
MATHEMATICAL METHODS IN THE APPLIED SCIENCES
Math. Meth. Appl. Sci. 2006; 29:1147–1185
Published online 20 February 2006 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/mma.719
MOS subject classi�cation: 35Q 60; 78A 45

Limiting Amplitude principle in the scattering
by wedges

A. I. Komech1;∗;†;§ and A. E. Merzon2;‡

1Faculty of Mathematics; Vienna University; A-1090 Vienna; Austria
2Institute of Physics and Mathematics; University of Michoac�an of San Nicol�as de Hidalgo; ed. C-3;

Ciudad Universitaria; 58090; Morelia; Michoac�an; M�exico

Communicated by F.-O. Speck

SUMMARY

We consider a nonstationary scattering of plane waves by a wedge. We prove that the Sommerfeld-
type integral, constructed in (Math. Meth. Appl. Sci. 2005; 28:147–183; Proc. Int. Seminar ‘Day
on Di�raction-2003’, University of St. Petersburg, 2003; 151–162), is a classical smooth solution
from a functional space, and prove the Limiting Amplitude principle. Copyright ? 2006 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

This paper is a continuation of our paper [1], but the exposition is independent. In Ref-
erence [1], we have proved the Sommerfeld–Malyuzhinets-type integral representation and
uniqueness of the solution of a nonstationary scattering problem by a wedge using the method
of the complex characteristics [2].
Here we give the next steps in our program of mathematical foundation of scattering

by wedges [1]. Namely, we prove the existence of the solution and the Limiting
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1148 A. I. KOMECH AND A. E. MERZON

Amplitude principle. We show that the Sommerfeld–Malyuzhinets-type integral, obtained in
References [1,3], belongs to an appropriate functional space, and the Limiting Amplitude
principle holds.
For the corresponding stationary di�raction problem, the integral representation of the

solution appeared �rst in the Sommerfeld paper [4], for the di�raction by a half-plane,
and in Malyuzhinets paper [5] for a general angle (see also References [5–8] and a survey
[9]). However, its relations to the corresponding nonstationary problem has been never done
rigorously.
The explicit formulas for the scattering of the incident wave of the Heaviside type were

obtained in the papers [10,11]. This case is the particular case of the problem considered
in this paper when the frequency is zero, and the pro�le function is the Heaviside one.
The method [10,11] is based on the special ‘polar coordinates’ in xyt-space. The problem
also was considered in Reference [12], where the explicit formulas were obtained using the
method of the rami�ed solutions of the wave equations. The uniqueness and the relation with
the corresponding stationary di�raction problem have not been considered.
For the �rst time, the Limiting Amplitude principle has been considered in Reference [13]

for a concrete solution, without a detailed analysis of its smoothness and uniqueness. We
give a detailed analysis of the existence and uniqueness of a solution from an appropriate
functional class. The solution is smooth if the pro�le function is smooth. Furthermore, we
prove the Limiting Amplitude principle for the solution which is de�ned uniquely by its
features, and not by an explicit formula.
The paper concerns two-dimensional scattering of plane waves by a wedge

W := {y=(y1; y2) : y1 =� cos �; y2 =� sin �; �¿0; 06 �6�}
of an opening �∈ (0; �). We consider an incident plane wave uin(y; t) of the form

uin(y; t)= ei(k0·y−!0t)f(t − n0 · y) for t ∈R and y∈Q :=R2\W (1)

Here the frequency !0¿ 0 and the wave vector k0 ∈R2, !0 = |k0| and n0 = k0=!0, a · b stands
for the scalar product in R2. The pro�le f∈C∞(R), and for some �0¿0

f(s)=

{
0; s6 0

1; s¿ �0
(2)

Denote

n0 = (cos �; sin �) (3)

(see Figure 1).
We consider the case

max(0; � − �=2)¡�¡min(�=2; �) (4)

for example (see Figure 1). Physically, in this case the front of the incident wave uin is
identically zero on the wedge W at the moment t=0 and is re�ected by both sides of the
wedge for t¿0. Other cases can be considered similarly.

Remark 1.1
By symmetry, we can assume 0¡�¡�=2, hence 0¡�¡�=2.
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LIMITING AMPLITUDE PRINCIPLE 1149

Figure 1. Scattering on a wedge.

We consider the following wave problem in Q with the Dirichlet boundary conditions:{
u(y; t)=0; y∈Q

u(y; t)=0; y∈ @Q

∣∣∣∣∣ t ∈R (5)

where = @2t − �. We will state the result also for the case of the Neumann boundary
conditions. We include the incident wave uin in the statement of the problem through the
initial condition

u(y; t)= uin(y; t); y∈Q; t¡0 (6)

It is possible since uin(y; t) is a solution to problem (5) for t¡0: the boundary conditions
in (5) hold for t¡0 since uin is then identically zero in a neighbourhood of @Q. Equivalently,
u(y; t) is the solution of the Cauchy problem for system (5) with the initial conditions{

u(0; y)= uin(0; y)

u̇(0; y)= u̇in(0; y)

∣∣∣∣∣ y∈Q (7)

Let us denote the scattered and di�racted waves by

us(y; t) := u(y; t)− uin(y; t); ud(y; t) := us(y; t)− ur(y; t) (8)

The re�ected wave ur(y; t) is given by

ur(y; t) :=

⎧⎪⎨
⎪⎩

ur;1(�; �; t); �6�6�1
0; �1¡�¡�2
ur;2(�; �; t); �26�62�

(9)

where y=�ei�,

�1 := 2� − �; �2 = 2� − � (10)
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1150 A. I. KOMECH AND A. E. MERZON

(see Figure 1), and

ur;1(�; �; t)= − ei(k1·y−!0t)f(t − n1 · y); ur;2(�; �; t)= − ei(k2·y−!0t)f(t − n2 · y)
k1 =!0n1; n1 = (cos �1; sin �1); k2 =!0n2; n2 = (cos �2; sin �2) (11)

(cf. with n0 in (3)).
In the present paper, we prove the existence of the nonstationary problem (5), (6) in

the functional space Ej;N . We will prove that this solution (total �eld u) is represented as
the sum of the incident wave uin, re�ected wave ur and the di�racted wave ud. We �nd the
Sommerfeld–Malyuzhinets-type representation for the di�racted wave ud. This representation
allows us to prove that, the total �eld u belongs to an appropriate functional class. We use
the representation for the proof the Limiting Amplitude principle. The comments on previous
works in the directions can be found in Reference [1].
The plan of our paper is the following. In Section 2, we give the main de�nitions and

formulate the main result. In Section 3, we reduce the problem to the stationary one. In
Sections 4 and 5, we describe some important properties of the Sommerfeld–Malyuzhinets-
type integrals. In Section 6, we solve the stationary di�raction problem with parameter. In
Sections 7–9, we prove the estimates for densities of the stationary di�racted wave. In
Section 10, we solve the nonstationary scattering problem.
In Section 11, we give a Sommerfeld–Malyuzhinets-type explicit expression for the

di�racted wave. In Sections 12–14, we prove that the obtained solution belongs to the func-
tional space Ej;N and we �nd the exact values of j and N . In Section 15, we prove the
Limiting Amplitude principle.
In the appendix, we collect well known estimates of the Cauchy-type oscillatory integrals.

2. NOTATIONS AND MAIN RESULT

2.1. Notations

1. Let us denote C+ := {!∈C : Im!¿0}. Let us consider a function u(y; t)∈C(R+ ×Q)
s.t. |u(y; t)|6C(1 + |t|)N for some C;N and u(y; t)=0; t¡T (y). (Note that T (y)= n0 · y
by (1), (2) for u= uin.) De�ne the Fourier–Laplace transform

û(y;!) :=Ft→![u](!) :=
∫ ∞

−∞
ei!tu(x; t) dt; Im!¿0

Obviously, û(y;!) is an analytic function in !∈C+ for each y∈Q.
2. We denote

ĝ(!) := f̂(! − !0)=
∫ ∞

0
ei(!−!0)sf(s) ds (12)

Since f(s) satis�es (2), we have f′(s)∈C∞
0 (R); suppf′ ⊂ [0; �0] and

ĝ(!)=
g1(!)
! − !0

; !∈C+ (13)
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LIMITING AMPLITUDE PRINCIPLE 1151

where

ĝ1(!)= iĥ(! − !0); !∈C (14)

with h(s) :=f′(s).

De�nition 2.1
For an open set V ⊂Cn we denote by H (V ) the set of analytic functions in V .

By the Paley–Wiener theorem

ĝ1 ∈H (C) (15)

Moreover, ĝ∈ S(R), and for any k ∈N; N¿0

ĝ(k)1 (!)|6Ck;N (1 + |!|)−N ; !∈C+ (16)

Denote by g1(t) the inverse Fourier–Laplace transform of the function ĝ1(!). Then (14)
implies that

g1(t)= ie
−i!0tf′(t); t ∈R (17)

and (2) implies that

supp g1 ⊂ [0; �0] (18)

3. Denote by C the Sommerfeld-type contour

C=C1 ∪C2

where C1 = {�1− i�=2 : �1¿1} ∪ {1+ i�2 : −5=2�6�26−�=2} ∪ {�1− 5=2�i : �1¿1} and C2
is the symmetric to C1 with respect to −3�=2 (see Figure 2). We choose the orientation of
the contours C1;2 counterclock wise.
Let us denote (see Reference [1])

��−
1 = {w∈C : Im(−i! sinhw)=0; 0∈ ��−

1 }

It is easy to check that for !2¿0

��−
1 =

{
w=(w1 + iw2) : w1;2 ∈R; w2 = arctan

(
!1
!2
tanhw1

)}

with the gauge arctan 0=0. Also, we de�ne the contours

�(	)≡ ��−
1 + i	

for 	∈R
4. We denote by Q̇=Q\0; {y} := |y|=(1+ |y|); y∈R2 or y∈R. Let us �x some j¿0 and

N¿0.

