Infinite Quantum Graphs

Aleksey Kostenko

University of Ljubljana, Slovenia & University of Vienna, Austria

Differential Operators on Graphs and Waveguides Graz, Austria

February 27, 2019

Der Wissenschaftsfonds.

Definition

A (combinatorial) graph is the set of vertices \mathcal{V} and edges \mathcal{E} , $\mathcal{G}_d = (\mathcal{V}, \mathcal{E})$.

For $u, v \in \mathcal{V}$ we shall write $u \sim v$ if there is $e_{u,v} \in \mathcal{E}$ connecting u and v. The function deg: $\mathcal{V} \to \mathbb{Z}_{\geq 1} \cup \{\infty\}$ defined by

$$\mathsf{deg} \colon \mathsf{v} \mapsto \# \{ \mathsf{u} \in \mathcal{V} | \mathsf{u} \sim \mathsf{v} \} = \# \mathcal{E}_{\mathsf{v}}$$

is called the (combinatorial) degree, where $\mathcal{E}_{v} := \{e_{u,v} \in \mathcal{E} | u \sim v\}.$

Assumptions

Definition

A (combinatorial) graph is the set of vertices \mathcal{V} and edges \mathcal{E} , $\mathcal{G}_d = (\mathcal{V}, \mathcal{E})$.

For $u, v \in \mathcal{V}$ we shall write $u \sim v$ if there is $e_{u,v} \in \mathcal{E}$ connecting u and v. The function deg: $\mathcal{V} \to \mathbb{Z}_{\geq 1} \cup \{\infty\}$ defined by

$$\mathsf{deg} \colon \mathsf{v} \mapsto \# \{ \mathsf{u} \in \mathcal{V} | \mathsf{u} \sim \mathsf{v} \} = \# \mathcal{E}_{\mathsf{v}}$$

is called the (combinatorial) degree, where $\mathcal{E}_{v} := \{e_{u,v} \in \mathcal{E} | u \sim v\}.$

Assumptions

 $\bullet \ \mathcal{V} \mbox{ and } \mathcal{E} \mbox{ are at most countable }$

Definition

A (combinatorial) graph is the set of vertices \mathcal{V} and edges \mathcal{E} , $\mathcal{G}_d = (\mathcal{V}, \mathcal{E})$.

For $u, v \in \mathcal{V}$ we shall write $u \sim v$ if there is $e_{u,v} \in \mathcal{E}$ connecting u and v. The function deg: $\mathcal{V} \to \mathbb{Z}_{\geq 1} \cup \{\infty\}$ defined by

$$\mathsf{deg} \colon \mathsf{v} \mapsto \# \{ \mathsf{u} \in \mathcal{V} | \mathsf{u} \sim \mathsf{v} \} = \# \mathcal{E}_{\mathsf{v}}$$

is called the (combinatorial) degree, where $\mathcal{E}_{v} := \{e_{u,v} \in \mathcal{E} | u \sim v\}.$

Assumptions

- $\mathcal V$ and $\mathcal E$ are at most countable
- \mathcal{G}_d is connected and locally finite $(\deg(v) < \infty \text{ for all } v \in \mathcal{V})$

Definition

A (combinatorial) graph is the set of vertices \mathcal{V} and edges \mathcal{E} , $\mathcal{G}_d = (\mathcal{V}, \mathcal{E})$.

For $u, v \in \mathcal{V}$ we shall write $u \sim v$ if there is $e_{u,v} \in \mathcal{E}$ connecting u and v. The function deg: $\mathcal{V} \to \mathbb{Z}_{\geq 1} \cup \{\infty\}$ defined by

$$\mathsf{deg}\colon \mathsf{v}\mapsto \#\{\mathsf{u}\in\mathcal{V}|\:\mathsf{u}\sim\mathsf{v}\}=\#\mathcal{E}_{\mathsf{v}}$$

is called the (combinatorial) degree, where $\mathcal{E}_{v} := \{e_{u,v} \in \mathcal{E} | u \sim v\}.$

Assumptions

- $\mathcal V$ and $\mathcal E$ are at most countable
- \mathcal{G}_d is connected and locally finite $(\deg(v) < \infty \text{ for all } v \in \mathcal{V})$
- No loops or multiple edges

Definition

A (combinatorial) graph is the set of vertices \mathcal{V} and edges \mathcal{E} , $\mathcal{G}_d = (\mathcal{V}, \mathcal{E})$.

For $u, v \in \mathcal{V}$ we shall write $u \sim v$ if there is $e_{u,v} \in \mathcal{E}$ connecting u and v. The function deg: $\mathcal{V} \to \mathbb{Z}_{\geq 1} \cup \{\infty\}$ defined by

$$\mathsf{deg} \colon \mathsf{v} \mapsto \#\{\mathsf{u} \in \mathcal{V} | \mathsf{u} \sim \mathsf{v}\} = \#\mathcal{E}_{\mathsf{v}}$$

is called the (combinatorial) degree, where $\mathcal{E}_{v} := \{e_{u,v} \in \mathcal{E} | u \sim v\}.$

Assumptions

- $\mathcal V$ and $\mathcal E$ are at most countable
- \mathcal{G}_d is connected and locally finite $(\deg(v) < \infty \text{ for all } v \in \mathcal{V})$
- No loops or multiple edges

Definition

If every edge $e \in \mathcal{E}$ is assigned with a length $|e| \in (0, \infty)$, then $\mathcal{G} = (\mathcal{V}, \mathcal{E}, |\cdot|)$ is called a metric graph

Aleksey Kostenko

Given a metric graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, |\cdot|)$, we can identify each edge $e \in \mathcal{E}$ with an interval (0, |e|) and hence introduce the Hilbert space

$$L^{2}(\mathcal{G}) := \bigoplus_{e \in \mathcal{E}} L^{2}(e) = \left\{ f = \{f_{e}\}_{e \in \mathcal{E}} \colon f_{e} \in L^{2}(e), \sum_{e \in \mathcal{E}} \|f_{e}\|_{L^{2}(e)}^{2} < \infty \right\}$$

Given a metric graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, |\cdot|)$, we can identify each edge $e \in \mathcal{E}$ with an interval (0, |e|) and hence introduce the Hilbert space

$$L^{2}(\mathcal{G}) := \bigoplus_{e \in \mathcal{E}} L^{2}(e) = \left\{ f = \{f_{e}\}_{e \in \mathcal{E}} \colon f_{e} \in L^{2}(e), \sum_{e \in \mathcal{E}} \|f_{e}\|_{L^{2}(e)}^{2} < \infty \right\}$$

Next equip \mathcal{G} with a Schrödinger-type operator $\mathbf{H}_{max} := \bigoplus_{e \in \mathcal{E}} H_e$, where:

$$\mathbf{H}_{\boldsymbol{e}} = -\frac{\mathbf{d}^2}{\mathbf{dx}_{\boldsymbol{e}}^2}, \qquad \mathrm{dom}(\mathbf{H}_{\boldsymbol{e}}) = \boldsymbol{H}^2(\boldsymbol{e}).$$

Given a metric graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, |\cdot|)$, we can identify each edge $e \in \mathcal{E}$ with an interval (0, |e|) and hence introduce the Hilbert space

$$L^{2}(\mathcal{G}) := \bigoplus_{e \in \mathcal{E}} L^{2}(e) = \left\{ f = \{f_{e}\}_{e \in \mathcal{E}} \colon f_{e} \in L^{2}(e), \sum_{e \in \mathcal{E}} \|f_{e}\|_{L^{2}(e)}^{2} < \infty \right\}$$

Next equip \mathcal{G} with a Schrödinger-type operator $\mathbf{H}_{max} := \bigoplus_{e \in \mathcal{E}} \mathbf{H}_e$, where:

$$H_e = -\frac{d^2}{dx_e^2} + V(x_e), \quad dom(H_e) = \mathcal{D}_{max}(e).$$

Given a metric graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, |\cdot|)$, we can identify each edge $e \in \mathcal{E}$ with an interval (0, |e|) and hence introduce the Hilbert space

$$L^{2}(\mathcal{G}) := \bigoplus_{e \in \mathcal{E}} L^{2}(e) = \left\{ f = \{f_{e}\}_{e \in \mathcal{E}} \colon f_{e} \in L^{2}(e), \sum_{e \in \mathcal{E}} \|f_{e}\|_{L^{2}(e)}^{2} < \infty \right\}$$

