Spectral Estimates for Infinite Quantum Graphs

Aleksey Kostenko

University of Ljubljana, Slovenia
\& University of Vienna, Austria
(joint work with N. Nicolussi)

Quantum Circle Seminar, Prague

December 12, 2017

FШF

Der Wissenschaftsfonds.

Combinatorial and Metric Graphs

Definition

A (combinatorial) graph is the set of vertices \mathcal{V} and edges $\mathcal{E}, \mathcal{G}_{d}=(\mathcal{V}, \mathcal{E})$.
For $u, v \in \mathcal{V}$ we shall write $u \sim v$ if there is $e_{u, v} \in \mathcal{E}$ connecting u and v. The function deg: $\mathcal{V} \rightarrow \mathbb{Z}_{\geq 1} \cup\{\infty\}$ defined by

$$
\operatorname{deg}: v \mapsto \#\{u \in \mathcal{V} \mid u \sim v\}=\# \mathcal{E}_{v}
$$

is called the (combinatorial) degree, where $\mathcal{E}_{v}:=\left\{e_{u, v} \in \mathcal{E} \mid u \sim v\right\}$.

Assumptions

Combinatorial and Metric Graphs

Definition

A (combinatorial) graph is the set of vertices \mathcal{V} and edges $\mathcal{E}, \mathcal{G}_{d}=(\mathcal{V}, \mathcal{E})$.
For $u, v \in \mathcal{V}$ we shall write $u \sim v$ if there is $e_{u, v} \in \mathcal{E}$ connecting u and v. The function deg: $\mathcal{V} \rightarrow \mathbb{Z}_{\geq 1} \cup\{\infty\}$ defined by

$$
\operatorname{deg}: v \mapsto \#\{u \in \mathcal{V} \mid u \sim v\}=\# \mathcal{E}_{v}
$$

is called the (combinatorial) degree, where $\mathcal{E}_{v}:=\left\{e_{u, v} \in \mathcal{E} \mid u \sim v\right\}$.

Assumptions

- \mathcal{V} and \mathcal{E} are at most countable

Combinatorial and Metric Graphs

Definition

A (combinatorial) graph is the set of vertices \mathcal{V} and edges $\mathcal{E}, \mathcal{G}_{d}=(\mathcal{V}, \mathcal{E})$.
For $u, v \in \mathcal{V}$ we shall write $u \sim v$ if there is $e_{u, v} \in \mathcal{E}$ connecting u and v. The function deg: $\mathcal{V} \rightarrow \mathbb{Z}_{\geq 1} \cup\{\infty\}$ defined by

$$
\operatorname{deg}: v \mapsto \#\{u \in \mathcal{V} \mid u \sim v\}=\# \mathcal{E}_{v}
$$

is called the (combinatorial) degree, where $\mathcal{E}_{v}:=\left\{e_{u, v} \in \mathcal{E} \mid u \sim v\right\}$.

Assumptions

- \mathcal{V} and \mathcal{E} are at most countable
- $\mathcal{G}_{\boldsymbol{d}}$ is connected and locally finite $(\operatorname{deg}(v)<\infty$ for all $v \in \mathcal{V})$

Combinatorial and Metric Graphs

Definition

A (combinatorial) graph is the set of vertices \mathcal{V} and edges $\mathcal{E}, \mathcal{G}_{d}=(\mathcal{V}, \mathcal{E})$.
For $u, v \in \mathcal{V}$ we shall write $u \sim v$ if there is $e_{u, v} \in \mathcal{E}$ connecting u and v. The function deg: $\mathcal{V} \rightarrow \mathbb{Z}_{\geq 1} \cup\{\infty\}$ defined by

$$
\operatorname{deg}: v \mapsto \#\{u \in \mathcal{V} \mid u \sim v\}=\# \mathcal{E}_{v}
$$

is called the (combinatorial) degree, where $\mathcal{E}_{v}:=\left\{e_{u, v} \in \mathcal{E} \mid u \sim v\right\}$.

Assumptions

- \mathcal{V} and \mathcal{E} are at most countable
- $\mathcal{G}_{\boldsymbol{d}}$ is connected and locally finite $(\operatorname{deg}(v)<\infty$ for all $v \in \mathcal{V})$
- No loops or multiple edges

Combinatorial and Metric Graphs

Definition

A (combinatorial) graph is the set of vertices \mathcal{V} and edges $\mathcal{E}, \mathcal{G}_{d}=(\mathcal{V}, \mathcal{E})$.
For $u, v \in \mathcal{V}$ we shall write $u \sim v$ if there is $e_{u, v} \in \mathcal{E}$ connecting u and v. The function deg: $\mathcal{V} \rightarrow \mathbb{Z}_{\geq 1} \cup\{\infty\}$ defined by

$$
\operatorname{deg}: v \mapsto \#\{u \in \mathcal{V} \mid u \sim v\}=\# \mathcal{E}_{v}
$$

is called the (combinatorial) degree, where $\mathcal{E}_{v}:=\left\{e_{u, v} \in \mathcal{E} \mid u \sim v\right\}$.

