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SUMMARY

We consider a nonstationary scattering of plane waves by a wedge. We prove that the Sommerfeld-
type integral, constructed in (Math. Meth. Appl. Sci. 2005; 28:147-183; Proc. Int. Seminar ‘Day
on Diffraction-2003’, University of St. Petersburg, 2003; 151-162), is a classical smooth solution
from a functional space, and prove the Limiting Amplitude principle. Copyright © 2006 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

This paper is a continuation of our paper [1], but the exposition is independent. In Ref-
erence [1], we have proved the Sommerfeld-Malyuzhinets-type integral representation and
uniqueness of the solution of a nonstationary scattering problem by a wedge using the method
of the complex characteristics [2].

Here we give the next steps in our program of mathematical foundation of scattering
by wedges [1]. Namely, we prove the existence of the solution and the Limiting
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1148 A. 1. KOMECH AND A. E. MERZON

Amplitude principle. We show that the Sommerfeld—Malyuzhinets-type integral, obtained in
References [1,3], belongs to an appropriate functional space, and the Limiting Amplitude
principle holds.

For the corresponding stationary diffraction problem, the integral representation of the
solution appeared first in the Sommerfeld paper [4], for the diffraction by a half-plane,
and in Malyuzhinets paper [5] for a general angle (see also References [5—8] and a survey
[9]). However, its relations to the corresponding nonstationary problem has been never done
rigorously.

The explicit formulas for the scattering of the incident wave of the Heaviside type were
obtained in the papers [10,11]. This case is the particular case of the problem considered
in this paper when the frequency is zero, and the profile function is the Heaviside one.
The method [10,11] is based on the special ‘polar coordinates’ in xyf-space. The problem
also was considered in Reference [12], where the explicit formulas were obtained using the
method of the ramified solutions of the wave equations. The uniqueness and the relation with
the corresponding stationary diffraction problem have not been considered.

For the first time, the Limiting Amplitude principle has been considered in Reference [13]
for a concrete solution, without a detailed analysis of its smoothness and uniqueness. We
give a detailed analysis of the existence and uniqueness of a solution from an appropriate
functional class. The solution is smooth if the profile function is smooth. Furthermore, we
prove the Limiting Amplitude principle for the solution which is defined uniquely by its
features, and not by an explicit formula.

The paper concerns two-dimensional scattering of plane waves by a wedge

W:={y=y):yi=pcost, y2=psin0, p=0, 0<0< ¢}
of an opening ¢ € (0, 7). We consider an incident plane wave u;,(y,¢) of the form
uin(y, 1) =e®or=2D £t —py.y) for teR and ye Q:=RI\W (D)

Here the frequency wy > 0 and the wave vector ko € R?, wo = |ko| and ny = ko/wy, a-b stands
for the scalar product in R?. The profile f € C>°(R), and for some 7y >0

f(s)= {0’ vt @)
1, s=1
Denote
ny={(cosa, sinao) 3)
(see Figure 1).
We consider the case
max(0, ¢ — 1/2) <o < min(n/2, P) 4)

for example (see Figure 1). Physically, in this case the front of the incident wave uy, is
identically zero on the wedge W at the moment =0 and is reflected by both sides of the
wedge for £>0. Other cases can be considered similarly.

Remark 1.1
By symmetry, we can assume 0 <o <¢/2, hence 0 <o <m/2.
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Figure 1. Scattering on a wedge.

We consider the following wave problem in Q with the Dirichlet boundary conditions:

Ou(y,0)=0, yeQ
u(y,0)=0,  yedQ
where (=077 — A. We will state the result also for the case of the Neumann boundary

conditions. We include the incident wave u;, in the statement of the problem through the
initial condition

teR ()

”(J’J):Uin(yal), yéQ, t<0 (6)

It is possible since wui,(y,t) is a solution to problem (5) for #<0: the boundary conditions
in (5) hold for ¢# <0 since u;, is then identically zero in a neighbourhood of Q. Equivalently,
u(y,t) is the solution of the Cauchy problem for system (5) with the initial conditions

u(0, y) = uin(0, y)
. . €Q (7)
u(0, y) = tin(0, y)
Let us denote the scattered and diffracted waves by
us(y, 1) = u(p,t) — uin(3,1),  ug(y,1) :=us(y,1) — ur(y,1) (@)

The reflected wave u.(y,t) is given by

ur,l(psg’t)a ¢<6<01
Llr(y,f) = 0, 91 < 9<92 (9)
ur,2(p: Hnt)a 92 <0<27T

where y = pelf,
0,:=2¢p—a, 0,=2n—u (10)

Copyright © 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1147-1185



1150 A. 1. KOMECH AND A. E. MERZON

(see Figure 1), and

ur,l(p7 H’t) = - ei(kl'y_w()t)f(t —np- y)a ur,2(,0» Hvt) = - ei(kz.y_w()t)f(t —ny- y)

k] = woNny, np :(COS 91, sin 91), kzza)onz, I’ZQZ(COS 92, sin 92) (11)

(cf. with ngy in (3)).

In the present paper, we prove the existence of the nonstationary problem (5), (6) in
the functional space &¢y. We will prove that this solution (total field u) is represented as
the sum of the incident wave u;,, reflected wave u, and the diffracted wave ugq. We find the
Sommerfeld—Malyuzhinets-type representation for the diffracted wave uy. This representation
allows us to prove that, the total field u belongs to an appropriate functional class. We use
the representation for the proof the Limiting Amplitude principle. The comments on previous
works in the directions can be found in Reference [1].

The plan of our paper is the following. In Section 2, we give the main definitions and
formulate the main result. In Section 3, we reduce the problem to the stationary one. In
Sections 4 and 5, we describe some important properties of the Sommerfeld—Malyuzhinets-
type integrals. In Section 6, we solve the stationary diffraction problem with parameter. In
Sections 7-9, we prove the estimates for densities of the stationary diffracted wave. In
Section 10, we solve the nonstationary scattering problem.

In Section 11, we give a Sommerfeld—Malyuzhinets-type explicit expression for the
diffracted wave. In Sections 12—14, we prove that the obtained solution belongs to the func-
tional space &¢y and we find the exact values of € and N. In Section 15, we prove the
Limiting Amplitude principle.

In the appendix, we collect well known estimates of the Cauchy-type oscillatory integrals.

2. NOTATIONS AND MAIN RESULT

2.1. Notations

1. Let us denote C*:={weC : Imw>0}. Let us consider a function u(y,t)c C(RT x Q)
s.t. Ju(y,0)|<C(1 + |¢])¥ for some C,N and u(y,t)=0, t<T(y). (Note that T(y)=ng - y
by (1), (2) for u=u;,.) Define the Fourier—Laplace transform

W(y,w):=Fio[ul(w):= /oo e u(x,t)ds, Imw>0
Obviously, 7(y, ) is an analytic function in w € C* for each y € Q.
2. We denote
)= flo—on)= [ s (12)
Since f(s) satisfies (2), we have f/(s)e€ C5°(R),supp f” C[0,70] and
Q(w):%, weC*t (13)
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LIMITING AMPLITUDE PRINCIPLE 1151

where

gi(@)=ih(w — wy), ®weC (14)
with A(s):= f7(s).

Definition 2.1
For an open set V' C C" we denote by H (V') the set of analytic functions in V.

By the Paley—Wiener theorem
g €H(C) (15)
Moreover, g € S(R), and for any k€N, N >0
§()|<Cen(1 + o)™, weTT (16)

Denote by g,(¢) the inverse Fourier—Laplace transform of the function §,(®). Then (14)
implies that

gi(t)=ie "' f'(t), teR (17)
and (2) implies that
supp g1 C [0, 7] (18)
3. Denote by ¢ the Sommerfeld-type contour
C=%U%>
where €1 ={p1 —in/2: i =1} U{l +if, : =52n<pr< —n/2} U{py —5/27i: 1 =>1} and %,
is the symmetric to %, with respect to —37/2 (see Figure 2). We choose the orientation of

the contours %), counterclock wise.
Let us denote (see Reference [1])

I'T={weC:Im(—iwsinhw)=0, 0e I'7}

It is easy to check that for w, >0

Y . w
I'T = {w-(w1 +1wy) : wip € R, wy =arctan (wl tanhw1>}
2

with the gauge arctan 0 =0. Also, we define the contours
r(v) = f‘l_ +1iv

for ve R

4. We denote by é:@\o, {y}:=|y|/(A+|y]), y€R? or y €R. Let us fix some €>0 and
N=0.

Copyright © 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1147-1185
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Figure 2. Sommerfeld—Malyuzhinets-type contour.