Next equip \mathcal{G} with a Schrödinger-type operator $\mathbf{H}_{max} := \bigoplus_{e \in \mathcal{E}} H_e$, where:

$$\mathbf{H}_{e} = \left(\frac{1}{\mathrm{i}}\frac{\mathrm{d}}{\mathrm{d}\mathbf{x}_{e}} - A(\mathbf{x}_{e})\right)^{2} + V(\mathbf{x}_{e}), \quad \mathrm{dom}(\mathbf{H}_{e}) = \mathcal{D}_{\mathsf{max}}(e).$$

Given a metric graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, |\cdot|)$, we can identify each edge $e \in \mathcal{E}$ with an interval (0, |e|) and hence introduce the *weighted* Hilbert space

$$L^2(\mathcal{G};\mu) := \bigoplus_{e \in \mathcal{E}} L^2(e;\mu_e)$$

Next equip \mathcal{G} with a Schrödinger-type operator $\mathbf{H}_{max} := \bigoplus_{e \in \mathcal{E}} H_e$, where:

$$\mathbf{H}_{\boldsymbol{e}} = -\frac{1}{\mu_{\boldsymbol{e}}} \frac{\mathrm{d}}{\mathrm{d}\mathbf{x}_{\boldsymbol{e}}} \nu_{\boldsymbol{e}} \frac{\mathrm{d}}{\mathrm{d}\mathbf{x}_{\boldsymbol{e}}}, \qquad \mathrm{dom}(\mathbf{H}_{\boldsymbol{e}}) = \boldsymbol{H}^2(\boldsymbol{e}).$$

Given a metric graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, |\cdot|)$, we can identify each edge $e \in \mathcal{E}$ with an interval (0, |e|) and hence introduce the Hilbert space

$$L^{2}(\mathcal{G}) := \bigoplus_{e \in \mathcal{E}} L^{2}(e) = \left\{ f = \{f_{e}\}_{e \in \mathcal{E}} \middle| f_{e} \in L^{2}(e), \sum_{e \in \mathcal{E}} \|f_{e}\|_{L^{2}(e)}^{2} < \infty \right\}$$

Next equip \mathcal{G} with a Schrödinger-type operator $\mathbf{H}_{\max} := \bigoplus_{e \in \mathcal{E}} \mathbf{H}_e$, where:

$$\mathbf{H}_{\boldsymbol{e}} = -\frac{\mathbf{d}^2}{\mathbf{dx}_{\boldsymbol{e}}^2}, \qquad \mathbf{dom}(\mathbf{H}_{\boldsymbol{e}}) = \boldsymbol{H}^2(\boldsymbol{e}).$$

Given a metric graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, |\cdot|)$, we can identify each edge $e \in \mathcal{E}$ with an interval (0, |e|) and hence introduce the Hilbert space

$$L^{2}(\mathcal{G}) := \bigoplus_{e \in \mathcal{E}} L^{2}(e) = \left\{ f = \{f_{e}\}_{e \in \mathcal{E}} \middle| f_{e} \in L^{2}(e), \sum_{e \in \mathcal{E}} \|f_{e}\|_{L^{2}(e)}^{2} < \infty \right\}$$

Next equip \mathcal{G} with a Schrödinger-type operator $\mathbf{H}_{max} := \bigoplus_{e \in \mathcal{E}} \mathbf{H}_e$, where:

$$\mathrm{H}_{\boldsymbol{e}} = -rac{\mathrm{d}^2}{\mathrm{dx}_{\boldsymbol{e}}^2}, \qquad \mathrm{dom}(\mathrm{H}_{\boldsymbol{e}}) = \mathcal{H}^2(\boldsymbol{e}).$$

To give H the meaning of a quantum mechanical energy operator, it must be self-adjoint, that is, we need to add boundary conditions at the vertices.

Given a metric graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, |\cdot|)$, we can identify each edge $e \in \mathcal{E}$ with an interval (0, |e|) and hence introduce the Hilbert space

$$L^{2}(\mathcal{G}) := \bigoplus_{e \in \mathcal{E}} L^{2}(e) = \left\{ f = \{f_{e}\}_{e \in \mathcal{E}} \middle| f_{e} \in L^{2}(e), \sum_{e \in \mathcal{E}} \|f_{e}\|_{L^{2}(e)}^{2} < \infty \right\}$$

Next equip \mathcal{G} with a Schrödinger-type operator $\mathbf{H}_{max} := \bigoplus_{e \in \mathcal{E}} \mathbf{H}_e$, where:

$$\mathbf{H}_{\boldsymbol{e}} = -rac{\mathrm{d}^2}{\mathrm{dx}_{\boldsymbol{e}}^2}, \qquad \mathrm{dom}(\mathbf{H}_{\boldsymbol{e}}) = \boldsymbol{H}^2(\boldsymbol{e}).$$

To give H the meaning of a quantum mechanical energy operator, it must be self-adjoint, that is, we need to add boundary conditions at the vertices.

$$f_e(v) := \lim_{x_e \to v} f(x_e), \qquad f'_e(v) := \lim_{x_e \to v} \frac{f(x_e) - f_e(v)}{|x_e - v|}.$$

are well defined for all $f \in \text{dom}(\mathbf{H}_{\max})$.

Given a metric graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, |\cdot|)$, we can identify each edge $e \in \mathcal{E}$ with an interval (0, |e|) and hence introduce the Hilbert space

$$L^{2}(\mathcal{G}) := \bigoplus_{e \in \mathcal{E}} L^{2}(e) = \left\{ f = \{f_{e}\}_{e \in \mathcal{E}} \middle| f_{e} \in L^{2}(e), \sum_{e \in \mathcal{E}} \|f_{e}\|_{L^{2}(e)}^{2} < \infty \right\}$$

Next equip \mathcal{G} with a Schrödinger-type operator $\mathbf{H}_{\max} := \bigoplus_{e \in \mathcal{E}} \mathbf{H}_e$, where:

$$\mathbf{H}_{\boldsymbol{e}} = -\frac{\mathrm{d}^2}{\mathrm{dx}_{\boldsymbol{e}}^2}, \qquad \mathrm{dom}(\mathbf{H}_{\boldsymbol{e}}) = \boldsymbol{H}^2(\boldsymbol{e}).$$

To give **H** the meaning of a quantum mechanical energy operator, it must be self-adjoint, that is, we need to add boundary conditions at the vertices. (standard) Kirchhoff conditions: For all $v \in \mathcal{V}$

 $\begin{cases} f \text{ is continuous at } v, \\ \sum_{e \in \mathcal{E}_v} f'_e(v) = 0. \end{cases}$

Given a metric graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, |\cdot|)$, we can identify each edge $e \in \mathcal{E}$ with an interval (0, |e|) and hence introduce the Hilbert space

$$L^{2}(\mathcal{G}) := \bigoplus_{e \in \mathcal{E}} L^{2}(e) = \left\{ f = \{f_{e}\}_{e \in \mathcal{E}} \middle| f_{e} \in L^{2}(e), \sum_{e \in \mathcal{E}} \|f_{e}\|_{L^{2}(e)}^{2} < \infty \right\}$$

Next equip \mathcal{G} with a Schrödinger-type operator $\mathbf{H}_{max} := \bigoplus_{e \in \mathcal{E}} \mathbf{H}_e$, where:

$$\mathrm{H}_{\boldsymbol{e}} = -rac{\mathrm{d}^2}{\mathrm{dx}_{\boldsymbol{e}}^2}, \qquad \mathrm{dom}(\mathrm{H}_{\boldsymbol{e}}) = \mathcal{H}^2(\boldsymbol{e}).$$

To give H the meaning of a quantum mechanical energy operator, it must be self-adjoint, that is, we need to add boundary conditions at the vertices.

Definition

A quantum graph is a metric graph equipped with the operator ${\bf H}$ acting as the negative second order derivative along edges and accompanied by Kirchhoff vertex conditions

Aleksey Kostenko

Suppose |e| = 1 for all $e \in \mathcal{E}$.