Assumptions

- \mathcal{V} and \mathcal{E} are at most countable
- $\mathcal{G}_{\boldsymbol{d}}$ is connected and locally finite $(\operatorname{deg}(v)<\infty$ for all $v \in \mathcal{V})$
- No loops or multiple edges

Definition

If every edge $e \in \mathcal{E}$ is assigned with a length $|e| \in(0, \infty)$, then $\mathcal{G}=(\mathcal{V}, \mathcal{E},|\cdot|)$ is called a metric graph

Quantum Graphs

Given a metric graph $\mathcal{G}=(\mathcal{V}, \mathcal{E},|\cdot|)$, we can identify each edge $e \in \mathcal{E}$ with an interval $(0,|e|)$ and hence introduce the Hilbert space

$$
L^{2}(\mathcal{G}):=\bigoplus_{e \in \mathcal{E}} L^{2}(e)=\left\{f=\left\{f_{e}\right\}_{e \in \mathcal{E}} \mid f_{e} \in L^{2}(e), \sum_{e \in \mathcal{E}}\left\|f_{e}\right\|_{L^{2}(e)}^{2}<\infty\right\}
$$

Next equip \mathcal{G} with a Schrödinger-type operator $\mathbf{H}_{\max }:=\bigoplus_{e \in \mathcal{E}} \mathrm{H}_{e}$, where:

$$
\mathrm{H}_{e}=-\frac{\mathrm{d}^{2}}{\mathrm{dx}_{e}^{2}}, \quad \operatorname{dom}\left(\mathrm{H}_{e}\right)=H^{2}(e)
$$

Quantum Graphs

Given a metric graph $\mathcal{G}=(\mathcal{V}, \mathcal{E},|\cdot|)$, we can identify each edge $e \in \mathcal{E}$ with an interval $(0,|e|)$ and hence introduce the Hilbert space

$$
L^{2}(\mathcal{G}):=\bigoplus_{e \in \mathcal{E}} L^{2}(e)=\left\{f=\left\{f_{e}\right\}_{e \in \mathcal{E}} \mid f_{e} \in L^{2}(e), \sum_{e \in \mathcal{E}}\left\|f_{e}\right\|_{L^{2}(e)}^{2}<\infty\right\}
$$

Next equip \mathcal{G} with a Schrödinger-type operator $\mathbf{H}_{\max }:=\bigoplus_{e \in \mathcal{E}} \mathrm{H}_{e}$, where:

$$
\mathrm{H}_{e}=-\frac{\mathrm{d}^{2}}{\mathrm{dx}_{e}^{2}}, \quad \operatorname{dom}\left(\mathrm{H}_{e}\right)=H^{2}(e)
$$

To give \mathbf{H} the meaning of a quantum mechanical energy operator, it must be self-adjoint, that is, we need to add boundary conditions at the vertices.

Quantum Graphs

Given a metric graph $\mathcal{G}=(\mathcal{V}, \mathcal{E},|\cdot|)$, we can identify each edge $e \in \mathcal{E}$ with an interval $(0,|e|)$ and hence introduce the Hilbert space

$$
L^{2}(\mathcal{G}):=\bigoplus_{e \in \mathcal{E}} L^{2}(e)=\left\{f=\left\{f_{e}\right\}_{e \in \mathcal{E}} \mid f_{e} \in L^{2}(e), \sum_{e \in \mathcal{E}}\left\|f_{e}\right\|_{L^{2}(e)}^{2}<\infty\right\}
$$

Next equip \mathcal{G} with a Schrödinger-type operator $\mathbf{H}_{\max }:=\bigoplus_{e \in \mathcal{E}} \mathrm{H}_{e}$, where:

$$
\mathrm{H}_{e}=-\frac{\mathrm{d}^{2}}{\mathrm{dx}_{e}^{2}}, \quad \operatorname{dom}\left(\mathrm{H}_{e}\right)=H^{2}(e)
$$