Definition 2.2
(i) E. is the space of functions u(y)< C(Q)NC l(@.) with finite norm
|ule = sgg(lu(y)l + {IVu(y)) <oo
¥

(ii) &cn 1is the space of functions u(y,t) € C(Q x R*), with Vu(y,t)eC(éxW) with
finite norm

[ullen := sup sup(u(y, )] + (1 + )" {y}|V,u(p, 1)) <oo (19)
t=0 yeQ
Note that for € <1 the functions u € E. have the finite local energy

/ (VuO)P + u(p)P)dy<oo, R>0
XEQ:|x| <R

Remark 2.3
Obviously, if u(y,t) € &ey, then i(y,w) € E. for o€ C™.
5. We introduce the Sommerfeld-Malyuzhinets integral kernel:

H(p)=H(p,o, ®):= coth(g(f + 7i/2 — ia)) — coth(q(f — 37i/2 +in)), peC (20)

Copyright © 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1147-1185



LIMITING AMPLITUDE PRINCIPLE 1153

where

4= 55 b:=2n—¢ (21)

For w € C*T let us denote by ¥(p,0,w) the Sommerfeld-Malyuzhinets-type integral
FL(p,0,w):= ﬁ / e~ @Psmh B (B +i0)dp, p=0, ¢<0<2n (22)
which absolutely converges (see Section 4).

2.2. The main result

We have proved in Reference [1] the uniqueness of solution u(y,t) € &y of problem (5), (6),
with 0 <€ <1 and N >0. Namely we proved that the solution (if exists) is given by

u(y,0)=F, L [a(p,0,0)], p>0, p<0<2m (23)
in the polar coordinates y= pel’, where
i(p, 0, ) =g()¥(p,0,w), weC” (24)

Now let us define the /imiting amplitude A(p,0) by

A(p,0):= % L e” s (p 4+ i0)dp (25)

The main result of this paper is the following.

Theorem 2.4

(i) Let the incident wave profile f(s) be a smooth function (see (2)). Then the function

u(y,t), defined by (23), belongs to the space C*(Q x R)N ¢y with € =N =1—(n/®),
and is a solution to the scattering problem (5), (6).
(i1) The Limiting Amplitude principle holds: for any po>0

u(p,0,t) —e "4(p,0)—0, t— o0 (26)
uniformly for p €[0, po] and 6 € [¢,27].

Remark 2.5

Similar results hold for the problem of type (5) with the Neumann boundary value condi-
tions. Proofs for this alternative problem can be done by the same methods. In this case the
density H(f) in expression (22) is replaced by

H(p)=H,(,a ®):= coth(q(p + 7i/2 — ia)) + coth(g(f — 37i/2 +ix)), FeC

In this case, integral (22) absolutely converges for ¢ <6 <2x.

Copyright © 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1147-1185
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3. FOURIER-LAPLACE TRANSFORM
Here we recall some notations from Reference [1]. Let us consider a solution u(y,t) to
problem (5), (6). We apply the Fourier—Laplace transform to Equation (5) and get the
Helmholtz stationary equation with a parameter. First, we reduce the problem to the zero

initial conditions to get the homogeneous Helmholtz equation. Namely, define the scattered
wave by

us(ys[)::u(yat)_uin(y’t)’ y€Q, teR (27)
where u(y,t) is a solution to problem (5), (6). Then (6) implies that
us(y,1)=0, ye0Q, <0 (28)

Furthermore, us(y,¢) is a solution to the problem

Cu, =0, ye
{” e P (29)

uslop = — (uin)|oo

Remark 3.1
Let us note that wui,(y,t)€ &pp. Therefore, the condition wu(y,t)€ &y is equivalent to
us(y,t) € Een-

Hence, we get obviously from (28)

Lemma 3.2
The Fourier—Laplace transform #(y, ®, ) is an analytic function in w € C* with values in E..

In particular, #(y, ) is a continuous function of (y,w) € O x C*. Let us apply the Fourier—
Laplace transform in time to problem (29). First, we write the Fourier—Laplace transform of
the function u;, given by (1):

u’\in(y;w) :g"(w)ei(ap cos(0—o) (30)

Let us split 00 =01UQ, where Q):={y=(y1,)2)€00 : y,=0} and O):={y=(y1,2) €
00 : yy=pcos¢,y,=psin ¢}, p=0. Note that Q; is given by 6 =0 and y; = p. Similarly,
0O, is given by 0=¢=2n— ¢ and y, = — psin ®. Hence, the Dirichlet data of #;,(-,w) are
equal to

ﬁin(ya 0)) — gﬂ(a))eiu)yl cos oc’ ye Qla ﬁin(ya 0)) — é((]))@iwyz cos(a+P)/ sin (I)’ ye Q2

where () is defined by (12). Therefore the scattering problem (29) is reduced to the
following stationary problem.

Copyright © 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1147-1185
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Lemma 3.3
Let us(y,t) € &y be a solution to problem (29) with €, N >0. Then

(i) The function #s(y,®) is a solution to the boundary value problem with a parameter

weCt,
(_A_wz)ﬁs(y’w):()a yeQ
()= — g(w)e " <, ye (31)
ﬁs(ys w) — _ é(w)e—iwyz[cos(oc-o—@)/sin <I>], ye QZ

(ii) The function #(-,w) € E, for € C™.

So, the nonstationary problem (29) is reduced to the stationary one, (31), with parameter
weCT.

4. ON SOMMERFELD-MALYUZHINETS INTEGRALS

Let us examine the convergence of integral (22) and its derivatives in @ and p, 0. First, let
us prove the exponential decay of the function H. The poles of the function H from (20) are
given by

= —in/2 +io — 21k, p=3/2ni —ia—2iPk, keZ (32)
For 0>0 denote C5:={feC:|f— Pc|=0, VkeZ}.

Lemma 4.1
For any 0 >0 the estimate holds

[H(B o, @)| < Coe @D ey (33)

Proof
This follows from the representation of (29) in the form

sinh[ig(2m — )]
sinh[g(f + in/2 — ia)] sinh[g(f — 3/27i + ia)]

and (21). O

H(p,o0,®)=

Further, let us consider w:=w; + iw; with w; € R and w,; >0 and f=p; + if, € C with
P12 € R. Let us note that

‘e—wp sinh ﬁ‘ —e®p sinh f3; cos 2+, p cosh B sin B

Hence, estimate (33) implies for every 6 >0,
‘e—wp sinh ﬁH(ﬁ 4 19’ o, Cb)‘ < C5e_‘“‘p sinh 1 cos 2+, p cosh B sin i —(/P)|fi \’ ﬂ €C; (34)
Denote ¥ :=R" xR x C*.

Copyright © 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1147-1185
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Figure 3. Contour %-.

Lemma 4.2

(i) Integral (22) converges absolutely and uniformly for (p, 0, ) € X, and can be rewritten
as follows: _

. / e S A (B +i0,0,®)df, Rew=0

S(p0,0) =73 (35)

4o / =S BET(B 16,0, D) dB, Rew<0
C_

where €, := (%, +in/4)U(—%, — 137/4) and €_ := (%, —in/4)U (=%, — 111/4) (see
Figure 3). o

(ii) The function &(p,0,w) is continuous in X.

(iii) The function ¥(p, 0, w) is analytic in w € C* and smooth in (p,@)eé.

(iv) The function ¥(p,0,w) € C“(é x (R\{0})).

Proof

(i) For large = f5; +if, € € we have either = —7i/2, or f=f; —5ni/2 with f; € R.
Then f,= — n/2 or = — 5n/2, so cos /=0 and sin f, = — 1. Therefore, estimate
(34) implies that

|e—o)p sinh ﬁH(ﬁ + 16, 0, ‘I’)| <Ce= cosh ﬁl_(ﬂ/‘b)‘ﬁll, peg, pi=1 (36)

Hence, for w,, p>0 integral (22) converges absolutely and uniformly.

Copyright © 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1147-1185
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Let us prove (35), for example, for w; =Rew>=0. The regions of decay of the
exponent (34) are shown by dash in Figures 2 and 3. Hence, by the Cauchy Residue
theorem we can deform the contour % to %, in integral (22). Then we obtain
F(p.0.0) =z [ e TIIH(B+i0,0,0)dB, p>0. 0c[d2n] (37)
s

(i1) The continuity of the function % follows by the Lebesgue Dominated Convergence
theorem from estimate (36) and the continuity of the integrand in (22).

(iii) For w,, p>0 all the derivatives of integral (22) converge absolutely and uniformly
by (36).

