
Z(t)=U(t)Z(O)—JOU(t—s)

with U(t) the group generated by the free Klein—Gordon equatioklimL?, see the explicit
formulas in Sec. Il A below.

Thus, the proof consists of two essential pafi3:estimating, in local seminorms, the action
of the free Klein—Gordon group (t)Z(0) and(2) estimating, in local seminorms, the free Klein—
Gordon group applied to the Jacobian of the soliton field—s)[ ¥, /dp(- —q(s))].

A. Local decay for the free Klein—Gordon group

Let us denoteS,(x)={y: |y—x|=t}, Bi(x)={y: |y—x|=<t}. For sufficiently smooth initial
data, sayg,vge Cq(IR3), the action of the free Klein—Gordon group It? reads[Ref. 6, Chap.
5, formulas(6.4), (6.11), (6.12],

U(t)(UO(X),Uo(X)) = (U(X,t),U(X,t)) = (UW(X,t) - Um(X,t),UW(X,t) - Um(X,t))
with

2 aUO(Y) 1

1 1
Un(X,t) 47Tt2f%)d Y Uo(Y)+ 7 — soo” Y an | Amt [

)dzy voly), (30

2

(0= |y wmt g [ YRy g [y Fxoyuoy)
Um(X, ~8n 500 Y Uply 47 Jo 00 y X=Y)Uo(y 47 e y X=Y)voly),

t

(3D
and
. 1 augly) 1 J*Uo(y)
_ - 2y 22 T 2
1 1 dvo(y)
2 = 2y, 27
+ a2 fs[(x)d yuo(y)+ yps s[(x)d Y—on (32
m? m*t m? dug(y)
o _ 2 o 2 _ 2y, 77
s d3y F(t,x— + mzf d?
a Jogo y Ftx=y)uo(y) + o S0 yvoly)
m 3 -
+ E . (x)d Yy F(t,X_Y)vo(y). (33)
t

Heren=(y—x)/|y—x| is the exterior unit normal vector of the sphe3¢x) at a pointy,
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J (myt?—2?)
N
J; being the Bessel function of order 1. Note that,(x,t),v(X,t)) is the solution to the free

wave equation corresponding o= 0, with the same initial conditionsug,vy). From the well-
known asymptotics

F(t,z)=

13:1(9)[+]31(9)[+[I1(9)[=O([s| 7Y% ass—o»
of the Bessel function, see Ref. 20, Chap. XVII, it follows that
[F(t,2)[+[F(t,2)]+|F(t,2)|+|%F(t2)|=0(]t] %)  ast—x, (39

if |z|<v|t| with 0<v<1. However, near the boundary of the cdaé=|t| only some weaker
decay is valid, namely fojz|<|t| -1,

IF(t,2)|+|F(t,2)| +|E(t,2)| +|V,F(t,2)|=O(|t| ~¥*% ast—o, (35)

Definition 5: The setF? for 0<o<1/2 is the set of the field$y, ) e F satisfying the
conditions (21),(22)
Lemma 6: Le(ug,vq) € F with someo € (0;1/2). ThenVR>0,

U (t)(ug,v0)llg<C(ug,vo,R)(L+]t))~ 7. (36)

Proof: Note that for any fixed the mapU(t):(ug,vo)— (u(t),v(t)) is continuous inF. For
initial data (Ug,vo) € F7 we can approximate them withfj, vge Cg such that the bound@1),
(22) hold for ug, vy uniformly in n. Hence, it is sufficient to obtain the estimd®&6) for ug,vg
e Cy , with C(ug,vq,R) depending only on the constant @&1), (22) and on the norm ofiy,v
in F. Thus, we may use the integral representati®) to (33).

At first consider @, ,v,,). For the free wave equation the following energy inequality is well
known:

f dsX(|VUw(X,t)|2+|UW(X,t)|2)$J d®x(| Vug(x)|?+[vo(X)[?).
Br

t+R

Further, from the strong Huygen’s principle it follows that forR the solution (,(X,t),
vw(X,t)) does not change if one replaceg(x), vq(x) by zero inside the baB; g. Hence,

fB d3x<|VuW<x,t>|2+|vw<x,t)|2>sfB Ax(| Vo) [2+ 0630 2),

whereB; g, gr={xe R3 t—R<|x|<t+R}. Then the condition&1), (22) imply, for sufficiently
larget,

IVuu(- DI+ low(- DIr=C(RUg,u0) (1+]t)) 7. (37)

It remains to estimatdu,(-,t)|g, [[Um(:,t)llr, and|vn(-,t)|z. We claim that if (y,v¢)
e F7, then for sufficiently large any of the normdl (-,t)|s, [[3(-,t)|r, [K(-,1)|r is bounded by
C(ug,vo,R)(1+[t]) "1 for any integrall (x,t) of (30), J(x,t) of (31), K(x,t) of (33). At first
consider the spherical integrals. For example, let us prove these estimates for the integrals

2 4
t
- 2 — 2
, o J(xt) . Lt(x)d y ug(y), K(xt) 397 S[(X)d Y Up(Y).

