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Long-time asymptotics are established for finite energy solutions of the scalar
Klein–Gordon equation coupled to a relativistic classical particle: any ‘‘scattering’’
solution is asymptotically a sum of a soliton and of a dispersive free wave packet as
t→6`. These asymptotics mean the nonlinear scattering of free wave packets by
the soliton. © 2003 American Institute of Physics.@DOI: 10.1063/1.1539900#

I. INTRODUCTION: KLEIN–GORDON FIELD COUPLED TO A CLASSICAL PARTICLE

In this paper we consider the classical scalar Klein–Gordon equation coupled~noncovari-
antly! to a relativistic classical particle subjected to an external potentialV of compact support.
The system is a finite-range perturbation of the corresponding translation-invariant system w
V that admits soliton-type solutions describing a particle traveling with constant velocity th
dressed by a comoving wave field. The set of all such solutions forms a finite-dimensional
fold, called thesoliton manifold, in the phase space~a Hilbert space! of the unperturbed system
We are interested inscatteringsolutions of the perturbed system in which the particle travels
infinity as t→6`.

The reason for the namesoliton manifoldresides the fact, proven in this paper, that it is
attracting set for the scattering solutions of the perturbed dynamical system. The attraction
in the Fréchet topology defined by the local energy seminorms.

Our main result is the long-time asymptotics in the global energy norm: each scat
solution is asymptotically the sum of a soliton and a dispersive free wave ast→6`. This means
that the solution is scattering of the free wave by a soliton. This representation of the sol
gives a mathematical description of the wave-particle duality: fort52` such solution is a union
of a ‘‘particle’’ 5soliton and ‘‘photon’’5free wave, for finitet the solution in general does no
admit such a representation, and fort5` the representation again appears.

Previously similar results have been proved for relativistic charged particles coupled, re
tively, to the wave equation corresponding tom50 ~Refs. 11 and 13! and to Maxwell’s
equations.2,10,16 The proof of these results is based on the nonautonomous integral ineq
method19 that uses essentially the strong Huygen’s principle. In the case of the Klein–Go
equation withm.0 the strong Huygen’s principle fails. That is why we develop a new m
general version of the integral inequality method that does not use the strong Huygen’s pri
An important role play the known time decay of the Green function for the Klein–Gordon e
tion and a sufficiently fast spatial decay of the solitons in the casem.0.
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We consider a scalar wave fieldc(x)PR, xPR3, coupled to a relativistic particle with
positionq and momentump, governed by

ċ~x,t !5p~x,t !, ṗ~x,t !5Dc~x,t !2m2c~x,t !2r~x2q~ t !!,
~1!

q̇~ t !5p~ t !/~11p2~ t !!1/2, ṗ~ t !52¹V~q~ t !!1E d3x c~x,t ! ¹r~x2q~ t !!

subject to appropriate initial conditions determining the dynamics. This is a Hamiltonian sy
with the Hamiltonian functional

H~c,p,q,p!5~11p2!1/21V~q!1
1

2 E d3x~ u¹c~x!u21m2uc~x!u21up~x!u2!

1E d3x c~x!r~x2q!. ~2!

We have set the mechanical mass of the particle and the speed of wave propagation equa
The case of the point particle corresponds tor(x)5d(x) and then the interaction term in th
Hamiltonian is simplyc(q). This would result however in an energy which is not bounded fr
below implying for the scattering theory the well-known ultraviolet divergence. Therefore
smooth the coupling by the functionr(x) following the strategy proposed by Abraham1 for the
Maxwell field. Respectively, the system~1! is not relativistic covariant. In analogy to th
Maxwell–Lorentz equations we callr the ‘‘charge distribution.’’ We assume the real-valued fun
tion r to be in the Sobolev spaceH1 and of compact support, i.e.,

r,¹rPL2~R3! , r~x!50 for uxu>Rr . ~C!

An important assumption is that the norm ofr in L2 is sufficiently small,

grªiriL2!1 ~3!

meaningweakfield-particle interaction.
For the potentialV we introduce two sets of assumptions: smooth and bounded from be

VPC2~R3!, V0ª inf
qPR3

V~q!.2`; ~Pmin!

and of a compact support,

V~x![0 for uxu.RV.0. ~K !

Consider the corresponding nonperturbed system withV[0:

ċ~x,t !5p~x,t !, ṗ~x,t !5Dc~x,t !2m2c~x,t !2r~x2q~ t !!,
~4!

q̇~ t !5p~ t !/~11p2~ t !!1/2, ṗ~ t !5E d3x c~x,t ! ¹r~x2q~ t !!.

The system~4! has solutions traveling with constant velocityv,uvu,1. Up to spatial translations
they are given by

Sv~ t !5~cv~x2vt !,pv~x2vt !,vt,pv! ~5!

with
 16 Jul 2003 to 194.95.184.202. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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cv~x!52
1

4p E e2mu(y2x) i1l(y2x)'ur~y!d3y

u~y2x! i1l~y2x!'u
,

~6!

pv~x!52v•¹cv~x!, pv5v/l.

Here we setl5A12v2 andx5xi1x' , wherevixiPR3 andv'x'PR3 for xPR3. We callSv(t)
the soliton with velocity v centered atq(t)5vt.

Let us discuss and summarize now our main results, the precise theorems to be state
following sections. Consider the set of scattering solutions to~1! for which uq(t)u→` as t→`.
Below we discuss the properties of these solutions. Since only a finite amount of energy c
dissipated to infinity, we shall show the relaxation of acceleration,

q̈~ t !→0, t→6`. ~7!