Suppose |e| = 1 for all $e \in \mathcal{E}$.

Then the Kirchhoff Laplacian H_{equil} is self-adjoint.

Suppose |e| = 1 for all $e \in \mathcal{E}$.

Then the Kirchhoff Laplacian H_{equil} is self-adjoint.

Problem

Spectral analysis of H_{equil} ?

Suppose |e| = 1 for all $e \in \mathcal{E}$.

Then the Kirchhoff Laplacian H_{equil} is self-adjoint.

Problem

Spectral analysis of $H_{\rm equil}$?

Define the normalized/physical Laplacian on \mathcal{G}_d by

$$(au_{\operatorname{norm}} f)(\mathbf{v}) := rac{1}{\operatorname{\mathsf{deg}}(\mathbf{v})} \sum_{u \sim \mathbf{v}} f(\mathbf{v}) - f(u), \quad \mathbf{v} \in \mathcal{V}.$$

 τ_{norm} generates a bounded self-adjoint operator h_{norm} in $\ell^2(\mathcal{V}; \text{deg})$.

R. Courant, K. Friedrichs and H. Lewy, Über die partiellen Differenzengleichungen der mathematischen Physik, Math. Ann. (1928)

Suppose |e| = 1 for all $e \in \mathcal{E}$.

Then the Kirchhoff Laplacian H_{equil} is self-adjoint.

Problem

Spectral analysis of $H_{\rm equil}$?

Define the normalized/physical Laplacian on \mathcal{G}_d by

$$(au_{\operatorname{norm}} f)(v) := rac{1}{\operatorname{\mathsf{deg}}(v)} \sum_{u \sim v} f(v) - f(u), \quad v \in \mathcal{V}.$$

 τ_{norm} generates a bounded self-adjoint operator h_{norm} in $\ell^2(\mathcal{V}; \text{deg})$.

- R. Courant, K. Friedrichs and H. Lewy, Über die partiellen Differenzengleichungen der mathematischen Physik, Math. Ann. (1928)
- Y. Colin de Verdiére, *Spectres de Graphes*, SMF, Paris, 1998.

W. Woess, Random Walks on Infinite Graphs and Groups, CUP, 2000.

Suppose |e| = 1 for all $e \in \mathcal{E}$.

Then the Kirchhoff Laplacian H_{equil} is self-adjoint.

Problem

Spectral analysis of $H_{\rm equil}$?

Define the normalized/physical Laplacian on \mathcal{G}_d by

$$(au_{\operatorname{norm}} f)(v) := rac{1}{\operatorname{\mathsf{deg}}(v)} \sum_{u \sim v} f(v) - f(u), \quad v \in \mathcal{V}.$$

 τ_{norm} generates a bounded self-adjoint operator h_{norm} in $\ell^2(\mathcal{V}; \text{deg})$.

Theorem (von Below'87,..., Cattaneo, Exner,..., Pankrashkin'2012)

$$\sigma_j(\mathsf{H}_{\text{equil}}) \setminus \sigma_D = \{ \lambda \notin \sigma_D | \ 1 - \cos(\sqrt{\lambda}) \in \sigma_j(h_{\text{norm}}) \}, \quad j \in \{\text{p,ess,ac,sc} \}$$

with
$$\sigma_D = \{(\pi n)^2\}_{n \in \mathbb{N}}$$

Aleksey Kostenko

Suppose |e| = 1 for all $e \in \mathcal{E}$.

Then the Kirchhoff Laplacian H_{equil} is self-adjoint.

Problem

Spectral analysis of $H_{\rm equil}$?

Define the normalized/physical Laplacian on \mathcal{G}_d by

$$(au_{\operatorname{norm}} f)(v) := rac{1}{\operatorname{\mathsf{deg}}(v)} \sum_{u \sim v} f(v) - f(u), \quad v \in \mathcal{V}.$$

 au_{norm} generates a bounded self-adjoint operator h_{norm} in $\ell^2(\mathcal{V}; deg)$.

Theorem (von Below'87,..., Cattaneo, Exner,..., Pankrashkin'2012)

$$\sigma_j(\mathsf{H}_{\text{equil}}) \setminus \sigma_D = \{\lambda \notin \sigma_D | \ 1 - \cos(\sqrt{\lambda}) \in \sigma_j(h_{\text{norm}})\}, \quad j \in \{\text{p,ess,ac,sc}\}$$

with $\sigma_D = \{(\pi n)^2\}_{n \in \mathbb{N}}$. \mathbf{H}_{equil} and h_{norm} are "locally" unitarily equivalent.

Problem

Does there exist an analogous statement for non-equilateral graphs?

Problem

Does there exist an analogous statement for non-equilateral graphs?

Consider the (minimal) discrete Laplacian $h_{\mathcal{G}}$ defined on $\ell^2(\mathcal{V}; m)$ by

$$(au_{\mathcal{G}}f)(v):=rac{1}{m(v)}\sum_{u\sim v}rac{f(v)-f(u)}{|e_{u,v}|},\quad m(v)=\sum_{e\in \mathcal{E}_v}|e|.$$

 $| au_{\mathcal{G}}$ is the normalized Laplacian **iff** |e| = 1 for all $e \in \mathcal{E}$ and $\alpha \equiv 0$.

Problem

Does there exist an analogous statement for non-equilateral graphs?

Consider the (minimal) discrete Laplacian $h_{\mathcal{G}}$ defined on $\ell^2(\mathcal{V}; m)$ by

$$(\tau_{\mathcal{G}}f)(v) := rac{1}{m(v)}\sum_{u\sim v}rac{f(v)-f(u)}{|e_{u,v}|}, \quad m(v) = \sum_{e\in\mathcal{E}_v}|e|.$$

 $|\tau_{\mathcal{G}}$ is the normalized Laplacian **iff** |e| = 1 for all $e \in \mathcal{E}$ and $\alpha \equiv 0$.

Theorem (E. B. Davies'1992)

 $h_{\mathcal{G}}$ is bounded \Leftrightarrow the weighted degree Deg is bounded on \mathcal{V} ,

$$\mathsf{Deg} \colon v \mapsto \frac{1}{m(v)} \sum_{u \sim v} \frac{1}{|e_{u,v}|} = \frac{\sum_{e \in \mathcal{E}_v} 1/|e|}{\sum_{e \in \mathcal{E}_v} |e|}$$

Problem

Does there exist an analogous statement for non-equilateral graphs?

Consider the (minimal) discrete Laplacian $h_{\mathcal{G}}$ defined on $\ell^2(\mathcal{V}; m)$ by

$$(\tau_{\mathcal{G}}f)(v) := rac{1}{m(v)}\sum_{u\sim v}rac{f(v)-f(u)}{|e_{u,v}|}, \quad m(v) = \sum_{e\in\mathcal{E}_v}|e|.$$

 $\tau_{\mathcal{G}}$ is the normalized Laplacian **iff** |e| = 1 for all $e \in \mathcal{E}$ and $\alpha \equiv 0$.

Theorem (E. B. Davies'1992)

 $h_{\mathcal{G}}$ is bounded \Leftrightarrow the weighted degree Deg is bounded on \mathcal{V} ,

$$\mathsf{Deg} \colon v \mapsto \frac{1}{m(v)} \sum_{u \sim v} \frac{1}{|e_{u,v}|} = \frac{\sum_{e \in \mathcal{E}_v} 1/|e|}{\sum_{e \in \mathcal{E}_v} |e|}$$

Note that Deg is bounded on \mathcal{V} if $\ell_*(\mathcal{E}) := \inf_{e \in \mathcal{E}} |e| > 0$.

