Infinite Quantum Graphs

Aleksey Kostenko

University of Ljubljana, Slovenia

\& University of Vienna, Austria

Differential Operators on Graphs and Waveguides Graz, Austria

February 27, 2019

Combinatorial and Metric Graphs

Definition

A (combinatorial) graph is the set of vertices \mathcal{V} and edges $\mathcal{E}, \mathcal{G}_{d}=(\mathcal{V}, \mathcal{E})$.
For $u, v \in \mathcal{V}$ we shall write $u \sim v$ if there is $e_{u, v} \in \mathcal{E}$ connecting u and v. The function deg: $\mathcal{V} \rightarrow \mathbb{Z}_{\geq 1} \cup\{\infty\}$ defined by

$$
\operatorname{deg}: v \mapsto \#\{u \in \mathcal{V} \mid u \sim v\}=\# \mathcal{E}_{v}
$$

is called the (combinatorial) degree, where $\mathcal{E}_{v}:=\left\{e_{u, v} \in \mathcal{E} \mid u \sim v\right\}$.

Assumptions

Combinatorial and Metric Graphs

Definition

A (combinatorial) graph is the set of vertices \mathcal{V} and edges $\mathcal{E}, \mathcal{G}_{d}=(\mathcal{V}, \mathcal{E})$.
For $u, v \in \mathcal{V}$ we shall write $u \sim v$ if there is $e_{u, v} \in \mathcal{E}$ connecting u and v. The function deg: $\mathcal{V} \rightarrow \mathbb{Z}_{\geq 1} \cup\{\infty\}$ defined by

$$
\operatorname{deg}: v \mapsto \#\{u \in \mathcal{V} \mid u \sim v\}=\# \mathcal{E}_{v}
$$

is called the (combinatorial) degree, where $\mathcal{E}_{v}:=\left\{e_{u, v} \in \mathcal{E} \mid u \sim v\right\}$.

Assumptions

- \mathcal{V} and \mathcal{E} are at most countable

Combinatorial and Metric Graphs

Definition

A (combinatorial) graph is the set of vertices \mathcal{V} and edges $\mathcal{E}, \mathcal{G}_{d}=(\mathcal{V}, \mathcal{E})$.
For $u, v \in \mathcal{V}$ we shall write $u \sim v$ if there is $e_{u, v} \in \mathcal{E}$ connecting u and v. The function deg: $\mathcal{V} \rightarrow \mathbb{Z}_{\geq 1} \cup\{\infty\}$ defined by

$$
\operatorname{deg}: v \mapsto \#\{u \in \mathcal{V} \mid u \sim v\}=\# \mathcal{E}_{v}
$$

is called the (combinatorial) degree, where $\mathcal{E}_{v}:=\left\{e_{u, v} \in \mathcal{E} \mid u \sim v\right\}$.

Assumptions

- \mathcal{V} and \mathcal{E} are at most countable
- $\mathcal{G}_{\boldsymbol{d}}$ is connected and locally finite $(\operatorname{deg}(v)<\infty$ for all $v \in \mathcal{V})$

Combinatorial and Metric Graphs

Definition

A (combinatorial) graph is the set of vertices \mathcal{V} and edges $\mathcal{E}, \mathcal{G}_{d}=(\mathcal{V}, \mathcal{E})$.
For $u, v \in \mathcal{V}$ we shall write $u \sim v$ if there is $e_{u, v} \in \mathcal{E}$ connecting u and v. The function deg: $\mathcal{V} \rightarrow \mathbb{Z}_{\geq 1} \cup\{\infty\}$ defined by

$$
\operatorname{deg}: v \mapsto \#\{u \in \mathcal{V} \mid u \sim v\}=\# \mathcal{E}_{v}
$$

is called the (combinatorial) degree, where $\mathcal{E}_{v}:=\left\{e_{u, v} \in \mathcal{E} \mid u \sim v\right\}$.

Assumptions

- \mathcal{V} and \mathcal{E} are at most countable
- $\mathcal{G}_{\boldsymbol{d}}$ is connected and locally finite $(\operatorname{deg}(v)<\infty$ for all $v \in \mathcal{V})$
- No loops or multiple edges

Combinatorial and Metric Graphs

Definition

A (combinatorial) graph is the set of vertices \mathcal{V} and edges $\mathcal{E}, \mathcal{G}_{d}=(\mathcal{V}, \mathcal{E})$.
For $u, v \in \mathcal{V}$ we shall write $u \sim v$ if there is $e_{u, v} \in \mathcal{E}$ connecting u and v. The function deg: $\mathcal{V} \rightarrow \mathbb{Z}_{\geq 1} \cup\{\infty\}$ defined by

$$
\operatorname{deg}: v \mapsto \#\{u \in \mathcal{V} \mid u \sim v\}=\# \mathcal{E}_{v}
$$

is called the (combinatorial) degree, where $\mathcal{E}_{v}:=\left\{e_{u, v} \in \mathcal{E} \mid u \sim v\right\}$.

Assumptions

- \mathcal{V} and \mathcal{E} are at most countable
- $\mathcal{G}_{\boldsymbol{d}}$ is connected and locally finite $(\operatorname{deg}(v)<\infty$ for all $v \in \mathcal{V})$
- No loops or multiple edges

Definition

If every edge $e \in \mathcal{E}$ is assigned with a length $|e| \in(0, \infty)$, then $\mathcal{G}=(\mathcal{V}, \mathcal{E},|\cdot|)$ is called a metric graph

Quantum Graphs

Given a metric graph $\mathcal{G}=(\mathcal{V}, \mathcal{E},|\cdot|)$, we can identify each edge $e \in \mathcal{E}$ with an interval $(0,|e|)$ and hence introduce the Hilbert space

$$
L^{2}(\mathcal{G}):=\bigoplus_{e \in \mathcal{E}} L^{2}(e)=\left\{f=\left\{f_{e}\right\}_{e \in \mathcal{E}}: f_{e} \in L^{2}(e), \sum_{e \in \mathcal{E}}\left\|f_{e}\right\|_{L^{2}(e)}^{2}<\infty\right\}
$$

Quantum Graphs

Given a metric graph $\mathcal{G}=(\mathcal{V}, \mathcal{E},|\cdot|)$, we can identify each edge $e \in \mathcal{E}$ with an interval $(0,|e|)$ and hence introduce the Hilbert space

$$
L^{2}(\mathcal{G}):=\bigoplus_{e \in \mathcal{E}} L^{2}(e)=\left\{f=\left\{f_{e}\right\}_{e \in \mathcal{E}}: f_{e} \in L^{2}(e), \sum_{e \in \mathcal{E}}\left\|f_{e}\right\|_{L^{2}(e)}^{2}<\infty\right\}
$$

Next equip \mathcal{G} with a Schrödinger-type operator $\mathbf{H}_{\max }:=\bigoplus_{e \in \mathcal{E}} \mathrm{H}_{e}$, where:

$$
\mathrm{H}_{e}=-\frac{\mathrm{d}^{2}}{\mathrm{dx}_{e}^{2}}, \quad \operatorname{dom}\left(\mathrm{H}_{e}\right)=H^{2}(e)
$$

Quantum Graphs

Given a metric graph $\mathcal{G}=(\mathcal{V}, \mathcal{E},|\cdot|)$, we can identify each edge $e \in \mathcal{E}$ with an interval $(0,|e|)$ and hence introduce the Hilbert space

$$
L^{2}(\mathcal{G}):=\bigoplus_{e \in \mathcal{E}} L^{2}(e)=\left\{f=\left\{f_{e}\right\}_{e \in \mathcal{E}}: f_{e} \in L^{2}(e), \sum_{e \in \mathcal{E}}\left\|f_{e}\right\|_{L^{2}(e)}^{2}<\infty\right\}
$$

Next equip \mathcal{G} with a Schrödinger-type operator $\mathbf{H}_{\max }:=\bigoplus_{e \in \mathcal{E}} \mathrm{H}_{e}$, where:

$$
\mathrm{H}_{e}=-\frac{\mathrm{d}^{2}}{\mathrm{dx}_{e}^{2}}+V\left(\mathrm{x}_{e}\right), \quad \operatorname{dom}\left(\mathrm{H}_{e}\right)=\mathcal{D}_{\max }(e)
$$

Quantum Graphs

Given a metric graph $\mathcal{G}=(\mathcal{V}, \mathcal{E},|\cdot|)$, we can identify each edge $e \in \mathcal{E}$ with an interval $(0,|e|)$ and hence introduce the Hilbert space

$$
L^{2}(\mathcal{G}):=\bigoplus_{e \in \mathcal{E}} L^{2}(e)=\left\{f=\left\{f_{e}\right\}_{e \in \mathcal{E}}: f_{e} \in L^{2}(e), \sum_{e \in \mathcal{E}}\left\|f_{e}\right\|_{L^{2}(e)}^{2}<\infty\right\}
$$