1 dug(y)
_ 2
160 4t Si(%) y an
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For I (x,t) we should estimatf(-,t)|z. We have
||(.,t)|§=f d3x(1(x,1))?
Br

C au 2
S e J' oy o(y)
t Jeg S() an

C au 2 au 2
< | d% 4wt2J d2y( O(y)) =C1J’ d3xJ dzy(ﬁ) .
= Jeg S0 an Br S(x) an

For a non-negative continuous functiorandt=R the following bound follows by integration in
polar coordinates and geometric argument:

f d3xf d?y u(y)sSWRZJ d3x u(x). (39
Bgr Si(x)

Bi—Rrt+R

Hence

2
T CZRZJ au"(x)) (39

d3x(
Bi—Rt+R an

for t>R. Thus, from the conditiori21) the stated bound follows.
For J(x,t) we should estimatgd(-,t)|[g=|9(-,1)|g+|VI(-,1)|z. Considefd(-,t)|z. Similar
to (39) we obtain

(- bE=CRt? f d®x(ug(x))?.
Bi—Rrt+R

Then from the condition (21) the required estimate follows. ForVJ(x,t)
=(m2/87r)fst(x)d2y Vug(y) the estimate is analogous. Considi¢(-,t)|z. Similarly to (39) we

obtain
|K(-,t)|§$CR2t4f d®x(ug(x))2.
Bi-Rt+R

Then the estimate we need follows from the conditiam).
Now estimate the integrals over the balls. For example, consider the integral

m
J(x,t)=— d3y F(t,x— .
x0=7— th(X) y F(t.x=y)vo(y)
We should estimatfl(-,t)|g and|VJ(-,t)|zr. We have

|J(x,t)|:C‘ fB (X)d3y F(tyX_Y)Uo(Y)‘

<Cf dy F(t,x—y)vo(y) +CU, d3y F(t,x—y)vo(y)|,
Bra(x) Blu(X)

whereBya(X) ={y:|y—x|<t*}, B/o(x) ={y:t*<|y—x|<t}. The first integral is bounded by

1/2 1/2
[, Py | [ dvesm]| scate Mu=ci o
Bta(X) Bta(X)

for a=(1—-20)/3. The second integral is bounded by
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+

f d3y F(t,x—y)vo(y) j d3y F(t,x—y)v°(y)|, (40)
B t—1(¥) Bi—14(x)

where Bia—1(X) ={y:t*<|y—x|<t—1}, Bi_14(x)={y:t—1<|y—x|<t}. Further, for suffi-
ciently larget the first integral of(40) is bounded by

1/2 1/2
( J’ d3y Fz(t,X—y)> ( f dSyvg(y)) $C(t3_3/2)1/2(t_7/2_20)1/2=Ct_l_g,
Bie—1(X) Bia t—1(x)
due to(35) and(22). The second integral d#0) is bounded by
1/2
Ct(f d3yvg(y)) <Ct 1 °
Bi—14(%)

by (22). Thus we have the pointwise boutdi(x,t)|<Ct™ 1~ that implies the stated integral
bound.
Now let us estimat¢VJ(-,t)|z. Note that

m
VJ(x,t)z—f dy F(t,x=y)Voo(y).
4m J,x

SinceF (t,x—y)=m/2 for |x—y|=t, the partial integration gives

. P m , | @
f d°y F(t,x=y) ==-vo(y) <—f d ylvo(y)|+f d%y |=—F(t,x=y)vo(y)|.
Bi() Y 2 Jsv B |9Xi

t

Then the estimates for both the spherical integral and the integral over the ball are made as above.
Hence, the boun{VJ(-,t)|]s=<C(vo,R)(1+]t]) "1 follows from the condition(22).
Altogether, we obtain that for sufficiently largethe estimatd36) is true. For bounded this
estimate follows from the energy conservation for the free Klein—Gordon equation.
O
Remark:The statement of the lemma is true under some weaker conditions on initial data,
than(21), (22). Namely, it suffices to assume that

f ABx(RZ|ug(x)[2+ | Voo()] ) = O(R~(@+2),
R<|x|<R+1

f d3x (|u0(x)|2+|v0(x)|2):0(R—(4+2a))
RY<|x|<R

asR— +©; a=(1-20)/3.
Thus, for the first term on the right-hand side(@B) we have

C(Z(0),u;R,)
IU(Z(0)[r < AT
Then from(15) the estimate

C(2(0),9°v,R,)
(1+[th*

IUMZO)(- +a(t)llr < (41)

follows.
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B. Decay of the soliton field subject to free Klein—Gordon group