More precisely, we shall establish the rate of convergenceuq̈(t)u;t212s with a s.0. This is a
crucial point of our asymptotic analysis. It implies that

q̇~ t !→v6 , t→6`. ~8!

Also we show that the fields are asymptotically traveling waves in the sense

~c~x,t !,p~x,t !!;~cv6
~x2q~ t !!,pv6

~x2q~ t !!!, t→6`. ~9!

Since the energy is conserved, the convergence here is in the sense of local energy semino
Sec. II. Further, we shall establish the corresponding asymptotics in theglobal energy norm,

~c~x,t !,p~x,t !!;~cv6
~x2q~ t !!,pv6

~x2q~ t !!!1U~ t !C6 , t→6`, ~10!

whereU(t) is the unitary group generated by the free Klein–Gordon equation, andC6 are the
scattering states. At last we suggest simple sufficient conditions for solutions to be scattering
that all finite energy solutions are scattering ifV(x)[0. We prove~8!, ~9!, and ~10! with the
assumption~3!, however we suggest the same asymptotics hold in more general framework

We mention now some previous results which reflect the gradual progress in investigati
long-time asymptotics for coupled field-particle equations.

The results of Ref. 14 for the wave equation,m50, imply the long-time convergence to th
set of solitons of type~5! in the sense of local energy seminorms, as in~9!.

Soliton-type asymptotics were proved for certain translation invariant completely integ
1D equations.18 Soliton-type asymptotics inlocal energy seminorms was proved for a translati
invariant 3D system of a scalar field coupled to a particle15 and for translation invariant 1D
kinetic-reaction systems.8

Soliton-type asymptotics of type~10! in global energy norm were proved initially forsmall
perturbationsof soliton-type solutions of 1D nonlinear Schro¨dinger equations.3,4

Soliton-type asymptotics of type~10! in the energy norm for all finite energy scatterin
solutions is proved here for the first time for coupled particle-field equations~1!. The asymptotics
is provided by radiation of the energy to infinity which leads to the relaxation~7!. The relaxation
in classical electrodynamics is known as ‘‘radiative damping’’ studied by Lorentz,17 Dirac,5

Feynman7 and others.9

Note that a lot of numerical experiments12 confirm the long-time convergence of an arbitra
finite energy solution of a general relativistic equation to a finite sum of solitons with veloc
less than the light speed and of ‘‘photons’’ propagating at the light speed. Nevertheless the
remains an absolutely open problem.
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II. EXISTENCE OF DYNAMICS, A PRIORI ESTIMATES

To formulate our results precisely, we need some definitions. We introduce the phase
suitable for the Cauchy problem corresponding to~1! and ~2!. Let L2 be the real Hilbert space
L2(R3) with scalar product̂ •,•& and norm z• z, and let H1 be the Sobolev spaceH15$c
PL2: u¹cuPL2% with the normici5 zc z1 z¹c z. Let zc zR denote the norm inL2(BR) for R.0,
whereBR5$xPR3:uxu<R%. Then the seminormsiciR5 zc zR1 z¹c zR are continuous onH1.

Definition 1: (i) The phase spaceE is the Hilbert space H13L23R33R3 of states Y
5(c,p,q,p) with finite norm

i YiE5ici1 zp z1uqu1upu .

(ii) EF is the spaceE endowed with the Fre´chet topology defined by the local energy seminor

iYiR5iciR1 zp zR1uqu1upu, ;R.0 .

(iii) F is the Hilbert space H13L2 of fieldsC5(c,p) with finite norm

i CiF5ici1 zp z .

(iv) FF is the spaceF endowed with the Fre´chet topology defined by the local energy seminor

iCiR5iciR1 zp zR , ;R.0 .

Note that both spacesE andEF are metrisable. ForcPL2 we have

2
1

2m2 zr z2<
m2

2
zc z21^c,r~•2q!&<

m211

2
zc z21

1

2
zr z2. ~11!

ThereforeE is the space of finite energy states. The Hamiltonian functionalH is continuous on the
spaceE and the lower bound in~11! implies that the energy functional~2! is bounded from below,
namely,

inf
YPE

H~Y!>11V02
1

2m2 zr z2. ~12!

We consider the Cauchy problem for the Hamiltonian system~1!, which we write as

Ẏ~ t !5V0~Y~ t !!1V1~Y~ t !!, tPR, Y~0!5Y0. ~13!

All derivatives are understood in the sense of distributions. HereY(t)5(c(t),p(t),q(t),p(t)),
Y05(c0,p0,q0,p0)PE, andV0 :Y°(p,Dc2m2c,0,0). Recall that we are interested in situ
tions where the particle is allowed to travel to infinity, e.g., when the external potentialV(q)
vanishes identically. The existence of dynamics is true under such conditions (Pmin).

Theorem 2: Let (C) and (Pmin) hold. Then (i) for every Y0PE the Cauchy problem (13) ha
a unique solution Y(t)PC(R,E). (ii) For every tPR the map Wt :Y0°Y(t) is continuous both on
E and onEF . (iii) The energy is conserved, i.e.,

H~Y~ t !!5H~Y0! for tPR. ~14!

(iv) The speed is bounded,

uq̇~ t !u< v̄,1 for tPR. ~15!