(iv) For example, let us consider w; =Rew>0. Then ¥(p,0,®) admits representation
(37). Let f€%, + in/4. For large f=pf; + if, we have either f=f; — ni/4, or
=P —9ni/4 with f; €R. Then f,= — n/4 or f,= — 91/4, so cosf»=1/v/2 and
sin f» = — 1/v/2. Therefore, estimate (34) implies that

‘e_wpsmh/jH(ﬁ+iQ,OC,(D)‘<Ce_(UIPCOShI;I/\/E_(n/q))“}l‘a ﬁe%, ﬁl >0

since @, >0, p>0. Similarly, the same estimate holds for f € — %, — 13n/4. Hence,
the formal derivatives of integral (37) with respect to w, p, 0 converge absolutely
and uniformly. O

5. STATIONARY PROBLEM

Let us consider the function #(p, 6, ) defined by (24).

Lemma 5.1 .
For w e C*, the function #(-,w) € C(Q) is a classical solution to the stationary problem

{(—A—wzm(y,w)—o, yel|, et 38)
a(-, )lag =0

Proof
First we note that i(-,w) € C®(Q) for € C* by Lemma 4.2(iii) and (24).

The Helmholtz equation in (38) follows by the differentiation of the Sommerfeld inte-
gral (22) after the change of variable f — 8/ —i0 since (A + @?)e~@¢sinh(F=i0) —

It remains to check that # satisfies the boundary conditions in (38). Substitute 6 = ¢ and 2n
in (22), and use obvious identities

HpB+ip)=H(—p —3in+i¢p), H(P+2n)=H(—p —ip)

Then the boundary conditions in (38) follow from the central symmetry of the contour %
with respect to the point —37/2. O

Let us define
ﬁs(pa O,w):ﬁ(pa 6,(0) _ﬁin(p’ H,CU) (39)

similarly to (27).

Copyright © 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1147-1185
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Corollary 5.2
For w € C*, the function

iy ) € C(0)

and is a classical solution to the stationary problem (31).

Proof
The function —ui,(p,0,w)= — §(w)e' P =% c C>(Q) and is a solution of problem (31)
for w € C*. Therefore, the corollary follows from Lemma 5.1. 0

6. INCIDENT, REFLECTED AND DIFFRACTED WAVE

In Sections 7-14, we prove the statement (i) of Theorem 2.4 for the function u(y,t) defined
by (23): the function is a solution to problem (5), (6) and belongs to &y with €, N defined
in Theorem 2.4. We will prove that u(p,6,t) is a smooth function and satisfies (5), (6) in
the classical sense (see Corollary 10.3). The inclusion will be proved in Sections 11-14.

We will deduce (6) from (28) by the Paley—Wiener theorem, using the estimates of
is(p,0,w) for we Ct. Note that F(p,w,0) and d(p,w,0)=1(p,w,0) + ti(p,»,0) are not
bounded for w € C* since u;y(x,¢) £ 0 for £ <0. Therefore, we have to extract first the incident
wave from integral (22).

The contour ¥ in integral (22) crosses ‘bad zones’ between y(—n) and y(—2m), where
Re(wsinh ) <0, and the exponent e~*?s"# is growing for Imw — +o0o. We will see that
this growing part of the integral just corresponds to the incident wave.

To extract the incident wave, we will split the function ¥(p,0,w), in (24), into three
summands

S =S+ S+ S (40)
Namely, let us define the functions

i

FLa(p,0,0) = — [ e (B 4i0,0,®)dp, 0+#0:,
4% J,,
[ (p’ 9’ (U) = eimp cos(0—a) L
" , weTT (41)
_empcos((-)—ﬂl)’ d) < 0 < 01
S(p,0,0) = 0, 0,<0<0,
_eiwpcos(H—Hz)’ 92 < 0 < o

From the definition of the contour %, and estimate (33) it follows that the integral in (41)
converges absolutely for «» € C* and defines a continuous function of w € C+.
Let us note that

ﬁin(yﬂw):é(w)yin(py 0,60) (42)

Copyright © 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1147-1185
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by (30). Similarly, calculating the Fourier—Laplace transform of u.(p, 6,¢), defined by (9), we
obtain

ﬁr,l(pa H’w)a d) < 9 < 01
(v, m) =1 0, 0, <0<0,
i 2(p,0,0), 0, <0 <2n

where
i1 (p, 0,0) = — " Wg(w),  dia(p,0,0)= — R G(w) (43)
Therefore,
ir(p, 0, w) = g(w)S(p, 0, w) (44)
Remark 6.1
Let (40) hold. Then (39), (24) and (42) imply that
Us=u—tn=9g(& — Sin) =9§7s (45)
where
Ssi=Y —Fn=9r+ Sy (46)

Hence, (8) and (44) imply that
ﬁd:ﬁs _ﬁr:g’\(yr“'yd _yr):éyd

We will call &, Yy, S, S+, L as densities of the total, diffracted, incident, reflected
and diffracted waves, respectively. The incident part %i,(p,0,-) is unbounded in C* while
F(p,0,-) and F4(p,0,-) are bounded in C* as we will check in Sections 8 and 9. Hence,
us(p,0,-) is bounded in C*.

7. PROOF OF THE SPLITTING

To prove splitting (40), we will deform the contour of integration % in (22). Namely, define
the contour

Co:=y1Uy, yi:={p1—in/2,f1 R}, 7r:={f1 —5in/2, ;1 € R} (47)

We direct the contour %, such that the strip between 7y, and y, remains from the left (see
Figure 4).

We are going to deform the contour & in (22) to the contour %,. Then the integral also
changes and the difference is the sum of residues between ¢ and %, by the Cauchy Residue
theorem.

Let us determine the poles and residues. By (32), the poles of the function H(f + 16, «, @)
as the function of f are

Bi(0):= —in/2 + io — 2i®k — 10, BL(0)=3in/2 —in — 2iPk —i0, keZ

We have to take into account the poles between y, and y,, i.e. Im f € [—57/2, —n/2].
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Figure 4. Contour %).

The pole f;(0) belongs to the interval [—5in/2, —in/2] only for k=0 since 0 € [¢,2n]. So,
Bi(0):= — ig i —i0 € [-57/2 + io; —in/2 + i —id], 0 € [$,27] (48)
By (4), we get from (48) that

py(0) € [-57/2; —in/2], 0 € [¢,27] (49)

As we will see further, the residue in this pole corresponds to the incident wave u,.
Similarly, the pole f;/(0) € [—5in/2,—in/2] only for k=0 and 1. For k=0

0(0)=3in/2 — iz —i0 € [—in/2 — io, —in/2], 0, <0 <2n
where 6, is defined in (10). Then Remark 1.1 implies that

1(0) € [-5in/2; —in/2), 0 € [62;27]
Bo(02) = —in/2

As we will see further the residue in this pole corresponds to the reflected wave from the
face 0 =2n of the angle. For k=1

BI(0)= — 5in/2 + 2i¢p — in — i0 € [~Sin/2 + i — io, —in/2], ¢ <0<0,
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where 6, is defined in (10). Then Remark 1.1 implies that

{ﬁi’(@) € (=5in/2; —in/2], 0 € [¢,0)

50
1(0,) = — Sin/2 (0
As we will see further, this pole corresponds to the wave reflected from the face 0= ¢.

Definition 7.1
Critical directions correspond to the angles 6, and 6, defined by (10). Critical rays /, [, are
the rays in Q, corresponding to the critical direction.

Estimate (33) implies that
[e= "™ PH(B +i0,0,®)| < C(0)e” @PIRFweR, peb, 0€[h,2n], 0701,

Thus integral (41) converges for 0 6,, 6,, and diverges for 6 =0,,0, since the integrand
has the poles on the contour of integration %, then. Hence, the integral is a discontinuous
function at 0 =0; and 0,.

Lemma 7.2
(i) Splitting (40) holds,
I (p,0,0)=Fin(p,0,0) + F:(p,0,0) + La(p, 0, ) (51)
(ii) For (p,0)€ O with 00,5 we have
Fa(p.0,)€H(C),  La(p,0,0)€ C=((O\{1 ULr}) x (R\0)) (52)

Proof
Let us deform the contour % to the contour %, in integral (22). Using (49), (50) and first
formula from (41), we obtain by the Cauchy Residue theorem, that

,y(p, 9,(1)) = fyd(pa 9,60)

T _ inh . T
ETCS/;:%(())C @psm ﬁH(ﬂ + 10, o, (I)) + ﬁresﬁ:ﬁ;/(g)

xe OSBRI (B 110, 0, D), $<0<0,
+ %resﬁ:%(me""” Sinth(ﬁ +10, 0, D), 0, <0<2mn
T —wp sin : T
3 TESp=hy(0)C ersimhBEr(B + 10, 0, ®) + e A0
xe P SBE(B 40, o, @), 0,<0<2n
Calculating the residues, we obtain (51). Statement (52) follows from (51), Lemma 4.2(iii),
(iv), and expressions (41) for Sj, and S;. The lemma is proved. O
Remark 7.3

The proof shows that the incident wave corresponds to the residue at = f;(0), and the
reflected one to the residues at =7 (0), B7(0).
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8. DENSITY OF THE DIFFRACTED WAVE

Remind that one of our aims is to prove (28). We will deduce it by the Paley—Wiener theorem
using the estimates for the density %5 of the diffracted wave (46). It suffices to estimate the
density of the diffracted wave &4 that we prove in this section.