Denote byZ,(x,t) = #(X,t) — ¢, (X—q(t)) the first component oZ(x,t) and observe that
(¢,,Vp)=0 for |[v|<1 because the solitofb) is a solution to(4). Note that for scattering
solutions, for sufficiently largét|, the fourth equation of the syste(h) transforms to the fourth
nonperturbed equation of the systéf Then for theset|,

p(t)=(Zy(x+q(1),1),Vp(x)) . (42)
Thus we obtain,
[p(D[=C[Z(- +a(t),Vllr 7, (43
DeSOteSt—s(X):{y: ly=x[=t=s}, Bi_(x)={y: ly—x|<t=s}, yb=0ay,/dp, mh=0m,lap,
an
(Y (- ,t,8),7Y(- t,8)=U(t—s) %;(s)(-—q(s»} (44)

Then the formulag30), (31) for U(t—s) imply

m
d?y WS(S)(y—q(S))— EJ d’y F(t_syx_y)ﬂ's(s)(y_Q(S))

PY(x,t,8)=
Bt,s(x)

47 (t—S) Si_s(X)

1 1 9
R 2 p _ 2y P _
+47T(t—s)2 fSI_S(X)d Y )Y q(s))+477(t—s) jsl_s(x)d y&n P o(y—a(s))

2

m .
d?y 4P (y—a(s)) — yym f dy F(t—s,x—y) 5 (y—a(s)).

87 Js_ B (¥)

(49)

From this one derives the explicit formula &Y (x,t,s); (32) and(33) give the formula for
mY(x,t,8).

Now ¢Y(x+q(t),t,s) can be represented as the sum of t@® of integrals over the shifted
sphereS,_{(x+q(t)) and ballB,_¢(x+q(t)) and withx+q(t) replacingx in F andF. Denote
szS’(x+ q(t),t,s) the sum of the integrals over the sph&e(x+q(t)) and wg(x+ q(t),t,s) the
sum of the integrals over the b&| _(x+q(t)). Let us estimatg/g(x+q(t),t,s). If [x|< R,, we
have on the spherg,_(x+q(t)),

ly—q(s)|=|(y—x—q(t)) +(x+q(t) —q(s))|=(t—s)— IXI—v_(t—S)B(l—ﬂ(t—S)—R,,(%)

by the bound15) on g(t). On the other hand, the integral representat®nyields by Cauchy—
Schwartz inequality,

sup sup e™X(|a%yP(x)|+ | mP(x))<C(v,R,) y,< (47)
‘v‘SﬂXl?ZRP

for all multi-indices a,8 with |a|<2, |8|<1, recall thaty,:=|p|. Then(47) and (46) imply the
following pointwise bound fon,bg(x+ q(t),t,s):

|yS(x+a(t),t,8)|<Cy(v,R,) y,e ™79 (48)

for |x|<R, and provided—s=3R,/(1-v).
Now let us estimatewLB’(x+q(t),t,s). Set u=(1-20)/6 and consider two regionB,
={y:ly—a(s)|=(t—s)*} and
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B, =Bis(x+a()—B,={y:ly—(x+q(t))[<(t—s) & [y—q(s)|>(t—9s)"}.

Represent every integral over the bBJL ((x+q(t)) as the sum of the integrals ovBy, and B;L.

Note that the volume oB, is of order t—s)3#, the volume ofB; is of order ¢t—s)3—(t

—s)3*. Furthermore, for sufficiently largé—s andye B, we have|y—x|<w|t| with some
positive v<<1. Hence, by(34) the following estimate is true:

|F(t—s,x—y)|+|F(t—s,x—y)|+|F(t—sx—y)|<C|t—sg| 32

Then for the integrals oveB, we have
fB ---‘scl(t—sr"“(t—s)‘”czvfCsvp(t—s)3“‘3’2=Csmt—s)‘l—“
"

for u=(1-20)/6.
For the integrals oveBl’L we obtain, due td47), providedt—sz(ZRp)l’“,