Proof: We follow Ref. 14, where the casem50 is considered. Let us fix an arbitraryb.0 and
prove ~i!–~iii ! for iY0iE<b and utu<«5«(b) for some sufficiently small«(b).0.
 16 Jul 2003 to 194.95.184.202. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



us

he

ill

l

e

e

tinuity.

1206 J. Math. Phys., Vol. 44, No. 3, March 2003 Imaikin, Komech, and Markowich

Downloaded
ad (i) Fourier transform provides the existence and uniqueness of solutionY0(t)PC(R,E) to
the linear problem~13! with V150. Let Wt

0 :Y0°Y0(t) be the corresponding strongly continuo
group of bounded linear operators onE. Then uniqueness of solution to the~inhomogeneous!
linear problem implies that~13! for Y(t)PC(R,E) is equivalent to

Y~ t !5Wt
0Y01E

0

t

ds Wt2s
0 V1~Y~s!!, ~16!

becauseV1(Y(•))PC(R,E) in this case. The latter follows from a local Lipschitz continuity of t
mapV1 in E: for eachb.0 there exist ak5k(b).0 such that for allY,ZPE with iYiE ,iZiE
<b,

iV1~Y!2V1~Z!iE<kiY2ZiE . ~17!

For example, we have

U E d3x ~c1~x!2c2~x!!¹r~x2q!U<u¹~c12c2!uuru.

Moreover, by the contraction mapping principle, Eq.~16! has a unique local solutionY(•)
PC(@2«,«#,E) with «.0 depending only onb. Then the existence of the global dynamics w
follow from the a priori estimate, see inad ( i i i ) below.

ad (ii) The mapWt :Y0°Y(t) is continuous in the normi•iE for utu<« and iY0i<b. To
prove continuity ofWt in EF , let us consider Picard’s successive approximation scheme

YN~ t !5Wt
0Y01E

0

t

ds Wt2s
0 V1~YN21~s!!, N51,2, . . . .

The equation forqN in this system impliesuq̇N(t)u,1 and thereforeuq(t)u,uq0u1utu. Now we fix
tPR and chooseR.uq0u1utu1Rr with Rr from (C). From the explicit solution of the free
Klein–Gordon equationWt

0Y0 ~see Sec. III! we conclude that every Picard’s approximationYN(t)
and hence the solutionY(t)5(c(x,t),p(x,t),q(t),p(t)) for uxu,R depends only on the initia
data (c0(x),p0(x),q0,p0) with uxu,R1utu. Thus the continuity ofWt in EF follows from the
continuity in E.

ad (iii) For k50,1, . . . denote byC0
k(R3) the space of functionsc(x)PCk(R3) with compact

support. For initial data (c0,p0)PC3(R3)3C2(R3) the solutionc5c(x,t) satisfiescPC2(R3

3R). Indeed, this is well known for the solutionWt
0Y0 of the linear Klein–Gordon equation. Th

integral representation~16! then implies the same property forc. In addition, letY0 have compact
support, i.e.,

c0~x!5p0~x!50 for uxu.R0 ~18!

with someR0.0. Sinceuq(t)u,uq0u1utu, ~16! implies

c~x,t !50 for uxu>utu1max$R0,Rr1uq0u1utu%.

Thus, for such initial data energy conservation can be shown by integration by parts. Henc~iii !
follows from the continuity ofWt and the fact thatC0

3(R3) % C0
2(R3) % R3

% R3 is dense inE.
We use now energy conservation to ensure the existence of a global solution and its con

Similar to ~11! we have

H~Y!>
1

2
zp z21

1

2
z¹c z21

m2

4
zc z21A11p21V~q!2

1

m2 zr z2,

and by energy conservation, forutu<«,
 16 Jul 2003 to 194.95.184.202. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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1

2
zp~ t !z21

1

2
z¹c~ t !z21

m2

4
zc z21A11p2~ t !1V~q~ t !!2

1

m2 zr z2<H~Y~ t !!5H~Y0!. ~19!

Therefore (Pmin) implies thea priori estimate

ic~ t !i1 zp~ t !z1up~ t !u<B for tPR ~20!

with B depending only on the normiY0iE of the initial data and onzr z. Properties~i!–~iii ! for
arbitrarytPR now follow from the same properties for smallutu and from thea priori bound~20!.

ad (iv) Note first that~20! implies up(t)u<p0,`. Hence

uq̇~ t !u/~12q̇2~ t !!1/25up~ t !u<p0,`,

which yieldsuq̇(t)u<q15..v̄,1. h

III. INTEGRAL INEQUALITY ARGUMENT

Definition 3: Let 0,s,1/2 and let a5(122s)/3. The setE s is the set of the state
(c,p,q,p)PE such that

E
R<uxu

d3x~R2uc~x!u21u¹c~x!u2!5O~R2(412s)! ~21!

and

E
Ra<uxu

d3x ~ uc~x!u21up~x!u2!5O~R2(412s)! ~22!

as R→1`.
If the soliton-type asymptotics is approximately valid, then the field should be close t

soliton centered atq(t) with velocity v(t)5q̇(t). We therefore consider the difference

Z~x,t !5C~x,t !2Cv(t)~x2q~ t !!, ~23!

where

C~x,t !5~c~x,t !,p~x,t !!

and Cv(x)5(cv(x),pv(x)) is the field part of the soliton. Definingr̄(x)5(0,r(x)) and
A(c,p)5(p,Dc2m2c), it follows thatC obeys the equations of motion:

Ċ~x,t !5AC~x,t !2 r̄~x2q~ t !!. ~24!