Theorem 1 (Exner, AK, Malamud, Neidhardt'2018)

Let \mathcal{G} be a metric graph with $\ell^*(\mathcal{G}) := \sup_{e \in \mathcal{E}} |e| < \infty$. Then:

(i) $\mathbf{H}_{\mathcal{G}}$ is self-adjoint $\iff h_{\mathcal{G}}$ is self-adjoint,

Theorem 1 (Exner, AK, Malamud, Neidhardt'2018)

Let \mathcal{G} be a metric graph with $\ell^*(\mathcal{G}) := \sup_{e \in \mathcal{E}} |e| < \infty$. Then:

- (i) $H_{\mathcal{G}}$ is self-adjoint $\iff h_{\mathcal{G}}$ is self-adjoint,
- (ii) $\inf \sigma(\mathbf{H}_{\mathcal{G}}) > 0 \iff \inf \sigma(h_{\mathcal{G}}) > 0.$
- (iii) $\inf \sigma_{\mathrm{ess}}(\mathbf{H}_{\mathcal{G}}) > 0 \iff \inf \sigma_{\mathrm{ess}}(h_{\mathcal{G}}) > 0.$

Theorem 1 (Exner, AK, Malamud, Neidhardt'2018)

Let \mathcal{G} be a metric graph with $\ell^*(\mathcal{G}) := \sup_{e \in \mathcal{E}} |e| < \infty$. Then:

- (i) $\mathbf{H}_{\mathcal{G}}$ is self-adjoint $\iff h_{\mathcal{G}}$ is self-adjoint,
- (ii) $\inf \sigma(\mathbf{H}_{\mathcal{G}}) > 0 \iff \inf \sigma(h_{\mathcal{G}}) > 0.$
- (iii) $\inf \sigma_{\mathrm{ess}}(\mathbf{H}_{\mathcal{G}}) > 0 \iff \inf \sigma_{\mathrm{ess}}(h_{\mathcal{G}}) > 0.$
- (iv) $\sigma(\mathbf{H}_{\mathcal{G}})$ is discrete $\iff \sigma(h_{\mathcal{G}})$ is discrete and $\#\{e \in \mathcal{E} : |e| > \varepsilon\}$ is finite for all $\varepsilon > 0$.

Theorem 1 (Exner, AK, Malamud, Neidhardt'2018)

Let \mathcal{G} be a metric graph with $\ell^*(\mathcal{G}) := \sup_{e \in \mathcal{E}} |e| < \infty$. Then:

- (i) $\mathbf{H}_{\mathcal{G}}$ is self-adjoint $\iff h_{\mathcal{G}}$ is self-adjoint,
- (ii) $\inf \sigma(\mathbf{H}_{\mathcal{G}}) > 0 \iff \inf \sigma(h_{\mathcal{G}}) > 0.$
- (iii) $\inf \sigma_{\mathrm{ess}}(\mathbf{H}_{\mathcal{G}}) > 0 \iff \inf \sigma_{\mathrm{ess}}(h_{\mathcal{G}}) > 0.$
- (iv) $\sigma(\mathbf{H}_{\mathcal{G}})$ is discrete $\iff \sigma(h_{\mathcal{G}})$ is discrete and $\#\{e \in \mathcal{E} : |e| > \varepsilon\}$ is finite for all $\varepsilon > 0$.

(v)

$$\|e^{-t h_{\mathcal{G}}}\|_{\ell^1 \to \ell^{\infty}} \le C_1 t^{-D/2}, \quad t > 0,$$

for some D > 2 if and only if

$$\|\mathrm{e}^{-t\,\mathbf{H}_{\mathcal{G}}}\|_{L^1\to L^\infty}\leq C_2t^{-D/2},\quad t>0.$$

P. Exner, A. Kostenko, M. Malamud, & H. Neidhardt, *Spectral theory of infinite quantum graphs*, Ann. Henri Poincaré **19**, no. 11, (2018). Aleksey Kostenko Quantum Graphs 13 / 36

Theorem 1 (Exner, AK, Malamud, Neidhardt'2018)

Let \mathcal{G} be a metric graph with $\ell^*(\mathcal{G}) := \sup_{e \in \mathcal{E}} |e| < \infty$. Then:

- (i) $\mathbf{H}_{\mathcal{G}}$ is self-adjoint $\iff h_{\mathcal{G}}$ is self-adjoint,
- (ii) $\inf \sigma(\mathbf{H}_{\mathcal{G}}) > 0 \iff \inf \sigma(h_{\mathcal{G}}) > 0.$
- (iii) $\inf \sigma_{\mathrm{ess}}(\mathbf{H}_{\mathcal{G}}) > 0 \iff \inf \sigma_{\mathrm{ess}}(h_{\mathcal{G}}) > 0.$
- (iv) $\sigma(\mathbf{H}_{\mathcal{G}})$ is discrete $\iff \sigma(h_{\mathcal{G}})$ is discrete and $\#\{e \in \mathcal{E} : |e| > \varepsilon\}$ is finite for all $\varepsilon > 0$.

(v)

$$\|e^{-t h_{\mathcal{G}}}\|_{\ell^1 \to \ell^{\infty}} \le C_1 t^{-D/2}, \quad t > 0,$$

for some D > 2 if and only if

$$\|\mathrm{e}^{-t\,\mathbf{H}_{\mathcal{G}}}\|_{L^1\to L^\infty}\leq C_2t^{-D/2},\quad t>0.$$

A. Kostenko and N. Nicolussi, *Spectral estimates for infinite quantum graphs*, Calc. Var. Partial Differential Equations **58**, no. 1, (2019).

For $p: \mathcal{E} \to (0, \infty)$, define a path metric ϱ_p on \mathcal{V} w.r.t. \mathcal{G} by
$$\begin{split} \varrho_p(u, v) &:= \inf_{\mathcal{P} = \{v_0, \dots, v_n\}: \ u = v_0, \ v = v_n} \sum_k p(e_{v_{k-1}, v_k}). \end{split}$$

The infimum is taken over all paths connecting u and v.

For $p \colon \mathcal{E} \to (0,\infty)$, define a path metric ϱ_p on \mathcal{V} w.r.t. \mathcal{G} by

$$\varrho_{p}(u, v) := \inf_{\mathcal{P} = \{v_{0}, \dots, v_{n}\}: u = v_{0}, v = v_{n}} \sum_{k} p(e_{v_{k-1}, v_{k}}).$$

The infimum is taken over all paths connecting u and v.

Examples

• Natural path metric ϱ_0 with $p_0: e \mapsto |e|$.

For $p \colon \mathcal{E} \to (0,\infty)$, define a path metric ϱ_p on \mathcal{V} w.r.t. \mathcal{G} by

$$\varrho_{p}(u, v) := \inf_{\mathcal{P} = \{v_{0}, \dots, v_{n}\}: u = v_{0}, v = v_{n}} \sum_{k} p(e_{v_{k-1}, v_{k}}).$$

The infimum is taken over all paths connecting u and v.

Examples

- Natural path metric ϱ_0 with $p_0: e \mapsto |e|$.
- Star metric ϱ_m with $p_m: e_{u,v} \mapsto m(u) + m(v)$ with $m(v) = \sum_{e \in \mathcal{E}_v} |e|$

For $p \colon \mathcal{E} \to (0,\infty)$, define a path metric ϱ_p on \mathcal{V} w.r.t. \mathcal{G} by

$$\varrho_p(u, v) := \inf_{\mathcal{P} = \{v_0, \dots, v_n\}: u = v_0, v = v_n} \sum_k p(e_{v_{k-1}, v_k}).$$

The infimum is taken over all paths connecting u and v.

Examples

- Natural path metric ϱ_0 with $p_0: e \mapsto |e|$.
- Star metric ρ_m with $p_m: e_{u,v} \mapsto m(u) + m(v)$ with $m(v) = \sum_{e \in \mathcal{E}_v} |e|$

Hopf–Rinow-type Theorem

 (\mathcal{V}, ϱ_p) is complete as a metric space \iff (\mathcal{V}, ϱ_p) is geodesically complete \iff The distance balls in (\mathcal{V}, ϱ_p) are finite (*"finite ball condition"*).

X. Huang, M. Keller, J. Masamune, R. Wojciechowski, *A note on self-adjoint extensions of the Laplacian on weighted graphs*, J. Funct. Anal. **265** (2013).

For $p \colon \mathcal{E} \to (0,\infty)$, define a path metric ϱ_p on \mathcal{V} w.r.t. \mathcal{G} by

$$\varrho_{p}(u, v) := \inf_{\mathcal{P} = \{v_{0}, \dots, v_{n}\}: u = v_{0}, v = v_{n}} \sum_{k} p(e_{v_{k-1}, v_{k}}).$$

The infimum is taken over all paths connecting u and v.

