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1. INTRODUCTION AND MAIN RESULTS 

Let us consider a mechanical  particle coupled to a scalar wave field in a translat ion 
invariant manner .  The equations o f  mot ion  read, for  x e ~3 and t e ~, 

d(x, t) = rt(x, t), ft(x, t) = A¢(x,  t) - p(x  - q(t)), 

?l(t) = p( t ) / (1  + pg(t))1/2, p( t )  = I' d3x¢(x'  t) Vp(x - q(t)). 
(1.1) 

~Y 

Here O(x, t) is the real scalar field, q(t) the posit ion o f  the particle, and p a fo rm factor  
o f  compact  support  providing a cut -off  in the interaction at small distances. All derivatives 
in (1.1) are unders tood  in the sense o f  distributions. I f  we introduce the m o m e n t u m  p as 
canonical ly conjugate  to q and the field it(x) as canonically conjugate  to ¢(x), then (1.1) 
is a Hami l ton ian  system with Hamil tonian  functional  

1 .i d3x(l~r(x)12 ÷ Iv¢(x)lb h(¢, q, lr, p)  = (1 + p2)1/2 ÷ 

+ j' d3xO(x)p(x - q). (1.2) 

Note  that  the kinetic energy of  the particle is relativistic and therefore I@[ < 1. Since the 
interaction is t ranslat ion invariant,  one expects soliton-like solutions to (1.1) o f  the fo rm 

¢(x, t) = Cv(x - vt - q), q(t) = vt + q (1.3) 

with v • V =  Iv • E3 : Iv[ < I}. Indeed they are easily determined.  For  v • V there is a 
unique funct ion Cv which makes (1.3) a solution to (1.1). It is given by 

- I  d3y(4n[(Y - x)ll + ) ' (y  - x)±I)-lP(Y) '  /l = x/l - v 2 (1.4) 0v(X) 

as derived in Appendix  A.  We have set z = Zll + z±, Zll IIv and z± I v  for  z • ~3. 
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We are interested in the long time asymptotics of  a solution to (1.1), which turns out to 
be governed by the following basic mechanism: whenever ~(t) ~ O, energy is transferred 
from the particle to infinity via the wave field. Since the energy is bounded from below, 
this must mean that ~/(t) ~ 0 as t ~ oo. Indeed, such a result is proved in [1] using the 
boundedness of  a certain energy dissipation functional. One would expect then that also 
the velocity has a limit, ~¢(t) --* v for some v e V, and consequently 

4~(q(t) + x,  t) ~ day(x) as t --, oo. (1.5) 

Our main progress is to establish these limits. 
Before entering into a more precise and technical discussion, it may be useful to give a 

general idea of  our strategy. One first notices, that because of translation invariance the 
total momentum 

P(4~, q, n , p )  = p - t d3xn(x) V~b(x) (1.6) 

is conserved. Through the canonical transformation (~(x) ,  Q, l l (x) ,  P ) =  (4a(q + x), 
q, n(q + x), P(ck, q, n, p)) one obtains the new Hamiltonian 

H v ( ~ ,  H) = h(th, q, n, p) 

= d3x  Iri (x) l  2 + 

k2h  1/2 

Since Q is cyclic, we may regard P as a parameter and consider the reduced system (~, H) 
only. Let us define 

nv(x) = - v  • V~bv(x), p(v)  = Po + t d3x" v~0o(x) v4~o(x), (1.7) 

po = v/(1 - v2) 1/2. 

We will prove that (4~v, no) is the unique critical point and global minimum of  Hp(o). 
Thus initial data close to (~o, n~) must remain close forever by conservation of  energy, 
which translates into the orbital stability of  soliton-like solutions. For a general class of  
nonlinear wave equations with symmetries such orbital stability of  soliton-like solutions 
is proved in the well known work [2]. Our argument here follows in essence Bambusi and 
Galgani [3] who discuss the coupled Lorentz-Maxwell equations. 

Orbital stability by itself is not enough. It only ensures that initial data close to a soliton 
remain so and does not yield the convergence of  q(t), even less the convergence (1.5). Thus 
we need an additional, not quite obvious argument which combines the limit/l(t) --* 0 as 
t ~ oo with the orbital stability in order to establish the longtime asymptotics. As one 
essential input we will use the strong Huygens principle for the wave equation. 