Next equip \mathcal{G} with a Schrödinger-type operator $\mathbf{H}_{\max }:=\bigoplus_{e \in \mathcal{E}} \mathrm{H}_{e}$, where:

$$
\mathrm{H}_{e}=\left(\frac{1}{\mathrm{i}} \frac{\mathrm{~d}}{\mathrm{dx}_{e}}-A\left(\mathrm{x}_{e}\right)\right)^{2}+V\left(\mathrm{x}_{e}\right), \quad \operatorname{dom}\left(\mathrm{H}_{e}\right)=\mathcal{D}_{\max }(e) .
$$

Quantum Graphs

Given a metric graph $\mathcal{G}=(\mathcal{V}, \mathcal{E},|\cdot|)$, we can identify each edge $e \in \mathcal{E}$ with an interval $(0,|e|)$ and hence introduce the weighted Hilbert space

$$
L^{2}(\mathcal{G} ; \mu):=\bigoplus_{e \in \mathcal{E}} L^{2}\left(e ; \mu_{e}\right)
$$

Next equip \mathcal{G} with a Schrödinger-type operator $\mathbf{H}_{\max }:=\bigoplus_{e \in \mathcal{E}} \mathrm{H}_{e}$, where:

$$
\mathrm{H}_{e}=-\frac{1}{\mu_{e}} \frac{\mathrm{~d}}{\mathrm{dx}_{e}} \nu_{e} \frac{\mathrm{~d}}{\mathrm{dx}_{e}}, \quad \operatorname{dom}\left(\mathrm{H}_{e}\right)=H^{2}(e)
$$

Quantum Graphs

Given a metric graph $\mathcal{G}=(\mathcal{V}, \mathcal{E},|\cdot|)$, we can identify each edge $e \in \mathcal{E}$ with an interval $(0,|e|)$ and hence introduce the Hilbert space

$$
L^{2}(\mathcal{G}):=\bigoplus_{e \in \mathcal{E}} L^{2}(e)=\left\{f=\left\{f_{e}\right\}_{e \in \mathcal{E}} \mid f_{e} \in L^{2}(e), \sum_{e \in \mathcal{E}}\left\|f_{e}\right\|_{L^{2}(e)}^{2}<\infty\right\}
$$

Next equip \mathcal{G} with a Schrödinger-type operator $\mathbf{H}_{\max }:=\bigoplus_{e \in \mathcal{E}} \mathrm{H}_{e}$, where:

$$
\mathrm{H}_{e}=-\frac{\mathrm{d}^{2}}{\mathrm{dx}_{e}^{2}}, \quad \operatorname{dom}\left(\mathrm{H}_{e}\right)=H^{2}(e)
$$

Quantum Graphs

Given a metric graph $\mathcal{G}=(\mathcal{V}, \mathcal{E},|\cdot|)$, we can identify each edge $e \in \mathcal{E}$ with an interval $(0,|e|)$ and hence introduce the Hilbert space

$$
L^{2}(\mathcal{G}):=\bigoplus_{e \in \mathcal{E}} L^{2}(e)=\left\{f=\left\{f_{e}\right\}_{e \in \mathcal{E}} \mid f_{e} \in L^{2}(e), \sum_{e \in \mathcal{E}}\left\|f_{e}\right\|_{L^{2}(e)}^{2}<\infty\right\}
$$

Next equip \mathcal{G} with a Schrödinger-type operator $\mathbf{H}_{\max }:=\bigoplus_{e \in \mathcal{E}} \mathrm{H}_{e}$, where:

$$
\mathrm{H}_{e}=-\frac{\mathrm{d}^{2}}{\mathrm{dx}_{e}^{2}}, \quad \operatorname{dom}\left(\mathrm{H}_{e}\right)=H^{2}(e)
$$

To give \mathbf{H} the meaning of a quantum mechanical energy operator, it must be self-adjoint, that is, we need to add boundary conditions at the vertices.

Quantum Graphs

Given a metric graph $\mathcal{G}=(\mathcal{V}, \mathcal{E},|\cdot|)$, we can identify each edge $e \in \mathcal{E}$ with an interval $(0,|e|)$ and hence introduce the Hilbert space

$$
L^{2}(\mathcal{G}):=\bigoplus_{e \in \mathcal{E}} L^{2}(e)=\left\{f=\left\{f_{e}\right\}_{e \in \mathcal{E}} \mid f_{e} \in L^{2}(e), \sum_{e \in \mathcal{E}}\left\|f_{e}\right\|_{L^{2}(e)}^{2}<\infty\right\}
$$

Next equip \mathcal{G} with a Schrödinger-type operator $\mathbf{H}_{\max }:=\bigoplus_{e \in \mathcal{E}} \mathrm{H}_{e}$, where:

$$
\mathrm{H}_{e}=-\frac{\mathrm{d}^{2}}{\mathrm{dx}_{e}^{2}}, \quad \operatorname{dom}\left(\mathrm{H}_{e}\right)=H^{2}(e)
$$

To give \mathbf{H} the meaning of a quantum mechanical energy operator, it must be self-adjoint, that is, we need to add boundary conditions at the vertices.

$$
f_{e}(v):=\lim _{x_{e} \rightarrow v} f\left(x_{e}\right), \quad f_{e}^{\prime}(v):=\lim _{x_{e} \rightarrow v} \frac{f\left(x_{e}\right)-f_{e}(v)}{\left|x_{e}-v\right|}
$$

are well defined for all $f \in \operatorname{dom}\left(\mathbf{H}_{\max }\right)$.

Quantum Graphs

Given a metric graph $\mathcal{G}=(\mathcal{V}, \mathcal{E},|\cdot|)$, we can identify each edge $e \in \mathcal{E}$ with an interval $(0,|e|)$ and hence introduce the Hilbert space

$$
L^{2}(\mathcal{G}):=\bigoplus_{e \in \mathcal{E}} L^{2}(e)=\left\{f=\left\{f_{e}\right\}_{e \in \mathcal{E}} \mid f_{e} \in L^{2}(e), \sum_{e \in \mathcal{E}}\left\|f_{e}\right\|_{L^{2}(e)}^{2}<\infty\right\}
$$

Next equip \mathcal{G} with a Schrödinger-type operator $\mathbf{H}_{\max }:=\bigoplus_{e \in \mathcal{E}} \mathrm{H}_{e}$, where:

$$
\mathrm{H}_{e}=-\frac{\mathrm{d}^{2}}{\mathrm{dx}_{e}^{2}}, \quad \operatorname{dom}\left(\mathrm{H}_{e}\right)=H^{2}(e)
$$

To give \mathbf{H} the meaning of a quantum mechanical energy operator, it must be self-adjoint, that is, we need to add boundary conditions at the vertices. (standard) Kirchhoff conditions: For all $v \in \mathcal{V}$

$$
\left\{\begin{array}{l}
f \text { is continuous at } v, \\
\sum_{e \in \mathcal{E}_{v}} f_{e}^{\prime}(v)=0
\end{array}\right.
$$

Quantum Graphs

Given a metric graph $\mathcal{G}=(\mathcal{V}, \mathcal{E},|\cdot|)$, we can identify each edge $e \in \mathcal{E}$ with an interval $(0,|e|)$ and hence introduce the Hilbert space

$$
L^{2}(\mathcal{G}):=\bigoplus_{e \in \mathcal{E}} L^{2}(e)=\left\{f=\left\{f_{e}\right\}_{e \in \mathcal{E}} \mid f_{e} \in L^{2}(e), \sum_{e \in \mathcal{E}}\left\|f_{e}\right\|_{L^{2}(e)}^{2}<\infty\right\}
$$

Next equip \mathcal{G} with a Schrödinger-type operator $\mathbf{H}_{\max }:=\bigoplus_{e \in \mathcal{E}} \mathrm{H}_{e}$, where:

$$
\mathrm{H}_{e}=-\frac{\mathrm{d}^{2}}{\mathrm{dx}_{e}^{2}}, \quad \operatorname{dom}\left(\mathrm{H}_{e}\right)=H^{2}(e) .
$$

To give \mathbf{H} the meaning of a quantum mechanical energy operator, it must be self-adjoint, that is, we need to add boundary conditions at the vertices.

Definition

A quantum graph is a metric graph equipped with the operator \mathbf{H} acting as the negative second order derivative along edges and accompanied by Kirchhoff vertex conditions

Equilateral Quantum Graphs

Suppose $|e|=1$ for all $e \in \mathcal{E}$.

Equilateral Quantum Graphs

Suppose $|e|=1$ for all $e \in \mathcal{E}$. Then the Kirchhoff Laplacian $\mathbf{H}_{\text {equil }}$ is self-adjoint.

Equilateral Quantum Graphs

Suppose $|e|=1$ for all $e \in \mathcal{E}$.
Then the Kirchhoff Laplacian $\mathbf{H}_{\text {equil }}$ is self-adjoint.

Problem

Spectral analysis of $\mathbf{H}_{\text {equil }}$?

Equilateral Quantum Graphs

Suppose $|e|=1$ for all $e \in \mathcal{E}$.
Then the Kirchhoff Laplacian $\mathbf{H}_{\text {equil }}$ is self-adjoint.