Examples

- Natural path metric ϱ_0 with $p_0: e \mapsto |e|$.
- Star metric ϱ_m with $p_m: e_{u,v} \mapsto m(u) + m(v)$ with $m(v) = \sum_{e \in \mathcal{E}_v} |e|$

Theorem 2 (Exner-AK-Malamud-Neidhardt)

If (\mathcal{V}, ϱ_m) is complete as a metric space, then **H** is self-adjoint.

For $p \colon \mathcal{E} \to (0,\infty)$, define a path metric ϱ_p on \mathcal{V} w.r.t. \mathcal{G} by

$$\varrho_{p}(u, v) := \inf_{\mathcal{P} = \{v_{0}, \dots, v_{n}\}: u = v_{0}, v = v_{n}} \sum_{k} p(e_{v_{k-1}, v_{k}}).$$

The infimum is taken over all paths connecting u and v.

Examples

- Natural path metric ϱ_0 with $p_0: e \mapsto |e|$.
- Star metric ϱ_m with $p_m: e_{u,v} \mapsto m(u) + m(v)$ with $m(v) = \sum_{e \in \mathcal{E}_v} |e|$

Theorem 2 (Exner–AK–Malamud–Neidhardt)

If (\mathcal{V}, ϱ_m) is complete as a metric space, then **H** is self-adjoint. In particular, **H** is self-adjoint if $\inf_{v \in \mathcal{V}} m(v) = \inf_{v \in \mathcal{V}} \sum_{e \in \mathcal{E}_v} |e| > 0$.

M. Keller and D. Lenz, *Dirichlet forms and stochastic completeness of graphs and subgraphs*, J. reine angew. Math. **666** (2012).

For $p \colon \mathcal{E} \to (0,\infty)$, define a path metric ϱ_p on \mathcal{V} w.r.t. \mathcal{G} by

$$\varrho_{p}(u, v) := \inf_{\mathcal{P} = \{v_{0}, \dots, v_{n}\}: u = v_{0}, v = v_{n}} \sum_{k} p(e_{v_{k-1}, v_{k}}).$$

The infimum is taken over all paths connecting u and v.

Examples

- Natural path metric ϱ_0 with $p_0: e \mapsto |e|$.
- Star metric ϱ_m with $p_m: e_{u,v} \mapsto m(u) + m(v)$ with $m(v) = \sum_{e \in \mathcal{E}_v} |e|$

Theorem 2 (Exner–AK–Malamud–Neidhardt)

If (\mathcal{V}, ϱ_m) is complete as a metric space, then **H** is self-adjoint. In particular, **H** is self-adjoint if $\inf_{v \in \mathcal{V}} m(v) = \inf_{v \in \mathcal{V}} \sum_{e \in \mathcal{E}_v} |e| > 0$.

Gaffney-type Theorem: (\mathcal{G}, ϱ_0) is complete $\Rightarrow H_{\mathcal{G}}$ is self-adjoint.

For $p \colon \mathcal{E} \to (0,\infty)$, define a path metric ϱ_p on \mathcal{V} w.r.t. \mathcal{G} by

$$\varrho_{p}(u, v) := \inf_{\mathcal{P} = \{v_{0}, \dots, v_{n}\}: u = v_{0}, v = v_{n}} \sum_{k} p(e_{v_{k-1}, v_{k}}).$$

The infimum is taken over all paths connecting u and v.

Examples

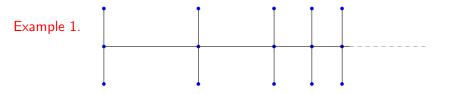
- Natural path metric ϱ_0 with $p_0: e \mapsto |e|$.
- Star metric ϱ_m with $p_m: e_{u,v} \mapsto m(u) + m(v)$ with $m(v) = \sum_{e \in \mathcal{E}_v} |e|$

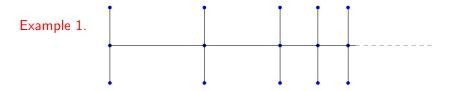
Theorem 2 (Exner–AK–Malamud–Neidhardt)

If (\mathcal{V}, ϱ_m) is complete as a metric space, then **H** is self-adjoint. In particular, **H** is self-adjoint if $\inf_{v \in \mathcal{V}} m(v) = \inf_{v \in \mathcal{V}} \sum_{e \in \mathcal{E}_v} |e| > 0$.

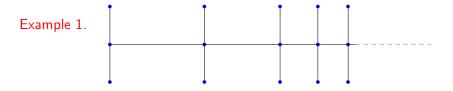
Gaffney-type Theorem: (\mathcal{G}, ϱ_0) is complete $\Rightarrow \mathbf{H}_{\mathcal{G}}$ is self-adjoint.

The standard assumption for infinite QG is $\inf_{e \in \mathcal{E}} |e| > 0!$





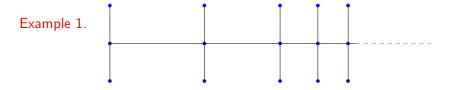
In Example 1, (\mathcal{V}, ϱ_m) is complete $\Leftrightarrow m(\mathcal{V}) = 2\mathrm{vol}(\mathcal{G}) = 2\sum_{e \in \mathcal{E}} |e| = \infty$.



In Example 1, (\mathcal{V}, ϱ_m) is complete $\Leftrightarrow m(\mathcal{V}) = 2\mathrm{vol}(\mathcal{G}) = 2\sum_{e \in \mathcal{E}} |e| = \infty$.

Lemma

If $vol(\mathcal{G}) < \infty$, then **H** is non-self-adjoint.

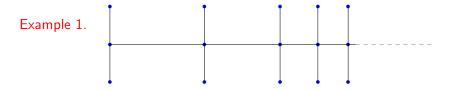


In Example 1, (\mathcal{V}, ϱ_m) is complete $\Leftrightarrow m(\mathcal{V}) = 2\mathrm{vol}(\mathcal{G}) = 2\sum_{e \in \mathcal{E}} |e| = \infty$.

Lemma

If $vol(\mathcal{G}) < \infty$, then **H** is non-self-adjoint.

Hence, in Example 1, $|\mathbf{H}|$ is self-adjoint $\Leftrightarrow (\mathcal{V}, \varrho_m)$ is complete!



In Example 1, (\mathcal{V}, ϱ_m) is complete $\Leftrightarrow m(\mathcal{V}) = 2\mathrm{vol}(\mathcal{G}) = 2\sum_{e \in \mathcal{E}} |e| = \infty$.

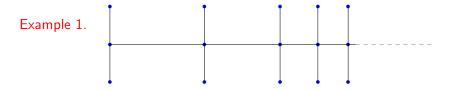
Lemma

If $vol(\mathcal{G}) < \infty$, then **H** is non-self-adjoint.

Hence, in Example 1, **H** is self-adjoint $\Leftrightarrow (\mathcal{V}, \varrho_m)$ is complete!

Remark

The converse to Theorem 2 is not true!



In Example 1, (\mathcal{V}, ϱ_m) is complete $\Leftrightarrow m(\mathcal{V}) = 2\mathrm{vol}(\mathcal{G}) = 2\sum_{e \in \mathcal{E}} |e| = \infty$.

Lemma

If $vol(\mathcal{G}) < \infty$, then **H** is non-self-adjoint.

Hence, in Example 1, **H** is self-adjoint $\Leftrightarrow (\mathcal{V}, \varrho_m)$ is complete!

Remark

The converse to Theorem 2 is not true!

For radially symmetric trees and antitrees, **H** is self-adjoint $\Leftrightarrow m(\mathcal{V}) = \infty$.

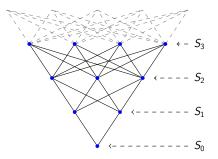


Figure: Example of an antitree A with $s_n = n + 1$.

 S_n is the *n*-th combinatorial sphere, and $s_n := \#S_n$. \mathcal{A} is radially symmetric if edges connecting S_n with S_{n+1} have the same length, say ℓ_n , for all $n \ge 0$.

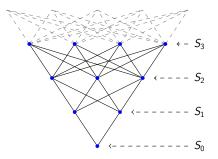


Figure: Example of an antitree A with $s_n = n + 1$.