We recall some definitions and assumptions from [1]. For the form factor p we 
assume that 

(C) p e C~(R3), p(x) = 0 for [x[ -> Rp, p(x) = pr(lx[). 
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We require that all " m o d e s "  of  the wave field couple to the particle, which is formalized 
by the Wiener condition 

(W) f i (k)  = t d3x eikXp(x) # 0 for all k e ~3. 

In [1] generic examples of  form factors satisfying both (C) and (W) are constructed. 
Next we introduce the phase space for (1.1). A point in phase space is referred to as 

state. Let L 2 be the real Hilbert space L2([R 3) with norm [-[ and scalar product ( . ,  .), and 
D 1,2 be the completion of  the real space C~o(IRa) with norm I[ rp(x)11 = I V$(x)[. Equivalently, 
using Sobolev's embedding theorem, D 1'2 = [~(x) e L6(~ 3) : IV¢(x)l ~ L2(~3)1 (see [4]). 
Let [¢[R denote the norm in L2(BR) for R > 0, where B R = {x e ~3 : Ix[ -< R}. Then the 
seminorms [[¢[[R = [V¢[R + [¢[R are continuous on D 1'2. 

We denote by 8 the Hilbert space D 1'2 @ ~3 @ L 2 @ [~3 with finite norm 

IIYII  = I1 11 + Iql + I=1 + Ipl for Y =  (4~,q, zr, p). 

For smooth ~(x) vanishing at infinity we have 

l',i p ( x ) p ( y ) l  1 1 d3x d3y ~ (p, A-lp) < Iv0[ 2 + (O(x), p ( x  - q)) 
8 g  [ x  - y [  - - 

< iv ,12 1 _ - ~ ( p ,  A - X p ) .  

Therefore 8 is the space of  finite energy states and in particular for the soliton-like solutions 

Yv, q(t) = (¢v(X - vt  - q), Vt + q, ~ ( X  - vt - q),  p~) (1.8) 

we have [[Y~,q(t)[[8 < oo. Note that [l¢vll < oo, but IOo] = oo. 

PROPOSITION 1.1. For every y0 = ($0, q0, ~z0,p0) ~ 8 the Hamiltonian system (1.1) has a 
unique solution y ( t )  = (ok(t), q( t ) ,  zr ( t ) ,p( t ) )  ~ C(~, 8) with y(0) = yO. Energy and total 
momentum are conserved. 

We refer to Section 2 where also the precise notion of solution is explained. 
On physical grounds one is tempted to conjecture that every solution y ( t )  of  finite energy 

will converge to some soliton-like solution as t --, oo. We do not achieve such a global result 
in two respects: the t = 0 fields are required to decay at infinity so to have a finite energy. 
But in addition some smoothness if imposed. More severely, we do not control the asymp- 
totics for the position in the form q(t )  ~ vt  + q. We only prove that q(t) has a limit. 

THEOREM 1.2. Let (C) and (W) hold. The initial state y0 = (~0, qO, zro, pO) e 8 is required 
to have the following decay at infinity: for some R 0 > 0 the functions C°(x), ~z(°)(x) are 
C 2, C Ldifferentiable outside the ball BRo , respectively, and 

I ,°(x)l  + Ixl(Ivo°(x) l  + + Ix l2(Ivvo°(x) l  + Iv °(x)l) = O(Ixl - ° )  as Ix[ ~ oo 
(1.9) 

with some o > 1/2. Let y ( t )  ~ C ( ~ ,  8)  be the solution to (1.1) with y(0) = y0. Then there 
exists a velocity v ~ V such that for every R > 0 

lim([[~(q(t) + . ,  t) - Ov(')llR + [7t(q(t) + ", t) -- Ztv(')lR + 10ft) -- V]) = 0. (1.10) 
t ~ o o  
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Remarks. (i) Since the Hamiltonian system (1.1) is invariant under time-reversal, our 
results also hold for t --* -oo.  

(ii) The assumption (C) can be weakened to finite differentiability and to some decay 
of p(x) at infinity. 

In [1] we consider the system (1.1) with an additional external potential V(q) which 
confines the particle. In this case the system has stationary solutions of  the form 
(C~(q.)(x), q*, 0, 0) where VV(q*) = 0 and e~(q.)(x) = ~0(x - q*). I f  the set of  critical points 
for V(q) is discrete, then the solution y(t) converges locally to some stationary state in 
the sense that [[O(x, t) - %,)(x)llR + I (x, t)lR vanishes and q(t) --* 0 as t ~ oo. In 
Theorem 1.2 we prove the same kind of convergence provided we substitute c)(t) --* v and 
consider the fields close to the particle. 