Problem

Spectral analysis of $\mathbf{H}_{\text {equil }}$?
Define the normalized/physical Laplacian on \mathcal{G}_{d} by

$$
\left(\tau_{\text {norm }} f\right)(v):=\frac{1}{\operatorname{deg}(v)} \sum_{u \sim v} f(v)-f(u), \quad v \in \mathcal{V}
$$

$\tau_{\text {norm }}$ generates a bounded self-adjoint operator $h_{\text {norm }}$ in $\ell^{2}(\mathcal{V} ;$ deg $)$.
R. Courant, K. Friedrichs and H. Lewy, Über die partiellen Differenzengleichungen der mathematischen Physik, Math. Ann. (1928)

Equilateral Quantum Graphs

Suppose $|e|=1$ for all $e \in \mathcal{E}$.
Then the Kirchhoff Laplacian $\mathbf{H}_{\text {equil }}$ is self-adjoint.

Problem

Spectral analysis of $\mathbf{H}_{\text {equil }}$?

Define the normalized/physical Laplacian on \mathcal{G}_{d} by

$$
\left(\tau_{\text {norm }} f\right)(v):=\frac{1}{\operatorname{deg}(v)} \sum_{u \sim v} f(v)-f(u), \quad v \in \mathcal{V}
$$

$\tau_{\text {norm }}$ generates a bounded self-adjoint operator $h_{\text {norm }}$ in $\ell^{2}(\mathcal{V}$; deg $)$.
R. Courant, K. Friedrichs and H. Lewy, Über die partiellen Differenzengleichungen der mathematischen Physik, Math. Ann. (1928)
Y. Colin de Verdiére, Spectres de Graphes, SMF, Paris, 1998.

雷 W. Woess, Random Walks on Infinite Graphs and Groups, CUP, 2000.

Equilateral Quantum Graphs

Suppose $|e|=1$ for all $e \in \mathcal{E}$.
Then the Kirchhoff Laplacian $\mathbf{H}_{\text {equil }}$ is self-adjoint.

Problem

Spectral analysis of $\mathbf{H}_{\text {equil }}$?
Define the normalized/physical Laplacian on \mathcal{G}_{d} by

$$
\left(\tau_{\text {norm }} f\right)(v):=\frac{1}{\operatorname{deg}(v)} \sum_{u \sim v} f(v)-f(u), \quad v \in \mathcal{V}
$$

$\tau_{\text {norm }}$ generates a bounded self-adjoint operator $h_{\text {norm }}$ in $\ell^{2}(\mathcal{V}$; deg).
Theorem (von Below'87,..., Cattaneo, Exner,..., Pankrashkin'2012)
$\sigma_{j}\left(\mathbf{H}_{\text {equil }}\right) \backslash \sigma_{D}=\left\{\lambda \notin \sigma_{D} \mid 1-\cos (\sqrt{\lambda}) \in \sigma_{j}\left(h_{\text {norm }}\right)\right\}, \quad j \in\{\mathrm{p}$, ess, ac, sc$\}$ with $\sigma_{D}=\left\{(\pi n)^{2}\right\}_{n \in \mathbb{N}}$.

Equilateral Quantum Graphs

Suppose $|e|=1$ for all $e \in \mathcal{E}$.
Then the Kirchhoff Laplacian $\mathbf{H}_{\text {equil }}$ is self-adjoint.

Problem

Spectral analysis of $\mathbf{H}_{\text {equil }}$?
Define the normalized/physical Laplacian on \mathcal{G}_{d} by

$$
\left(\tau_{\text {norm }} f\right)(v):=\frac{1}{\operatorname{deg}(v)} \sum_{u \sim v} f(v)-f(u), \quad v \in \mathcal{V}
$$

$\tau_{\text {norm }}$ generates a bounded self-adjoint operator $h_{\text {norm }}$ in $\ell^{2}(\mathcal{V}$; deg).
Theorem (von Below'87,..., Cattaneo, Exner,..., Pankrashkin'2012)
$\sigma_{j}\left(\mathbf{H}_{\text {equil }}\right) \backslash \sigma_{D}=\left\{\lambda \notin \sigma_{D} \mid 1-\cos (\sqrt{\lambda}) \in \sigma_{j}\left(h_{\text {norm }}\right)\right\}, \quad j \in\{\mathrm{p}$, ess, ac, sc$\}$ with $\sigma_{D}=\left\{(\pi n)^{2}\right\}_{n \in \mathbb{N}}$. $\mathbf{H}_{\text {equil }}$ and $h_{\text {norm }}$ are "locally" unitarily equivalent.

(Non-equilateral) Quantum Graphs

Problem

Does there exist an analogous statement for non-equilateral graphs?

(Non-equilateral) Quantum Graphs

Problem

Does there exist an analogous statement for non-equilateral graphs?
Consider the (minimal) discrete Laplacian $h_{\mathcal{G}}$ defined on $\ell^{2}(\mathcal{V} ; m)$ by

$$
\left(\tau_{\mathcal{G}} f\right)(v):=\frac{1}{m(v)} \sum_{u \sim v} \frac{f(v)-f(u)}{\left|e_{u, v}\right|}, \quad m(v)=\sum_{e \in \mathcal{E}_{v}}|e| .
$$

$\tau_{\mathcal{G}}$ is the normalized Laplacian iff $|e|=1$ for all $e \in \mathcal{E}$ and $\alpha \equiv 0$.

(Non-equilateral) Quantum Graphs

Problem

Does there exist an analogous statement for non-equilateral graphs?

Consider the (minimal) discrete Laplacian $h_{\mathcal{G}}$ defined on $\ell^{2}(\mathcal{V} ; m)$ by

$$
\left(\tau_{\mathcal{G}} f\right)(v):=\frac{1}{m(v)} \sum_{u \sim v} \frac{f(v)-f(u)}{\left|e_{u, v}\right|}, \quad m(v)=\sum_{e \in \mathcal{E}_{v}}|e| .
$$

$\tau_{\mathcal{G}}$ is the normalized Laplacian iff $|e|=1$ for all $e \in \mathcal{E}$ and $\alpha \equiv 0$.

Theorem (E. B. Davies'1992)

$h_{\mathcal{G}}$ is bounded \Leftrightarrow the weighted degree Deg is bounded on \mathcal{V},

$$
\text { Deg: } v \mapsto \frac{1}{m(v)} \sum_{u \sim v} \frac{1}{\left|e_{u, v}\right|}=\frac{\sum_{e \in \mathcal{E}_{v}} 1 /|e|}{\sum_{e \in \mathcal{E}_{v}}|e|}
$$

(Non-equilateral) Quantum Graphs

Problem

Does there exist an analogous statement for non-equilateral graphs?
Consider the (minimal) discrete Laplacian $h_{\mathcal{G}}$ defined on $\ell^{2}(\mathcal{V} ; m)$ by

$$
\left(\tau_{\mathcal{G}} f\right)(v):=\frac{1}{m(v)} \sum_{u \sim v} \frac{f(v)-f(u)}{\left|e_{u, v}\right|}, \quad m(v)=\sum_{e \in \mathcal{E}_{v}}|e| .
$$

$\tau_{\mathcal{G}}$ is the normalized Laplacian iff $|e|=1$ for all $e \in \mathcal{E}$ and $\alpha \equiv 0$.

Theorem (E. B. Davies'1992)

$h_{\mathcal{G}}$ is bounded \Leftrightarrow the weighted degree Deg is bounded on \mathcal{V},

$$
\text { Deg: } v \mapsto \frac{1}{m(v)} \sum_{u \sim v} \frac{1}{\left|e_{u, v}\right|}=\frac{\sum_{e \in \mathcal{E}_{v}} 1 /|e|}{\sum_{e \in \mathcal{E}_{v}}|e|}
$$

Note that Deg is bounded on \mathcal{V} if $\ell_{*}(\mathcal{E}):=\inf _{e \in \mathcal{E}}|e|>0$.

(Non-equilateral) Quantum Graphs

Theorem 1 (Exner, AK, Malamud, Neidhardt'2018)
Let \mathcal{G} be a metric graph with $\ell^{*}(\mathcal{G}):=\sup _{e \in \mathcal{E}}|e|<\infty$. Then:
(i) $\mathbf{H}_{\mathcal{G}}$ is self-adjoint $\Longleftrightarrow h_{\mathcal{G}}$ is self-adjoint,

(Non-equilateral) Quantum Graphs

Theorem 1 (Exner, AK, Malamud, Neidhardt'2018)
Let \mathcal{G} be a metric graph with $\ell^{*}(\mathcal{G}):=\sup _{e \in \mathcal{E}}|e|<\infty$. Then:
(i) $\mathbf{H}_{\mathcal{G}}$ is self-adjoint $\Longleftrightarrow h_{\mathcal{G}}$ is self-adjoint,
(ii) $\inf \sigma\left(\mathbf{H}_{\mathcal{G}}\right)>0 \Longleftrightarrow \inf \sigma\left(h_{\mathcal{G}}\right)>0$.
(iii) $\inf \sigma_{\text {ess }}\left(\mathbf{H}_{\mathcal{G}}\right)>0 \Longleftrightarrow \inf \sigma_{\text {ess }}\left(h_{\mathcal{G}}\right)>0$.