To give \mathbf{H} the meaning of a quantum mechanical energy operator, it must be self-adjoint, that is, we need to add boundary conditions at the vertices. Kirchhoff conditions: For all $v \in \mathcal{V}$

$$
\left\{\begin{array}{l}
f \text { is continuous at } v, \\
\sum_{e \in \mathcal{E}_{v}} f_{e}^{\prime}(v)=0
\end{array}\right.
$$

Quantum Graphs

Given a metric graph $\mathcal{G}=(\mathcal{V}, \mathcal{E},|\cdot|)$, we can identify each edge $e \in \mathcal{E}$ with an interval $(0,|e|)$ and hence introduce the Hilbert space

$$
L^{2}(\mathcal{G}):=\bigoplus_{e \in \mathcal{E}} L^{2}(e)=\left\{f=\left\{f_{e}\right\}_{e \in \mathcal{E}} \mid f_{e} \in L^{2}(e), \sum_{e \in \mathcal{E}}\left\|f_{e}\right\|_{L^{2}(e)}^{2}<\infty\right\}
$$

Next equip \mathcal{G} with a Schrödinger-type operator $\mathbf{H}_{\max }:=\bigoplus_{e \in \mathcal{E}} \mathrm{H}_{e}$, where:

$$
\mathrm{H}_{e}=-\frac{\mathrm{d}^{2}}{\mathrm{dx}_{e}^{2}}, \quad \operatorname{dom}\left(\mathrm{H}_{e}\right)=H^{2}(e) .
$$

To give \mathbf{H} the meaning of a quantum mechanical energy operator, it must be self-adjoint, that is, we need to add boundary conditions at the vertices.

Definition

A quantum graph is a metric graph equipped with the operator \mathbf{H} acting as the negative second order derivative along edges and accompanied by Kirchhoff vertex conditions

Infinite Graphs $(\# \mathcal{V}, \# \mathcal{E}=\infty)$

Assumptions

- $\mathcal{G}_{\boldsymbol{d}}$ is connected and locally finite $(\operatorname{deg}(v)<\infty$ for all $v \in \mathcal{V})$
- No loops or multiple edges
- No inessential edges $(\operatorname{deg}(v) \neq 2$ for all $v \in \mathcal{V})$

Infinite Graphs $(\# \mathcal{V}, \# \mathcal{E}=\infty)$

Assumptions

- $\mathcal{G}_{\boldsymbol{d}}$ is connected and locally finite $(\operatorname{deg}(v)<\infty$ for all $v \in \mathcal{V})$
- No loops or multiple edges
- No inessential edges $(\operatorname{deg}(v) \neq 2$ for all $v \in \mathcal{V})$
- $\ell^{*}(\mathcal{E}):=\sup _{e \in \mathcal{E}}|e|<\infty$

However,

Infinite Graphs $(\# \mathcal{V}, \# \mathcal{E}=\infty)$

Assumptions

- $\mathcal{G}_{\boldsymbol{d}}$ is connected and locally finite $(\operatorname{deg}(v)<\infty$ for all $v \in \mathcal{V})$
- No loops or multiple edges
- No inessential edges $(\operatorname{deg}(v) \neq 2$ for all $v \in \mathcal{V})$
- $\ell^{*}(\mathcal{E}):=\sup _{e \in \mathcal{E}}|e|<\infty$

However,
Theorem (M. Solomyak'2003)
If $\ell^{*}(\mathcal{E})=\infty$, then

$$
\hat{\sigma}(\mathbf{H})=\mathbb{R}_{\geq 0} .
$$

Infinite Graphs $(\# \mathcal{V}, \# \mathcal{E}=\infty)$

Assumptions

- $\mathcal{G}_{\boldsymbol{d}}$ is connected and locally finite $(\operatorname{deg}(v)<\infty$ for all $v \in \mathcal{V})$
- No loops or multiple edges
- No inessential edges $(\operatorname{deg}(v) \neq 2$ for all $v \in \mathcal{V})$
- $\ell^{*}(\mathcal{E}):=\sup _{e \in \mathcal{E}}|e|<\infty$

PROBLEM \#1:

The (minimal) operator \mathbf{H} is symmetric, however, in contrast to the case of finite graphs, it is not necessarily self-adjoint!

Infinite Graphs: Self-adjointness

For $p: \mathcal{E} \rightarrow(0, \infty)$, define a path metric ϱ_{p} on \mathcal{V} w.r.t. \mathcal{G} by

$$
\varrho_{p}(u, v):=\inf _{\mathcal{P}=\left\{v_{0}, \ldots, v_{n}\right\}: u=v_{0}, v=v_{n}} \sum_{k} p\left(e_{v_{k-1}, v_{k}}\right) .
$$

The infimum is taken over all paths connecting u and v.