Soliton-like asymptotics of  type (1.5) are proved in [5] for some translation invariant 
1D completely integrable equations and in [6] for some class of  1D first and second order 
nonlinear translation invariant wave equations. Soliton-like asymptotics are also proved 
for small perturbations of  soliton-like solutions to 2D and 3D nonlinear Schr6dinger 
equations with a potential term with power decay at infinity [7] and to ID nonlinear 
translation invariant Schr6dinger equations [8] 

2. C O N S E R V A T I O N  L A W S  A N D  R E L A X A T I O N  OF T H E  A C C E L E R A T I O N  

We consider the Cauchy problem for the Hamil tonian system (1.1), which we write as 

y(t) = F(y(t)), y(O) = yO, (2.1) 

where y(t) = (¢(t), q(t), rr(t),p(t)), yO = (¢o, qO, rcO, pO) ~ ~ and f o r y  = (4~(x), q, zr(x),p) e 
we denote 

F(y) = (~r(x),p/(l + p2)l/2, A4~(x) - p ( x -  q), l d3xO(x) V p ( x -  q) ) . (2.2) 

All derivatives in (2.1) and (2.2) are understood in the sense of  distributions. To define 
what we mean by a solution y(t) ~ C(~, ~), we introduce first a suitable space of  test 
functions and of distributions. 

Definition 2.1.5) denotes the space D • ~3 ~) ~3, where D = C~°(~ 3) is the space of  real 
test functions. 5)* denotes the dual space D* O R 3 03 D* ~ ~3, where D* is the space of 
real distributions on ~3. The pairing between 5)* and 5) is written as ( . ,  .). 

Note that F(y) ~ 5)* for y e ~. 

Definition 2.2. y(t) ~ C(~, 6) is said to be a solution to equation (2.1), equivalently to the 
system (1.1), iff for all t ~ ~ and for every w ~ 5) 

I 
t 

(y(t) ,  w) - (y(0), w) = ds(F(y(s)), w). 
0 

(2.3) 
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The following lemma states existence and some properties of  the solution to the Cauchy 
problem (2.1). 

LEMMA 2.3. Let (C) hold. Then 
(i) For every yO e 8 the Cauchy problem (2.1) has a unique solution y( t )  e C([R, 8). 

(ii) For every t e [R the map w t: Yo ~ y( t )  is continuous on 8. 
(iii) The energy and total momentum are conserved, i.e. for every t e 

h(y(t))  = h (y  °) and P(y( t ) )  = p(yO). (2.4) 

Proof .  We refer to [1, Lemma 2.1] where all items are proved except for total 
momentum conservation. For smooth initial data ~0, re0 of  compact support momentum 
conservation follows by partial integration. This conservation extends to all of  8 by (ii) 
and because smooth initial data of  compact support are dense in D 1'2 ® L 2. • 

We restate the relaxation of  the acceleration [1]. 

PROPOSITION 2.4. Let all assumptions of Theorem 1.2 be fulfilled. Then 

lim O(t) = 0. (2.5) 
t ~ o O  

Proof .  The system (1.1) is identical to the system (2) of  [1] with V(q) - O. The zero 
potential satisfies the condition (Pw) from the remark at the end of  [1, Section 4]. Thus the 
convergence follows from [1, Lemma 4.1]. 

3. CANONICAL TRANSFORMATION AND REDUCED SYSTEM 

Since the total momentum is conserved, it is natural to use P as a new coordinate. To 
maintain the symplectic structure we have to canonically complete the coordinate 
transformation. 

Defini t ion 3.1. Let T: 8 ~ 8 be defined by 

T: y = (th, q, re, p) ~ Y = (~(x), Q, FI(x), P)  = (cb(q + x),  q, re(q + x), P(¢,  q, re, p)),  

(3.1) 
where P(~, q, re,p) is the total momentum (1.6). 

Remarks .  (i) T is continuous on 8 and Fr6chet differentiable at points y = (q~, q, re, p) 
with sufficiently smooth ~b(x), re(x), but it is not everywhere differentiable. 