(Non-equilateral) Quantum Graphs

Theorem 1 (Exner, AK, Malamud, Neidhardt'2018)

Let \mathcal{G} be a metric graph with $\ell^{*}(\mathcal{G}):=\sup _{e \in \mathcal{E}}|e|<\infty$. Then:
(i) $\mathbf{H}_{\mathcal{G}}$ is self-adjoint $\Longleftrightarrow h_{\mathcal{G}}$ is self-adjoint,
(ii) $\inf \sigma\left(\mathbf{H}_{\mathcal{G}}\right)>0 \Longleftrightarrow \inf \sigma\left(h_{\mathcal{G}}\right)>0$.
(iii) $\inf \sigma_{\text {ess }}\left(\mathbf{H}_{\mathcal{G}}\right)>0 \Longleftrightarrow \inf \sigma_{\text {ess }}\left(h_{\mathcal{G}}\right)>0$.
(iv) $\sigma\left(\mathbf{H}_{\mathcal{G}}\right)$ is discrete $\Longleftrightarrow \sigma\left(h_{\mathcal{G}}\right)$ is discrete and $\#\{e \in \mathcal{E}:|e|>\varepsilon\}$ is finite for all $\varepsilon>0$.

(Non-equilateral) Quantum Graphs

Theorem 1 (Exner, AK, Malamud, Neidhardt'2018)

Let \mathcal{G} be a metric graph with $\ell^{*}(\mathcal{G}):=\sup _{e \in \mathcal{E}}|e|<\infty$. Then:
(i) $\mathbf{H}_{\mathcal{G}}$ is self-adjoint $\Longleftrightarrow h_{\mathcal{G}}$ is self-adjoint,
(ii) $\inf \sigma\left(\mathbf{H}_{\mathcal{G}}\right)>0 \Longleftrightarrow \inf \sigma\left(h_{\mathcal{G}}\right)>0$.
(iii) $\inf \sigma_{\text {ess }}\left(\mathbf{H}_{\mathcal{G}}\right)>0 \Longleftrightarrow \inf \sigma_{\text {ess }}\left(h_{\mathcal{G}}\right)>0$.
(iv) $\sigma\left(\mathbf{H}_{\mathcal{G}}\right)$ is discrete $\Longleftrightarrow \sigma\left(h_{\mathcal{G}}\right)$ is discrete and $\#\{e \in \mathcal{E}:|e|>\varepsilon\}$ is finite for all $\varepsilon>0$.
(v)

$$
\left\|\mathrm{e}^{-t h_{\mathcal{G}}}\right\|_{\ell^{1} \rightarrow \ell^{\infty}} \leq C_{1} t^{-D / 2}, \quad t>0
$$

for some $D>2$ if and only if

$$
\left\|\mathrm{e}^{-t \mathbf{H}_{\mathcal{G}}}\right\|_{L^{1} \rightarrow L^{\infty}} \leq C_{2} t^{-D / 2}, \quad t>0
$$

图 P. Exner, A. Kostenko, M. Malamud, \& H. Neidhardt, Spectral theory of infinite quantum graphs, Ann. Henri Poincaré 19, no. 11, (2018).

(Non-equilateral) Quantum Graphs

Theorem 1 (Exner, AK, Malamud, Neidhardt'2018)

Let \mathcal{G} be a metric graph with $\ell^{*}(\mathcal{G}):=\sup _{e \in \mathcal{E}}|e|<\infty$. Then:
(i) $\mathbf{H}_{\mathcal{G}}$ is self-adjoint $\Longleftrightarrow h_{\mathcal{G}}$ is self-adjoint,
(ii) $\inf \sigma\left(\mathbf{H}_{\mathcal{G}}\right)>0 \Longleftrightarrow \inf \sigma\left(h_{\mathcal{G}}\right)>0$.
(iii) $\inf \sigma_{\text {ess }}\left(\mathbf{H}_{\mathcal{G}}\right)>0 \Longleftrightarrow \inf \sigma_{\text {ess }}\left(h_{\mathcal{G}}\right)>0$.
(iv) $\sigma\left(\mathbf{H}_{\mathcal{G}}\right)$ is discrete $\Longleftrightarrow \sigma\left(h_{\mathcal{G}}\right)$ is discrete and $\#\{e \in \mathcal{E}:|e|>\varepsilon\}$ is finite for all $\varepsilon>0$.
(v)

$$
\left\|\mathrm{e}^{-t h_{\mathcal{G}}}\right\|_{\ell^{1} \rightarrow \ell^{\infty}} \leq C_{1} t^{-D / 2}, \quad t>0
$$

for some $D>2$ if and only if

$$
\left\|\mathrm{e}^{-t \mathbf{H}_{\mathcal{G}}}\right\|_{L^{1} \rightarrow L^{\infty}} \leq C_{2} t^{-D / 2}, \quad t>0
$$

(1. Kostenko and N. Nicolussi, Spectral estimates for infinite quantum graphs, Calc. Var. Partial Differential Equations 58, no. 1, (2019).

Quantum Graphs: Self-adjointness

For $p: \mathcal{E} \rightarrow(0, \infty)$, define a path metric ϱ_{p} on \mathcal{V} w.r.t. \mathcal{G} by

$$
\varrho_{p}(u, v):=\inf _{\mathcal{P}=\left\{v_{0}, \ldots, v_{n}\right\}: u=v_{0}, v=v_{n}} \sum_{k} p\left(e_{v_{k-1}, v_{k}}\right) .
$$

The infimum is taken over all paths connecting u and v.

Quantum Graphs: Self-adjointness

For $p: \mathcal{E} \rightarrow(0, \infty)$, define a path metric ϱ_{p} on \mathcal{V} w.r.t. \mathcal{G} by

$$
\varrho_{p}(u, v):=\inf _{\mathcal{P}=\left\{v_{0}, \ldots, v_{n}\right\}: u=v_{0}, v=v_{n}} \sum_{k} p\left(e_{v_{k-1}, v_{k}}\right) .
$$

The infimum is taken over all paths connecting u and v.

Examples

- Natural path metric ϱ_{0} with $p_{0}: e \mapsto|e|$.

Quantum Graphs: Self-adjointness

For $p: \mathcal{E} \rightarrow(0, \infty)$, define a path metric ϱ_{p} on \mathcal{V} w.r.t. \mathcal{G} by

$$
\varrho_{p}(u, v):=\inf _{\mathcal{P}=\left\{v_{0}, \ldots, v_{n}\right\}: u=v_{0}, v=v_{n}} \sum_{k} p\left(e_{v_{k-1}, v_{k}}\right) .
$$

The infimum is taken over all paths connecting u and v.

Examples

- Natural path metric ϱ_{0} with $p_{0}: e \mapsto|e|$.
- Star metric ϱ_{m} with $p_{m}: e_{u, v} \mapsto m(u)+m(v)$ with $m(v)=\sum_{e \in \mathcal{E}_{v}}|e|$

Quantum Graphs: Self-adjointness

For $p: \mathcal{E} \rightarrow(0, \infty)$, define a path metric ϱ_{p} on \mathcal{V} w.r.t. \mathcal{G} by

$$
\varrho_{p}(u, v):=\inf _{\mathcal{P}=\left\{v_{0}, \ldots, v_{n}\right\}: u=v_{0}, v=v_{n}} \sum_{k} p\left(e_{v_{k-1}, v_{k}}\right) .
$$

The infimum is taken over all paths connecting u and v.

Examples

- Natural path metric ϱ_{0} with $p_{0}: e \mapsto|e|$.
- Star metric ϱ_{m} with $p_{m}: e_{u, v} \mapsto m(u)+m(v)$ with $m(v)=\sum_{e \in \mathcal{E}_{v}}|e|$

Hopf-Rinow-type Theorem

$\left(\mathcal{V}, \varrho_{p}\right)$ is complete as a metric space
(\mathcal{V}, ϱ_{p}) is geodesically complete \Longleftrightarrow
The distance balls in (\mathcal{V}, ϱ_{p}) are finite ("finite ball condition").
(X. Huang, M. Keller, J. Masamune, R. Wojciechowski, A note on self-adjoint extensions of the Laplacian on weighted graphs, J. Funct. Anal. 265 (2013).

Quantum Graphs: Self-adjointness

For $p: \mathcal{E} \rightarrow(0, \infty)$, define a path metric ϱ_{p} on \mathcal{V} w.r.t. \mathcal{G} by

$$
\varrho_{p}(u, v):=\inf _{\mathcal{P}=\left\{v_{0}, \ldots, v_{n}\right\}: u=v_{0}, v=v_{n}} \sum_{k} p\left(e_{v_{k-1}, v_{k}}\right) .
$$

The infimum is taken over all paths connecting u and v.

Examples

- Natural path metric ϱ_{0} with $p_{0}: e \mapsto|e|$.
- Star metric ϱ_{m} with $p_{m}: e_{u, v} \mapsto m(u)+m(v)$ with $m(v)=\sum_{e \in \mathcal{E}_{v}}|e|$

Theorem 2 (Exner-AK-Malamud-Neidhardt)

If $\left(\mathcal{V}, \varrho_{m}\right)$ is complete as a metric space, then \mathbf{H} is self-adjoint.