On the other hand, for the soliton fieldCv with a fixedv, the equation

2
]Cv

]x
~x2q~ t !!v5ACv~x2q~ t !!2 r̄~x2q~ t !! ~25!

holds. Then~24! and ~25! imply the following equation forZ:

Ż~x,t !5AZ~x,t !2
]Cv(t)

]p
~x2q~ t !!ṗ~ t !. ~26!

Here, according to the chain rule,
 16 Jul 2003 to 194.95.184.202. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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]Cv

]p
5

]Cv

]v
]v
]p

, ~27!

where]v/]p is the Jacobi matrix of the mapp°v(p)5p/A11p2.
Proposition 4: Let(C), (Pmin), (K) hold, let the solution Y(t) to the system (1) be scatterin

and Y(0)PE s for a certainsP(0;1/2). Then for any R.0 and sufficiently smallgrª zr z,

iZ~•1q~ t !,t !iR<CR~Z~0!,q0,v̄,Rr!~11utu!212s. ~28!

Proof: First, we prove the estimate withR5Rr . Definition ~23! implies Z(•,t)PF. Solving
the equations~26! we get the mild solution representation,

Z~ t !5U~ t !Z~0!2E
0

t

U~ t2s!F]Cv(s)

]p
~•2q~s!! ṗ~s!G ds, ~29!

with U(t) the group generated by the free Klein–Gordon equation inH1
% L2, see the explicit

formulas in Sec. III A below.
Thus, the proof consists of two essential parts:~1! estimating, in local seminorms, the actio

of the free Klein–Gordon groupU(t)Z(0) and~2! estimating, in local seminorms, the free Klein
Gordon group applied to the Jacobian of the soliton field,U(t2s)@]Cv(s) /]p(•2q(s))#.

A. Local decay for the free Klein–Gordon group

Let us denoteSt(x)5$y: uy2xu5t%, Bt(x)5$y: uy2xu<t%. For sufficiently smooth initial
data, sayu0 ,v0PC0

`(R3), the action of the free Klein–Gordon group inR3 reads@Ref. 6, Chap.
5, formulas~6.4!, ~6.11!, ~6.12!#,

U~ t !~u0~x!,v0~x!!5~u~x,t !,v~x,t !!5~uw~x,t !2um~x,t !,vw~x,t !2vm~x,t !!

with

uw~x,t !5
1

4pt2 E
St(x)

d2y u0~y!1
1

4pt ESt(x)
d2y

]u0~y!

]n
1

1

4pt ESt(x)
d2y v0~y!, ~30!

um~x,t !5
m2

8p E
St(x)

d2y u0~y!1
m

4p E
Bt(x)

d3y Ḟ~ t,x2y!u0~y!1
m

4p E
Bt(x)

d3y F~ t,x2y!v0~y!,

~31!

and

vw~x,t !5u̇w~x,t !5
1

2pt2 E
St(x)

d2y
]u0~y!

]n
1

1

4pt ESt(x)
d2y

]2u0~y!

]n2

1
1

4pt2 E
St(x)

d2y v0~y!1
1

4pt ESt(x)
d2y

]v0~y!

]n
, ~32!

vm~x,t !5u̇m~x,t !5
m2

4pt ESt(x)
d2y u0~y!2

m4t

32p E
St(x)

d2y u0~y!1
m2

8p E
St(x)

d2y
]u0~y!

]n

1
m

4p E
Bt(x)

d3y F̈~ t,x2y!u0~y!1
m2

8p E
St(x)

d2y v0~y!

1
m

4p E
Bt(x)

d3y Ḟ~ t,x2y!v0~y!. ~33!

Heren5(y2x)/uy2xu is the exterior unit normal vector of the sphereSt(x) at a pointy,
 16 Jul 2003 to 194.95.184.202. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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F~ t,z!5
J1~mAt22z2!

At22z2
,

J1 being the Bessel function of order 1. Note that (uw(x,t),vw(x,t)) is the solution to the free
wave equation corresponding tom50, with the same initial conditions (u0 ,v0). From the well-
known asymptotics

uJ1~s!u1uJ18~s!u1uJ19~s!u5O~ usu21/2! ass→`

of the Bessel function, see Ref. 20, Chap. XVII, it follows that

uF~ t,z!u1uḞ~ t,z!u1uF̈~ t,z!u1u¹zF~ t,z!u5O~ utu23/2! as t→`, ~34!

if uzu<nutu with 0,n,1. However, near the boundary of the coneuzu5utu only some weaker
decay is valid, namely foruzu<utu21,

uF~ t,z!u1uḞ~ t,z!u1uF̈~ t,z!u1u¹zF~ t,z!u5O~ utu23/4! as t→`, ~35!

Definition 5: The setF s for 0,s,1/2 is the set of the fields(c,p)PF satisfying the
conditions (21),(22).

Lemma 6: Let(u0 ,v0)PF s with somesP(0;1/2). Then;R.0,

iU~ t !~u0 ,v0!iR<C~u0 ,v0 ,R!~11utu!212s. ~36!