Copyright ? 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1147–1185
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Figure 2. Sommerfeld–Malyuzhinets-type contour.

De�nition 2.2

(i) Ej is the space of functions u(y)∈C(Q)∩C1(Q̇) with �nite norm

|u|j= sup
y∈Q
(|u(y)|+ {y}j|∇u(y)|)¡∞

(ii) Ej;N is the space of functions u(y; t)∈C(Q×R+), with ∇u(y; t)∈C(Q̇×R+) with
�nite norm

‖u‖j;N := sup
t¿0

sup
y∈Q
(|u(y; t)|+ (1 + t)−N{y}j|∇yu(y; t)|)¡∞ (19)

Note that for j¡1 the functions u∈Ej have the �nite local energy∫
x∈Q:|x|¡R

(|∇u(y)|2 + |u(y)|2) dy¡∞; R¿0

Remark 2.3
Obviously, if u(y; t)∈Ej;N , then û(y;!)∈Ej for !∈C+.
5. We introduce the Sommerfeld–Malyuzhinets integral kernel:

H (�)=H (�; �;�) := coth(q(�+ �i=2− i�))− coth(q(� − 3�i=2 + i�)); �∈C (20)
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LIMITING AMPLITUDE PRINCIPLE 1153

where

q :=
�
2�

; � :=2� − � (21)

For !∈C+ let us denote by S(�; �; !) the Sommerfeld–Malyuzhinets-type integral

S(�; �; !) :=
i
4�

∫
C

e−!� sinh �H (�+ i�) d�; �¿0; �6�62� (22)

which absolutely converges (see Section 4).

2.2. The main result

We have proved in Reference [1] the uniqueness of solution u(y; t)∈Ej;N of problem (5), (6),
with 0¡j¡1 and N¿0. Namely we proved that the solution (if exists) is given by

u(y; t)=F−1
!→t[û(�; �; !)]; �¿0; �¡�¡2� (23)

in the polar coordinates y=�ei�, where

û(�; �; !)= ĝ(!)S(�; �; !); !∈C+ (24)

Now let us de�ne the limiting amplitude A(�; �) by

A(�; �) :=
i
4�

∫
C

e−!0� sinh �H (�+ i�) d� (25)

The main result of this paper is the following.

Theorem 2.4

(i) Let the incident wave pro�le f(s) be a smooth function (see (2)). Then the function
u(y; t), de�ned by (23), belongs to the space C∞(Q̇×R)∩Ej; N with j=N =1−(�=�),
and is a solution to the scattering problem (5), (6).

(ii) The Limiting Amplitude principle holds: for any �0¿0

u(�; �; t)− e−i!0tA(�; �)→ 0; t → ∞ (26)

uniformly for �∈ [0; �0] and �∈ [�; 2�].

Remark 2.5
Similar results hold for the problem of type (5) with the Neumann boundary value condi-
tions. Proofs for this alternative problem can be done by the same methods. In this case the
density H (�) in expression (22) is replaced by

H (�)=Hn(�; �;�) := coth(q(�+ �i=2− i�)) + coth(q(� − 3�i=2 + i�)); �∈C

In this case, integral (22) absolutely converges for �¡�¡2�.

Copyright ? 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1147–1185



1154 A. I. KOMECH AND A. E. MERZON

3. FOURIER–LAPLACE TRANSFORM

Here we recall some notations from Reference [1]. Let us consider a solution u(y; t) to
problem (5), (6). We apply the Fourier–Laplace transform to Equation (5) and get the
Helmholtz stationary equation with a parameter. First, we reduce the problem to the zero
initial conditions to get the homogeneous Helmholtz equation. Namely, de�ne the scattered
wave by

us(y; t) := u(y; t)− uin(y; t); y∈Q; t ∈R (27)

where u(y; t) is a solution to problem (5), (6). Then (6) implies that

us(y; t)≡ 0; y∈Q; t60 (28)

Furthermore, us(y; t) is a solution to the problem

{
us = 0; y∈Q

us|@Q= − (uin)|@Q

∣∣∣∣∣ t ∈R (29)

Remark 3.1
Let us note that uin(y; t)∈E0;0. Therefore, the condition u(y; t)∈Ej;N is equivalent to
us(y; t)∈Ej;N .

Hence, we get obviously from (28)

Lemma 3.2
The Fourier–Laplace transform ûs(y;!; ) is an analytic function in !∈C+ with values in Ej.

In particular, ûs(y;!) is a continuous function of (y;!)∈Q×C+. Let us apply the Fourier–
Laplace transform in time to problem (29). First, we write the Fourier–Laplace transform of
the function uin given by (1):

ûin(y;!)= ĝ(!)ei!� cos(�−�) (30)

Let us split @Q=Q1 ∪Q2 where Q1 := {y=(y1; y2)∈ @Q : y2 = 0} and Q2 := {y=(y1; y2)∈
@Q : y1 =� cos�; y2 =� sin �}; �¿0. Note that Q1 is given by �=0 and y1 =�. Similarly,
Q2 is given by �=�=2� − � and y2 = − � sin �. Hence, the Dirichlet data of ûin(·; !) are
equal to

ûin(y;!)= ĝ(!)ei!y1 cos �; y∈Q1; ûin(y;!)= ĝ(!)ei!y2 cos(�+�)= sin �; y∈Q2

where ĝ(!) is de�ned by (12). Therefore the scattering problem (29) is reduced to the
following stationary problem.

Copyright ? 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1147–1185
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Lemma 3.3
Let us(y; t)∈Ej;N be a solution to problem (29) with j; N¿0. Then

(i) The function ûs(y;!) is a solution to the boundary value problem with a parameter
!∈C+, ⎧⎪⎨

⎪⎩
(−�− !2)ûs(y;!)=0; y∈Q

ûs(y;!)= − ĝ(!)ei!y1 cos �; y∈Q1
ûs(y;!)= − ĝ(!)e−i!y2[cos(�+�)= sin �]; y∈Q2

(31)

(ii) The function ûs(·; !)∈Ej for !∈C+.
So, the nonstationary problem (29) is reduced to the stationary one, (31), with parameter

!∈C+.

4. ON SOMMERFELD–MALYUZHINETS INTEGRALS

Let us examine the convergence of integral (22) and its derivatives in ! and �; �. First, let
us prove the exponential decay of the function H . The poles of the function H from (20) are
given by

�′
k = − i�=2 + i� − 2i�k; �′′

k =3=2�i− i� − 2i�k; k ∈Z (32)

For 
¿0 denote C
 := {�∈C : |� − �k |¿
; ∀k ∈Z}.
Lemma 4.1
For any 
¿0 the estimate holds

|H (�; �;�)|6C
e−(�=�)|Re �|; �∈C
 (33)

Proof
This follows from the representation of (29) in the form

H (�; �;�)=
sinh[iq(2� − �)]

sinh[q(�+ i�=2− i�)] sinh[q(� − 3=2�i + i�)]
and (21).

Further, let us consider ! :=!1 + i!2 with !1 ∈R and !2¿0 and �=�1 + i�2 ∈C with
�1;2 ∈R. Let us note that

|e−!� sinh �|=e−!1� sinh �1 cos �2+!2� cosh �1 sin �2

Hence, estimate (33) implies for every 
¿0,

|e−!� sinh �H (�+ i�; �;�)|6C
e−!1� sinh �1 cos �2+!2� cosh �1 sin �2−(�=�)|�1|; �∈C
 (34)

Denote � :=R+ ×R×C+.
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Figure 3. Contour C+.

Lemma 4.2

(i) Integral (22) converges absolutely and uniformly for (�; �; !)∈�, and can be rewritten
as follows:

S(�; �; !)=
i
4�

⎧⎪⎪⎨
⎪⎪⎩

∫
C+

e−!� sinh �H (�+ i�; �;�)d�; Re!¿0∫
C−
e−!� sinh �H (�+ i�; �;�)d�; Re!60

(35)

where C+ := (C1 + i�=4)∪ (−C1− 13�=4) and C− := (C1− i�=4)∪ (−C1− 11�=4) (see
Figure 3).

(ii) The function S(�; �; !) is continuous in �.
(iii) The function S(�; �; !) is analytic in !∈C+ and smooth in (�; �)∈ Q̇.
(iv) The function S(�; �; !)∈C∞(Q̇× (R\{0})).

Proof

(i) For large �=�1 + i�2 ∈C we have either �=�1−�i=2, or �=�1−5�i=2 with �1 ∈R.
Then �2 = − �=2 or �2 = − 5�=2, so cos�2 = 0 and sin �2 = − 1. Therefore, estimate
(34) implies that

|e−!� sinh �H (�+ i�; �;�)|6Ce−!2� cosh �1−(�=�)|�1|; �∈C; �1¿1 (36)

Hence, for !2; �¿0 integral (22) converges absolutely and uniformly.

Copyright ? 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1147–1185
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Let us prove (35), for example, for !1 =Re!¿0. The regions of decay of the
exponent (34) are shown by dash in Figures 2 and 3. Hence, by the Cauchy Residue
theorem we can deform the contour C to C+ in integral (22). Then we obtain

S(�; �; !)=
i
4�

∫
C+

e−!� sinh �H (�+ i�; �;�)d�; �¿0; �∈ [�; 2�] (37)

(ii) The continuity of the function S follows by the Lebesgue Dominated Convergence
theorem from estimate (36) and the continuity of the integrand in (22).