Quantum Graphs: Self-adjointness

For $p: \mathcal{E} \rightarrow(0, \infty)$, define a path metric ϱ_{p} on \mathcal{V} w.r.t. \mathcal{G} by

$$
\varrho_{p}(u, v):=\inf _{\mathcal{P}=\left\{v_{0}, \ldots, v_{n}\right\}: u=v_{0}, v=v_{n}} \sum_{k} p\left(e_{v_{k-1}, v_{k}}\right) .
$$

The infimum is taken over all paths connecting u and v.

Examples

- Natural path metric ϱ_{0} with $p_{0}: e \mapsto|e|$.
- Star metric ϱ_{m} with $p_{m}: e_{u, v} \mapsto m(u)+m(v)$ with $m(v)=\sum_{e \in \mathcal{E}_{v}}|e|$

Theorem 2 (Exner-AK-Malamud-Neidhardt)

If $\left(\mathcal{V}, \varrho_{m}\right)$ is complete as a metric space, then \mathbf{H} is self-adjoint. In particular, \mathbf{H} is self-adjoint if $\inf _{v \in \mathcal{V}} m(v)=\inf _{v \in \mathcal{V}} \sum_{e \in \mathcal{E}_{v}}|e|>0$.

睩 M. Keller and D. Lenz, Dirichlet forms and stochastic completeness of graphs and subgraphs, J. reine angew. Math. 666 (2012).

Quantum Graphs: Self-adjointness

For $p: \mathcal{E} \rightarrow(0, \infty)$, define a path metric ϱ_{p} on \mathcal{V} w.r.t. \mathcal{G} by

$$
\varrho_{p}(u, v):=\inf _{\mathcal{P}=\left\{v_{0}, \ldots, v_{n}\right\}: u=v_{0}, v=v_{n}} \sum_{k} p\left(e_{v_{k-1}, v_{k}}\right) .
$$

The infimum is taken over all paths connecting u and v.

Examples

- Natural path metric ϱ_{0} with $p_{0}: e \mapsto|e|$.
- Star metric ϱ_{m} with $p_{m}: e_{u, v} \mapsto m(u)+m(v)$ with $m(v)=\sum_{e \in \mathcal{E}_{v}}|e|$

Theorem 2 (Exner-AK-Malamud-Neidhardt)

If $\left(\mathcal{V}, \varrho_{m}\right)$ is complete as a metric space, then \mathbf{H} is self-adjoint. In particular, \mathbf{H} is self-adjoint if $\inf _{v \in \mathcal{V}} m(v)=\inf _{v \in \mathcal{V}} \sum_{e \in \mathcal{E}_{v}}|e|>0$.

Gaffney-type Theorem: $\left(\mathcal{G}, \varrho_{0}\right)$ is complete $\Rightarrow \mathbf{H}_{\mathcal{G}}$ is self-adjoint.

Quantum Graphs: Self-adjointness

For $p: \mathcal{E} \rightarrow(0, \infty)$, define a path metric ϱ_{p} on \mathcal{V} w.r.t. \mathcal{G} by

$$
\varrho_{p}(u, v):=\inf _{\mathcal{P}=\left\{v_{0}, \ldots, v_{n}\right\}: u=v_{0}, v=v_{n}} \sum_{k} p\left(e_{v_{k-1}, v_{k}}\right) .
$$

The infimum is taken over all paths connecting u and v.

Examples

- Natural path metric ϱ_{0} with $p_{0}: e \mapsto|e|$.
- Star metric ϱ_{m} with $p_{m}: e_{u, v} \mapsto m(u)+m(v)$ with $m(v)=\sum_{e \in \mathcal{E}_{v}}|e|$

Theorem 2 (Exner-AK-Malamud-Neidhardt)

If $\left(\mathcal{V}, \varrho_{m}\right)$ is complete as a metric space, then \mathbf{H} is self-adjoint. In particular, \mathbf{H} is self-adjoint if $\inf _{v \in \mathcal{V}} m(v)=\inf _{v \in \mathcal{V}} \sum_{e \in \mathcal{E}_{v}}|e|>0$.

Gaffney-type Theorem: $\left(\mathcal{G}, \varrho_{0}\right)$ is complete $\Rightarrow \mathbf{H}_{\mathcal{G}}$ is self-adjoint. The standard assumption for infinite $Q G$ is $\inf _{e \in \mathcal{E}}|e|>0$!

Quantum Graphs: Self-adjointness

Quantum Graphs: Self-adjointness

In Example 1, $\left(\mathcal{V}, \varrho_{m}\right)$ is complete $\Leftrightarrow m(\mathcal{V})=2 \operatorname{vol}(\mathcal{G})=2 \sum_{e \in \mathcal{E}}|e|=\infty$.

Quantum Graphs: Self-adjointness

Example 1.

In Example 1, $\left(\mathcal{V}, \varrho_{m}\right)$ is complete $\Leftrightarrow m(\mathcal{V})=2 \operatorname{vol}(\mathcal{G})=2 \sum_{e \in \mathcal{E}}|e|=\infty$.

Lemma

If $\operatorname{vol}(\mathcal{G})<\infty$, then \mathbf{H} is non-self-adjoint.

Quantum Graphs: Self-adjointness

Example 1.

In Example 1, $\left(\mathcal{V}, \varrho_{m}\right)$ is complete $\Leftrightarrow m(\mathcal{V})=2 \operatorname{vol}(\mathcal{G})=2 \sum_{e \in \mathcal{E}}|e|=\infty$.

Lemma

If $\operatorname{vol}(\mathcal{G})<\infty$, then \mathbf{H} is non-self-adjoint.
Hence, in Example 1, \mathbf{H} is self-adjoint $\Leftrightarrow\left(\mathcal{V}, \varrho_{m}\right)$ is complete!

Quantum Graphs: Self-adjointness

Example 1.

In Example 1, $\left(\mathcal{V}, \varrho_{m}\right)$ is complete $\Leftrightarrow m(\mathcal{V})=2 \operatorname{vol}(\mathcal{G})=2 \sum_{e \in \mathcal{E}}|e|=\infty$.

Lemma

If $\operatorname{vol}(\mathcal{G})<\infty$, then \mathbf{H} is non-self-adjoint.
Hence, in Example 1, \mathbf{H} is self-adjoint $\Leftrightarrow\left(\mathcal{V}, \varrho_{m}\right)$ is complete!

Remark

The converse to Theorem 2 is not true!

Quantum Graphs: Self-adjointness

Example 1.

In Example 1, $\left(\mathcal{V}, \varrho_{m}\right)$ is complete $\Leftrightarrow m(\mathcal{V})=2 \operatorname{vol}(\mathcal{G})=2 \sum_{e \in \mathcal{E}}|e|=\infty$.

Lemma

If $\operatorname{vol}(\mathcal{G})<\infty$, then \mathbf{H} is non-self-adjoint.
Hence, in Example 1, \mathbf{H} is self-adjoint $\Leftrightarrow\left(\mathcal{V}, \varrho_{m}\right)$ is complete!

Remark

The converse to Theorem 2 is not true!
For radially symmetric trees and antitrees, \mathbf{H} is self-adjoint $\Leftrightarrow m(\mathcal{V})=\infty$.

Examples: Radially symmetric antitrees

Figure: Example of an antitree \mathcal{A} with $s_{n}=n+1$.
S_{n} is the n-th combinatorial sphere, and $s_{n}:=\# S_{n}$.
\mathcal{A} is radially symmetric if edges connecting S_{n} with S_{n+1} have the same length, say ℓ_{n}, for all $n \geq 0$.

Examples: Radially symmetric antitrees

Figure: Example of an antitree \mathcal{A} with $s_{n}=n+1$.

Theorem (AK-Nicolussi)

\mathbf{H} is self-adjoint $\Longleftrightarrow \operatorname{vol}(\mathcal{A})=\sum_{n \geq 0} s_{n} s_{n+1} \ell_{n}=\infty$

Examples: Radially symmetric antitrees

Figure: Example of an antitree \mathcal{A} with $s_{n}=n+1$.

Theorem (AK-Nicolussi)

\mathbf{H} is self-adjoint $\Longleftrightarrow \operatorname{vol}(\mathcal{A})=\sum_{n \geq 0} s_{n} s_{n+1} \ell_{n}=\infty$
$\left(\mathcal{A}, \varrho_{0}\right)$ is complete $\Longleftrightarrow \sum_{n \geq 0} \ell_{n}=\infty$.

Examples: Radially symmetric antitrees

Figure: Example of an antitree \mathcal{A} with $s_{n}=n+1$.