(ii) In the T-coordinates the solitons (1.8) are stationary except for the coordinate Q, 

TyAt )  = (¢4x), vt + q, ~Ax) ,  P(v))  (3.2) 

with P(v)  the total momentum of the soliton as defined in (1.7). 
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Let H(Y) = h(T-IY) for Y = (~, Q, H, P) e g. Then 

H(O, Q, H, P)  = Hp(O,  H) 

= h ( ~ ( x -  Q),Q,l-I(x- Q),P + l d3xH(x) V~(x) ) 

1 s ( 1 llv~(x)lZ+~(x)p(x)) = d x  51n(x)l  + 

"~ 2~1/2 
+ (l + (P+ Id3x[I(x) V~(x))) • 

The functional H(Y) and h(y) are Fr6chet-differentiable on the phase space 8. 

PROPOSITION 3.2. Let Y(t)~ C(E, 8) be a solution to the system (1.1). Then Y(t)= 
Ty(t) ~ C(~, 8) is a solution to the Hamiltonian system 

~H 6H 
f - I = - - -  

~Sl-I ' 0~ ' 

OH OH 
O=~fi  ' /5- OQ' 

(3.3) 

understood in the sense of  distributions, compare with (2.3). 

Proof. The equations for ~ ,  l~I and Q can be checked by direct computation, while the 
one fo r /5  follows from Lemma 2.3. • 

Q is a cyclic coordinate. Hence the system (3.3) is equivalent to a reduced Hamiltonian 
system for • and H only, which can be written as 

_ ~Hp fI = (~Hp (3.4) 

For every P e ~3 the functional Hp is Fr6chet differentiable on the Hilbert space 
~: = D1, 2 @) L 2. 

PROPOSITION 3.3. For every v e V the functional Hvtv) has the lower bound 

Hp(v)(~, rI) - Hv(v)(~, n~) _> - -  1 - Iv[ (11~ - ~bvl[ z + I n  - ( 3 . 5 )  
2 

on the space 5:. Besides ((%, nv), Hp(v) has no other critical point in 5.  
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Proof .  Denoting • - Cv = ¢ a n d  H - no = n we have 

Hp(a(O o + ¢, n o + n) - He(o)(¢v, n~) 

= t' d3x(nv(x)n(x) + V¢o(x) • V¢(x) + p(x)¢(x)) 
J 

1 .( _2x 1/2 + ~ d3x(In(x)l 2 + IVO(x)I 2) + (1 + (P(v) + mE) 1/2 - (1 + p~) , (3.6) 

where Pv = P(v) + I d3x no(x) VOo(x) and 

m = i dax(n(x)V¢°(x) + no(x)VO(x) + n(x)V¢(x)) .  

Soliton-like solutions (1.3) satisfy 

n~(x) = - v "  V¢o(x), -Ano(x )  + p(x) = v • V0~(x). (3.7) 

Setting v = (1 + p~)-l/2po and inserting in the first integral o f  (3.6) we obtain 

Hp(o)(Ov + ¢ ,  no + n) - Hp(o)(¢v, no) 

1 
,t" d3x(In(X)12 + IVO(X)I2) q'- (l  q'- p2)-l/21'd3xn(x)p v ~)(X) 

2 ,. 

- (1 + p2)-l/2pu " m + (1 + (Pv + m)Z) 1/2 - (1 + p2)1/2. 

Since the expression in the third line is nonnegative,  the lower bound  (3.5) follows by 
using I(1 + p2)-l/2po[ = Ivl. 

If (O, H) e 5: is a critical point  for  Hp(o), then it satisfies 

0 = H(x) + (1 + p 2 ) - l / 2 p .  VO(X), 

0 = - A O ( x )  + p(x) - (1 + /~2)-1/2/~ . VH(x), 

wheref i  = P(v) + j d3x I-I(x) V~(x). This system coincides with the system (3.7) for  soliton- 
like solutions provided we set the velocity g = (1 + fi2)-1/2fi. Hence • = 0~, H = n~ and 
P(5) = P(v). Since P(v) = K(Ivl)v with ,¢(Ivl) -> 0 and IP(v)[ = K(Ivl)lvl is a mono tone  
increasing funct ion of  ]v[ e [0, 1[, as proved in Appendix A, we conclude that v = 5. • 

Remark .  Proposi t ion  3.2 is not  really needed for the p roo f  of  Theorem 1.2. However  
it shows directly that  (Co,no) is a critical point,  using (3.4) and (3.2), and suggests an 
investigation of  the stability through a lower bound  as in (3.5). In Appendix  B we sketch 
the derivat ion of  Propos i t ion  3.2 for  sufficiently smooth  solutions based only on the 
invariance o f  the symplectic structure.  We expect a similar proposi t ion to hold for other  
translat ion invariant systems similar to (1.1). 