Theorem (AK–Nicolussi)

H is self-adjoint
$$\iff \operatorname{vol}(\mathcal{A}) = \sum_{n \ge 0} s_n s_{n+1} \ell_n = \infty$$

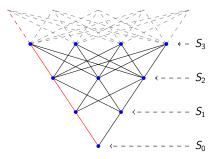


Figure: Example of an antitree A with $s_n = n + 1$.

Theorem (AK–Nicolussi)

H is self-adjoint
$$\iff \operatorname{vol}(\mathcal{A}) = \sum_{n \ge 0} s_n s_{n+1} \ell_n = \infty$$

$$(\mathcal{A}, \varrho_0)$$
 is complete $\iff \sum_{n \ge 0} \ell_n = \infty$.

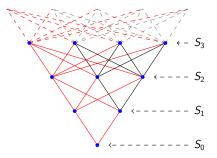


Figure: Example of an antitree A with $s_n = n + 1$.

Theorem (AK–Nicolussi)

H is self-adjoint $\iff \operatorname{vol}(\mathcal{A}) = \sum_{n \ge 0} s_n s_{n+1} \ell_n = \infty$

$$(\mathcal{A}, \varrho_0)$$
 is complete $\iff \sum_{n \ge 0} \ell_n = \infty$.
 (\mathcal{V}, ϱ_m) is complete $\iff \sum_{n \ge 0} (s_n + s_{n+1}) \ell_n = \infty$

Summary

(i) **H** is self-adjoint if (\mathcal{V}, ϱ_m) is complete.

(ii) **H** is non-self-adjoint if $vol(\mathcal{G}) = \sum_{e \in \mathcal{E}} |e| < \infty$.

Summary

(i) **H** is self-adjoint if (\mathcal{V}, ϱ_m) is complete.

(ii) **H** is non-self-adjoint if $vol(\mathcal{G}) = \sum_{e \in \mathcal{E}} |e| < \infty$.

Problems

(i) Characterize metric graphs such that completeness of (\mathcal{V}, ϱ_m) is also necessary for self-adjointness.

Summary

(i) **H** is self-adjoint if (\mathcal{V}, ϱ_m) is complete.

(ii) **H** is non-self-adjoint if $vol(\mathcal{G}) = \sum_{e \in \mathcal{E}} |e| < \infty$.

Problems

(i) Characterize metric graphs such that completeness of (\mathcal{V}, ρ_m) is also necessary for self-adjointness.

(ii) Characterize metric graphs such that $\operatorname{vol}(\mathcal{G}) = \sum_{e \in \mathcal{E}} |e| = \infty$ is also sufficient for self-adjointness.

 $\operatorname{vol}(\mathcal{G}) = \sum_{e \in \mathcal{E}} |e| < \infty,$ then $\boldsymbol{\mathsf{H}}$ is non-self-adjoint

Problem

Deficiency indices? Self-adjoint extensions? Boundary conditions?

 $\operatorname{vol}(\mathcal{G}) = \sum_{e \in \mathcal{E}} |e| < \infty$, then $\boldsymbol{\mathsf{H}}$ is non-self-adjoint

Problem

Deficiency indices? Self-adjoint extensions? Boundary conditions?

Graph Ends

• A ray R in \mathcal{G}_d is a path without intersections.

 $\operatorname{vol}(\mathcal{G}) = \sum_{e \in \mathcal{E}} |e| < \infty$, then H is non-self-adjoint

Problem

Deficiency indices? Self-adjoint extensions? Boundary conditions?

Graph Ends

- A ray R in \mathcal{G}_d is a path without intersections.
- Two rays are *equivalent* if there is a third ray containing infinitely many vertices of both rays.

 $\operatorname{vol}(\mathcal{G}) = \sum_{e \in \mathcal{E}} |e| < \infty$, then H is non-self-adjoint

Problem

Deficiency indices? Self-adjoint extensions? Boundary conditions?

Graph Ends

- A ray R in \mathcal{G}_d is a path without intersections.
- Two rays are *equivalent* if there is a third ray containing infinitely many vertices of both rays.
- An equivalence class of rays is a graph end; $\Omega(\mathcal{G}_d)$ is the set of graph ends.

Theorem (e.g., Diestel–Kühn '2003)

Topological ends of $\mathcal{G} = \text{graph}$ ends of \mathcal{G}_d .

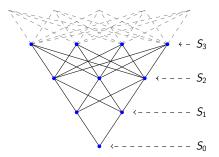


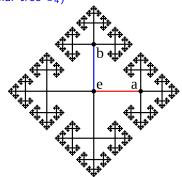
Figure: An antitree A with $s_n = n + 1$.

Every antitree has exactly 1 end.

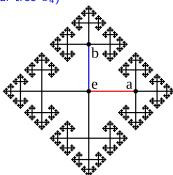
• $\mathcal{G}_d = \mathbb{Z}$ has 2 ends.

- $\mathcal{G}_d = \mathbb{Z}$ has 2 ends.
- $\mathcal{G}_d = \mathbb{Z}^N$ has 1 end for all $N \geq 2$.

- $\mathcal{G}_d = \mathbb{Z}$ has 2 ends.
- $\mathcal{G}_d = \mathbb{Z}^N$ has 1 end for all $N \geq 2$.
- Bethe lattice (Cayley or regular tree \mathbb{T}_4)



- $\mathcal{G}_d = \mathbb{Z}$ has 2 ends.
- $\mathcal{G}_d = \mathbb{Z}^N$ has 1 end for all $N \geq 2$.
- Bethe lattice (Cayley or regular tree \mathbb{T}_4)



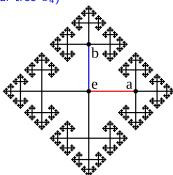
Theorem (J. R. Stallings, Ann. of Math. (1968))

If \mathcal{G}_d is a Cayley graph of a finitely generated group, then $\#\Omega(\mathcal{G}_d)$

Aleksey Kostenko

Quantum Graphs

- $\mathcal{G}_d = \mathbb{Z}$ has 2 ends.
- $\mathcal{G}_d = \mathbb{Z}^N$ has 1 end for all $N \geq 2$.
- Bethe lattice (Cayley or regular tree \mathbb{T}_4)



Theorem (J. R. Stallings, Ann. of Math. (1968))

If \mathcal{G}_d is a Cayley graph of a finitely generated group, then $\#\Omega(\mathcal{G}_d) \in \{1, 2, \infty\}.$

Aleksey Kostenko

Quantum Graphs

Theorem (AK–Mugnolo–Nicolussi, *in preparation*)

If $\operatorname{vol}(\mathcal{G}) < \infty$, then $n_{\pm}(\mathbf{H}) \geq \#\Omega(\mathcal{G}_d)$.

Theorem (AK–Mugnolo–Nicolussi, in preparation)

If $\operatorname{vol}(\mathcal{G}) < \infty$, then $n_{\pm}(\mathbf{H}) \geq \#\Omega(\mathcal{G}_d)$.

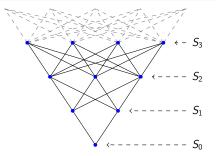


Figure: An antitree A with $s_n = n + 1$.

For radially symmetric antitrees, $n_{\pm}(\mathcal{A})=1$ iff $\mathrm{vol}(\mathcal{A})<\infty$

Theorem (AK–Mugnolo–Nicolussi, in preparation)

If $\operatorname{vol}(\mathcal{G}) < \infty$, then $n_{\pm}(\mathbf{H}) \geq \#\Omega(\mathcal{G}_d)$.

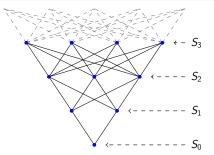


Figure: An antitree A with $s_n = n + 1$.

For radially symmetric antitrees, $n_{\pm}(A) = 1$ iff $vol(A) < \infty$ However, there are antitrees with $n_{\pm}(A) = \infty$!

Theorem (AK–Mugnolo–Nicolussi, *in preparation*)

If $\operatorname{vol}(\mathcal{G}) < \infty$, then $n_{\pm}(\mathbf{H}) \geq \#\Omega(\mathcal{G}_d)$. Moreover,

 $n_{\pm}(\mathbf{H}) = \#\Omega(\mathcal{G}_d)$ if and only if either $\#\Omega(\mathcal{G}_d) = \infty$ or ker $(\mathbf{H}^*) \subset H^1(\mathcal{G})$.