(iii) For !2; �¿0 all the derivatives of integral (22) converge absolutely and uniformly
by (36).

(iv) For example, let us consider !1 =Re!¿0. Then S(�; �; !) admits representation
(37). Let �∈C1 + i�=4. For large �=�1 + i�2 we have either �=�1 − �i=4, or
�=�1 − 9�i=4 with �1 ∈R. Then �2 = − �=4 or �2 = − 9�=4, so cos�2 = 1=

√
2 and

sin �2 = − 1=√2. Therefore, estimate (34) implies that
|e−!� sinh �H (�+ i�; �;�)|6Ce−!1� cosh �1=

√
2−(�=�)|�1|; �∈C1; �1¿0

since !2¿0; �¿0. Similarly, the same estimate holds for �∈ − C1 − 13�=4. Hence,
the formal derivatives of integral (37) with respect to !; �; � converge absolutely
and uniformly.

5. STATIONARY PROBLEM

Let us consider the function û(�; �; !) de�ned by (24).

Lemma 5.1
For !∈C+, the function û(·; !)∈C∞(Q̇) is a classical solution to the stationary problem{

(−�− !2)û(y;!)=0; y∈ Q̇
û(·; !)|@Q=0

∣∣∣∣∣!∈C+ (38)

Proof
First we note that û(·; !)∈C∞(Q̇) for !∈C+ by Lemma 4.2(iii) and (24).
The Helmholtz equation in (38) follows by the di�erentiation of the Sommerfeld inte-

gral (22) after the change of variable � → �′ − i� since (� +!2)e−!� sinh(�−i�) = 0.
It remains to check that û satis�es the boundary conditions in (38). Substitute �=� and 2�

in (22), and use obvious identities

H (�+ i�)=H (−� − 3i�+ i�); H (�+ 2�i)=H (−� − i�)
Then the boundary conditions in (38) follow from the central symmetry of the contour C
with respect to the point −3�=2.
Let us de�ne

ûs(�; �; !)= û(�; �; !)− ûin(�; �; !) (39)

similarly to (27).

Copyright ? 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1147–1185
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Corollary 5.2
For !∈C+, the function

ûs(·; ·; !)∈C∞(Q̇)

and is a classical solution to the stationary problem (31).

Proof
The function −uin(�; �; !)= − ĝ(!)ei!� cos(�−�) ∈C∞(Q) and is a solution of problem (31)
for !∈C+. Therefore, the corollary follows from Lemma 5.1.

6. INCIDENT, REFLECTED AND DIFFRACTED WAVE

In Sections 7–14, we prove the statement (i) of Theorem 2.4 for the function u(y; t) de�ned
by (23): the function is a solution to problem (5), (6) and belongs to Ej;N with j; N de�ned
in Theorem 2.4. We will prove that u(�; �; t) is a smooth function and satis�es (5), (6) in
the classical sense (see Corollary 10.3). The inclusion will be proved in Sections 11–14.
We will deduce (6) from (28) by the Paley–Wiener theorem, using the estimates of

ûs(�; �; !) for !∈C+. Note that S(�;!; �) and û(�;!; �)= ûs(�;!; �) + ûin(�;!; �) are not
bounded for !∈C+ since uin(x; t) �≡ 0 for t¡0. Therefore, we have to extract �rst the incident
wave from integral (22).
The contour C in integral (22) crosses ‘bad zones’ between �(−�) and �(−2�), where

Re(! sinh �)¡0, and the exponent e−!� sinh � is growing for Im! → +∞. We will see that
this growing part of the integral just corresponds to the incident wave.
To extract the incident wave, we will split the function S(�; �; !), in (24), into three

summands

S=Sin +Sr +Sd (40)

Namely, let us de�ne the functions
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sd(�; �; !) :=
i
4�

∫
C0

e−!� sinh �H (�+ i�; �;�)d�; � �= �1;2

Sin(�; �; !) := ei!� cos(�−�)

Sr(�; �; !) :=

⎧⎪⎨
⎪⎩

−ei!� cos(�−�1); �6 �6 �1
0; �1¡�¡�2
−ei!� cos(�−�2); �26 �6 2�

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

! ∈ C+ (41)

From the de�nition of the contour C0 and estimate (33) it follows that the integral in (41)
converges absolutely for ! ∈ C+ and de�nes a continuous function of ! ∈ C+.
Let us note that

ûin(y;!)= ĝ(!)Sin(�; �; !) (42)
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by (30). Similarly, calculating the Fourier–Laplace transform of ur(�; �; t), de�ned by (9), we
obtain

ûr(y;!)=

⎧⎪⎨
⎪⎩

ûr;1(�; �; !); �6 �6 �1
0; �1¡�¡�2
ûr;2(�; �; !); �26 �6 2�

where

ûr;1(�; �; !)= − ei!� cos(�−�1)ĝ(!); ûr;2(�; �; !)= − ei!� cos(�−�2)ĝ(!) (43)

Therefore,

ûr(�; �; !)= ĝ(!)Sr(�; �; !) (44)

Remark 6.1
Let (40) hold. Then (39), (24) and (42) imply that

ûs = û − ûin = ĝ(S − Sin)= ĝSs (45)

where

Ss :=S − Sin =Sr +Sd (46)

Hence, (8) and (44) imply that

ûd = ûs − ûr = ĝ(Sr +Sd − Sr)= ĝSd

We will call S, Sd, Sin, Sr , Ss as densities of the total, di�racted, incident, re�ected
and di�racted waves, respectively. The incident part Sin(�; �; ·) is unbounded in C+ while
Sr(�; �; ·) and Sd(�; �; ·) are bounded in C+ as we will check in Sections 8 and 9. Hence,
ûs(�; �; ·) is bounded in C+.

7. PROOF OF THE SPLITTING

To prove splitting (40), we will deform the contour of integration C in (22). Namely, de�ne
the contour

C0 := �1 ∪ �2; �1 := {�1 − i�=2; �1 ∈R}; �2 := {�1 − 5i�=2; �1 ∈R} (47)

We direct the contour C0 such that the strip between �1 and �2 remains from the left (see
Figure 4).
We are going to deform the contour C in (22) to the contour C0. Then the integral also

changes and the di�erence is the sum of residues between C and C0 by the Cauchy Residue
theorem.
Let us determine the poles and residues. By (32), the poles of the function H (�+ i�; �;�)

as the function of � are

�′
k(�) := − i�=2 + i� − 2i�k − i�; �′′

k (�)=3i�=2− i� − 2i�k − i�; k ∈Z
We have to take into account the poles between �1 and �2, i.e. Im � ∈ [−5�=2;−�=2].
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Figure 4. Contour C0.

The pole �′
k(�) belongs to the interval [−5i�=2;−i�=2] only for k=0 since � ∈ [�; 2�]. So,

�′
0(�) := − i�

2
+ i� − i� ∈ [−5�=2 + i�;−i�=2 + i� − i�]; � ∈ [�; 2�] (48)

By (4), we get from (48) that

�′
0(�) ∈ [−5�=2;−i�=2]; � ∈ [�; 2�] (49)

As we will see further, the residue in this pole corresponds to the incident wave uin.
Similarly, the pole �′′

k (�) ∈ [−5i�=2;−i�=2] only for k=0 and 1. For k=0

�′′
0 (�)=3i�=2− i� − i� ∈ [−i�=2− i�;−i�=2]; �26 �6 2�

where �2 is de�ned in (10). Then Remark 1.1 implies that{
�′′
0 (�) ∈ [−5i�=2;−i�=2); � ∈ [�2; 2�]

�′′
0 (�2)= − i�=2

As we will see further the residue in this pole corresponds to the re�ected wave from the
face �=2� of the angle. For k=1

�′′
1 (�)= − 5i�=2 + 2i� − i� − i�∈ [−5i�=2 + i� − i�;−i�=2]; �6 �6 �1
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where �1 is de�ned in (10). Then Remark 1.1 implies that{
�′′
1 (�) ∈ (−5i�=2;−i�=2]; � ∈ [�; �1)

�′′
1 (�1)= − 5i�=2 (50)

As we will see further, this pole corresponds to the wave re�ected from the face �=�.

De�nition 7.1
Critical directions correspond to the angles �2 and �1 de�ned by (10). Critical rays l1, l2 are
the rays in Q, corresponding to the critical direction.

Estimate (33) implies that

[e−!� sinh �H (�+ i�; �;�)|6C(�)e−(�=�)|Re �|; !∈R; �∈C0; � ∈ [�; 2�]; � �= �1;2

Thus integral (41) converges for � �= �1, �2, and diverges for �= �1; �2 since the integrand
has the poles on the contour of integration C0 then. Hence, the integral is a discontinuous
function at �= �1 and �2.

Lemma 7.2

(i) Splitting (40) holds,

S(�; �; !)=Sin(�; �; !) +Sr(�; �; !) +Sd(�; �; !) (51)

(ii) For (�; �)∈Q with � �= �1;2 we have

Sd(�; �; ·)∈H (C+); Sd(�; �; !)∈C∞((Q̇\{l1 ∪ l2})× (R\0)) (52)

Proof
Let us deform the contour C to the contour C0 in integral (22). Using (49), (50) and �rst
formula from (41), we obtain by the Cauchy Residue theorem, that

S(�; �; !) =Sd(�; �; !)