Let us note that the reflected density %, is obviously discontinuous at the critical directions
0 =0, and 0,, while the incident density %, and the total density . are smooth everywhere.
Therefore, the diffracted density q=% — %, — i, also is discontinuous at 6 =0, and 0,.

Theorem 8.1
The density ¥4 satisfies the following estimates:

|yd(p:03a))| < Ca (ORS ﬁa P = 03 0 € [¢,27‘c], 07&01,2 (53)

Proof
The contour %, in integral (41) consists of two parts y; and 7y,. Hence it suffices to prove
that the function

Mi(p,0,0):= 1 / e S E (B 1 0)dp (54)

satisfies estimate (53), since the function
Map.0.0)i= g5 [ P+ i0)ap
72
can be bounded similarly. We will omit below the indices «, ® in the expression for H.
So, we consider the function M;. For f € y; we have f:= — in/2 + f; where f5; €R.
Substituting this expression in integral (54), and changing f; by 5, we obtain

Mi(p,0,0):= — — [ oreosh B _in/2 4 B +i0)dp
40 Jn

Inequality (33) implies that the integral is bounded if the function f+—— H(—in/2 + f + i6)
does not have any poles in ff € R for 6 € [¢,2x]. In particular, this estimate holds for 6 such
that |60 — 0| = 0, k=1,2. On the other hand, the function H has a pole =0 when 0=10,.
Then the estimate depends on the derivative of the integrand. The differentiation gives the
factor wp and we do not obtain the uniform estimate of type (53). Therefore we need more
delicate methods. We use the method of the steepest descent [14,15]. Namely, we represent
the function M, in the following form:

M(p, 0, ) :=Ms(p,0,w) + Ma(p, 0, »)

where

M;(p,0,m) ::/ eloreosh B (—in/2 4+ B +i0)dp
Bl <1

My(p,0,w) ::/ eloreosh B (—in/2 4+ B +i0)dp
1Bl >1
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The function M, satisfies an estimate of type (53) by (33) since
|ei‘“"°°ShB| <e . PeR, w=w; +1wy, w =0
It remains to prove an estimate of type (53) for the function M;. Representation (20) gives
H(—in/2 4+ p+10)= cothg(f + 10 — i) — cothg(—2xmi + f +i0 + i), PR
By (4) the function coth ¢(ff 410 —ia) is analytic for f € [—1, 1]. Finally, it suffices to prove
estimate (53) for the function
Ms(p,0,0):= /m 1 eloreosh b coth g(—2mi 4 B+ 10 + ix) dp
<

The integrand has a pole in the point f =0 for =060, (see (10)). Let us consider 0 =0, + ¢,
le| < €9, where gy >0 is sufficiently small. Then we can rewrite the function M5 as the function
of p,e, w:

Me(p,e,0):=Ms(p,0, +e,0)= / gl reosh B coth g(f +ie)dp
1Bl <1
First, we represent M in the following form:

Me(p,e, ) = /lﬂ gi®1p cosh /f(e—wzp coshfp e ") cothg(f +ic)dp
<1

—i—e*w”’/ greoshBoothg(f+1ie)df, w €R, w, =0, p=0
1Bl <1

Note that
|(e=@2peoshh _e=2r)cothg(f +ic)| < Cgg), @y =0, Be[—1,1]

for |e| <gp. Therefore, it suffices to prove an estimate of type (53) for the function

M7(p,e,®):= / el reoshh cothg(B +ic)df, weR, p=0 (55)
1Bl <1

Since coth g(f + ie) ~ 1/g(p + ie) for |B| <1, estimate (53) for M; follows from

Proposition A.1(ii) of the appendix.

9. DERIVATIVES OF THE DENSITY OF DIFFRACTED WAVE

To prove Theorem 2.4(i) it is necessary to prove, in particular that u(y,t)e€ C>(Q x R).
We will prove the smoothness in Section 10, using the estimates for derivatives of the den-
sity %5 of the scattered wave. The estimates will be proved in the present section. Note
that the estimates do not follow directly from representations (23), (24) since the function
F(p,0,w) is growing exponentially in w € C*. The growth is related to the density &, of the
incident wave in (41). So, to bound the derivatives, we extract the incident wave as above.
We also extract the reflected wave since the estimates for its derivatives are obvious.
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The following theorem will be proved similarly to Theorem 8.1. Let us denote by
NOZNU{O}

Theorem 9.1
The density of the diffracted wave %4 has all derivatives and the estimates hold
O Sp.0.0)| <CE.(+ o) o € T(0)
ap“] 69“2 s Uy ) )
P = 5>07 0 € [¢,2n], 87{61,27 C(ézo‘)>0 (56)

for o:= (o, 00) € Ng x Np, || = 0.

Proof
I. The estimates for the case |¢| =0 are proved in the previous section. First, we prove that
derivatives (56) exist for «#0 and find an appropriate expression for them. In contrast to
the case o =0, the integrals which express the derivatives, do not converge absolutely on the
contour €, for w € R. Therefore, we have to modify the proof for the case a#0.

Let us fix a function k()€ C*°(R) such that

Let 4+ be the contours in C: %, :={f +ix(£p)—in/2, £ = 0}; B_:={f Fix(£p)—
in/2,+f; = 0}. We direct the contour %, similarly to y; and the contour 4. — 2xi similarly
to 7, (see Figure 5).

Then we obtain the modified representation for %y:

i

yd(pa 6; (U): e—wpsinh/fH(ﬁ_‘r_ie)dﬂ

4P J 3, (B —2mi)

weCr, p=0, ¢ <O<2n, 0#£6, (57)

by the definition of &4 in (41), estimate (34), and the Cauchy theorem.
Here the sign ‘+’ is taken for Rew > 0, and the sign ‘-’ is taken for Re w <0. Differen-
tiating formally the integral with respect to p, we obtain the absolutely convergent integral

3}

S Pap0.0) = g5 oy [ e H (B4 i0)(sinh 7 B (58)

B+ U (B4 —2mi)

where the contour #,U (%, — 2ni) is chosen for Re w > 0 and the contour #_ U(#_ — 2mi)
is chosen for Re w <0.

The contour of integration %, U(%, — 27i) lies in the shaded regions of the decay of
the exponent if Rew, Imw >0 and w#0. Similarly, the contour of integration %_ U
(#_ —2mi) lies in the shaded regions of the decay of the exponent if Rew <0 and Im w > 0.
Therefore, integral (58) converges uniformly for p > 6>0, 0 € [0,2xn], |0 — 012] = v>0.
Hence, the formal differentiation (58) is justified.
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Figure 5. Contours %, %+ — 2ni. The case Rew > 0.

Now we can calculate derivatives (56). Namely, differentiating formally (57), we get that

* 4 (p,0,0)= (l)az L(—w)“‘/ emorsinp O
dp 00» dis i 49 By U(B+—2mi) op*

x[H(p 4+ 10)(sinh p)*1dp
Integrating by parts, we obtain
Lyd(p’ 6,(1)): iOt2+1 (_w)mpaz / e—wpsinh/}H(ﬂ+i0)
0p*00% 40 By U(By—2mi)
x (sinh )" (cosh $)* df (59)

II. Now let us prove the uniform estimate (56) using representation (59). First let us bound
derivative (58) for Rew > 0. The case Rew <0 is analysed similarly. We will prove that

/ e~ Psihf i (B 4 i0)(sinh f)* (cosh B)* dﬁ’
%,

1+ |o|
||

if Rew, Imw > 0 and w #0.