C
‘ fBL- | <Cy((t—95)3—(t—5)**)Csexp —m(t—5s)*)y,< %

for sufficiently large t—s. Thus, the sum of the integrals oveB;’L is bounded by

(C7(v.R,) 7,)/(1+(t—5)*"“). So we come to

Cs(v,R
RO a9 I= o o)

for |x|<R, and sufficiently large —s. Therefore(48) and(49) imply for larget—s, together with
similar bounds foV /Y (x+q(t),t,s) and 7Y (x+q(t),t,s), the integral estimate

Co(v,R
(00,897 +at0) 89l = s (50

On the other hand, for boundée s this integral estimate follows frortd4) by energy conserva-
tion for the groupU(t—s) since||a¥,/dp| ~<C(v,R,)v, by (C). Finally, (43) and(50) imply

. U U _ ||Z(+Q(S),S)||Rp7’p
(9 (49 +(0)..8), 7% + 90,48l =CaoTR) Y g (5D

C. Completing the proof of Proposition 4
The method was initially developed in Ref. 13 for=0, see also Ref. 11. Combinirig9) to
(51) and(41) we arrive at

C(z(0),a°5R,) . __ (clz-+a9).9)g,
||Z(+q(t)!t)||Rp$ (1+|t|)1+0' +’}’pC10(U:Rp) fO 1+(t_s)l+o dS, t=0. (52)

Therefore, settingV (t) = maxy—s((1+|3) "] Z(- +q(s),s)|\Rﬂ, we have
M(t)<Cy(Z(0),9°v,R,) + ¥:C(v,R,) I, M(),
where

t(1+]sh 7t

— 4 1+o
Io’ SUF{]- |t|) O(1+|t_s|l+0)

t=0

ds<o,
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It remains to choose,C(v,R,)I,,<1, then(28) with R=R, follows.

Remark:It is important thaty is bounded for boundegt, and fixed initial data.

At last, we claim that the boun@8) with R=R, implies (28) for anyR> 0. Indeed(50)—(52)
hold with the norm||- || instead of||-||Rp on theleft-hand sides and witlT;(v,p,R) instead of
Ci(v,R,) on theright-hand sides. The(62) with this generalization an(28) with R=R,, imply
(28) for any R>0. [l

IV. SCATTERING

Theorem 7: Under the conditions of Proposition 4, for sufficiently smgJl, the convergence
(7) holds, and the solution (Y) displays the following long-time asymptotics:

(i) There existv.=lim,_, .., g(t) € V such that

lat)—v.| <C (1+]t) 7, (53
(- +at),H -V, [lk<Cr1+[t) "7 VR>O. (54)

(i) There exist¥ .. e F such that
(-0 =Py (- —at) —UOW- [ <C(L1+][t)) . (55

Proof: (i) Equation(28) with R=R, and(43) imply
[P(OI=C(L+[t) = |at)|=Cy(1+]t) 7 (56)

Then the limits(8) exist, and(53) follows. Therefore(28) implies (54).

(i) We have to prove that|Z(x,t)—U(t)F.|r<C(1+]|t|])"?. This is equivalent to
[U(—1t)Z(x,t)—F.| z<C(1+]|t]) 7 since the groupJ(t) is isometric inF. Apply U(—t) to the
integral equation(29). We obtain

(?’\I}U(S)
J

0 (-—q(s))p(s)|ds.

t
U(—t)Z(t)=2(0)— J'OU(—S)

The condition(15) implies that the norm of¥, (- —q(s)) in F is bounded uniformly with
respect ts. Then(56) implies the convergence of the integralfnat the stated rate and Theorem
7 is proved. O

A. Constructing scattering solutions

Let us formulate a criterion for a solutioxi(t) to be scattering. Introduce the energy of the
field part of a solution

=5 [ dxT g0+ o0 2+ 0 )

SetG=sup. 3| VV(x)| andv(t) =q(t).

Theorem 8: Let (C), (Pmin), (K) hold. Consider solutions (Y) to the system (1) with initial
data Y(0)e £7, 0<o<1/2. Let R,,G,h(0),/q(0)| be finite. Then fotg(0)| close enough to 1
and sufficiently smally,, we have

lim [q(t)]=o. (57)

t—+oo

Proof: Since the systertl) is time invertible, we consider only the case +«. Consider the
particle with initial datag(0),v(0):=¢(0). Introducee=uv(0)/|v(0)|. The orthogonal projection
of the vectorsv(t),p(t),q(t) onto e read ve(t)e, pe(t)e, de(t)e, respectively, withv(t)
=v(t)-e, pe(t)=p(t)-e, ge(t):=q(t)-e, here the dot means the scalar produck® Note that
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the vectorsy (t) andp(t), ve(t) andpg(t) are of the same directions and(0)=|v(0)|, pc(0)
=|p(0)|. Introduce the layer iR®, L(e,Ry)={x:|x-e|<Ry}, then suppyC L(e,Ry).