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�
2�
res�=�′

0(�)
e−!� sinh �H (�+ i�; �;�) +

�
2�
res�=�′′

1 (�)

×e−!� sinh �H (�+ i�; �;�); �¡�¡�1
�
2�
res�=�′

0(�)
e−!� sinh � H (�+ i�; �;�); �1¡�¡2�

�
2�
res�=�′

0(�)
e−!� sinh �H (�+ i�; �;�) +

�
2�
res�=�′′

0 (�)

×e−!� sinh �H (�+ i�; �;�); �2¡�¡2�

Calculating the residues, we obtain (51). Statement (52) follows from (51), Lemma 4.2(iii),
(iv), and expressions (41) for Sin and Sr . The lemma is proved.

Remark 7.3
The proof shows that the incident wave corresponds to the residue at �=�′

0(�), and the
re�ected one to the residues at �=�′′

0 (�); �′′
1 (�).
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8. DENSITY OF THE DIFFRACTED WAVE

Remind that one of our aims is to prove (28). We will deduce it by the Paley–Wiener theorem
using the estimates for the density Ss of the di�racted wave (46). It su	ces to estimate the
density of the di�racted wave Sd that we prove in this section.
Let us note that the re�ected density Sr is obviously discontinuous at the critical directions

�= �1 and �2, while the incident density Sin and the total density S are smooth everywhere.
Therefore, the di�racted density Sd =S − Sr − Sin also is discontinuous at �= �1 and �2.

Theorem 8.1
The density Sd satis�es the following estimates:

|Sd(�; �; !)|6C; ! ∈ C+; �¿ 0; � ∈ [�; 2�]; � �= �1;2 (53)

Proof
The contour C0 in integral (41) consists of two parts �1 and �2. Hence it su	ces to prove
that the function

M1(�; �; !) :=
i
4�

∫
�1
e−!� sinh �H (�+ i�) d� (54)

satis�es estimate (53), since the function

M2(�; �; !) :=
i
4�

∫
�2
e−!� sinh �H (�+ i�) d�

can be bounded similarly. We will omit below the indices �, � in the expression for H.
So, we consider the function M1. For � ∈ �1 we have � := − i�=2 + �1 where �1 ∈R.

Substituting this expression in integral (54), and changing �1 by �, we obtain

M1(�; �; !) := − i
4�

∫
R
ei!� cosh �H (−i�=2 + �+ i�) d�

Inequality (33) implies that the integral is bounded if the function � 
−→ H (−i�=2 + �+ i�)
does not have any poles in �∈R for � ∈ [�; 2�]. In particular, this estimate holds for � such
that |� − �k |¿ 
, k=1; 2. On the other hand, the function H has a pole �=0 when �= �2.
Then the estimate depends on the derivative of the integrand. The di�erentiation gives the
factor !� and we do not obtain the uniform estimate of type (53). Therefore we need more
delicate methods. We use the method of the steepest descent [14,15]. Namely, we represent
the function M1 in the following form:

M1(�; �; !) :=M3(�; �; !) +M4(�; �; !)

where

M3(�; �; !) :=
∫

|�|6 1
ei!� cosh �H (−i�=2 + �+ i�) d�

M4(�; �; !) :=
∫

|�|¿ 1
ei!� cosh �H (−i�=2 + �+ i�) d�
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The function M4 satis�es an estimate of type (53) by (33) since

|ei!� cosh �|6 e−!2�; �∈R; !=!1 + i!2; !2¿ 0

It remains to prove an estimate of type (53) for the function M3. Representation (20) gives

H (−i�=2 + �+ i�)= coth q(�+ i� − i�)− coth q(−2�i + �+ i�+ i�); �∈R
By (4) the function coth q(�+i�− i�) is analytic for � ∈ [−1; 1]. Finally, it su	ces to prove
estimate (53) for the function

M5(�; �; !) :=
∫

|�|6 1
ei!� cosh � coth q(−2�i + �+ i�+ i�) d�

The integrand has a pole in the point �=0 for �= �2 (see (10)). Let us consider �= �2 + ”;
|”|6 ”0, where ”0¿0 is su	ciently small. Then we can rewrite the function M5 as the function
of �; ”; !:

M6(�; ”; !) :=M5(�; �2 + ”;!)=
∫

|�|6 1
ei!� cosh � coth q(�+ i”) d�

First, we represent M6 in the following form:

M6(�; ”; !) :=
∫

|�|6 1
ei!1� cosh �(e−!2� cosh � − e−!2�) coth q(�+ i”) d�

+e−!2�
∫

|�|6 1
ei!1� cosh � coth q(�+ i”) d�; !1 ∈R; !2¿ 0; �¿ 0

Note that

|(e−!2� cosh � − e−!2�) coth q(�+ i”)|6C(”0); !2¿ 0; � ∈ [−1; 1]
for |”|¡”0. Therefore, it su	ces to prove an estimate of type (53) for the function

M7(�; ”; !) :=
∫

|�|6 1
ei! � cosh � coth q(�+ i”) d�; !∈R; �¿ 0 (55)

Since coth q(� + i”) ∼ 1=q(� + i”) for |�|6 1, estimate (53) for M7 follows from
Proposition A.1(ii) of the appendix.

9. DERIVATIVES OF THE DENSITY OF DIFFRACTED WAVE

To prove Theorem 2.4(i) it is necessary to prove, in particular that u(y; t)∈C∞(Q̇×R).
We will prove the smoothness in Section 10, using the estimates for derivatives of the den-
sity Ss of the scattered wave. The estimates will be proved in the present section. Note
that the estimates do not follow directly from representations (23), (24) since the function
S(�; �; !) is growing exponentially in !∈C+. The growth is related to the density Sin of the
incident wave in (41). So, to bound the derivatives, we extract the incident wave as above.
We also extract the re�ected wave since the estimates for its derivatives are obvious.
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The following theorem will be proved similarly to Theorem 8.1. Let us denote by
N0 :=N∪ {0}.
Theorem 9.1
The density of the di�racted wave Sd has all derivatives and the estimates hold∣∣∣∣ @�

@��1@��2
Sd(�; �; !)

∣∣∣∣6C(
; �)(1 + |!|)|�|��2 ; ! ∈ C+\{0}

�¿ 
¿0; � ∈ [�; 2�]; � �= �1;2; C(
; �)¿0 (56)

for � := (�1; �2)∈N0 ×N0; |�|¿ 0.
Proof
I. The estimates for the case |�|=0 are proved in the previous section. First, we prove that
derivatives (56) exist for � �=0 and �nd an appropriate expression for them. In contrast to
the case �=0, the integrals which express the derivatives, do not converge absolutely on the
contour C0 for !∈R. Therefore, we have to modify the proof for the case � �=0.
Let us �x a function �(�)∈C∞(R) such that

�(�) :=

{
0; �6 1

�=4; �¿ 2

Let B± be the contours in C :B+ := {�1 ± i�(±�1)− i�=2; ±�1¿ 0}; B− := {�1 ∓ i�(±�1)−
i�=2;±�1¿ 0}. We direct the contour B+ similarly to �1 and the contour B± − 2�i similarly
to �2 (see Figure 5).
Then we obtain the modi�ed representation for Sd:

Sd(�; �; !)=
i
4�

∫
B± ∪ (B±−2�i)

e−!� sinh �H (�+ i�) d�

! ∈ C+; �¿ 0; �6 �6 2�; � �= �1;2 (57)

by the de�nition of Sd in (41), estimate (34), and the Cauchy theorem.
Here the sign ‘+’ is taken for Re!¿ 0, and the sign ‘−’ is taken for Re!¡0. Di�eren-

tiating formally the integral with respect to �, we obtain the absolutely convergent integral

@�1

@��1
Sd(�; �; !)=

i
4�
(−!)�1

∫
B± ∪ (B±−2�i)

e−!� sinh �H (�+ i�)(sinh �)�1 d� (58)

where the contour B+∪ (B+ − 2�i) is chosen for Re!¿ 0 and the contour B− ∪ (B− − 2�i)
is chosen for Re!¡0.
The contour of integration B+ ∪ (B+ − 2�i) lies in the shaded regions of the decay of

the exponent if Re!; Im!¿ 0 and ! �=0. Similarly, the contour of integration B− ∪
(B− − 2�i) lies in the shaded regions of the decay of the exponent if Re!¡0 and Im!¿0.
Therefore, integral (58) converges uniformly for �¿ 
¿0; � ∈ [0; 2�]; |� − �1;2|¿ 	¿0.
Hence, the formal di�erentiation (58) is justi�ed.
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Figure 5. Contours B+;B+ − 2�i. The case Re!¿ 0.