[or] = (/@)
<c<5,a)( ) P36 0eh2m) 0401, CE0>0  (60)
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The same integral over the contour 4, — 2mi can be estimated similarly. These estimates
provide (56) by (59).
To prove (60), let us split the integral into two summands:

Ai(p,0,w):= / e~ s AET(B +i0)(sinh B)* (cosh B)* d
2.0 {If] =2}
and
Ao(p, 0, 0) = / e—orsmhBE1(B 1 0)(sinh B)* (cosh B)* dB 61)
2.0 (Il <2)

Let us note that the function A,(p,0,®) is defined for 0 # 0, ,, because the poles of H(f+i0)
lie in imaginary axis for 0 € [0,2x].
Let us bound the integral

Al (p,0,0):= / e s BE (B +i0)(sinh B)* (cosh f)* df
AN {p =2}

The corresponding integral over #, N{f; <2} can be bounded similarly. The definition of
the contour %, implies, that

V2

o +0n 0
Al (p,0,0) = ( 5 ) / e*‘“"(ﬂ/z)(smh/;*““hmH(ﬁ—in/4+i9)
2
x (sinh f§ —icosh $)* (cosh § — isinh $)* df§
Hence, estimate (33) implies that

o0
|AT(P, 9, CU)| < C/ e—alﬂ(w] sinh f+m, cosh/)’)e(\a\—(n/tb))[i dﬂ
2
oo
< G / efaz(erwz)ﬂe/’e(\a|7(n/<l>))/i dﬁ
2

for w:=w; + iw,, where a;, a,>0.
Changing the variable ¢:=(w; + w;)pe’ in this integral, and using (21) and the conditions
¢o<m, |af =1, we get

. 00 . & o] —(7/ @) dé /B
AT (p, 0, SC/ e "¢ () — <C((t; +w eI
|47 (p )] 1 R (01 + 02)p Z ((ay 2)P)
< CO)o| @D, p > >0 (62)

It remains to bound the function 4, from (61). The integral over 4, N{l < |B| <2} can be
estimated using (34):

<C, p=0, 0c[g,2n] (63)

/ e~ PP H (B 410)(sinh f)* (cosh f) dp
B, N{1 < |pi] <2}
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Therefore, it remains to bound the integral
A5(p, 0, ) := / e PP H (B +i0)(sinh f)* (cosh f) dp
A0 {lpl <1}

Let us check the estimate of type (63) for this integral. If 6 € [¢,2x] is not close to 8",
or o >0, estimate (63) for 4% is obvious, since the point —7i/2 is not a pole of the function
H(S+1i0)(cosh f)* by (33) and (4). If 0 is close to 0" and o, =0, the estimate of type (63)
for this integral is reduced to the estimate of the function M; from (55).

Now estimate (60) follows from (62), and (63). O

Corollary 9.2
Estimates (56) imply that

IVLa(p,0,0)] < C(O)1 +|w|), @ C\{0}, p=6>0, 0¢€[p,2n], 0#0,
for any 0>0.

Corollary 9.3
The density 7(p, 0,w) of the scattered wave has all the derivatives with respect to p, 6

in the region O, and the estimates of type (56) hold for the derivatives. In particular, the
estimates hold for V. in this region.

Proof

Equation (46), Lemma 4.2(iv), and the definition of %, in (41) imply that ¥ (p,0,w)€
C>=(Q x (R\{0})). On the other side, representation (46) &=, + ¥4, Theorem 9.1 and
the definition of %, in (41) imply estimates (56) for 0+ 0,,. Hence, the estimates hold for
0 € [¢,2n]. O

10. THE SCATTERED WAVE

In this section, we start to prove Theorem 2.4(i) namely that function (23) is a smooth
solution to the scattering problem (5), (6).
Note that s =1 — il;, by (45). We will study the function

us(p9 est)::F(;Lt[ﬁs(fL 0,0))] (64)
where

by (45), and the function % is defined by (46). We will prove that us(p,0,t) satisfies
system (29), (28).
Note that by Lemma 4.2(ii), (iii), formula (46), and the definition of &, in (41),

S ECOXR), Fi(n0)eC®(Q), weC*
First, we will study the function

1’T)s(pa H,w):zél(w)ys(p, 6,(1)), (1)6@ (66)
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where §,(w) is defined in (14). Let us define the function
wi(p, 0,0) :=F L, Dig(p,0,0)], t€R (67)

Lemma 10.1
For all p > 0 and 6 € [¢,27] there exists the inverse Fourier—Laplace transform wy(p,0,t)=
F; L, [W,] of the function w(p,0,»), and

we € C2(0 x R) (68)
ws(p,0,1) € C(O xR), |wy(p,0,t)<C, t=0 (69)
ws(p,0,t)=0, ¢<0 (70)

Proof
Lemma 4.2(iii) shows that &(p, 0, w) is analytic in w € C*. Hence, the function ¥(p,0,-)=
L(p,0,") — Lin(p,0,-) is analytic in weC*, since Fi(p,0,w)=e"? 0= s analytic
in weC.

Furthermore, the function ;=94 + & is bounded: namely, &4 is bounded by
Theorem 8.1, and %, is bounded by (41) since

|el(up cos(0—0,)

|elmpcos(0—9z)| <C, 0,<0<2m, ’

The estimates hold since —n/2<0 — 0,<n/2, [=1,2. Namely, ¢ — 0, <0 — 0, <0 and
¢ —0=0—¢> —m/2 by (10) and (4). Similarly, (4) implies that o<m/2. Therefore,
0<0—0,<a<m/2, since 6, =21 — o by (10).

Hence,

| Ls(p,0,0)| <C, weCH
Therefore, Wwy(p, 8, w) also is analytic in w € C* by (15) and
hs(p, 0, 0)] < Cy(1 + o)™, weCT

by (16). Hence, ws satisfies (69), (70) by the Paley—Wiener theorem [16].
Moreover, Corollary 9.3, formula (66), and estimate (16) imply that

o

2p* 00

By(p,0,0)| < Cu(8,0)p3(1 + o)) ™, (p.0)€0
weCT \{0}, p=8>0, 0c[0,2n], Cn(5,2)>0

Therefore, (68) holds. O

In the following proposition we prove, in particular that the function ug(p,0,t), defined
by (64), satisfies problem (29), (28).
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Proposition 10.2
(i) The function us(p, 0,¢) admits the following representation:

ug(p,0,t)= — i/ot e =Dy (p,0,7)dt, (p,0)e0; teR (71)
Furthermore,

us € C=(0 x R) (72)

and for (p,0)eQ,
us(p,0,t)=0, <0 lus(p, 0,8)| < C(1+1), t=0 (73)

(i) us (p,0,t) is a solution of system (29) and initial conditions (28), and
us(p,0,t) € C(O x R) (74)
Proof

(i) From (65), (66), and (13) we get

A WS 395('0
us(p: 85(’0): #O_i_i)on CUEC+
Hence and from (67)
_ 1 _
us(p,0,t)=F,\, {wwo—i—lo} xws(p,0,1), weR, (p,0)eQ (75)

Since

1 .
Fl |~ | = _{e @@t
o=t [cu o +10} 1€ )

then (75), (70) imply that
us(p, 0,1) = [—ie ™" O(1)] * wy(p, 0,1)

Hence, (71) follows.
Now, (72) follows from (68) and representation (71). At last, (73) follows from

(69), (70) and (71).
(ii) System (29) holds for us in the classical sense since # satisfies (31) by Corollary
5.2, and (72) holds. Identity (28) follows from (73). Finally, (74) follows from (71)
and (69). 0

Corollary 10.3 '
The function u(p, 0,t) defined by (27) belongs to C>(Q x R) and satisfies problem (5), (6).

Proof
The inclusion follows from (72), (27) and (1). Equations (5) and (6) for u follow from (27)
and (28), (29) for us. 0

Thus, we have proved that u is the classic solution to (7), (6).
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The next theorem will complete the proof of Theorem 2.4 (i). Sections 11-14 concern the
proof of the following theorem.

Theorem 10.4
The function us(p, 0,¢) belongs to the space &1_(z/a),1—(z/a)-

Now Theorem 2.4(i) follows since Remark 3.1 implies that u € &1_z/a),1—(n/@)-

Proof

Definition 2.2, (74) and (72) imply that it suffices to prove only estimates (19) for us. Note,
that it suffices to prove the estimate for uq =us — u, outside the critical directions 6 =06, 6,
since the estimates for u, are trivial. Sections 11-14 concern the proof of estimates (19) for
the diffracted wave uq(y,?). 0

11. SOMMERFELD-MALYUZHINETS REPRESENTATION FOR THE
DIFFRACTED WAVE

In this section, we construct a convenient representation of the diffracted wave

Ug ::F(;Lt[ﬁd]
where

ﬁd = éyd (76)
The representation plays a crucial role in the proof of estimates (19) for us(p,0,1).