Proof: Note that for any fixedt the mapU(t):(u0 ,v0)→(u(t),v(t)) is continuous inF. For
initial data (u0 ,v0)PF s we can approximate them withu0

n , v0
nPC0

` such that the bounds~21!,
~22! hold for u0 , v0 uniformly in n. Hence, it is sufficient to obtain the estimate~36! for u0 ,v0

PC0
` , with C(u0 ,v0 ,R) depending only on the constant of~21!, ~22! and on the norm ofu0 ,v0

in F. Thus, we may use the integral representation~30! to ~33!.
At first consider (uw ,vw). For the free wave equation the following energy inequality is w

known:

E
BR

d3x~ u¹uw~x,t !u21uvw~x,t !u2!<E
Bt1R

d3x~ u¹u0~x!u21uv0~x!u2!.

Further, from the strong Huygen’s principle it follows that fort.R the solution (uw(x,t),
vw(x,t)) does not change if one replacesu0(x), v0(x) by zero inside the ballBt2R . Hence,

E
BR

d3x~ u¹uw~x,t !u21uvw~x,t !u2!<E
Bt2R,t1R

d3x~ u¹u0~x!u21uv0~x!u2!,

whereBt2R,t1R5$xPR3: t2R<uxu<t1R%. Then the conditions~21!, ~22! imply, for sufficiently
large t,

z¹uw~•,t !zR1 zvw~•,t !zR<C~R,u0 ,v0!~11utu!212s. ~37!

It remains to estimatezuw(•,t) zR , ium(•,t)iR , and zvm(•,t) zR . We claim that if (u0 ,v0)
PF s, then for sufficiently larget any of the normszI (•,t) zR , iJ(•,t)iR , zK(•,t) zR is bounded by
C(u0 ,v0 ,R)(11utu)212s for any integralI (x,t) of ~30!, J(x,t) of ~31!, K(x,t) of ~33!. At first
consider the spherical integrals. For example, let us prove these estimates for the integral

I ~x,t !5
1

4pt ESt(x)
d2y

]u0~y!

]n
, J~x,t !5

m2

8p E
St(x)

d2y u0~y!, K~x,t !5
m4t

32p E
St(x)

d2y u0~y!.
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For I (x,t) we should estimatezI (•,t) zR . We have

zI ~•,t !zR
25E

BR

d3x~ I ~x,t !!2

5
C

t2 E
BR

d3xS E
St(x)

d2y
]u0~y!

]n D 2

<
C

t2 E
BR

d3x 4pt2E
St(x)

d2yS ]u0~y!

]n D 2

5C1E
BR

d3xE
St(x)

d2yS ]u0~y!

]n D 2

.

For a non-negative continuous functionu andt>R the following bound follows by integration in
polar coordinates and geometric argument:

E
BR

d3xE
St(x)

d2y u~y!<8pR2E
Bt2R,t1R

d3x u~x!. ~38!

Hence

zI ~•,t !zR
2<C2R2E

Bt2R,t1R

d3xS ]u0~x!

]n D 2

~39!

for t.R. Thus, from the condition~21! the stated bound follows.
For J(x,t) we should estimateiJ(•,t)iR5 zJ(•,t) zR1 z¹J(•,t) zR . ConsiderzJ(•,t) zR . Similar

to ~39! we obtain

zJ~•,t !zR
2<CR2t2E

Bt2R,t1R

d3x~u0~x!!2.

Then from the condition ~21! the required estimate follows. For ¹J(x,t)
5(m2/8p)*St(x)d

2y ¹u0(y) the estimate is analogous. ConsiderzK(•,t) zR . Similarly to ~39! we
obtain

zK~•,t !zR
2<CR2t4E

Bt2R,t1R

d3x~u0~x!!2.

Then the estimate we need follows from the condition~21!.
Now estimate the integrals over the balls. For example, consider the integral

J~x,t !5
m

4p E
Bt(x)

d3y F~ t,x2y!v0~y!.

We should estimatezJ(•,t) zR and z¹J(•,t) zR . We have

uJ~x,t !u5CU E
Bt(x)

d3y F~ t,x2y!v0~y!U
<CU E

Bta(x)
d3y F~ t,x2y!v0~y!U1CU E

B
ta
8 (x)

d3y F~ t,x2y!v0~y!U,
whereBta(x)5$y:uy2xu<ta%, Bta

8 (x)5$y:ta<uy2xu<t%. The first integral is bounded by

S E
Bta(x)

d3y F2~ t,x2y! D 1/2S E
Bta(x)

d3y v0
2~y! D 1/2

<C1t (3a23)/2uv0u<C1t212suv0u

for a5(122s)/3. The second integral is bounded by
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U E
Bta,t21(x)

d3y F~ t,x2y!v0~y!U1U E
Bt21,t(x)

d3y F~ t,x2y!v0~y!U, ~40!

where Bta,t21(x)5$y:ta<uy2xu<t21%, Bt21,t(x)5$y:t21<uy2xu<t%. Further, for suffi-
ciently larget the first integral of~40! is bounded by

S E
Bta,t21(x)

d3y F2~ t,x2y! D 1/2S E
Bta,t21(x)

d3y v0
2~y! D 1/2

<C~ t323/2!1/2~ t27/222s!1/25Ct212s,

due to~35! and ~22!. The second integral of~40! is bounded by

C t S E
Bt21,t(x)

d3y v0
2~y! D 1/2

<Ct212s

by ~22!. Thus we have the pointwise bounduJ(x,t)u<Ct212s that implies the stated integra
bound.

Now let us estimatez¹J(•,t) zR . Note that

¹J~x,t !5
m

4p E
Bt(x)

d3y F~ t,x2y!¹v0~y!.