Now we can calculate derivatives (56). Namely, di�erentiating formally (57), we get that

@�

@��1@��2
Sd(�; �; !) =

(
1
i

)�2 i
4�
(−!)�1

∫
B± ∪ (B±−2�i)

e−!� sinh � @�2

@��2

×[H (�+ i�)(sinh �)�1 ] d�

Integrating by parts, we obtain

@�

@��1@��2
Sd(�; �; !) =

i�2+1

4�
(−!)|�|��2

∫
B± ∪ (B±−2�i)

e−!� sinh �H (�+ i�)

×(sinh �)�1 (cosh �)�2 d� (59)

II. Now let us prove the uniform estimate (56) using representation (59). First let us bound
derivative (58) for Re!¿ 0. The case Re!¡0 is analysed similarly. We will prove that∣∣∣∣

∫
B+

e−!� sinh � H (�+ i�)(sinh �)�1 (cosh �)�2 d�
∣∣∣∣

6C(
; �)
(
1 + |!|

|!|
)|�|−(�=�)

; �¿ 
; � ∈ [�; 2�]; � �= �1;2; C(
; �)¿0 (60)

if Re!; Im!¿ 0 and ! �=0.
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The same integral over the contour B+ − 2�i can be estimated similarly. These estimates
provide (56) by (59).
To prove (60), let us split the integral into two summands:

A1(�; �; !) :=
∫
B+ ∩ {|�1|¿ 2}

e−!� sinh �H (�+ i�)(sinh �)�1 (cosh �)�2 d�

and

A2(�; �; !) :=
∫
B+ ∩ {|�1|6 2}

e−!� sinh �H (�+ i�)(sinh �)�1 (cosh �)�2 d� (61)

Let us note that the function A2(�; �; !) is de�ned for � �= �1;2, because the poles of H (�+i�)
lie in imaginary axis for � ∈ [0; 2�].
Let us bound the integral

A+1 (�; �; !) :=
∫
B+ ∩ {�1¿ 2}

e−!� sinh �H (�+ i�)(sinh �)�1 (cosh �)�2 d�

The corresponding integral over B+ ∩ {�16 2} can be bounded similarly. The de�nition of
the contour B+ implies, that

A+1 (�; �; !) :=

(√
2
2

)�1+�2 ∫ ∞

2
e−!�(

√
2=2)(sinh �−i cosh �)H (� − i�=4 + i�)

× (sinh � − i cosh �)�1 (cosh � − i sinh �)�2 d�

Hence, estimate (33) implies that

|A+1 (�; �; !)|6C
∫ ∞

2
e−a1�(!1 sinh �+!2 cosh �)e(|�|−(�=�))� d�

6C1
∫ ∞

2
e−a2(!1+!2)�e�e(|�|−(�=�))� d�

for ! :=!1 + i!2, where a1; a2¿0.
Changing the variable � := (!1 +!2)�e� in this integral, and using (21) and the conditions

�¡�; |�|¿ 1, we get

|A+1 (�; �; !)|6C1
∫ ∞

(!1+!2)�e−2
e−�2�

(
�

(!1 +!2)�

)|�|−(�=�) d�
�
6C((!1 +!2)�)(�=�)−|�|

6C(
)|!|(�=�)−|�|; �¿ 
¿0 (62)

It remains to bound the function A2 from (61). The integral over B+ ∩ {16 |�|6 2} can be
estimated using (34):∣∣∣∣∣
∫
B+ ∩ {16 |�1|6 2}

e−!� sinh �H (�+ i�)(sinh �)�1 (cosh �)�2 d�

∣∣∣∣∣6C; �¿ 0; �∈ [�; 2�] (63)
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Therefore, it remains to bound the integral

A′
2(�; �; !) :=

∫
B+ ∩ {|�1|6 1}

e−!� sinh �H (�+ i�)(sinh �)�1 (cosh �)�2 d�

Let us check the estimate of type (63) for this integral. If � ∈ [�; 2�] is not close to �′′,
or �2¿0, estimate (63) for A′

2 is obvious, since the point −�i=2 is not a pole of the function
H (�+i�)(cosh �)�2 by (33) and (4). If � is close to �′′ and �2 = 0, the estimate of type (63)
for this integral is reduced to the estimate of the function M7 from (55).
Now estimate (60) follows from (62), and (63).

Corollary 9.2
Estimates (56) imply that

|∇Sd(�; �; !)|6C(
)(1 + |!|); ! ∈ C+\{0}; �¿ 
¿0; � ∈ [�; 2�]; � �= �1;2

for any 
¿0.

Corollary 9.3
The density Ss(�; �; !) of the scattered wave has all the derivatives with respect to �; �
in the region Q̇, and the estimates of type (56) hold for the derivatives. In particular, the
estimates hold for ∇Ss in this region.

Proof
Equation (46), Lemma 4.2(iv), and the de�nition of Sin in (41) imply that Ss(�; �; !)∈
C∞(Q̇× (R\{0})). On the other side, representation (46) Ss =Sr +Sd, Theorem 9.1 and
the de�nition of Sr in (41) imply estimates (56) for � �= �1;2. Hence, the estimates hold for
� ∈ [�; 2�].

10. THE SCATTERED WAVE

In this section, we start to prove Theorem 2.4(i) namely that function (23) is a smooth
solution to the scattering problem (5), (6).
Note that ûs = û − ûin by (45). We will study the function

us(�; �; t) :=F−1
!→t[ûs(�; �; !)] (64)

where

ûs = ĝ (!)Ss(�; �; !) (65)

by (45), and the function Ss is de�ned by (46). We will prove that us(�; �; t) satis�es
system (29), (28).
Note that by Lemma 4.2(ii), (iii), formula (46), and the de�nition of Sin in (41),

Ss ∈C(Q×R); Ss(·; ·; !)∈C∞(Q̇); !∈C+

First, we will study the function

w̃s(�; �; !) := ĝ1(!)Ss(�; �; !); !∈C+ (66)
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where ĝ1(!) is de�ned in (14). Let us de�ne the function

ws(�; �; t) :=F−1
!→t[w̃s(�; �; !)]; t ∈R (67)

Lemma 10.1
For all �¿ 0 and � ∈ [�; 2�] there exists the inverse Fourier–Laplace transform ws(�; �; t)=
F−1

!→t[w̃s] of the function w̃s(�; �; !), and

ws ∈C∞(Q̇×R) (68)

ws(�; �; t)∈C(Q×R); |ws(�; �; t)6C; t¿ 0 (69)

ws(�; �; t)=0; t¡0 (70)

Proof
Lemma 4.2(iii) shows that S(�; �; !) is analytic in !∈C+. Hence, the function Ss(�; �; ·)=
S(�; �; ·) − Sin(�; �; ·) is analytic in !∈C+, since Sin(�; �; !)= ei!� cos(�−�) is analytic
in !∈C.
Furthermore, the function Ss =Sd + Sr is bounded: namely, Sd is bounded by

Theorem 8.1, and Sr is bounded by (41) since

|ei!� cos(�−�1)|6C; �6 �6 �1;

|ei!� cos(�−�2)|6C; �26 �6 2�;

∣∣∣∣∣ ! ∈ C+; �¿ 0

The estimates hold since −�=2¡� − �l¡�=2; l=1; 2. Namely, � − �1¡� − �1¡0 and
� − �1 = � − �¿ − �=2 by (10) and (4). Similarly, (4) implies that �¡�=2. Therefore,
0¡� − �2¡�¡�=2, since �2 = 2� − � by (10).
Hence,

|Ss(�; �; !)|6C; ! ∈ C+

Therefore, w̃s(�; �; !) also is analytic in !∈C+ by (15) and

|w̃s(�; �; !)|6CN (1 + |!|)−N ; ! ∈ C+

by (16). Hence, ws satis�es (69), (70) by the Paley–Wiener theorem [16].
Moreover, Corollary 9.3, formula (66), and estimate (16) imply that

∣∣∣∣ @�

@��1@��2
!̃s(�; �; !)

∣∣∣∣ 6CN (
; �)��
2(1 + |!|)−N ; (�; �)∈ Q̇

!∈C+\{0}; �¿ 
¿0; � ∈ [0; 2�]; CN (
; �)¿0

Therefore, (68) holds.

In the following proposition we prove, in particular that the function us(�; �; t), de�ned
by (64), satis�es problem (29), (28).
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Proposition 10.2

(i) The function us(�; �; t) admits the following representation:

us(�; �; t)= − i
∫ t

0
ei!0(r−t) ws(�; �; �) d�; (�; �)∈Q; t ∈R (71)

Furthermore,

us ∈C∞(Q̇×R) (72)

and for (�; �)∈Q,

us(�; �; t)=0; t¡0 |us(�; �; t)|6C(1 + t); t¿ 0 (73)

(ii) us (�; �; t) is a solution of system (29) and initial conditions (28), and

us(�; �; t)∈C(Q×R) (74)

Proof

(i) From (65), (66), and (13) we get

ûs(�; �; !)=
w̃s(�; �; !)
! − !0 + i0

; !∈C+

Hence and from (67)

us(�; �; t)=F−1
!→t

[
1

! − !0 + i0

]
∗ ws(�; �; t); !∈R; (�; �)∈Q (75)

Since

F−1
!→t

[
1

! − !0 + i0

]
= − ie−i!0t
(t)

then (75), (70) imply that

us(�; �; t)= [−ie−i!0t
(t)] ∗ ws(�; �; t)

Hence, (71) follows.
Now, (72) follows from (68) and representation (71). At last, (73) follows from

(69), (70) and (71).
(ii) System (29) holds for us in the classical sense since ûs satis�es (31) by Corollary

5.2, and (72) holds. Identity (28) follows from (73). Finally, (74) follows from (71)
and (69).

Corollary 10.3
The function u(�; �; t) de�ned by (27) belongs to C∞(Q̇×R) and satis�es problem (5), (6).

Proof
The inclusion follows from (72), (27) and (1). Equations (5) and (6) for u follow from (27)
and (28), (29) for us.

Thus, we have proved that u is the classic solution to (7), (6).
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The next theorem will complete the proof of Theorem 2.4 (i). Sections 11–14 concern the
proof of the following theorem.

Theorem 10.4
The function us(�; �; t) belongs to the space E1−(�=�);1−(�=�).

Now Theorem 2.4(i) follows since Remark 3.1 implies that u∈E1−(�=�);1−(�=�).

Proof
De�nition 2.2, (74) and (72) imply that it su	ces to prove only estimates (19) for us. Note,
that it su	ces to prove the estimate for ud = us − ur outside the critical directions �= �1; �2
since the estimates for ur are trivial. Sections 11–14 concern the proof of estimates (19) for
the di�racted wave ud(y; t).

11. SOMMERFELD–MALYUZHINETS REPRESENTATION FOR THE
DIFFRACTED WAVE

In this section, we construct a convenient representation of the di�racted wave

ud :=F−1
!→t[ûd]

where
ûd := ĝSd (76)

The representation plays a crucial role in the proof of estimates (19) for us(�; �; t).