Lemma 11.1
The scattered wave u; admits the following representation:

ua(p, 0,1) +uri(p,0,1), $<0<0
us(p,0,1) =< uq(p,0,1), 0, <0<0, (77)
ua(p, 0,1) +urx(p,0,1), 0,<0<2m
Proof
First, (65), the second identity of (46), (76), the definition of %, in (41) imply that
ta(p, 0,) = G@)e P 0=, $<0<0y
ﬁs(p’g’w): ud(pﬂgaw)z 01 <9<61
ud(p’ 9,60) _ g\(w)ei(upcos(ﬂ—ﬁz)’ 92 <9<27E
Now representation (77) follows from (43). 0
Theorem 11.2
The diffracted wave uy admits the following integral representation:
—iwot .
ug(p, 0,1) =i e S PH(B+10)f(t —ipsinh f)dB, 0701, (78)
6o
where H is defined by (20), the contour %, is defined by (47) and f is defined by (2).
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Remark 11.3
Since for €%, we have f(¢t —ipsinh f)=0 for p=>¢, then

Note, that this corresponds to the fact that the wave scattered by the vertex of the angle
attains the point (p, ) for the time p, if the velocity of the propagation of the signal is equal
to 1.

Proof of Theorem 11.2
From (76), (13) we have

ﬁd(ps 9,@)2 wa(p, 9,(1)), (p,@)Q@, weEJr\{wO} (80)

W — Wy
where
Wd(pn enw)::g\l(w)yd(p’ 0,60), CUEE+ (81)

From (15), (16), Lemma 7.2, Theorem 8.1 it follows that wy is analytic in C*, infinitely
differentiable in R\{0} and admits the following estimate:

wa(p, 0,0)| <Cn(1 + )™, (p,0)€Q, NeN
Hence, by the Paley—Wiener theorem we obtain that
supp wa(p, 0, -)C[0, 00)
where
wa(p, 0,1):=Fg L, [wa(p. 0, )] (82)
From (80) it follows that
ua(p, 0,1) = —ife™'O(1)] * wa(p, 0,1)] (83)

Let us calculate wy(p, 0,¢) for =0, and 6+ 6y, 0,.
From (82), (81), the definition of %4 in (41), estimates (33), (16) and the Fubini theorem
we have for 10, 0#£0,,0,

Wa(p. 0.0) = o / e [él(w) ) ewﬂsi“”H<ﬂ+ie)dﬁ} do

:; . % io(—ipsinh f) A
nd AOH(/S+10) [/ e gl(w)dw} dp

— 00

— 41@/% H(B +i0)g,(t — ipsinh B)dp (84)

where ¢,(¢):=F,,[§,(w)]. Note that t —ipsinh f€R for €%, by definition (47) of the
contour %,. Furthermore,

supp wa(p, 0,-)C[p, +0)
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since ¢,(¢t —ipsinh f)=0 for t<p by (18). Hence, (83) implies that

t
—ie_i“’“’/ e wy(p,0,7)dt, p<t _
ua(p,0,t) = p (p,0)eQ (85)

0, p>t

Substituting (84) in (85), using estimates (33), (16) and the Fubini theorem we obtain for
0#0r, k=1,2

e—iu)ot

t
wip0.0= g [ H(p+i0) [ [ e s~ ipsinh pras| dp. p< (86)
0 P

Remark 11.4
The diffracted wave uq(p, 0,t) vanishes for p>¢. This corresponds to the Huygens principle
for the scattering by the wedge.

Substituting (17) in (86), we obtain for 0£0,, k=1,2,

s A—imgt . t
uap,0.) =" e (B + i) { / f'(s —ipsinh B)ds| dB, p<t
©o P
Hence, by (2)
—iwgt .
wa(p, 0 =i | M IH(p+i0) (¢ ~ipsinh f)df,  p<i (87)

Therefore, representation (78) follows from (87), (85) and Remark 11.3. Theorem is
proved. O

Let us denote
Z(p,0):= — H(—in/2 + p +10) + H(—5in/2 + f + i0) (88)
and

h(B,p,t):= f(t — pcosh p)eireoshh — pecR (89)

Corollary 11.5
The function u4(p, 0,¢) admits the following representation for 0+ 0y, 0,:

iefia)ot
wap.0.0) ="~ | Z(B.00(B.p.0)8p (90)
40 Jp
Proof
Note, that sinh = —icosh(Re f) for f € %,. Making the change of variable Re f§ — f, we
obtain from (87), representation (90) for 6+ 0;, k=1,2. The corollary is proved. 0

Copyright © 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1147-1185



LIMITING AMPLITUDE PRINCIPLE 1173

12. ESTIMATES FOR DIFFRACTED WAVE

In this section, we start to prove estimates (19) for ug(p,0,¢). In Sections 12 and 13, we
prove that u4 is bounded. First, we prove that the function u4 is bounded beyond the critical
directions. Let us choose >0 sufficiently small.

Lemma 12.1
The function u4(p, 0,¢) satisfies the following estimate:

|ud(p, 9,1‘)| <Cs, t=0 91)
for |0, —0|=20>0, k=1,2.

Proof

Estimate (33) and (88) imply that the function Z(f3,0) satisfies the estimate of type (33) for
pER and |6 — 6| =0, k=1,2. Hence, estimate (91) follows from definition (2) of the profile
function f, (89) and (90). 0

Next, let us prove (91) for 6 close to 6, or 0,.

Theorem 12.2
For k=1,2 the function u4(p, 0,t) satisfies estimate (91) for |0 — ;] < 6 with some 6>0.

Proof
Let us consider the case when

10— 05| <& (92)

for some 0>0. The case |6 — 0;| <9 is analysed similarly. The second term on the right-hand
side of (88) has not a pole for f € R and 0 satisfying (92). Hence, (33) implies that

|H(=5in/2 4+ f +1i0)| < C(5)e ™ @PDIReAl peR (93)
Representation (90) and (88) imply that

ie—iwot

Ug = 1% (—vd1 +v42)
where
ba1(p,0.1) = /R H(=in/2 + B+ i0Yh(B, p,1)dB (94)
baa(p, 0,1) = /R H(=5im/2 + f + i0)h(p, p,1) dB 95)

It suffices to prove estimate (91) for the function vq;, since the estimate for vy, follows
from (93) and (89).

Let us split integral (94) into two integrals: one for |f|>1 and second for |B|<1.
Estimate (91) for the function

vg,(p,0,1) = H(—in/2 4+ p +10)h(B, p,t)dp (96)

1B1=1
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follows from the estimate of the function A(f,p,0) by (33) since |H(—in/2 + f + i0|<
Cie~™W®Ref for |B|>1. It remains to prove (91) for the function

vhi(p,0,1) = H(=in/2 + B+ i0A(B, p,t)dp (97)

IBl<1

By definition (20) we have

UZi,l(p’ Qat) = - Dm(pa Q’t) + Ub(P, 0,1)

where
Ub(pa G,t): COthq(ﬁ+16 - la)h(ﬂapat)dﬁ
IBl<1 (98)
vm(p,0,t) = coth[g(—2mi + f + 10 + io)|A(p, p,t)df
IBl<1
Condition (92) implies that
0= 02 + €
where || < 0. Substituting in representations (98) we obtain
Op(p,e,t) :=0p(p, 02 + £,8) = / coth[g(f + ie + 271 — 2ia)h(f, p,t)df
IBl<1 (99)

Bu(prent) = Un(p. 0y + £.1) = / coth[g(f + ie)h(B. p.1) 4B

1Bl <1

Let us note that the function 0,(p,e,¢) is regular in the point € =0 since coth[g(f + 27i —
2ix + ie)] does not have a pole for |f|<1, if |¢|<d=1/2. It follows since ax<m/2 by (4).
Therefore estimate (91) for the function 7, follows since function %(f, p,¢) is bounded.

In contrast, the function 7,,(p,e,t) is singular at the point € =0. Nevertheless we will show
that estimate (91) holds for this function too.

13. SINGULAR PART OF THE DIFFRACTED WAVE

First we bound function (99) in the simple case when the profile function f(s)=0(s).
Then (89) implies that

Un(pse,0) = / _ coth[g(f + ie)]el” cosh dp
[BI<By

where

Bo= min{1, B} (100)
and fo=Po(p,t)=0 is defined by

t—pcosh fy=0 (101)
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Lemma 13.1
The function 0, satisfies the following estimate:

[om(p,e,t)|<C, t=p=0, e#0

Proof
By (100) it suffices to note that for any a € [0, 1] the integral

( ) / eiwgp cosh dﬁ
u ,E,a) = — <
e Bl<a (B+ig)

is uniformly bounded with respect to its arguments (see Proposition A.l in the appendix).
The lemma is proved. ]

Now we bound the function (99) for a general profile function f.