SinceF(t,x2y)5m/2 for ux2yu5t, the partial integration gives

U E
Bt(x)

d3y F~ t,x2y!
]

]yi
v0~y!U< m

2 E
St(x)

d2y uv0~y!u1E
Bt(x)

d3y U ]

]xi
F~ t,x2y!v0~y!U.

Then the estimates for both the spherical integral and the integral over the ball are made as
Hence, the boundz¹J(•,t) zR<C(v0 ,R)(11utu)212s follows from the condition~22!.

Altogether, we obtain that for sufficiently larget the estimate~36! is true. For boundedt this
estimate follows from the energy conservation for the free Klein–Gordon equation.

h

Remark:The statement of the lemma is true under some weaker conditions on initial
than ~21!, ~22!. Namely, it suffices to assume that

E
R<uxu<R11

d3x~R2uu0~x!u21u¹v0~x!u2!5O~R2(412s)!,

E
Ra<uxu<R

d3x ~ uu0~x!u21uv0~x!u2!5O~R2(412s)!

asR→1`; a5(122s)/3.
Thus, for the first term on the right-hand side of~29! we have

iU~ t !Z~0!iRr
<

C~Z~0!,v̄,Rr!

~11utu!11s .

Then from~15! the estimate

iU~ t !Z~0!~•1q~ t !!iRr
<

C~Z~0!,q0,v̄,Rr!

~11utu!11s ~41!

follows.
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B. Decay of the soliton field subject to free Klein–Gordon group

Denote byZ1(x,t)5c(x,t)2cv(t)(x2q(t)) the first component ofZ(x,t) and observe tha
^cv ,¹r&50 for uvu,1 because the soliton~5! is a solution to~4!. Note that for scattering
solutions, for sufficiently largeutu, the fourth equation of the system~1! transforms to the fourth
nonperturbed equation of the system~4! Then for theseutu,

ṗ~ t !5^Z1~x1q~ t !,t !,¹r~x!& . ~42!

Thus we obtain,

u ṗ~ t !u<CiZ~•1q~ t !,t !iRr
gr . ~43!

DenoteSt2s(x)5$y: uy2xu5t2s%, Bt2s(x)5$y: uy2xu<t2s%, cv
p5]cv /]p, pv

p5]pv /]p,
and

~cU~•,t,s!,pU~•,t,s!!5U~ t2s!F]Cv(s)

]p
~•2q~s!!G . ~44!

Then the formulas~30!, ~31! for U(t2s) imply

cU~x,t,s!5
1

4p~ t2s!
E

St2s(x)
d2y pv(s)

p ~y2q~s!!2
m

4p E
Bt2s(x)

d3y F~ t2s,x2y!pv(s)
p ~y2q~s!!

1
1

4p~ t2s!2 E
St2s(x)

d2y cv(s)
p ~y2q~s!!1

1

4p~ t2s!
E

St2s(x)
d2y

]

]n
cv(s)

p ~y2q~s!!

2
m2

8p E
St2s(x)

d2y cv(s)
p ~y2q~s!!2

m

4p E
Bt2s(x)

d3y Ḟ~ t2s,x2y!cv(s)
p ~y2q~s!!.

~45!

From this one derives the explicit formula for¹cU(x,t,s); ~32! and ~33! give the formula for
pU(x,t,s).

Now cU(x1q(t),t,s) can be represented as the sum of type~45! of integrals over the shifted
sphereSt2s(x1q(t)) and ballBt2s(x1q(t)) and withx1q(t) replacingx in F and Ḟ. Denote
cS

U(x1q(t),t,s) the sum of the integrals over the sphereSt2s(x1q(t)) andcB
U(x1q(t),t,s) the

sum of the integrals over the ballBt2s(x1q(t)). Let us estimatecS
U(x1q(t),t,s). If uxu<Rr , we

have on the sphereSt2s(x1q(t)),

uy2q~s!u5u~y2x2q~ t !!1~x1q~ t !2q~s!!u>~ t2s!2uxu2 v̄~ t2s!>~12 v̄ !~ t2s!2Rr
~46!

by the bound~15! on q̇(t). On the other hand, the integral representation~6! yields by Cauchy–
Schwartz inequality,

sup
uvu< v̄

sup
uxu>2Rr

emuxu~ u]acv
p~x!u1u]bpv

p~x!u!<C~ v̄,Rr!gr,` ~47!

for all multi-indicesa,b with uau<2, ubu<1, recall thatgrª zr z. Then ~47! and ~46! imply the
following pointwise bound forcS

U(x1q(t),t,s):

ucS
U~x1q~ t !,t,s!u<C1~ v̄,Rr!gre2m(t2s) ~48!

for uxu<Rr and providedt2s>3Rr /(12 v̄).
Now let us estimatecB

U(x1q(t),t,s). Set m5(122s)/6 and consider two regionsBm

5$y:uy2q(s)u<(t2s)m% and
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Bm8 5Bt2s~x1q~ t !!2Bm5$y:uy2~x1q~ t !!u<~ t2s! & uy2q~s!u.~ t2s!m%.

Represent every integral over the ballBt2s(x1q(t)) as the sum of the integrals overBm andBm8 .
Note that the volume ofBm is of order (t2s)3m, the volume ofBm8 is of order (t2s)32(t
2s)3m. Furthermore, for sufficiently larget2s and yPBm we have uy2xu<nutu with some
positiven,1. Hence, by~34! the following estimate is true:

uF~ t2s,x2y!u1uḞ~ t2s,x2y!u1uF̈~ t2s,x2y!u<Cut2su23/2.