Lemma 11.1
The scattered wave us admits the following representation:

us(�; �; t)=

⎧⎪⎨
⎪⎩

ud(�; �; t) + ur;1(�; �; t); �6�6�1
ud(�; �; t); �16�6�2
ud(�; �; t) + ur;2(�; �; t); �26�62�

(77)

Proof
First, (65), the second identity of (46), (76), the de�nition of Sr in (41) imply that

ûs(�; �; !)=

⎧⎪⎨
⎪⎩

ud(�; �; !)− ĝ(!)ei!� cos(�−�1); �6�6�1
ud(�; �; !); �16�6�1
ud(�; �; !)− ĝ(!)ei!� cos(�−�2); �26�62�

Now representation (77) follows from (43).

Theorem 11.2
The di�racted wave ud admits the following integral representation:

ud(�; �; t)= i
e−i!0t

4�

∫
C0

e−!0� sinh �H (�+ i�)f(t − i� sinh �) d�; � �= �1;2 (78)

where H is de�ned by (20), the contour C0 is de�ned by (47) and f is de�ned by (2).
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Remark 11.3
Since for �∈C0 we have f(t − i� sinh �)=0 for �¿t, then

ud(�; �; ·)=0; �¿t (79)

Note, that this corresponds to the fact that the wave scattered by the vertex of the angle
attains the point (�; �) for the time �, if the velocity of the propagation of the signal is equal
to 1.

Proof of Theorem 11.2
From (76), (13) we have

ûd(�; �; !)=
1

! − !0
wd(�; �; !); (�; �)∈Q; !∈C+\{!0} (80)

where

wd(�; �; !) := ĝ1(!)Sd(�; �; !); !∈C+ (81)

From (15), (16), Lemma 7.2, Theorem 8.1 it follows that wd is analytic in C+, in�nitely
di�erentiable in R\{0} and admits the following estimate:

|wd(�; �; !)|6CN (1 + |!|)−N ; (�; �)∈Q; N ∈N
Hence, by the Paley–Wiener theorem we obtain that

suppwd(�; �; ·)⊂[0;∞)
where

wd(�; �; t) :=F−1
!→t[wd(�; �; !)] (82)

From (80) it follows that

ud(�; �; t)= − i[e−i!0t
(t)] ∗wd(�; �; t)] (83)

Let us calculate wd(�; �; t) for t¿0, and � �= �1; �2.
From (82), (81), the de�nition of Sd in (41), estimates (33), (16) and the Fubini theorem

we have for t¿0, � �= �1; �2

wd(�; �; t) =
i

8��

∫ ∞

−∞
e−i!t

[
ĝ1(!)

∫
C0

e−!� sinh �H (�+ i�) d�
]
d!

=
i

8��

∫
C0

H (�+ i�)
[∫ ∞

−∞
e−i!(t−i� sinh �)ĝ1(!) d!

]
d�

=
i
4�

∫
C0

H (�+ i�)g1(t − i� sinh �) d� (84)

where g1(t) :=F−1
!→t[ĝ1(!)]. Note that t − i� sinh �∈R for �∈C0 by de�nition (47) of the

contour C0. Furthermore,

suppwd(�; �; ·)⊂[�;+∞)
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since g1(t − i� sinh �)=0 for t6� by (18). Hence, (83) implies that

ud(�; �; t)=

⎧⎪⎨
⎪⎩

−ie−i!0t
∫ t

�
ei!0�wd(�; �; �) d�; �6t

0; �¿t

∣∣∣∣∣∣∣ (�; �)∈Q (85)

Substituting (84) in (85), using estimates (33), (16) and the Fubini theorem we obtain for
� �= �k , k=1; 2

ud(�; �; t)=
e−i!0t

4�

∫
C0

H (�+ i�)
[∫ t

�
ei!0sg1(s − i� sinh �) ds

]
d�; �6t (86)

Remark 11.4
The di�racted wave ud(�; �; t) vanishes for �¿t. This corresponds to the Huygens principle
for the scattering by the wedge.

Substituting (17) in (86), we obtain for � �= �k , k=1; 2,

ud(�; �; t)=
ie−i!0t

4�

∫
C0

e−!0� sinh �H (�+ i�)
[∫ t

�
f′(s − i� sinh �) ds

]
d�; �6t

Hence, by (2)

ud(�; �; t)= i
e−i!0t

4�

∫
C0

e−!0� sinh �H (�+ i�)f(t − i� sinh �) d�; �6t (87)

Therefore, representation (78) follows from (87), (85) and Remark 11.3. Theorem is
proved.

Let us denote

Z(�; �) := − H (−i�=2 + �+ i�) +H (−5i�=2 + �+ i�) (88)

and

h(�; �; t) :=f(t − � cosh �)ei!0� cosh �; �∈R (89)

Corollary 11.5
The function ud(�; �; t) admits the following representation for � �= �1; �2:

ud(�; �; t)=
ie−i!0t

4�

∫
R
Z(�; �)h(�; �; t) d� (90)

Proof
Note, that sinh �= − i cosh(Re�) for �∈C0. Making the change of variable Re� → �, we
obtain from (87), representation (90) for � �= �k , k=1; 2. The corollary is proved.
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12. ESTIMATES FOR DIFFRACTED WAVE

In this section, we start to prove estimates (19) for ud(�; �; t). In Sections 12 and 13, we
prove that ud is bounded. First, we prove that the function ud is bounded beyond the critical
directions. Let us choose 
¿0 su	ciently small.

Lemma 12.1
The function ud(�; �; t) satis�es the following estimate:

|ud(�; �; t)|6C
; t¿0 (91)

for |�k − �|¿
¿0; k=1; 2.

Proof
Estimate (33) and (88) imply that the function Z(�; �) satis�es the estimate of type (33) for
�∈R and |�−�k |¿
; k=1; 2. Hence, estimate (91) follows from de�nition (2) of the pro�le
function f, (89) and (90).

Next, let us prove (91) for � close to �1 or �2.

Theorem 12.2
For k=1; 2 the function ud(�; �; t) satis�es estimate (91) for |� − �k | ¡ 
 with some 
¿0.

Proof
Let us consider the case when

|� − �2| ¡ 
 (92)

for some 
¿0. The case |�−�1|¡
 is analysed similarly. The second term on the right-hand
side of (88) has not a pole for �∈R and � satisfying (92). Hence, (33) implies that

|H (−5i�=2 + �+ i�)|6C(
)e−(�=�)|Re �|; �∈R (93)

Representation (90) and (88) imply that

ud =
ie−i!0t

4�
(−vd;1 + vd;2)

where

vd;1(�; �; t) =
∫
R
H (−i�=2 + �+ i�)h(�; �; t) d� (94)

vd;2(�; �; t) =
∫
R
H (−5i�=2 + �+ i�)h(�; �; t) d� (95)

It su	ces to prove estimate (91) for the function vd;1, since the estimate for vd;2 follows
from (93) and (89).
Let us split integral (94) into two integrals: one for |�|¿1 and second for |�|61.

Estimate (91) for the function

v′′
d;1(�; �; t) :=

∫
|�|¿1

H (−i�=2 + �+ i�)h(�; �; t) d� (96)
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follows from the estimate of the function h(�; �; �) by (33) since |H (−i�=2 + � + i�|6
C1e−(�=�)Re � for |�|¿1. It remains to prove (91) for the function

v′
d;1(�; �; t) :=

∫
|�|61

H (−i�=2 + �+ i�)h(�; �; t) d� (97)

By de�nition (20) we have

v′
d;1(�; �; t)= − vm(�; �; t) + vb(�; �; t)

where

vb(�; �; t) =
∫

|�|61
coth q(�+ i� − i�)h(�; �; t) d�

vm(�; �; t) =
∫

|�|61
coth[q(−2�i + �+ i�+ i�)]h(�; �; t) d�

(98)

Condition (92) implies that

� = �2 + ”

where |”|¡
. Substituting in representations (98) we obtain

ṽb(�; ”; t) := vb(�; �2 + ”; t)=
∫

|�|61
coth[q(�+ i”+ 2�i− 2i�)]h(�; �; t) d�

ṽm(�; ”; t) := vm(�; �2 + ”; t)=
∫

|�|61
coth[q(�+ i”)]h(�; �; t) d�

(99)

Let us note that the function ṽb(�; ”; t) is regular in the point ”=0 since coth[q(� + 2�i −
2i� + i”)] does not have a pole for |�|61, if |”|6
=1=2. It follows since �¡�=2 by (4).
Therefore estimate (91) for the function ṽb follows since function h(�; �; t) is bounded.
In contrast, the function ṽm(�; ”; t) is singular at the point ”=0. Nevertheless we will show

that estimate (91) holds for this function too.

13. SINGULAR PART OF THE DIFFRACTED WAVE

First we bound function (99) in the simple case when the pro�le function f(s)≡
(s).
Then (89) implies that

ṽm(�; ”; t)=
∫

|�|6�0

coth[q(�+ i”)]ei!0� cosh � d�

where

�0 = min{1; �0} (100)

and �0 =�0(�; t)¿0 is de�ned by

t − � cosh �0 = 0 (101)
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Lemma 13.1
The function ṽm satis�es the following estimate:

|ṽm(�; ”; t)|6C; t¿�¿0; ” �=0
Proof
By (100) it su	ces to note that for any a∈ [0; 1] the integral

u1(�; ”; a) :=
∫

|�|6a

ei!0� cosh �

(�+ i”)
d�

is uniformly bounded with respect to its arguments (see Proposition A.1 in the appendix).
The lemma is proved.