Theorem (AK-Nicolussi)

\mathbf{H} is self-adjoint $\Longleftrightarrow \operatorname{vol}(\mathcal{A})=\sum_{n \geq 0} s_{n} s_{n+1} \ell_{n}=\infty$
$\left(\mathcal{A}, \varrho_{0}\right)$ is complete $\Longleftrightarrow \sum_{n \geq 0} \ell_{n}=\infty$.
$\left(\mathcal{V}, \varrho_{m}\right)$ is complete $\Longleftrightarrow \sum_{n \geq 0}\left(s_{n}+s_{n+1}\right) \ell_{n}=\infty$

Quantum Graphs: Self-adjointness

Summary

(i) H is self-adjoint if $\left(\mathcal{V}, \varrho_{m}\right)$ is complete.
(ii) \mathbf{H} is non-self-adjoint if $\operatorname{vol}(\mathcal{G})=\sum_{e \in \mathcal{E}}|e|<\infty$.

Quantum Graphs: Self-adjointness

Summary

(i) \mathbf{H} is self-adjoint if $\left(\mathcal{V}, \varrho_{m}\right)$ is complete.
(ii) \mathbf{H} is non-self-adjoint if $\operatorname{vol}(\mathcal{G})=\sum_{e \in \mathcal{E}}|e|<\infty$.

Problems

(i) Characterize metric graphs such that completeness of $\left(\mathcal{V}, \varrho_{m}\right)$ is also necessary for self-adjointness.

Quantum Graphs: Self-adjointness

Summary

(i) H is self-adjoint if $\left(\mathcal{V}, \varrho_{m}\right)$ is complete.
(ii) \mathbf{H} is non-self-adjoint if $\operatorname{vol}(\mathcal{G})=\sum_{e \in \mathcal{E}}|e|<\infty$.

Problems

(i) Characterize metric graphs such that completeness of $\left(\mathcal{V}, \varrho_{m}\right)$ is also necessary for self-adjointness.
(ii) Characterize metric graphs such that $\operatorname{vol}(\mathcal{G})=\sum_{e \in \mathcal{E}}|e|=\infty$ is also sufficient for self-adjointness.

Quantum Graphs: Finite total volume

$$
\operatorname{vol}(\mathcal{G})=\sum_{e \in \mathcal{E}}|e|<\infty, \text { then } \mathbf{H} \text { is non-self-adjoint }
$$

Problem

Deficiency indices? Self-adjoint extensions? Boundary conditions?

Quantum Graphs: Finite total volume

$$
\operatorname{vol}(\mathcal{G})=\sum_{e \in \mathcal{E}}|e|<\infty, \text { then } \mathbf{H} \text { is non-self-adjoint }
$$

Problem

Deficiency indices? Self-adjoint extensions? Boundary conditions?

Graph Ends

- A ray R in \mathcal{G}_{d} is a path without intersections.

Quantum Graphs: Finite total volume

$$
\operatorname{vol}(\mathcal{G})=\sum_{e \in \mathcal{E}}|e|<\infty, \text { then } \mathbf{H} \text { is non-self-adjoint }
$$

Problem

Deficiency indices? Self-adjoint extensions? Boundary conditions?

Graph Ends

- A ray R in \mathcal{G}_{d} is a path without intersections.
- Two rays are equivalent if there is a third ray containing infinitely many vertices of both rays.

Quantum Graphs: Finite total volume

$$
\operatorname{vol}(\mathcal{G})=\sum_{e \in \mathcal{E}}|e|<\infty, \text { then } \mathbf{H} \text { is non-self-adjoint }
$$

Problem

Deficiency indices? Self-adjoint extensions? Boundary conditions?

Graph Ends

- A ray R in \mathcal{G}_{d} is a path without intersections.
- Two rays are equivalent if there is a third ray containing infinitely many vertices of both rays.
- An equivalence class of rays is a graph end; $\Omega\left(\mathcal{G}_{d}\right)$ is the set of graph ends.

Theorem (e.g., Diestel-Kühn '2003)
Topological ends of $\mathcal{G}=$ graph ends of \mathcal{G}_{d}.

Graph Ends: Examples

Figure: An antitree \mathcal{A} with $s_{n}=n+1$.

Every antitree has exactly 1 end.

Graph Ends: Examples

- $\mathcal{G}_{d}=\mathbb{Z}$ has 2 ends.

Graph Ends: Examples

- $\mathcal{G}_{d}=\mathbb{Z}$ has 2 ends.
- $\mathcal{G}_{d}=\mathbb{Z}^{N}$ has 1 end for all $N \geq 2$.

Graph Ends: Examples

- $\mathcal{G}_{d}=\mathbb{Z}$ has 2 ends.
- $\mathcal{G}_{d}=\mathbb{Z}^{N}$ has 1 end for all $N \geq 2$.
- Bethe lattice (Cayley or regular tree \mathbb{T}_{4})

Graph Ends: Examples

- $\mathcal{G}_{d}=\mathbb{Z}$ has 2 ends.
- $\mathcal{G}_{d}=\mathbb{Z}^{N}$ has 1 end for all $N \geq 2$.
- Bethe lattice (Cayley or regular tree \mathbb{T}_{4})

Theorem (J. R. Stallings, Ann. of Math. (1968))

If \mathcal{G}_{d} is a Cayley graph of a finitely generated group, then $\# \Omega\left(\mathcal{G}_{d}\right)$

Graph Ends: Examples

- $\mathcal{G}_{d}=\mathbb{Z}$ has 2 ends.
- $\mathcal{G}_{d}=\mathbb{Z}^{N}$ has 1 end for all $N \geq 2$.
- Bethe lattice (Cayley or regular tree \mathbb{T}_{4})

Theorem (J. R. Stallings, Ann. of Math. (1968))

If \mathcal{G}_{d} is a Cayley graph of a finitely generated group, then $\# \Omega\left(\mathcal{G}_{d}\right) \in\{1,2, \infty\}$.

Quantum Graphs: Deficiency Indices

Theorem (AK-Mugnolo-Nicolussi, in preparation)
 If $\operatorname{vol}(\mathcal{G})<\infty$, then $n_{ \pm}(\mathbf{H}) \geq \# \Omega\left(\mathcal{G}_{d}\right)$.

Quantum Graphs: Deficiency Indices

Theorem (AK-Mugnolo-Nicolussi, in preparation)

If $\operatorname{vol}(\mathcal{G})<\infty$, then $n_{ \pm}(\mathbf{H}) \geq \# \Omega\left(\mathcal{G}_{d}\right)$.

Figure: An antitree \mathcal{A} with $s_{n}=n+1$.

For radially symmetric antitrees, $n_{ \pm}(\mathcal{A})=1$ iff $\operatorname{vol}(\mathcal{A})<\infty$

Quantum Graphs: Deficiency Indices

Theorem (AK-Mugnolo-Nicolussi, in preparation)
If $\operatorname{vol}(\mathcal{G})<\infty$, then $n_{ \pm}(\mathbf{H}) \geq \# \Omega\left(\mathcal{G}_{d}\right)$.

Figure: An antitree \mathcal{A} with $s_{n}=n+1$.

For radially symmetric antitrees, $n_{ \pm}(\mathcal{A})=1$ iff $\operatorname{vol}(\mathcal{A})<\infty$ However, there are antitrees with $n_{ \pm}(\mathcal{A})=\infty$!

Quantum Graphs: Deficiency Indices

Theorem (AK-Mugnolo-Nicolussi, in preparation)
If $\operatorname{vol}(\mathcal{G})<\infty$, then $n_{ \pm}(\mathbf{H}) \geq \# \Omega\left(\mathcal{G}_{d}\right)$. Moreover, $n_{ \pm}(\mathbf{H})=\# \Omega\left(\mathcal{G}_{d}\right)$ if and only if either $\# \Omega\left(\mathcal{G}_{d}\right)=\infty$ or $\operatorname{ker}\left(\mathbf{H}^{*}\right) \subset H^{1}(\mathcal{G})$.

Here $H^{1}(\mathcal{G})$ is the usual Sobolev space on \mathcal{G}.

Quantum Graphs: Deficiency Indices

Theorem (AK-Mugnolo-Nicolussi, in preparation)
If $\operatorname{vol}(\mathcal{G})<\infty$, then $n_{ \pm}(\mathbf{H}) \geq \# \Omega\left(\mathcal{G}_{d}\right)$. Moreover, $n_{ \pm}(\mathbf{H})=\# \Omega\left(\mathcal{G}_{d}\right)$ if and only if either $\# \Omega\left(\mathcal{G}_{d}\right)=\infty$ or $\operatorname{ker}\left(\mathbf{H}^{*}\right) \subset H^{1}(\mathcal{G})$.

Here $H^{1}(\mathcal{G})$ is the usual Sobolev space on \mathcal{G}.

Remarks

- Since 0 is a point of a regular type for $\mathbf{H}, n_{ \pm}(\mathbf{H})=\operatorname{dim}\left(\operatorname{ker}\left(\mathbf{H}^{*}\right)\right)$.

Quantum Graphs: Deficiency Indices

Theorem (AK-Mugnolo-Nicolussi, in preparation)
If $\operatorname{vol}(\mathcal{G})<\infty$, then $n_{ \pm}(\mathbf{H}) \geq \# \Omega\left(\mathcal{G}_{d}\right)$. Moreover, $n_{ \pm}(\mathbf{H})=\# \Omega\left(\mathcal{G}_{d}\right)$ if and only if either $\# \Omega\left(\mathcal{G}_{d}\right)=\infty$ or $\operatorname{ker}\left(\mathbf{H}^{*}\right) \subset H^{1}(\mathcal{G})$.