Then for the integrals overBm we have

U E
Bm

¯U<C1~ t2s!3m~ t2s!23/2C2gr5C3gr~ t2s!3m23/25C3gr~ t2s!212s

for m5(122s)/6.
For the integrals overBm8 we obtain, due to~47!, providedt2s>(2Rr)1/m,

U E
Bm8
¯U<C4~~ t2s!32~ t2s!3m!C5exp~2m~ t2s!m!gr<

C6gr

~ t2s!11s

for sufficiently large t2s. Thus, the sum of the integrals overBm8 is bounded by
(C7( v̄,Rr)gr)/(11(t2s)11s). So we come to

ucB
U~x1q~ t !,t,s!u<

C8~ v̄,Rr!gr

11~ t2s!11s ~49!

for uxu<Rr and sufficiently larget2s. Therefore~48! and~49! imply for larget –s, together with
similar bounds for¹cU(x1q(t),t,s) andpU(x1q(t),t,s), the integral estimate

i~cU~•1q~ t !,t,s!,pU~•1q~ t !,t,s!!iRr
<

C9~ v̄,Rr!gr

11~ t2s!11s . ~50!

On the other hand, for boundedt2s this integral estimate follows from~44! by energy conserva
tion for the groupU(t2s) sincei]Cv /]piF<C( v̄,Rr)gr by (C). Finally, ~43! and ~50! imply

i ṗ~s!•~cU~•1q~ t !,t,s!,pU~•1q~ t !,t,s!!iRr
<C10~ v̄,Rr!gr

iZ~•1q~s!,s!iRr
gr

11~ t2s!11s . ~51!

C. Completing the proof of Proposition 4

The method was initially developed in Ref. 13 form50, see also Ref. 11. Combining~29! to
~51! and ~41! we arrive at

iZ~•1q~ t !,t !iRr
<

C~Z~0!,q0,v̄,Rr!

~11utu!11s 1gr
2C10~ v̄,Rr! E

0

t iZ~•1q~s!,s!iRr

11~ t2s!11s ds, t>0. ~52!

Therefore, settingM (t)5max0<s<t(11usu)11siZ(•1q(s),s)iRr
, we have

M ~ t !<C0~Z~0!,q0,v̄,Rr!1gr
2C~ v̄,Rr!I sM ~ t !,

where

I s5sup
t>0

~11utu!11sE
0

t ~11usu!212s

~11ut2su11s!
ds,`.
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It remains to choosegr
2C( v̄,Rr)I s,1, then~28! with R5Rr follows.

Remark:It is important thatv̄ is bounded for boundedgr and fixed initial data.
At last, we claim that the bound~28! with R5Rr implies~28! for anyR.0. Indeed,~50!–~52!

hold with the normi•iR instead ofi•iRr
on the left-hand sides and withCi( v̄,r,R) instead of

Ci( v̄,Rr) on theright-hand sides. Then~52! with this generalization and~28! with R5Rr imply
~28! for any R.0. h

IV. SCATTERING

Theorem 7: Under the conditions of Proposition 4, for sufficiently smallgr , the convergence
(7) holds, and the solution Y(t) displays the following long-time asymptotics:

(i) There existv65 limt→6` q̇(t)PV such that
uq̇~t!2v6u <C ~11utu!2s, ~53!

iC~•1q~t!,t!2Cv6
iR<CR~11utu!2s, ;R.0. ~54!

(ii) There existC6PF such that
iC~•,t!2Cv(t)~•2q~t!!2U~t!C6iF<C~11utu!2s. ~55!

Proof: ~i! Equation~28! with R5Rr and ~43! imply

u ṗ~ t !u<C~11utu!212s⇔uq̈~ t !u<C1~11utu!212s. ~56!

Then the limits~8! exist, and~53! follows. Therefore,~28! implies ~54!.
~ii ! We have to prove thatiZ(x,t)2U(t)F6iF<C(11utu)2s. This is equivalent to

iU(2t)Z(x,t)2F6iF<C(11utu)2s since the groupU(t) is isometric inF. Apply U(2t) to the
integral equation~29!. We obtain

U~2t !Z~ t !5Z~0!2E
0

t

U~2s!F]Cv(s)

]p
~•2q~s!! ṗ~s!G ds.

The condition~15! implies that the norm ofCv(s)(•2q(s)) in F is bounded uniformly with
respect tos. Then~56! implies the convergence of the integral inF at the stated rate and Theore
7 is proved. h

A. Constructing scattering solutions

Let us formulate a criterion for a solutionY(t) to be scattering. Introduce the energy of t
field part of a solution

h~ t !5
1

2 E d3x~ u¹c~x,t !u21m2uc~x,t !u21up~x,t !u2!.

SetG5supxPR3u¹V(x)u andv(t)5q̇(t).
Theorem 8: Let (C), (Pmin), ~K! hold. Consider solutions Y(t) to the system (1) with initial

data Y(0)PE s, 0,s,1/2. Let RV ,G,h(0),uq(0)u be finite. Then foruq̇(0)u close enough to 1
and sufficiently smallgr , we have

lim
t→6`

uq~ t !u5`. ~57!