Now we bound the function (99) for a general pro�le function f.

Theorem 13.2
The function ṽm(�; ”; t) satis�es the following estimate:

|ṽm(�; ”; t)|6C; �¿0; ” �=0 (102)

Proof
It su	ces to bound the function

r(�; ”; t)=
∫

|�|61

h(�; �; t)
�+ i”

d� (103)

with h de�ned in (89). We give the proof in Lemmas 13.3–13.5. By (89), it su	ces to
check (102) in the following three regions:

R1 := {(�; t) : 06�65�0; �6t}
R2 := {(�; t) : �¿5�0; t − 2�06�6t}
R3 := {(�; t) : 5�06�6t − 2�0}

where �0 is the same as in (2).
First, we prove the uniform estimate of this function in R1.

Lemma 13.3
The function r(·; ”; ·) is bounded in R1 uniformly in ” �=0:

|r(�; ”; t)|6C; (�; t)∈R1; ” �=0
Proof
Represent r in the form:

r(�; ”; t)=
∫

|�|61

h(�; �; t)− h(0; t; �)
�+ i”

d�+ h(0; t; �)
∫

|�|61

1
�+ i”

d�
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The second summand is bounded, because h(0; t; �) is bounded by (89) and the integral∣∣∣∣∣
∫

|�|61

1
�+ i”

d�

∣∣∣∣∣ = |arg(�+ i”)|1−1|6�; ” �=0

Let us consider the �rst summand. We have

h(�; �; t)− h(0; t; �)= h′
�(�̃; t; �)�

where |�̃|61. Calculating the derivative of h, we get that there exists C¿0:

|h(�; �; t)− h(0; t; �)|6C�; 06�6t; |�|61 (104)

It implies the estimate∣∣∣∣∣
∫

|�|61

h(�; �; t)− h(0; t; �)
�+ i”

d�

∣∣∣∣∣6C�
∫

|�|61

|�|
|�+ i”|d�6C1

since �65�0.

Now we prove the estimate r(�; ”; t) in R2 near the characteristic of the wave equation.

Lemma 13.4
The function r(·; ”; ·) is bounded in R2 uniformly in ” �=0:

|r(�; ”; t)|6C; (�; t)∈R2; ” �=0 (105)

Proof
We represent the function r as

r(�; ”; t) := r1(�; �; t) + r2(�; ”; t)

where

r1(�; ”; t) :=
∫

|�|61

ei!0� cosh �

�+ i”
�f(�; �; t) d� (106)

with

�f(�; �; t) :=f(t − � cosh �)− f(t − �)

and

r2(�; �; t) :=f(t − �)
∫

|�|61

ei!0� cosh �

�+ i”
d�

Estimate (105) for the function r2 follows from Proposition A.1 of the appendix, since the
function f(t − �) is bounded. It remains to prove estimate (105) for the function r1.
By (2) the function f(t − � cosh �) is equal to 0 for cosh �¿t=�. Since t=�61+ 2�0=� for

(�; t)∈R2, we have f(t − � cosh �)=0 if cosh �¿1 + 2�0=�. Therefore we can change the
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interval of integration in (106) by [−�2; �2], where �2 ¿ 0, and cosh �2 = 1 + (2�0=�), since
�2 ¡ 1 for �¿5�0. Thus, the function r1 is represented in the form

r1(�; ”; t) :=
∫

|�|6�2

ei!0� cosh �

�+ i”
�f(�; t; �) d� (107)

Now we bound the integrand in (107). Using the Lagrange theorem we write∣∣∣∣ei!0� cosh ��+ i”
�f(�; �; t)

∣∣∣∣6C�
|�|

|(�+ i”)| | sinh �̃| (108)

where |�̃|6�2. Note that 1+(2�0=�)= cosh �2 ∼ 1+(�22=2), hence �2 ∼ 1=√�, since �¿5�0¿0.
Therefore,

sinh �̃6 sinh �2 ∼�2 ∼ 1√
�

Now, (108) implies that ∣∣∣∣ei!0� cosh ��+ i”
�f(�; �; t)

∣∣∣∣6C1
√
�; �¿5�0

Therefore, (107) implies that

|r1(�; ”; t)|6C
√
��26C1 �¿5�0

It remains to prove estimate (105) in the region R3 beyond the characteristics. By (2)
and (101) we have that

f(t − � cosh �)=

⎧⎨
⎩
0; cosh �¿ cosh �0

1; cosh �6
t
�

− �0
�

(109)

Equation

cosh �3 =
t
�

− �0
�

(110)

admits a solution �3¿0, since t=� − �0=�¿1 in R3. Then (109) implies that

f(t − � cosh �)=1 for |�|6�3 (111)

Let us denote

f1(t − � cosh �)=

{
0; �¿�0
f(t − � cosh �); �6�0

where �0 is de�ned by (100). Then we can rewrite (103) in the form:

r(�; ”; t)=
∫

|�|6�0

f1(�; t; �)
ei!0� cosh �

�+ i”
d�; �6t (112)
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Lemma 13.5
The function r(·; ”; ·) is bounded in the region R3 uniformly in ” �=0:

|r(�; ”; t)|6C; 5�06�6t − 2�0; ” �=0 (113)

Proof
Let us denote

�3 := min{1; �3}; �6t − �0 (114)

Then for �6t − 2�0 we can rewrite (112) in the form:

r(�; ”; t)=
∫

|�|6�3

ei!0� cosh �

�+ i”
d�+

∫
�36|�|6�0

f1(�; t; �)
ei!0� cosh �

�+ i”
d�

The �rst integral is bounded by Proposition A.1 of the appendix and (114):∣∣∣∣∣
∫

|�|6�3

ei!0� cosh �

�+ i”
d�

∣∣∣∣∣6C; �¿0; ” �=0

For the second integral we prove that

|A(�; ”; t)| :=
∣∣∣∣∣
∫
�36|�|6�0

f1(�; t; �)
ei!0� cosh �

�+ i”
d�

∣∣∣∣∣6C; 5�06�6t − 2�0 (115)

Let us consider two cases.

I. Let �3¿
1
2 . Then estimate (115) holds, since |�+i”|¿1=2, for |�|¿�3 and integral (115)

is bounded by a constant in view of (109).
II. Let �3(�; t)6

1
2 . Then �36 1

2 by (114). Hence cosh �36 cosh
1
2 and t=�6�0=�+cosh 12 by

(110). On the other hand, �¿ 5�0. Hence �0=�6 1
56 cosh 1− cosh 12 and �0�+cosh 126

cosh 1. Therefore t=�6 cosh 1 and �06 1 by (101). Now, let us check that

�0
�3
62 (116)

Namely, (116) is equivalent to cosh �062 cosh �23−1. De�nitions (101), (110) of �0, �3 imply
that the last inequality is equivalent to �(t+�)62(t − �0)2, which holds by hypothesis (113).
Therefore, (116) is proved. Now (115), follows since (116) implies that

|A(�; ”; t)|6
∫
�36|�|6�0

∣∣∣∣ d�
�+ i”

∣∣∣∣6
∫
�36|�|6�0

∣∣∣∣d��3
∣∣∣∣

6
2
�3

|�0 − �3|62
(
1 +

∣∣∣∣�0�3
∣∣∣∣
)
66 (117)

Here we used that �3 =�3, since �36
1
2 and �0 =�0 since �0¡1. Theorem 13.2 is

proved.

Thus, we have proved estimate (19) for ud. In the following section we prove the estimate
for ∇ud.
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14. DERIVATIVES OF THE DIFFRACTED WAVE

In this section, we �nish the proof of Theorem 10.4. Namely, we prove estimates (19) for ∇ud.

14.1. Beyond the critical directions

In this subsection, we prove that the derivatives of di�racted wave (90) satisfy estimate (19)
beyond the critical directions. In the next subsection, we prove that the derivatives of di�racted
wave (90) satisfy estimate (19) near the critical directions.

Proposition 14.1
Let � satis�es the condition of Lemma 12.1 for some 
¿0. Then the function ud(�; �; t)
satis�es the following estimate:

|∇ud(�; �; t)|6C
(1 + t”)(1 + �−”); 0¡�¡t60 (118)

where

”=1− �
�

Proof
(i) First, we check (118) for the radial derivative (@=@�)ud(�; �; t). Then we prove this estimate
for the angular derivative. To prove this estimate for the radial derivative we consider the
radial derivative of the function vd;1 from (94) only, since the estimate for the second summand
from (95) is proved similarly. Di�erentiating this function with respect to � and using (89),
we get

@
@�

vd;1(�; �; t) =
{∫

R
ei!0� cosh �H (−i�=2 + �+ i�) cosh �[i!0f(t − � cosh �)

−f′(t − � cosh �)] d�
}

(119)

The integrand in (119) vanished outside the interval [−�0; �0] according to (2) and de�ni-
tion (101). Therefore, (33) implies the following estimate for (119):∣∣∣∣ @@�vd;1(�; �; t)

∣∣∣∣6C


∫ �0

0
e�(1−(�=�)) d� (120)

De�nition (101) gives that

�0 = ln

(
t +

√
t2 − �2

�

)

Hence, (120) implies the following estimate:

∣∣∣∣ @@�vd;1(�; �; t)
∣∣∣∣6C

[(
t +

√
t2 − �2

�

)”

− 1
]
; �6t (121)
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The estimate (t+
√

t2 − �2)62(1+ t) implies the estimate (t+
√

t2 − �2)”6C(1+ t”). Hence
and from (121) we obtain∣∣∣∣ @@�vd;1(�; �; t)

∣∣∣∣6C[(1 + t”)(1 + �−”) + (1 + �−”)]; �6t (122)

Now, estimate (118) follows for C
 := 2C. The statement (i) is proved.
(ii) Let us prove estimate (118) for the angular derivative of the function ud. As in the

proof (i) it su	ces to prove this estimate for (1=�)vd;1(�; �; t). Di�erentiating function (94)
with respect to �, noting, that

@
@�

H (−i�=2 + �+ i�)= (−i) @
@�

H (−i�=2 + �+ i�) d�

we obtain:

1
�

@
@�

vd;1(�; �; t) = − i
�

[∫
R
ei!0� cosh �

@
@�

H (−i�=2 + �+ i�)f(t − � cosh �) d�
]

(123)

Integrating by parts in (123), and using that the function f(t − � cosh �)∈C∞
0 (R) we obtain

1
�

@
@�

vd;1(�; �; t) = i
∫
R
ei!0� cosh �H (−i�=2 + �+ i�) sinh �[i!0f(t − � cosh �)

−f′(t − � cosh �)] d� (124)

Thus, we have obtained the expression similar to (119) and applying the same arguments as
in the proof of (i) we obtain estimate (118) for the derivative (1=�)(@=@�)vd;1(�; �; t). The
proposition is proved.