The statement of the theorem follows from the three propositions below. Since the $§stem
is invariant with respect to time translations, we start frioaD in either proposition.

Proposition 9: Let|q(0)|>Ry, |v(0)| be close enough to 1, let e be directed toward
L(e,Ry). Then the particle enters(le,Ry) at a certain moment with |v.(7)| close to 1

Proposition 10: Letq(0)|<Ry, let|v(0)| be close to 1. Then the particle leaveglRy) at
a certain moment such thatv¢(7)|>0 andv(7)e is directed outside (e,Ry).

Proposition 11: Let|q(0)|=Ry, |v(0)|>0 and e is directed outside (e,Ry). Then the
particle never enters (g,Ry) and|qge(t)|— as t— +o.

Proof of Proposition 9:For v (t) we have the estimate

t t
0st1=040) [ Jo(lds=lo(0)| [ Jos)lds.

Since outsidd_(e,R,) the free equation$4) are satisfied, the following estimatsee[28) and
(43)] is valid:

C(2(0),a(0),v.R,),

|U(t)|$ (1+|t|)(r+l

(58)

HereC(Z(0),q(0),v,R),) is bounded uniformly with respect to the valug®),(0),7(0) under
consideration. Thus,

Cy,dt Cy,
ve(t)=[v(0)[— . W—W(Oﬂ— —
and we obtain the required result for sufficiently smgl. O

Proof of Proposition 10First we check that the growth of the field energy is not very fast.
Lemma 12: The following bound holds:

h(H)=(vh(0)+ V27,1 (59

Proof: Multiply the equationiy=A y—m?y—p by ¢ and integrate oveR®. We obtainh(t)
=—[d3 pip and henceh(t)s \/Eyp\/ﬁ. Integrating this differential inequality i we come to

h(t)=<+h(0)+ y2y,t which proves(59). O

Let us now prove the proposition. Recall that p/\/1+ p? and hencep=uv/\1—v?. Thus,
|v| is close to 1 if and only ifp| is large. From the equation

p(t)=—VV(q(t))+ J d3x ¢(x,t) Vp(x—q(t))

we obtain, due to(59), |p|<G+|l|y,<G+(2h(t))¥2y,<G+((2h(0))"?*+2y,1)y,=G;
+2y5t with G;=G+(2h(0))*2y, . The conditions of the theorem imply th@ is bounded. We
obtain the following lower and upper bounds:

t
pe<t>>pe<0>—f0|p<s>|ds>|p<0>|—Glt—y§t2=P—f<t),

t
P01 =lpO)]+ | lps)ds=Ip(0)]+ Gt + =P+ 1(0),

whereP:=|p(0)],f(t):=G;t+ yitz. These estimates imply farg(t),
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_pe(t>( 1\ P—f(t)( 1 )

W= o M o] TRt |t P=fm)?
_ 1-a*—2af(t)+a’f(1)
B 1-a’f?(t)
=(1-a?—2af(t)+a%f2(t))(1+a?f?(t))=1—a’+g(t), (60)

wherea:=P~1, g(t):=—2af(t)+ (2a%—a*) f?(t) — 2a%f3(t) + a*f*(t). The corresponding esti-
mate forge(t) is

t
0e(1)=0e(0) + (1— D)t + fog(sws. (61

Take sufficiently largeP, that is smalla, then from the estimatg$1), (60) the statement of the
proposition follows. O

Proof of Proposition 11:We claim that there exist such smaji,>0p>0 that V t
>0ve(t)=v. Indeed, seT =sudt>0: ve(t)>v}. If u<ve(0)/2, then, by continuity] >0. We
claim that it is possible to choose such smgJt>0, v>0 thatT= +c. Indeed, fort[0,T] the
free equationg4) are satisfied, hence the estim&®) is valid. Take

0

Cv, Cy,
<v< — e
0<v<w,(0) fo (1+|t|)a+1

Ue(o)_ T;

this choice is possible for sufficiently smal|,. If T<+o, thenv(T)>v, hence, by continuity,
ve(T+e)>v for somee>0. This contradicts to the definition df. Thus, T=+%. Hence, for
t>0 one obtaing)(t)=q.(0)+vt. O
Note that from the proof of the theorem the following statement follows.
Corollary 13: Let(C), (Pmin), (K) hold, let Y(0)e £7,0<o<1/2. Let R,,h(0),|q(0)| be
finite. Then for' ¢0)+ 0 and sufficiently smally,, G the solution Yt) is scattering
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