Proof: Since the system~1! is time invertible, we consider only the caset→1`. Consider the
particle with initial dataq(0),v(0)ªq̇(0). Introducee5v(0)/uv(0)u. The orthogonal projection
of the vectorsv(t),p(t),q(t) onto e read ve(t)e, pe(t)e, qe(t)e, respectively, withve(t)
ªv(t)•e, pe(t)ªp(t)•e, qe(t)ªq(t)•e, here the dot means the scalar product inR3. Note that
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the vectorsv(t) andp(t), ve(t) andpe(t) are of the same directions andve(0)5uv(0)u, pe(0)
5up(0)u. Introduce the layer inR3, L(e,RV)5$x:ux•eu<RV%, then suppV, L(e,RV).

The statement of the theorem follows from the three propositions below. Since the syste~1!
is invariant with respect to time translations, we start fromt50 in either proposition.

Proposition 9: Let uq(0)u.RV , uv(0)u be close enough to 1, let e be directed towa
L(e,RV). Then the particle enters L(e,RV) at a certain momentt with uve(t)u close to 1.

Proposition 10: Letuq(0)u<RV , let uv(0)u be close to 1. Then the particle leaves L(e,RV) at
a certain momentt such thatuve(t)u.0 and ve(t)e is directed outside L(e,RV).

Proposition 11: Letuq(0)u>RV , uv(0)u.0 and e is directed outside L(e,RV). Then the
particle never enters L(e,RV) and uqe(t)u→` as t→1`.

Proof of Proposition 9:For ve(t) we have the estimate

ve~ t !>ve~0!2E
0

t

uv̇~s!uds5uv~0!u2E
0

t

uv̇~s!uds.

Since outsideL(e,Rv) the free equations~4! are satisfied, the following estimate~see@28! and
~43!# is valid:

uv̇~ t !u<
C~Z~0!,q~0!,v̄,Rr!gr

~11utu!s11 . ~58!

HereC(Z(0),q(0),v̄,Rr) is bounded uniformly with respect to the valuesq(0),c(0),p(0) under
consideration. Thus,

ve~ t !>uv~0!u2E
0

` Cgr dt

~11utu!s11 5uv~0!u2
Cgr

s
,

and we obtain the required result for sufficiently smallgr . h

Proof of Proposition 10:First we check that the growth of the field energy is not very fa
Lemma 12: The following bound holds:

h~ t !<~Ah~0!1A2grt !2. ~59!

Proof: Multiply the equationc̈5Dc2m2c2r by ċ and integrate overR3. We obtainḣ(t)
52*d3x rċ and henceḣ(t)<A2grAh. Integrating this differential inequality int we come to
Ah(t)<Ah(0)1A2grt which proves~59!. h

Let us now prove the proposition. Recall thatv5p/A11p2 and hence,p5v/A12v2. Thus,
uvu is close to 1 if and only ifupu is large. From the equation

ṗ~ t !52¹V~q~ t !!1E d3x c~x,t ! ¹r~x2q~ t !!

we obtain, due to~59!, u ṗu<G1icigr<G1(2h(t))1/2gr<G1((2h(0))1/212grt)gr5G1

12gr
2t with G15G1(2h(0))1/2gr . The conditions of the theorem imply thatG1 is bounded. We

obtain the following lower and upper bounds:

pe~ t !>pe~0!2E
0

t

u ṗ~s!uds>up~0!u2G1t2gr
2t25P2 f ~ t !,

up~ t !u<up~0!u1E
0

t

u ṗ~s!uds<up~0!u1G1t1gr
2t25P1 f ~ t !,

wherePªup(0)u, f (t)ªG1t1gr
2t2. These estimates imply forve(t),
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ve~ t !5
pe~ t !

up~ t !u S 11
1

up~ t !u2D 21/2

>
P2 f ~ t !

P1 f ~ t ! S 12
1

~P2 f ~ t !!2D
5

12a222a f~ t !1a2f 2~ t !

12a2f 2~ t !

>~12a222a f~ t !1a2f 2~ t !!~11a2f 2~ t !!512a21g~ t !, ~60!

whereaªP21, g(t)ª22a f(t)1(2a22a4) f 2(t)22a3f 3(t)1a4f 4(t). The corresponding esti
mate forqe(t) is

qe~ t !>qe~0!1~12a2!t1E
0

t

g~s!ds. ~61!

Take sufficiently largeP, that is smalla, then from the estimates~61!, ~60! the statement of the
proposition follows. h

Proof of Proposition 11:We claim that there exist such smallgr.0,vI .0 that ; t
.0ve(t)>vI . Indeed, setT5sup$t.0: ve(t).vI %. If vI ,ve(0)/2, then, by continuity,T.0. We
claim that it is possible to choose such smallgr.0, vI .0 thatT51`. Indeed, fortP@0,T# the
free equations~4! are satisfied, hence the estimate~58! is valid. Take

0,vI ,ve~0!2E
0

` Cgr

~11utu!s11 5ve~0!2
Cgr

s
;

this choice is possible for sufficiently smallgr . If T,1`, thenve(T).vI , hence, by continuity,
ve(T1«).vI for some«.0. This contradicts to the definition ofT. Thus,T51`. Hence, for
t.0 one obtainsqe(t)>qe(0)1vI t. h

Note that from the proof of the theorem the following statement follows.
Corollary 13: Let ~C!, (Pmin), ~K! hold, let Y(0)PE s,0,s,1/2. Let RV ,h(0),uq(0)u be

finite. Then for q˙ (0)Þ0 and sufficiently smallgr , G the solution Y(t) is scattering.
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