Here $H^1(\mathcal{G})$ is the usual Sobolev space on \mathcal{G} .

Theorem (AK–Mugnolo–Nicolussi, in preparation)

If $\operatorname{vol}(\mathcal{G}) < \infty$, then $n_{\pm}(\mathbf{H}) \geq \#\Omega(\mathcal{G}_d)$. Moreover,

 $n_{\pm}(\mathbf{H}) = \#\Omega(\mathcal{G}_d)$ if and only if either $\#\Omega(\mathcal{G}_d) = \infty$ or ker $(\mathbf{H}^*) \subset H^1(\mathcal{G})$.

Here $H^1(\mathcal{G})$ is the usual Sobolev space on \mathcal{G} .

Remarks

• Since 0 is a point of a regular type for H, $n_{\pm}(H) = \dim(\ker(H^*))$.

Theorem (AK–Mugnolo–Nicolussi, in preparation)

If $\operatorname{vol}(\mathcal{G}) < \infty$, then $n_{\pm}(\mathbf{H}) \geq \#\Omega(\mathcal{G}_d)$. Moreover,

 $n_{\pm}(\mathbf{H}) = \#\Omega(\mathcal{G}_d)$ if and only if either $\#\Omega(\mathcal{G}_d) = \infty$ or ker $(\mathbf{H}^*) \subset H^1(\mathcal{G})$.

Here $H^1(\mathcal{G})$ is the usual Sobolev space on \mathcal{G} .

Remarks

- Since 0 is a point of a regular type for \mathbf{H} , $n_{\pm}(\mathbf{H}) = \dim (\ker (\mathbf{H}^*))$.
- ker (\mathbf{H}^*) consists of harmonic functions which belong to $L^2(\mathcal{G})$.

Theorem (AK–Mugnolo–Nicolussi, in preparation)

If $\operatorname{vol}(\mathcal{G}) < \infty$, then $n_{\pm}(\mathbf{H}) \geq \#\Omega(\mathcal{G}_d)$. Moreover,

 $n_{\pm}(\mathbf{H}) = \#\Omega(\mathcal{G}_d)$ if and only if either $\#\Omega(\mathcal{G}_d) = \infty$ or ker $(\mathbf{H}^*) \subset H^1(\mathcal{G})$.

Here $H^1(\mathcal{G})$ is the usual Sobolev space on \mathcal{G} .

Remarks

- Since 0 is a point of a regular type for \mathbf{H} , $n_{\pm}(\mathbf{H}) = \dim(\ker(\mathbf{H}^*))$.
- ker (\mathbf{H}^*) consists of harmonic functions which belong to $L^2(\mathcal{G})$.

• $H^1(\mathcal{G})$ is a 'nice' space (e.g., graph ends can be identified with its Royden's boundary, which gives a hope for reasonable traces of functions in dom(\mathbf{H}^*)).

In the discrete setting, see

A. Georgakopoulos, S. Haeseler, M. Keller, D. Lenz and R. Wojciechowski, *Graphs of finite measure*, J. Math. Pures Appl. **103** (2015).

Weighted Quantum Graphs

Given a metric graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, |\cdot|)$. Suppose we are given two more edge weights

$$\mu\colon \mathcal{E}\to\mathbb{R}_{>0},\qquad \qquad \nu\colon \mathcal{E}\to\mathbb{R}_{>0}$$

Weighted Quantum Graphs

Given a metric graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, |\cdot|)$. Suppose we are given two more edge weights

$$\mu \colon \mathcal{E} \to \mathbb{R}_{>0}, \qquad \qquad \nu \colon \mathcal{E} \to \mathbb{R}_{>0}$$

Introduce the *weighted* Hilbert space $L^2(\mathcal{G}; \mu) := \bigoplus_{e \in \mathcal{E}} L^2(e; \mu_e)$ and equip \mathcal{G} with a Schrödinger-type operator $\mathbf{H}_{\max} := \bigoplus_{e \in \mathcal{E}} \mathrm{H}^e_{\mu,\nu}$, where:

$$\mathbf{H}_{\mu,\nu}^{\mathbf{e}} = -\frac{1}{\mu_{e}} \frac{\mathrm{d}}{\mathrm{d}\mathbf{x}_{e}} \nu_{e} \frac{\mathrm{d}}{\mathrm{d}\mathbf{x}_{e}}, \qquad \mathrm{dom}(\mathbf{H}_{\mu,\nu}^{\mathbf{e}}) = H^{2}(e).$$

Given a metric graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, |\cdot|)$. Suppose we are given two more edge weights

$$\mu \colon \mathcal{E} \to \mathbb{R}_{>0}, \qquad \qquad \nu \colon \mathcal{E} \to \mathbb{R}_{>0}$$

Introduce the *weighted* Hilbert space $L^2(\mathcal{G}; \mu) := \bigoplus_{e \in \mathcal{E}} L^2(e; \mu_e)$ and equip \mathcal{G} with a Schrödinger-type operator $\mathbf{H}_{\max} := \bigoplus_{e \in \mathcal{E}} \mathrm{H}^e_{\mu,\nu}$, where:

$$\mathbf{H}_{\mu,\nu}^{\boldsymbol{e}} = -\frac{1}{\mu_{\boldsymbol{e}}} \frac{\mathrm{d}}{\mathrm{d}\mathbf{x}_{\boldsymbol{e}}} \nu_{\boldsymbol{e}} \frac{\mathrm{d}}{\mathrm{d}\mathbf{x}_{\boldsymbol{e}}}, \qquad \mathrm{dom}(\mathbf{H}_{\mu,\nu}^{\boldsymbol{e}}) = H^2(\boldsymbol{e}).$$

The operator $\mathbf{H}_{\mu,\nu}$ with <u>Kirchhoff conditions</u>: For all $v \in \mathcal{V}$

 $\begin{cases} f \text{ is continuous at } v, \\ \sum_{e \in \mathcal{E}_v} \nu_e f'_e(v) = 0. \end{cases}$

The analog of Theorem 1 for $\mathbf{H}_{\mu,\nu}$ holds true, however, with the (minimal) discrete Laplacian defined on $\ell^2(\mathcal{V}; m_{\mu})$ by

$$(au_{\mathcal{G}}f)(v):=rac{1}{m_{\mu}(v)}\sum_{u\sim v}b_{\nu}(e_{u,v})(f(v)-f(u)),$$

where

$$m_{\mu}(\mathbf{v}) = \sum_{e \in \mathcal{E}_{\mathbf{v}}} \mu_e |e|, \qquad b_{\nu}(e) = rac{
u_e}{|e|}.$$

The analog of Theorem 1 for $\mathbf{H}_{\mu,\nu}$ holds true, however, with the (minimal) discrete Laplacian defined on $\ell^2(\mathcal{V}; m_{\mu})$ by

$$(au_{\mathcal{G}}f)(v):=rac{1}{m_{\mu}(v)}\sum_{u\sim v}b_{
u}(e_{u,v})(f(v)-f(u)),$$

where

$$m_\mu(\mathbf{v}) = \sum_{e \in \mathcal{E}_\mathbf{v}} \mu_e |e|, \qquad b_
u(e) = rac{
u_e}{|e|}$$

Remark (self-adjointness)

If ${\mathcal G}$ is a path graph, then ${f H}_{\mu,
u}$ is self-adjoint if and only if

$$\sum_{n} \mu_{n} |e_{n}| \Big(\sum_{k \leq n} \frac{|e_{k}|}{\nu_{k}} \Big)^{2} = \infty.$$

The analog of Theorem 1 for $\mathbf{H}_{\mu,\nu}$ holds true, however, with the (minimal) discrete Laplacian defined on $\ell^2(\mathcal{V}; m_{\mu})$ by

$$(au_{\mathcal{G}}f)(v):=rac{1}{m_{\mu}(v)}\sum_{u\sim v}b_{
u}(e_{u,v})(f(v)-f(u)),$$

where

$$m_\mu(\mathbf{v}) = \sum_{e \in \mathcal{E}_\mathbf{v}} \mu_e |e|, \qquad b_
u(e) = rac{
u_e}{|e|}$$

Remark (self-adjointness)

If ${\mathcal G}$ is a path graph, then ${f H}_{\mu,
u}$ is self-adjoint if and only if

$$\sum_{n} \mu_{n} |e_{n}| \Big(\sum_{k \leq n} \frac{|e_{k}|}{\nu_{k}} \Big)^{2} = \infty.$$

Hence $\sum m_{\mu}(v_n) = 2 \sum \mu_n |e_n| = \infty$ is only sufficient!