14.2. Near the critical directions

In this section, we obtain estimate (118) for � close to �1 and �2.

Proposition 14.2
Estimate (118) holds for |� − �k |¡
, k=1; 2 for su	ciently small 
¿0.

Proof
First, we prove estimate (118) for the radial derivative. We suppose that � satis�es (92). The
case when � is closed to �1 is considered similarly. As in Proposition 14.1, we check this
estimate for @vd;1=@� from (119). This function is the sum of the functions w′

d;1 and w′′
d;2, where

w′
d;1(�; �; t) :=

∫
|�|61

ei!0� cosh �H (−i�=2 + �+ i�) cosh �[i!0f(t − � cosh �)

−f′(t − � cosh �)] d� (125)

and

w′′
d;1(�; �; t) :=

∫
|�|¿1

ei!0� cosh �H (−i�=2 + �+ i�) cosh �[i!0f(t − � cosh �)

−f′(t − � cosh �)] d� (126)
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The functions w′
d;1 and w′′

d;2 are similar to the functions v′
d;1 and v′′

d;1 from (97) and (96). The
di�erence is that the function h from (89) is changed by the function

g(�; �; t) := ei!0� cosh � cosh �[i!0f(t − � cosh �)− f′(t − � cosh �)]; �∈R; �6t (127)

The function w′′
d;1 satis�es estimate (118). In e�ect, it is obtained from the estimate of

type (120) for the function (@=@�)vd;1(�; �; t) from (119), where instead of the integrating
over [0; �0] it is necessary to integrate over [1; �0].
Let us prove the estimate for w′

d;1. Similarly to (97)–(99) we reduce this problem to the
estimate of the function

w̃m(�; ”; t) :=
∫

|�|61
coth[q(�+ i”)]g(�; t; �) d�

Similarly to Lemma 13.1, we reduce the problem to the function

b(t; �; ”) :=
∫

|�|61

g(�; t; �)
�+ i”

d�

This function is similar to the function r(�; ”; t) from (103). The di�erence is that the func-
tion h in (103) is changed by the function g from (127).

Proposition 14.3

|b(�; ”; t)|6C; ” �=0; 06�6t

Proof
The proof is similar to the proof of Theorem 13.2. We analyse Lemmas 13.3–13.5. The proof
of Lemma 13.3 serves for the this case since g admits the estimate of type (104):

|g(�; �; t)− g(0; �; t)|6C�; 06�6t; |�|61
The proof of Lemma 13.4 also serves since the function �g := g(t −� cosh �)−g(t −�) admits
estimate (108). Finally, since the function g is bounded, then the proof of Lemma 13.5 for
b(�; ”; t) is reduced to the estimate of the function A(�; ”; t) from (117). Thus, the proposition
and Proposition 14.2 are proved for the radial derivative.
Now, we prove the estimate for the angular derivative (1=�)(@=@�)vd;1(�; �; t). Let us

consider expression (124). Similarly to the case of the radial derivative, we represent this
expression as the sum of the integral of types (125) and (126). The integral over |�|¿1 is
bounded similarly to the function w′′

d (�; �; t). The estimate of the same integral over |�|61
is trivial, since | sinh �=(�+ i”)|6C, |�|61.

Thus, we have proved completely estimate (118). Together with the results of Sections 12
and 13, it implies estimate (19) for the function us. Theorems 10.4 and 2.4(i) are proved.

In next section we �nish the proof of Theorem 2.4.

15. LIMITING AMPLITUDE PRINCIPLE

Here we prove the Limiting Amplitude principle (26), i.e.

u(�; �; t) ∼ A(�; �)e−i!0t ; t → ∞ (128)
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Let us consider the function

u(y; t)= uin(y; t) + ur(y; t) + ud(y; t) (129)

which is a solution of nonstationary problem (5), (6) given by (23), with uin, ur , ud given
by (1), (9)–(11) and (90), respectively. Equations (1), (9)–(11) imply that for any �0¿0

uin =Ain(�; �)e−i!0t ; ur =Ar(�; �)e−i!0t ; t¿�0 + �0; �6�0 (130)

where

Ain(�; �) := ei!0� cos(�−�)

Ar(�; �) =

⎧⎪⎨
⎪⎩
ei!0� cos(�−�1); �6�6�1
0; �1¡�¡�2
ei!0� cos(�−�2); �26�62�

(131)

and �1;2 are de�ned by (10). It remains to check the asymptotics of type (128) for the
di�racted wave ud(�; �; t) given by (90), with the corresponding limiting amplitude

Ad(�; �) :=
i
4�

∫
R
ei!0� cosh �Z(�; �) d�; (�; �)∈Q (132)

where Z is de�ned by (88).

Theorem 15.1
For any �0¿0 the following asymptotics hold:

ud(�; �; t)− Ad(�; �)e−i!0t → 0; t → ∞
uniformly in �∈ [0; �0] and �∈ [�; 2�].

Proof
Equation (90) implies that

Ad(�; �; t) := ei!0tud(�; �; t) =
i
4�

∫
R
Z(�; �)h(�; �; �) d� (133)

It remains to prove that

Ad(�; �; t)→ Ad(�; �); t → ∞
uniformly with the respect to �6�0. Formulas (132) and (133) imply that

Ad(�; �; t)− Ad(�; �)=
i
4�

∫
R
[Z(�; �)h(�; �; t)− Z(�; �)ei!0� cosh �] d�

Let us �x �0¿0 and ”¿0. Let us choose �¿1 such that

8C1�e−(�=�)|�|

�
¡”
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where C1 is the constant from (33). Then by (88), (33) and (2)∫
|�|¿�

|Z(�; �)h(�; �; t)− Z(�; �)ei!0� cosh �|¡ 8C1
∫
�¿�

e−(�=�)�

6 8C1
�e−(�=�)�

�
¡”; t ∈R (134)

It remains to prove the converges to zero of the integral over |�|¡�. First, cosh �3(�; �)=
(t − �0)=�¿ cosh �, for t¿�0 + � cosh �, where �3 is de�ned by (110). This implies that
f(t − � cos�)=1 for |�|6� by (111). Hence∫

|�|6�
|Z(�; �)h(�; �; t)− Z(�; �)ei!0� cosh �| d�=0¡”; t¿�0 + �0 cosh �; �6�0

Therefore, (134) implies that∫
R

|Z(�; �)h(�; �; t)− Z(�; �)ei!0� cosh �| d�¡”; t¿�0 + �0 cosh �; �6�0

The theorem is proved.

Proof of Theorem 2.4
(ii) Using the Cauchy Residue theorem, we split the limiting amplitude A(�; �), given by (25),
into three summands, similarly to the splitting of the function S(�; �; !) in Lemma 7.2. So,
we obtain that

A(�; �)=Ain(�; �) + Ar(�; �) + Ad(�; �)

where Ain, Ar , Ad are given by (131) and (132). Here representation (132) for Ad is obtained
similarly to the derivation from (41) of representation (90) for Sd. Now, statement (ii) of
Theorem 2.4 follows from (129), (130), and Theorem 15.1.

Remark 15.2
Expression (25) coincides with the well-known Sommerfeld–Malyuzhinets formula [7,8,17].
It is known (see, for example Reference [6]) that it is the unique solution of the stationary
di�raction problem {

(� +!20)A(�; �)=0; (�; �)∈Q

A|@Q=0
satisfying the following conditions:

1. A∈C(Q), A∈C2(Q).
2. The Meixner condition holds in some neighbourhood of the vertex:

A(�; �)=O(��=2�); � → 0

3. The limiting amplitude Ad(�; �) :=A − Ain − Ar of the di�racted wave, satis�es the
Sommerfeld radiation condition [6–8,17].
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APPENDIX A: OSCILLATORY CAUCHY-TYPE INTEGRALS

Let us consider the following singular Fresnel integrals:

 1(z; ”; a) :=
∫ a

−a

eizt
2

t + i”
dt;  2(z; ”; a) :=

∫ a

−a

eiz cosh t

t + i”
dt

We have used the following well-known estimates.

Proposition A.1 (Bleistein [18] and Fedoryuk [14])

(i) The function  1(z; ”; a) is uniformly bounded:

| 1(z; ”; a)|6C; z¿0; 06a61; ” �=0
(ii) The function  2(z; ”; a) is uniformly bounded:

| 2(z; ”; a)|6C; z¿0; 06a61; ” �=0
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