Theorem 13.2
The function 9,,(p,¢,t) satisfies the following estimate:

[0u(p,e,8)| <C, p=0, €#0 (102)
Proof
It suffices to bound the function
h(B,p,t)
r(p,e,t)= ———=d 103
pen=[ FEhDas (103)

with £ defined in (89). We give the proof in Lemmas 13.3-13.5. By (89), it suffices to
check (102) in the following three regions:

1 :={(p,1) : 0<p<St0, p<t}
Ry = {(p,t) : p=510, t — 210 <p<t}
R :={(p,t): Sto<p<t—270}

where 1y is the same as in (2).
First, we prove the uniform estimate of this function in %,.

Lemma 13.3
The function r(-,&,-) is bounded in %, uniformly in € #0:

|V(p,€,t)‘<C, (pat)e*%b 57&0

Proof
Represent r in the form:

h(ﬁspvt) _h(09t’p) 1
r(p,e,t)= - dpg + h(0,t, -
(p,e0) /|/f|<| B+ ie ph.1.p) p<1 Btie

dp
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The second summand is bounded, because /(0,7 p) is bounded by (89) and the integral

1
—dp| =|arg(f+ie)|",|<m, €#£0
‘/ﬁ@ﬂ—f—la ﬁ‘ larg(B +ie)|-4 | #+

Let us consider the first summand. We have
h(B. p.t) — h(0, 1, p) = hy(B.t, p)B
where || <1. Calculating the derivative of 4, we get that there exists C>0:
|h(B, p,1) — h(0,1,p)| <Cp, 0<p<t, [B|<] (104)

It implies the estimate

/ h(ﬁapat) — h(O,l,p)
pl< p+ie

dp

I
<C / _dp<C
P )yt B PsC

since p <57¢. O
Now we prove the estimate r(p,e,t) in %, near the characteristic of the wave equation.

Lemma 13.4
The function r(-,&,-) is bounded in %, uniformly in £ #0:

FH(p.e,)|<C, (pat) € o, €0 (105)

Proof
We represent the function 7 as

r(pagat)::rl(p’eat)+r2(p’€7t)

where
eitopcosh f _
O L (106)
with
f(B.p,0):= f(t = pcosh f) — f(z = p)
and

eiwo pcosh f§

rap,0,0):= f(t = p) 1Bl<1 W

dp
Estimate (105) for the function 7, follows from Proposition A.1 of the appendix, since the
function f(z — p) is bounded. It remains to prove estimate (105) for the function r.

By (2) the function f(¢# — pcoshf) is equal to 0 for cosh f>1¢/p. Since t/p <1+ 27¢/p for
(p,t) € Ry, we have f(t — pcoshf)=0 if coshf>1 + 21¢/p. Therefore we can change the
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interval of integration in (106) by [—f, f2], where 5, > 0, and cosh i, =1+ (27¢/p), since
2 < 1 for p=51y. Thus, the function r; is represented in the form

euuopcoshﬁ
npani= [ S B (107)
p<p Ptie
Now we bound the integrand in (107). Using the Lagrange theorem we write

em)gp cosh 8

p+ie

B
f(pﬁt)‘ <Cpigtlsinh (108)

where |B| < f». Note that 14(219/p) = cosh ff ~ 1+(f3/2), hence f, ~1/,/p, since p =579>0.
Therefore,

sinh < sinh B, ~ B ~ RS

VP
Now, (108) implies that
elwopcoshﬁ
e ———/(p.B.0)| <CVp, p=510
Therefore, (107) implies that
[r1(p,e,t)|<Cy/ppr<Cy p=519 O

It remains to prove estimate (105) in the region %5 beyond the characteristics. By (2)
and (101) we have that

0, cosh 3= cosh fiy
t— h )= 109
f—peosh=q ot T (109)
pp
Equation
To
coshf3=—— — (110)
oo
admits a solution f3>0, since t/p — 19/p=1 in #5. Then (109) implies that
f(t—pcoshp)=1 for |[B|<ps (111)
Let us denote
=By

0,
_ hp)=
f1(t — pcosh B) = {f(t_pcoshﬁ) B<B,

where fB, is defined by (100). Then we can rewrite (103) in the form:

1wo pcosh f§
B+ ie
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Lemma 13.5
The function 7(-,¢,-) is bounded in the region #; uniformly in € 0:
[r(p,e, )| <C, Sto<p<t—219, €#0 (113)
Proof
Let us denote
By:=min{l, B}, p<t—1o (114)
Then for p<t — 21y we can rewrite (112) in the form:
( elu)opcosh/} ﬁ f (ﬁ )el(l)[)p cosh 8 ﬁ
r p,e,t):/ 1(B.t,p
pi<p, Bic B <181 <P, f+ie
The first integral is bounded by Proposition A.1 of the appendix and (114):
1wopcosh/3
d| <C, p=0, £#0
/ mep, Btic
For the second integral we prove that
elwopcosh/i
|A(p,e,1)] = SiB.t,p)————dB| <C, St<p<t—121 (115)
B <8 <P, p+ie

Let us consider two cases.

I Let B> 1. Then estimate (115) holds, since |f+ie|>1/2, for |f| > B, and integral (115)
is bounded by a constant in view of (109).

I Let $4(p,#)<3. Then f3<1 by (114). Hence cosh i3 < cosh § and #/p <to/p+cosh 1 by
(110). On the other hand, p > 579. Hence 7o/p <1< cosh 1 —cosh } and 7op +cosh 1 <
cosh 1. Therefore t/p< cosh1 and fy <1 by (101). Now, let us check that

Po _
B S

Namely, (116) is equivalent to cosh fy <2 cosh 85— 1. Definitions (101), (110) of fy, 5 imply
that the last inequality is equivalent to p(z + p)<2(t — 10)?, which holds by hypothesis (113).
Therefore, (116) is proved. Now (115), follows since (116) implies that

(116)

Alpet)| < / Ll<] a5
pr<ipl<po | PHIEL T Jp<ip<po | P
<5 Iﬁo B3l <2 (1 + g‘) ) <6 (117)

Here we used that f;=pf;, since B, <1 and Bo=Po since Po<1. Theorem 13.2 is

proved. O

Thus, we have proved estimate (19) for u4. In the following section we prove the estimate
for Vug.

Copyright © 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1147-1185



LIMITING AMPLITUDE PRINCIPLE 1179

14. DERIVATIVES OF THE DIFFRACTED WAVE
In this section, we finish the proof of Theorem 10.4. Namely, we prove estimates (19) for Vuy.

14.1. Beyond the critical directions

In this subsection, we prove that the derivatives of diffracted wave (90) satisfy estimate (19)
beyond the critical directions. In the next subsection, we prove that the derivatives of diffracted
wave (90) satisfy estimate (19) near the critical directions.

Proposition 14.1
Let 0 satisfies the condition of Lemma 12.1 for some 6>0. Then the function u4(p,0,1)
satisfies the following estimate:

[Vug(p,0,)|<Cs(1+ )1+ p7%), 0<p<t<0 (118)
where
T
e=1- 3
Proof
(1) First, we check (118) for the radial derivative (0/0p)uq(p, 0,t). Then we prove this estimate
for the angular derivative. To prove this estimate for the radial derivative we consider the
radial derivative of the function vq; from (94) only, since the estimate for the second summand

from (95) is proved similarly. Differentiating this function with respect to p and using (89),
we get

ivd,l(p, 0,t)= {/ gloreosh BT (_im/2 4+ B +i0) cosh Biw f(t — p cosh )
op R
~f(t~ peosh )] 45} (119)

The integrand in (119) vanished outside the interval [—fy, fo] according to (2) and defini-
tion (101). Therefore, (33) implies the following estimate for (119):

Bo
‘fpvd,l(p, 0,t>’ <Gy [ e (120)
0

Definition (101) gives that

fom In <r+ M)
P

Hence, (120) implies the following estimate:

<’+V§_p2> —1], p<t (121)

0
‘%vd,l(p,e,m‘ <C
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The estimate (¢ 4 /#?> — p?)<2(1 +¢) implies the estimate (¢ + /> — p?)°<C(1+¢). Hence
and from (121) we obtain

0
]apvd,l(p, e,z)‘ <CU+E)1+p5)+ (14 p), p<t (122)

Now, estimate (118) follows for Cs:=2C. The statement (i) is proved.