Here $H^{1}(\mathcal{G})$ is the usual Sobolev space on \mathcal{G}.

Remarks

- Since 0 is a point of a regular type for $\mathbf{H}, n_{ \pm}(\mathbf{H})=\operatorname{dim}\left(\operatorname{ker}\left(\mathbf{H}^{*}\right)\right)$.
- $\operatorname{ker}\left(\mathbf{H}^{*}\right)$ consists of harmonic functions which belong to $L^{2}(\mathcal{G})$.

Quantum Graphs: Deficiency Indices

Theorem (AK-Mugnolo-Nicolussi, in preparation)
If $\operatorname{vol}(\mathcal{G})<\infty$, then $n_{ \pm}(\mathbf{H}) \geq \# \Omega\left(\mathcal{G}_{d}\right)$. Moreover, $n_{ \pm}(\mathbf{H})=\# \Omega\left(\mathcal{G}_{d}\right)$ if and only if either $\# \Omega\left(\mathcal{G}_{d}\right)=\infty$ or $\operatorname{ker}\left(\mathbf{H}^{*}\right) \subset H^{1}(\mathcal{G})$.

Here $H^{1}(\mathcal{G})$ is the usual Sobolev space on \mathcal{G}.

Remarks

- Since 0 is a point of a regular type for $\mathbf{H}, n_{ \pm}(\mathbf{H})=\operatorname{dim}\left(\operatorname{ker}\left(\mathbf{H}^{*}\right)\right)$.
- $\operatorname{ker}\left(\mathbf{H}^{*}\right)$ consists of harmonic functions which belong to $L^{2}(\mathcal{G})$.
- $H^{1}(\mathcal{G})$ is a 'nice' space (e.g., graph ends can be identified with its Royden's boundary, which gives a hope for reasonable traces of functions in $\operatorname{dom}\left(\mathbf{H}^{*}\right)$).

In the discrete setting, see
國 A. Georgakopoulos, S. Haeseler, M. Keller, D. Lenz and R. Wojciechowski, Graphs of finite measure, J. Math. Pures Appl. 103 (2015).

Weighted Quantum Graphs

Given a metric graph $\mathcal{G}=(\mathcal{V}, \mathcal{E},|\cdot|)$.
Suppose we are given two more edge weights

$$
\mu: \mathcal{E} \rightarrow \mathbb{R}_{>0}, \quad \quad \nu: \mathcal{E} \rightarrow \mathbb{R}_{>0}
$$

Weighted Quantum Graphs

Given a metric graph $\mathcal{G}=(\mathcal{V}, \mathcal{E},|\cdot|)$.
Suppose we are given two more edge weights

$$
\mu: \mathcal{E} \rightarrow \mathbb{R}_{>0}, \quad \quad \nu: \mathcal{E} \rightarrow \mathbb{R}_{>0}
$$

Introduce the weighted Hilbert space $L^{2}(\mathcal{G} ; \mu):=\bigoplus_{e \in \mathcal{E}} L^{2}\left(e ; \mu_{e}\right)$ and equip \mathcal{G} with a Schrödinger-type operator $\mathbf{H}_{\max }:=\bigoplus_{e \in \mathcal{E}} \mathrm{H}_{\mu, \nu}^{e}$, where:

$$
\mathrm{H}_{\mu, \nu}^{e}=-\frac{1}{\mu_{e}} \frac{\mathrm{~d}}{\mathrm{dx}_{e}} \nu_{e} \frac{\mathrm{~d}}{\mathrm{dx}_{e}}, \quad \operatorname{dom}\left(\mathrm{H}_{\mu, \nu}^{e}\right)=H^{2}(e)
$$

Weighted Quantum Graphs

Given a metric graph $\mathcal{G}=(\mathcal{V}, \mathcal{E},|\cdot|)$.
Suppose we are given two more edge weights

$$
\mu: \mathcal{E} \rightarrow \mathbb{R}_{>0}, \quad \quad \nu: \mathcal{E} \rightarrow \mathbb{R}_{>0}
$$

Introduce the weighted Hilbert space $L^{2}(\mathcal{G} ; \mu):=\bigoplus_{e \in \mathcal{E}} L^{2}\left(e ; \mu_{e}\right)$ and equip \mathcal{G} with a Schrödinger-type operator $\mathbf{H}_{\max }:=\bigoplus_{e \in \mathcal{E}} \mathrm{H}_{\mu, \nu}^{e}$, where:

$$
\mathrm{H}_{\mu, \nu}^{e}=-\frac{1}{\mu_{e}} \frac{\mathrm{~d}}{\mathrm{dx}_{e}} \nu_{e} \frac{\mathrm{~d}}{\mathrm{dx}_{e}}, \quad \operatorname{dom}\left(\mathrm{H}_{\mu, \nu}^{e}\right)=H^{2}(e)
$$

The operator $\mathbf{H}_{\mu, \nu}$ with Kirchhoff conditions: For all $v \in \mathcal{V}$

$$
\left\{\begin{array}{l}
f \text { is continuous at } v, \\
\sum_{e \in \mathcal{E}_{v}} \nu_{e} f_{e}^{\prime}(v)=0
\end{array}\right.
$$

Weighted Quantum Graphs

The analog of Theorem 1 for $\mathbf{H}_{\mu, \nu}$ holds true, however, with the (minimal) discrete Laplacian defined on $\ell^{2}\left(\mathcal{V} ; m_{\mu}\right)$ by

$$
\left(\tau_{\mathcal{G}} f\right)(v):=\frac{1}{m_{\mu}(v)} \sum_{u \sim v} b_{\nu}\left(e_{u, v}\right)(f(v)-f(u))
$$

where

$$
m_{\mu}(v)=\sum_{e \in \mathcal{E}_{v}} \mu_{e}|e|, \quad b_{\nu}(e)=\frac{\nu_{e}}{|e|} .
$$

Weighted Quantum Graphs

The analog of Theorem 1 for $\mathbf{H}_{\mu, \nu}$ holds true, however, with the (minimal) discrete Laplacian defined on $\ell^{2}\left(\mathcal{V} ; m_{\mu}\right)$ by

$$
\left(\tau_{\mathcal{G}} f\right)(v):=\frac{1}{m_{\mu}(v)} \sum_{u \sim v} b_{\nu}\left(e_{u, v}\right)(f(v)-f(u))
$$

where

$$
m_{\mu}(v)=\sum_{e \in \mathcal{E}_{v}} \mu_{e}|e|, \quad b_{\nu}(e)=\frac{\nu_{e}}{|e|} .
$$

Remark (self-adjointness)

If \mathcal{G} is a path graph, then $\mathbf{H}_{\mu, \nu}$ is self-adjoint if and only if

$$
\sum_{n} \mu_{n}\left|e_{n}\right|\left(\sum_{k \leq n} \frac{\left|e_{k}\right|}{\nu_{k}}\right)^{2}=\infty
$$

Weighted Quantum Graphs

The analog of Theorem 1 for $\mathbf{H}_{\mu, \nu}$ holds true, however, with the (minimal) discrete Laplacian defined on $\ell^{2}\left(\mathcal{V} ; m_{\mu}\right)$ by

$$
\left(\tau_{\mathcal{G}} f\right)(v):=\frac{1}{m_{\mu}(v)} \sum_{u \sim v} b_{\nu}\left(e_{u, v}\right)(f(v)-f(u))
$$

where

$$
m_{\mu}(v)=\sum_{e \in \mathcal{E}_{v}} \mu_{e}|e|, \quad b_{\nu}(e)=\frac{\nu_{e}}{|e|} .
$$

Remark (self-adjointness)

If \mathcal{G} is a path graph, then $\mathbf{H}_{\mu, \nu}$ is self-adjoint if and only if

$$
\sum_{n} \mu_{n}\left|e_{n}\right|\left(\sum_{k \leq n} \frac{\left|e_{k}\right|}{\nu_{k}}\right)^{2}=\infty
$$

Hence $\sum m_{\mu}\left(v_{n}\right)=2 \sum \mu_{n}\left|e_{n}\right|=\infty$ is only sufficient!