4. ORBITAL STABILITY OF SOLITONS 

We follow [3] and deduce orbital  stability f rom the conservat ion o f  Hp together with its 
lower bound  (3.5). 



20 A. KOMECH and H. SPOHN 

PROPOSITIOI~ 4.1. Let us fix some v ~ V and q ~ •3. Let y(t) = (¢(t), q(t), n(t), p(t)) 
C(~,  8) be a solut ion to the system (1.1) with initial state y(0) = y0 = (C0, qO, lrO, pO) ~ 8 
and denote  

= 114,°(x) - ~ v ( x  - q) l l  + I n ° ( x )  - ~ v ( x  - q ) l  + IP ° - p o l .  (4.1) 

Then for  every e > 0 there exists a O(e) > 0 such that  

II~(q(t) + x ,  t) - ~o(x)ll + lTr(q(t) + x ,  t) - n,(x) I + Ip(t) - p v l  <_e for  all t 6 ~ (4.2) 

provided ~ _< O(e). 

Proof. We denote  by p0 the total  m o m e n t u m  of  the considered solut ion y(t). There  
exists a soli ton-like solut ion (1.8) cor responding  to some 6 ~ V and having the same total  
m o m e n t u m  P(tT) = p0. Then  (4.1) implies IP  ° - P ( v ) l  = I P ( ~ )  - e ( v ) l  = o ( , ~ ) ,  hence 
also I o - vl --  o O )  and 

II*°(x) - O ~ ( x -  q)ll + In°(x) - n~(x - q)l + Ip ° - p ~ l  = o 0 ) .  

There fore  denot ing ( 0  °, QO, H o, pO) = TyO we have 

Hp(~)(O °, H °) - Hp(~,)($~, p~) = 0((~). (4.3) 

Tota l  m o m e n t u m  and energy conserva t ion  (2.4) imply for  (Off),  Q(t),  H(t ) ,  p0) = Ty(t) 

He(v)(O(t), H(t))  = H(Ty(t)) = Hp(~)(O °, H °) for  t ~ ~. 

Hence  (4.3) and (3.5) with O instead of  v imply 

Ilo(t)  - ~vll + I n ( t )  - n~l = 0(,~) (4.4) 

un i fo rmly  in t ~ JR. On the other  hand,  total  m o m e n t u m  conserva t ion  implies 

p(t) = P(6) + (H( t ) ,  VO(t)) for  t ~ JR. 

There fo re  (4.4) leads to 

Ip(t) - p~[ = 0(~)  (4.5) 

un i fo rmly  in t E R. Finally (4.4), (4.5) together  imply (4.2) because l0 - vl = 0(~) .  • 

5. S O L I T O N - L I K E  A S Y M P T O T I C S  

We combine  orbi ta l  stability and relaxat ion of  the accelerat ion to p rove  T h e o r e m  1.2. 

PROPOSITIOIq 5.1. Let  the assumpt ions  o f  T h e o r e m  1.2 be fulfilled. Then  for  every 
> 0 there exist a t ,  = t,(t~) and a solut ion y,( t )  = (4~,(x. t), q,(t),  n,(x.  t ) ,p ,( t ) )  

C( [ t , ,  oo), 8) to the system (1.1) such that  
(i) y,( t )  coincides with y(t) in some future  cone. 

q,(t) = q(t) for  t _> t , ,  (5.1) 

q~,(x, t) = ~(x, t) for  Ix - q(t , ) l  < t - t , .  (5.2) 

(ii) y , ( t , )  is close to y~,q(t,)  with some v = v(8) e V and q = q(8) e R 3, 

[ ly , ( t , )  - yv.q~V,)ll~ -< dL (5.3) 
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This proposi t ion leads to the following. 

P r o o f  o f  Theorem 1.2. Propos i t ion  4.1 and (5.3) imply that for  every e > 0 there exists 
a fi > 0 such that 

I[¢,(q,(t) + x, t) - ¢o(x)][ + [n , (q , ( t )  + x, t) - no(x)[ + [c),(t) - v[ _< e for  t > t , .  