The analog of Theorem 1 for $\mathbf{H}_{\mu,\nu}$ holds true, however, with the (minimal) discrete Laplacian defined on $\ell^2(\mathcal{V}; m_{\mu})$ by

$$(au_{\mathcal{G}}f)(v):=rac{1}{m_{\mu}(v)}\sum_{u\sim v}b_{
u}(e_{u,v})(f(v)-f(u)),$$

where

$$m_{\mu}(\mathbf{v}) = \sum_{e \in \mathcal{E}_{\mathbf{v}}} \mu_e |e|, \qquad b_{\nu}(e) = rac{
u_e}{|e|}$$

Weighted discrete Laplacian

For $m: \mathcal{V} \to \mathbb{R}_{>0}$ and $b: \mathcal{E} \to \mathbb{R}_{>0}$, consider in $\ell^2(\mathcal{V}; m)$

$$(\tau f)(v) := \frac{1}{m(v)} \sum_{u \sim v} b(e_{u,v})(f(v) - f(u)).$$

The analog of Theorem 1 for $\mathbf{H}_{\mu,\nu}$ holds true, however, with the (minimal) discrete Laplacian defined on $\ell^2(\mathcal{V}; m_{\mu})$ by

$$(au_{\mathcal{G}}f)(v):=rac{1}{m_{\mu}(v)}\sum_{u\sim v}b_{
u}(e_{u,v})(f(v)-f(u)),$$

where

$$m_{\mu}(\mathbf{v}) = \sum_{e \in \mathcal{E}_{\mathbf{v}}} \mu_e |e|, \qquad b_{\nu}(e) = rac{
u_e}{|e|}$$

Weighted discrete Laplacian

For $m: \mathcal{V} \to \mathbb{R}_{>0}$ and $b: \mathcal{E} \to \mathbb{R}_{>0}$, consider in $\ell^2(\mathcal{V}; m)$

$$(\tau f)(v) := rac{1}{m(v)} \sum_{u \sim v} b(e_{u,v})(f(v) - f(u)).$$

QUESTION: For a given τ (i.e., a pair of functions *m* and *b*), does there exist a "weighted" \mathcal{G} (i.e., weights $|\cdot|$, μ and ν) such that $\tau = \tau_{\mathcal{G}}$?

Normalized/Physical Laplacian

Take $\mu_e = \nu_e = |e|$ for all $e \in \mathcal{E}$, then

$$m_\mu(v) = \deg(v), \qquad b_
u(e) = 1.$$

Normalized/Physical Laplacian

Take $\mu_e = \nu_e = |e|$ for all $e \in \mathcal{E}$, then

$$m_\mu(v) = \deg(v), \qquad b_
u(e) = 1.$$

Electric Networks/Random Walks on Graphs

Take $\nu_e = |e|b(e)$ and $\mu_e = \frac{b(e)}{|e|}$ for all $e \in \mathcal{E}$, then

$$m_\mu(v) = \sum_{e\in\mathcal{E}} b(e) = m(e), \qquad b_
u(e) = b(e).$$

Normalized/Physical Laplacian

Take $\mu_e = \nu_e = |e|$ for all $e \in \mathcal{E}$, then

$$m_\mu(v) = \deg(v), \qquad b_
u(e) = 1.$$

Electric Networks/Random Walks on Graphs

Take
$$\nu_e = |e|b(e)$$
 and $\mu_e = \frac{b(e)}{|e|}$ for all $e \in \mathcal{E}$, then

$$m_\mu(v) = \sum_{e \in \mathcal{E}} b(e) = m(e), \qquad b_
u(e) = b(e).$$

Path Graphs and Jacobi Matrices

Normalized/Physical Laplacian

Take $\mu_e = \nu_e = |e|$ for all $e \in \mathcal{E}$, then

$$m_\mu(v) = \deg(v), \qquad b_
u(e) = 1.$$

Electric Networks/Random Walks on Graphs

Take
$$\nu_e = |e|b(e)$$
 and $\mu_e = \frac{b(e)}{|e|}$ for all $e \in \mathcal{E}$, then

$$m_\mu(v) = \sum_{e\in\mathcal{E}} b(e) = m(e), \qquad b_
u(e) = b(e).$$

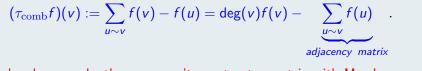
Path Graphs and Jacobi Matrices

Every Jacobi matrix can be realized as a boundary operator for a weighted quantum path graph (with δ -interactions at the vertices)

Combinatorial Laplacian: $m \equiv 1, b \equiv 1$

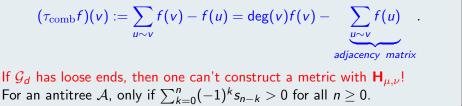
$$(au_{ ext{comb}}f)(v) := \sum_{u \sim v} f(v) - f(u) = \deg(v)f(v) - \sum_{\substack{u \sim v \\ adjacency \ matrix}} f(u)$$
.

Combinatorial Laplacian: $m \equiv 1, b \equiv 1$



If \mathcal{G}_d has loose ends, then one can't construct a metric with $\mathbf{H}_{\mu,\nu}$!

Combinatorial Laplacian: $m \equiv 1, b \equiv 1$



Combinatorial Laplacian: $m \equiv 1, b \equiv 1$

$$(au_{ ext{comb}}f)(v) := \sum_{u \sim v} f(v) - f(u) = \deg(v)f(v) - \sum_{\substack{u \sim v \\ adjacency \ matrix}} f(u)$$
.

If \mathcal{G}_d has loose ends, then one can't construct a metric with $\mathbf{H}_{\mu,\nu}$! For an antitree \mathcal{A} , only if $\sum_{k=0}^{n} (-1)^k s_{n-k} > 0$ for all $n \ge 0$.

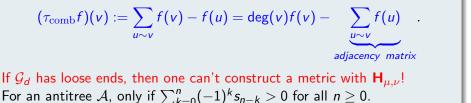
Theorem (G. Zaimi '2011: mathoverflow.net/questions/59117)

Let $\mathcal{G}_d = (\mathcal{V}, \mathcal{E})$ be simple, connected, locally finite. Then there are lengths $|\cdot| : \mathcal{E} \to \mathbb{R}_{>0}$ and weights $\mu : \mathcal{E} \to \mathbb{R}_{>0}$ such that

$$\sum_{e\in \mathcal{E}_{\mathbf{v}}} \mu(e) |e| = 1 \; \; ext{for all} \; \; \mathbf{v} \in \mathcal{V},$$

if and only if for each $e \in \mathcal{E}$ there is a disjoint cycle cover containing e in one of its cycles. Aleksey Kostenko Quantum Graphs 33 / 36

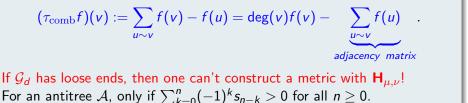
Combinatorial Laplacian: $m \equiv 1$, $b \equiv 1$



The way to fix this problem is to allow loops!

M. Folz, *Volume growth and stochastic completeness of graphs*, Trans. Amer. Math. Soc. **366** (2014).

Combinatorial Laplacian: $m \equiv 1$, $b \equiv 1$



The way to fix this problem is to allow loops! Then every weighted discrete Laplacian can be realized as a boundary operator for a quantum graph operator (in the sense of Theorem 1), however, the metric graph might be with loops.

A. Kostenko, M. Malamud, and N. Nicolussi, *Weighted quantum graphs*, in preparation.

8th ECM in Portorož, Slovenia: July 5-11, 2020

8th ECM in Portorož, Slovenia: July 5-11, 2020

Thank you for your attention!