Weighted Quantum Graphs

The analog of Theorem 1 for $\mathbf{H}_{\mu, \nu}$ holds true, however, with the (minimal) discrete Laplacian defined on $\ell^{2}\left(\mathcal{V} ; m_{\mu}\right)$ by

$$
\left(\tau_{\mathcal{G}} f\right)(v):=\frac{1}{m_{\mu}(v)} \sum_{u \sim v} b_{\nu}\left(e_{u, v}\right)(f(v)-f(u))
$$

where

$$
m_{\mu}(v)=\sum_{e \in \mathcal{E}_{v}} \mu_{e}|e|, \quad b_{\nu}(e)=\frac{\nu_{e}}{|e|}
$$

Weighted discrete Laplacian

For $m: \mathcal{V} \rightarrow \mathbb{R}_{>0}$ and $b: \mathcal{E} \rightarrow \mathbb{R}_{>0}$, consider in $\ell^{2}(\mathcal{V} ; m)$

$$
(\tau f)(v):=\frac{1}{m(v)} \sum_{u \sim v} b\left(e_{u, v}\right)(f(v)-f(u))
$$

Weighted Quantum Graphs

The analog of Theorem 1 for $\mathbf{H}_{\mu, \nu}$ holds true, however, with the (minimal) discrete Laplacian defined on $\ell^{2}\left(\mathcal{V} ; m_{\mu}\right)$ by

$$
\left(\tau_{\mathcal{G}} f\right)(v):=\frac{1}{m_{\mu}(v)} \sum_{u \sim v} b_{\nu}\left(e_{u, v}\right)(f(v)-f(u))
$$

where

$$
m_{\mu}(v)=\sum_{e \in \mathcal{E}_{v}} \mu_{e}|e|, \quad b_{\nu}(e)=\frac{\nu_{e}}{|e|}
$$

Weighted discrete Laplacian

For $m: \mathcal{V} \rightarrow \mathbb{R}_{>0}$ and $b: \mathcal{E} \rightarrow \mathbb{R}_{>0}$, consider in $\ell^{2}(\mathcal{V} ; m)$

$$
(\tau f)(v):=\frac{1}{m(v)} \sum_{u \sim v} b\left(e_{u, v}\right)(f(v)-f(u))
$$

QUESTION: For a given τ (i.e., a pair of functions m and b), does there exist a "weighted" \mathcal{G} (i.e., weights $|\cdot|, \mu$ and ν) such that $\tau=\tau_{\mathcal{G}}$?

Weighted Quantum Graphs: Examples

Normalized/Physical Laplacian

Take $\mu_{e}=\nu_{e}=|e|$ for all $e \in \mathcal{E}$, then

$$
m_{\mu}(v)=\operatorname{deg}(v), \quad b_{\nu}(e)=1
$$

Weighted Quantum Graphs: Examples

Normalized/Physical Laplacian

Take $\mu_{e}=\nu_{e}=|e|$ for all $e \in \mathcal{E}$, then

$$
m_{\mu}(v)=\operatorname{deg}(v), \quad b_{\nu}(e)=1
$$

Electric Networks/Random Walks on Graphs
Take $\nu_{e}=|e| b(e)$ and $\mu_{e}=\frac{b(e)}{|e|}$ for all $e \in \mathcal{E}$, then

$$
m_{\mu}(v)=\sum_{e \in \mathcal{E}} b(e)=m(e), \quad b_{\nu}(e)=b(e)
$$

Weighted Quantum Graphs: Examples

Normalized/Physical Laplacian

Take $\mu_{e}=\nu_{e}=|e|$ for all $e \in \mathcal{E}$, then

$$
m_{\mu}(v)=\operatorname{deg}(v), \quad b_{\nu}(e)=1
$$

Electric Networks/Random Walks on Graphs
Take $\nu_{e}=|e| b(e)$ and $\mu_{e}=\frac{b(e)}{|e|}$ for all $e \in \mathcal{E}$, then

$$
m_{\mu}(v)=\sum_{e \in \mathcal{E}} b(e)=m(e), \quad b_{\nu}(e)=b(e) .
$$

Path Graphs and Jacobi Matrices

Weighted Quantum Graphs: Examples

Normalized/Physical Laplacian

Take $\mu_{e}=\nu_{e}=|e|$ for all $e \in \mathcal{E}$, then

$$
m_{\mu}(v)=\operatorname{deg}(v), \quad b_{\nu}(e)=1
$$

Electric Networks/Random Walks on Graphs
Take $\nu_{e}=|e| b(e)$ and $\mu_{e}=\frac{b(e)}{|e|}$ for all $e \in \mathcal{E}$, then

$$
m_{\mu}(v)=\sum_{e \in \mathcal{E}} b(e)=m(e), \quad b_{\nu}(e)=b(e)
$$

Path Graphs and Jacobi Matrices

Every Jacobi matrix can be realized as a boundary operator for a weigthed quantum path graph (with δ-interactions at the vertices)

Weighted Quantum Graphs

Combinatorial Laplacian: $m \equiv 1, b \equiv 1$

$$
\left(\tau_{\mathrm{comb}} f\right)(v):=\sum_{u \sim v} f(v)-f(u)=\operatorname{deg}(v) f(v)-\underbrace{\sum_{u \sim v} f(u)}_{\text {adjacency matrix }}
$$

Weighted Quantum Graphs

Combinatorial Laplacian: $m \equiv 1, b \equiv 1$

$$
\left(\tau_{\text {comb }} f\right)(v):=\sum_{u \sim v} f(v)-f(u)=\operatorname{deg}(v) f(v)-\underbrace{\sum_{u \sim v} f(u)}_{\text {adjacency matrix }} .
$$

If $\mathcal{G}_{\boldsymbol{d}}$ has loose ends, then one can't construct a metric with $\mathbf{H}_{\mu, \nu}$!

Weighted Quantum Graphs

Combinatorial Laplacian: $m \equiv 1, b \equiv 1$

$$
\left(\tau_{\text {comb }} f\right)(v):=\sum_{u \sim v} f(v)-f(u)=\operatorname{deg}(v) f(v)-\underbrace{\sum_{u \sim v} f(u)}_{\text {adjacency matrix }} .
$$

If \mathcal{G}_{d} has loose ends, then one can't construct a metric with $\mathbf{H}_{\mu, \nu}$! For an antitree \mathcal{A}, only if $\sum_{k=0}^{n}(-1)^{k} s_{n-k}>0$ for all $n \geq 0$.

Weighted Quantum Graphs

Combinatorial Laplacian: $m \equiv 1, b \equiv 1$

$$
\left(\tau_{\text {comb }} f\right)(v):=\sum_{u \sim v} f(v)-f(u)=\operatorname{deg}(v) f(v)-\underbrace{\sum_{u \sim v} f(u)}_{\text {adjacency matrix }} .
$$

If \mathcal{G}_{d} has loose ends, then one can't construct a metric with $\mathbf{H}_{\mu, \nu}$! For an antitree \mathcal{A}, only if $\sum_{k=0}^{n}(-1)^{k} s_{n-k}>0$ for all $n \geq 0$.

Theorem (G. Zaimi '2011: mathoverflow.net/questions/59117)
Let $\mathcal{G}_{d}=(\mathcal{V}, \mathcal{E})$ be simple, connected, locally finite. Then there are lengths $|\cdot|: \mathcal{E} \rightarrow \mathbb{R}_{>0}$ and weights $\mu: \mathcal{E} \rightarrow \mathbb{R}_{>0}$ such that

$$
\sum_{e \in \mathcal{E}_{v}} \mu(e)|e|=1 \text { for all } v \in \mathcal{V}
$$

if and only if for each $e \in \mathcal{E}$ there is a disjoint cycle cover containing e in one of its cycles.

Weighted Quantum Graphs

Combinatorial Laplacian: $m \equiv 1, b \equiv 1$

$$
\left(\tau_{\mathrm{comb}} f\right)(v):=\sum_{u \sim v} f(v)-f(u)=\operatorname{deg}(v) f(v)-\underbrace{\sum_{u \sim v} f(u)}_{\text {adjacency matrix }}
$$

If $\mathcal{G}_{\boldsymbol{d}}$ has loose ends, then one can't construct a metric with $\mathbf{H}_{\mu, \nu}$! For an antitree \mathcal{A}, only if $\sum_{k=0}^{n}(-1)^{k} s_{n-k}>0$ for all $n \geq 0$.

The way to fix this problem is to allow loops!
(1) M. Folz, Volume growth and stochastic completeness of graphs, Trans. Amer. Math. Soc. 366 (2014).

周 X. Huang, A note on the volume growth criterion for stochastic completeness of weighted graphs, Potential Anal. 40 (2014).

Weighted Quantum Graphs

Combinatorial Laplacian: $m \equiv 1, b \equiv 1$

$$
\left(\tau_{\text {comb }} f\right)(v):=\sum_{u \sim v} f(v)-f(u)=\operatorname{deg}(v) f(v)-\underbrace{\sum_{u \sim v} f(u)}_{\text {adjacency matrix }} .
$$

If $\mathcal{G}_{\boldsymbol{d}}$ has loose ends, then one can't construct a metric with $\mathbf{H}_{\mu, \nu}$! For an antitree \mathcal{A}, only if $\sum_{k=0}^{n}(-1)^{k} s_{n-k}>0$ for all $n \geq 0$.

The way to fix this problem is to allow loops!
Then every weighted discrete Laplacian can be realized as a boundary operator for a quantum graph operator (in the sense of Theorem 1), however, the metric graph might be with loops.
A. Kostenko, M. Malamud, and N. Nicolussi, Weighted quantum graphs, in preparation.

8th ECM in Portorož, Slovenia: July 5-11, 2020

8th ECM in Portorož, Slovenia: July 5-11, 2020

Thank you for your attention!