Therefore ,  using (5.1) and (5.2), for  every R > 0 

ll4~(q(t) + x ,  t) - Oo(x)lln + [n (q ( t )  + x ,  t) - n, ,(X)lg + 10(t) -- vl 

= I]0,(q,( t )  + x, t) - ¢~(x)l[R + [zr ,(q,( t)  + x, t) - n~(X)[R + [q,(t)  -- V[ --< e, 

Since e > 0 is arbi trary,  we conclude (1.10). • 

Proo f  o f  Proposition 5.1. The Ki rchhof f  formula asserts that 

¢(x, t) = Or(X, t) + Co(X, t) for  [x - qOl < t - RR, 

where 

" day 
4~,(x, t) = - - - 4nix 5 Yl p(y  q(t - Ix Yl)), 

' ~l'SAx) 0 ( 1 ~t" dZYq~°(Y)) " q~o(X, t) = ~ dEy n°(Y) + ~ 4 ~  s,(x) 

By (2.5) for  every e > 0 there exists t~ such that 

10(t)l ~ e for  t ~ t~ and 

Let  us define 

to,~ = t~ + Rp, tl, e = to, ~ + Rp, 

Then we modi fy  q(t) by 

t ~  a s e  ~ 0. 

t2,~ = t~,, + 2Rp/(1 - ql)- 

t > t . + R .  

(5.4) 

(5 .5 )  

(5.6) 

(5.7) 

( q ( t )  for  t _> to.t, 
qe(t) (5 .8 )  ) 

(. q~ + v~(t - to,e) for  t < to,t, 

where q, = q(to.~) and v~ = O(to,~). Then q~(t) ~ CI(~)  and (5.7) implies that 

/0,(t)l -< e for  all t e ~. (5.9) 

Let us modi fy  the initial values ~°(x) ~ D l'z, n°(x) ~ L z by cutting o f f  a large ball with the 
center at the point  q~. 

LEMMA 5.2. For  every e > 0 there exist ~(x)° ~ D l'z, nZ~(x) ~ L 2 such that  

f I O  °(x) f ° r l x - q E l > t ~ ,  o qS°(x)' n°(x) = (5.10) 
0,(x)  = ( 0 ,  for  I x -  q~l < te - 1, 

and moreover ,  

I1~,°11 + In°l --, 0 as e ---, 0. (5.11) 
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P r o o f .  Since ~o e DI ,2  and no ~ L 2 we have 

l d3x ( lV¢° (x ) lZ  + [n°(x)[ z) ~ 0 a s e  ---, O, 
Ix-qc I > t e -  1 

because o f  t, ~ oo and Iq~l -- O ( q l  • tA  where 0 < ql < 1. • 

Further ,  let us define the corresponding modif ica t ion ~,(x,  t) for  the solution (5.4), 

ck,(x, t)  = Ckr.~(X, t)  + 4~O.~(X, t)  for  x e ~3 and t > 0, (5.12) 

where 
~ dSy 

~r. , (X,  t) = -- 4ZrlX -- y[ p ( y  -- q , ( t  -- IX -- y[)), (5.13) 

a 1 d y ~ , ( y )  . (5.14) 1 d2yn°(Y) + ~ ~ -  s,(x) ~o,AX, t) = ~ s,(~) 

Then ~, (x, t) is a solution to the wave equat ion 

~'~(x, t) = A¢, (x ,  t) - p ( x  - q~(t))  for  t > 0. (5.15) 

By (5.13), (5.5) and (5.8) we have 

~ r , e ( X ,  t )  = ¢~r(X, t )  

f~r,e(X, t)  = Ov~(X - vet  - q~) 

for  Ix - qe[ < t - t l ,e ,  

for  Ix - q~l > t - t , .  

(5.16) 

( 5 . 1 7 )  

Now, let us fix T > 0. Then [q~(t) - v~[ = 0(e) un i formly  in t~ _< t _< t~ + T due to 
(5.9). Therefore  (5.13) and (5.17) imply 

sup (14~r,~ - ~v~,q,l + [V~kr,  e - -  V~v~.qt[ q- I~r,~ -- ~o~,q,[) = tg(e), (5.18) 
x ~ IR3,0 < t - t e  < T 

where we denote  dpv,q(X, t)  = 4~v(X - vt  - q) .  On the other  hand (5.10) and (5.6), (5.14) 
imply 

~bo,~(x, t) = q~o(X, t) for  Ix - q~l < t - t~. (5.19) 

In addit ion,  by conservat ion o f  energy for  the solution ~0.~(x, t) o f  the free wave 
equat ion and by (5.11) we have 

su~(ll~o,A',  t)ll + I~o,A' ,  t)l) --' 0 as e -~ 0. (5.20) 