(i1) Let us prove estimate (118) for the angular derivative of the function u4. As in the
proof (i) it suffices to prove this estimate for (1/p)vq;(p,0,¢). Differentiating function (94)
with respect to 6, noting, that

0 . . .0 . .
@H(—m/Z +p+i0)= (—1)@H(—1n/2 + f+1i0)dp
we obtain:
10 i iwgp cos| J : :
;%vd,l(pﬁ,t):—; {/Re p hﬁ@H(ﬂnﬂ—|—ﬁ—|—19)f(t—pcoshﬁ)dﬁ (123)

Integrating by parts in (123), and using that the function f(# — pcosh ) € C5°(R) we obtain
/l)aagvd,l(p, 0,t)= i/ eloP st BT (_im/2 4 B + i0) sinh Blicog £ (¢ — p cosh B)
R

—f"(t = pcosh B)]d (124)

Thus, we have obtained the expression similar to (119) and applying the same arguments as
in the proof of (i) we obtain estimate (118) for the derivative (1/p)(0/00)vq1(p,0.t). The
proposition is proved. O

14.2. Near the critical directions

In this section, we obtain estimate (118) for 6 close to 6, and 0,.

Proposition 14.2
Estimate (118) holds for |0 — 04| <9, k=1,2 for sufficiently small 6>0.

Proof

First, we prove estimate (118) for the radial derivative. We suppose that 6 satisfies (92). The
case when 0 is closed to 0; is considered similarly. As in Proposition 14.1, we check this
estimate for dvq;/0p from (119). This function is the sum of the functions wg, and w{,, where

wy,(p,0,1):= /|ﬂ<1 gloreosh BT (_im/2 4+ B+ i0) cosh Bim, f(t — p cosh )

—f'(t = pcosh B)]d (125)

and

wii(p,0,1) = / glorcoshBrr(_im/2 + B+ i6) cosh Bliw f(t — p cosh f)
[Bl>1

—/'(t = pcosh §)]df (126)
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The functions w}, and wj, are similar to the functions vy, and vy, from (97) and (96). The
difference is that the function / from (89) is changed by the funct1on

g(B, p,t) := e <P cosh Blicg f(t — pcosh B) — f'(t — pcosh B)], BeER, p<t  (127)

The function wy, satisfies estimate (118). In effect, it is obtained from the estimate of
type (120) for the function (0/0p)vai(p,0,¢) from (119), where instead of the integrating
over [0, fo] it is necessary to integrate over [1, ffo].

Let us prove the estimate for wy,. Similarly to (97)—(99) we reduce this problem to the
estimate of the function

Fon(pyest) = // _ cotlaCB-+ ie)l(f.t.p) 0

Similarly to Lemma 13.1, we reduce the problem to the function

._ g(ﬁtp)

This function is similar to the function r(p,e,t) from (103). The difference is that the func-
tion 4 in (103) is changed by the function g from (127).

Proposition 14.3
|b(p7€at)|<c, 57&0, 0<IO<[

Proof
The proof is similar to the proof of Theorem 13.2. We analyse Lemmas 13.3-13.5. The proof
of Lemma 13.3 serves for the this case since g admits the estimate of type (104):

|g(ﬁ,p,t)—g(0,p,t)|<Cp, OSPSZ, ‘ﬁlgl
The proof of Lemma 13.4 also serves since the function §:=g(¢t — p cosh ) — g(¢ — p) admits
estimate (108). Finally, since the function g is bounded, then the proof of Lemma 13.5 for
b(p,e,t) is reduced to the estimate of the function A(p,e,t) from (117). Thus, the proposition
and Proposition 14.2 are proved for the radial derivative.

Now, we prove the estimate for the angular derivative (1/p)(0/00)va1(p,0,t). Let us
consider expression (124). Similarly to the case of the radial derivative, we represent this
expression as the sum of the integral of types (125) and (126). The integral over |f]|>1 is
bounded similarly to the function w/(p,0,t). The estimate of the same integral over |f|<1
is trivial, since |sinh /(f +ie)|<C, |B|<]1. O

Thus, we have proved completely estimate (118). Together with the results of Sections 12
and 13, it implies estimate (19) for the function u;. Theorems 10.4 and 2.4(i) are proved. [J

In next section we finish the proof of Theorem 2.4.

15. LIMITING AMPLITUDE PRINCIPLE

Here we prove the Limiting Amplitude principle (26), i.e.
u(p, 0,1) ~ A(p,0)e ™', 1 — o0 (128)
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Let us consider the function

u(y, 1) =uin(y,1) + ur(y, 1) + ua(y, 1) (129)
which is a solution of nonstationary problem (5), (6) given by (23), with wui,, uy, uq given
by (1), (9)—(11) and (90), respectively. Equations (1), (9)—(11) imply that for any po>0

Uin :Ain(p; 0)6710)“7 Uy :Ar(P» 9)eiiw0ta [21’0 + Lo, p <PO (130)
where
Ain(ps 0) = ei(uopcos(()—oc)
eiwopcos(ﬁff)] ), (b < 0 < 91
Ar(p,()) = 0, 91<9<62

gloopcos(0=0) 9 <0< 2n

(131)

and 0, are defined by (10). It remains to check the asymptotics of type (128) for the
diffracted wave uq(p,0,t) given by (90), with the corresponding limiting amplitude

Aulp.0)i= 35 [ Er1Z(p0)a. (p.0)€0 (132)

where Z is defined by (88).

Theorem 15.1
For any po>0 the following asymptotics hold:

ug(p,0,1) — Ag(p,0)e™ " -0, t— o0
uniformly in p € [0, po] and 0 €[¢,2x].
Proof
Equation (90) implies that

Aup.0.0):= " us(p0.0) = 75 | Z(B.0)H(B.p.0)a (133)

It remains to prove that
Ay(p,0,1) = Aa(p,0), 1 — 00
uniformly with the respect to p <po. Formulas (132) and (133) imply that

1

Aa(p,0,0) — 4a(p,0) = 1= /R [Z(B,0O)h(B, p.t) — Z(B,0)e "< F1dp

Let us fix po>0 and £>0. Let us choose f>1 such that

8C, de— (/)|
—_— <
T

3

Copyright © 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1147-1185



LIMITING AMPLITUDE PRINCIPLE 1183

where C) is the constant from (33). Then by (88), (33) and (2)

/ 1Z(B. OB, p.1) = Z(B, 0)e ™| < 8Cy | eI
1Bl =B B=p

—(n/®)B
<8C1%T<5, teR (134)

It remains to prove the converges to zero of the integral over |B| < B. First, cosh B3(p,0)=
(t — 19)/p=cosh p, for t>15 + pcosh f, where f; is defined by (110). This implies that
f(t—pcosp)=1 for |f|<p by (111). Hence

/ \Z(BOYh(B, p.t) — Z(B.0)e P <P dB=0<e, =19+ pocosh B, p<py
IBI<B

Therefore, (134) implies that

[ 12B.00p.p.0) - Z(p.0 =P dp<e. 120+ pocosh B p<p
R

The theorem is proved. U

Proof of Theorem 2.4

(i) Using the Cauchy Residue theorem, we split the limiting amplitude A(p, 0), given by (25),
into three summands, similarly to the splitting of the function ¥(p, 0, ®) in Lemma 7.2. So,
we obtain that

A(p, 6) :Ain(p7 0) + Ar(pa 9) + Ad(pa 0)

where Aj,, Ay, Aq are given by (131) and (132). Here representation (132) for A4 is obtained
similarly to the derivation from (41) of representation (90) for 4. Now, statement (ii) of
Theorem 2.4 follows from (129), (130), and Theorem 15.1. O

Remark 15.2

Expression (25) coincides with the well-known Sommerfeld—Malyuzhinets formula [7,8,17].
It is known (see, for example Reference [6]) that it is the unique solution of the stationary
diffraction problem

(A +ap)A(p,0)=0, (p,0)€Q
Alag =0
satisfying the following conditions:

1. A€ C(Q), A€ C*Q).
2. The Meixner condition holds in some neighbourhood of the vertex:

A(p.0)=0(p™**), p—0

3. The limiting amplitude A44(p,0):=4 — Ay, — A, of the diffracted wave, satisfies the
Sommerfeld radiation condition [6—8,17].
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APPENDIX A: OSCILLATORY CAUCHY-TYPE INTEGRALS

Let us consider the following singular Fresnel integrals:

c 42

Wi(z,5,a):= / 4 (zea) = /

,at+i5 —a t+1€

a a Lizcosht
€

dr

We have used the following well-known estimates.

Proposition A.1 (Bleistein [18] and Fedoryuk [14])

(i) The function Y(z,&,a) is uniformly bounded:
[Vi(z,e,a)|<C, z=0, 0<a<l, #0
(ii) The function Yx(z,e,a) is uniformly bounded:

[Yo(z,e,a)|<C, z=0, 0<a<l, e#0
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