Finally, we define 

y . ( t )  = (dpe(',  t ) ,  q ( t ) ,  Jp~(', t ) , p ( t ) )  for  t > t .  = t2. ~. (5.21) 

It is easy to check that  the time t .  and the funct ion y . ( t )  for  t > t .  satisfy all require- 
ments o f  Proposi t ion  5.1 with v ( 0 )  = v~ a n d  q(O) = q~ provided one chooses e > 0 
sufficiently small. Firstly, y . ( t )  ~ C([ t . ,  ~ ) ,  8) is a solution to the system (1.1) for  t > t . .  
Indeed, (5.16), (5.19) and (5.4), (5.12) imply for  large enough tl , ,  

4~(x, t) = 4~(x, t) for  Ix - q~l < t - t l , , .  (5.22) 
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Therefore (5.8) implies that y , ( t )  together with y ( t )  is a solution to the system (1.1) in the 
region Ix - q,l  < t - t l ,  e .  On the other hand for Ix - q,l  > t - i t ,  e and t > t2. e we have 
p ( x  - q ( t ) )  = 0 and q~(t)  = q ( t ) ,  hence y . ( t )  is a solution to the system (1.1) also in this 
region due to (5.15). Secondly, (5.2) and (5.1) follow from (5.22) and (5.8), and (5.3) 
follows from (5.21) and (5.12) due to (5.18) and (5.20). • 
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A P P E N D I X  A 

SOLITON--LIKE SOL UTIONS 

1. For every v e V the function @v in the soliton-like solution (1.3), (1.8) is given by equation (1.4). 

Proof. The system (3.7) for a soliton-like solution reads (v • V ) 2 q ~ v ( X )  : AdPv(X ) + p(x), which through 
Fourier transform becomes 

~(k) = ~(k)/(~ - (v • k)Z). • (AI) 

2. For the total momentim P(v) of the soliton-like solution (1.8) we have P(v) = x(lvl)v with x(lvl) -> 0 and 
IP(v) l  = x ( I v l ) l v l  is a monotone increasing function of Ivt e [0, 1[. 

Proof. Parseval identity and (A1) imply 

P(v) = p. + t d3x v • VCJx) 74~o(x) 

v I" (v.  k)fi(k)k~(k) 
= ~ + (2n) -3 d 3 k ~ - ~ v ,  k~-Sj- f .  

Hence P(v) = x(lvl)v with x(Ivl) -> 0 and for v ~ 0 

Ivl ] l I(v. k),5(k) 12 

A P P E N D I X  B 

INVAR1ANCE OF SYMPLECTIC STRUCTURE 

The canonical equivalent of the Hamiltonian systems (1.1) and (3.3) can be seen from the Lagrangian 
viewpoint. We remain at the formal level. For a complete mathematical justification we would have to develop 
some theory of infinite dimensional Hamiltonian systems which is beyond the scope of this paper. 
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By definition we have H(~,  Q, FI, P ) =  h(4~, q, n,p) with the arguments related through the canonical 
transformation T. To each Hamiltonian we associate a Lagrangian through the Legendre transformation 

~h Oh 
l(q~,q,(b, E1) = (lt ,~) + p" q - h(O,q, rqp), ~ = ~n' (l= ap ' 

5H OH 
L(~ ,Q,  do, Q)= ( I I ,~ )  + P . Q -  H(~,Q,  II, P), * = 5--H' Q=oP' 

These Legendre transforms are well defined because the Hamiltonian functionals are convex in the momenta. 
We claim the identity L(~,  Q, ~ ,  Q =/(~b, q, 4~, ~t). Clearly we have to check the invariance of  the canonical 
1-form, 

<11,~) + p .  Q = <n,~)  + p . o .  ( m )  

For this purpose we substitute 

H(x) = Ir(q + x), t~(x) = q~(q + x) + ~t • Vq~(q + x), 

= P - t' d3xq~ " VO, Q = q. P 

The left-hand side of  (B1) becomes then 

(tt(q + x), (J(q + x) + q .  V~b(q + x)) + (p  - (zr(x), Vth(x))) • q = (n, ~) + p • q. 

Since I = L, the corresponding action functionals are identical when transformed by T. The dynamical 
trajectories are stationary points of  the respective action functionals. Therefore the two Hamiltonian systems 
are equivalent. 