Infinite Graphs: Self-adjointness

For $p: \mathcal{E} \rightarrow(0, \infty)$, define a path metric ϱ_{p} on \mathcal{V} w.r.t. \mathcal{G} by

$$
\varrho_{p}(u, v):=\inf _{\mathcal{P}=\left\{v_{0}, \ldots, v_{n}\right\}: u=v_{0}, v=v_{n}} \sum_{k} p\left(e_{v_{k-1}, v_{k}}\right) .
$$

The infimum is taken over all paths connecting u and v.

Examples

- Natural path metric ϱ_{0} with $p_{0}: e \mapsto|e|$.
- Star metric ϱ_{m} with $p_{m}: e_{u, v} \mapsto m(u)+m(v)$ and $m(v):=\sum_{e \in \mathcal{E}_{v}}|e|$.

Infinite Graphs: Self-adjointness

For $p: \mathcal{E} \rightarrow(0, \infty)$, define a path metric ϱ_{p} on \mathcal{V} w.r.t. \mathcal{G} by

$$
\varrho_{p}(u, v):=\inf _{\mathcal{P}=\left\{v_{0}, \ldots, v_{n}\right\}: u=v_{0}, v=v_{n}} \sum_{k} p\left(e_{v_{k-1}, v_{k}}\right) .
$$

The infimum is taken over all paths connecting u and v.

Examples

- Natural path metric ϱ_{0} with $p_{0}: e \mapsto|e|$.
- Star metric ϱ_{m} with $p_{m}: e_{u, v} \mapsto m(u)+m(v)$ and $m(v):=\sum_{e \in \mathcal{E}_{v}}|e|$.

Theorem 1 (Exner-AK-Malamud-Neidhardt)

If $\left(\mathcal{V}, \varrho_{m}\right)$ is complete as a metric space, then \mathbf{H} is self-adjoint.

Infinite Graphs: Self-adjointness

For $p: \mathcal{E} \rightarrow(0, \infty)$, define a path metric ϱ_{p} on \mathcal{V} w.r.t. \mathcal{G} by

$$
\varrho_{p}(u, v):=\inf _{\mathcal{P}=\left\{v_{0}, \ldots, v_{n}\right\}: u=v_{0}, v=v_{n}} \sum_{k} p\left(e_{v_{k-1}, v_{k}}\right) .
$$

The infimum is taken over all paths connecting u and v.

Examples

- Natural path metric ϱ_{0} with $p_{0}: e \mapsto|e|$.
- Star metric ϱ_{m} with $p_{m}: e_{u, v} \mapsto m(u)+m(v)$ and $m(v):=\sum_{e \in \mathcal{E}_{v}}|e|$.

Theorem 1 (Exner-AK-Malamud-Neidhardt)

If $\left(\mathcal{V}, \varrho_{m}\right)$ is complete as a metric space, then \mathbf{H} is self-adjoint. In particular, \mathbf{H} is self-adjoint if $\inf _{v \in \mathcal{V}} m(v)=\inf _{v \in \mathcal{V}} \sum_{e \in \mathcal{E}_{v}}|e|>0$.

Infinite Graphs: Self-adjointness

For $p: \mathcal{E} \rightarrow(0, \infty)$, define a path metric ϱ_{p} on \mathcal{V} w.r.t. \mathcal{G} by

$$
\varrho_{p}(u, v):=\inf _{\mathcal{P}=\left\{v_{0}, \ldots, v_{n}\right\}: u=v_{0}, v=v_{n}} \sum_{k} p\left(e_{v_{k-1}, v_{k}}\right) .
$$

The infimum is taken over all paths connecting u and v.

Examples

- Natural path metric ϱ_{0} with $p_{0}: e \mapsto|e|$.
- Star metric ϱ_{m} with $p_{m}: e_{u, v} \mapsto m(u)+m(v)$ and $m(v):=\sum_{e \in \mathcal{E}_{v}}|e|$.

Theorem 1 (Exner-AK-Malamud-Neidhardt)

If $\left(\mathcal{V}, \varrho_{m}\right)$ is complete as a metric space, then \mathbf{H} is self-adjoint. In particular, \mathbf{H} is self-adjoint if $\inf _{v \in \mathcal{V}} m(v)=\inf _{v \in \mathcal{V}} \sum_{e \in \mathcal{E}_{v}}|e|>0$.

Corollary ([EKMN])

If $\left(\mathcal{G}, \varrho_{0}\right)$ is complete as a metric space, then $\mathbf{H}_{\mathcal{G}}$ is self-adjoint.

Infinite Graphs: Self-adjointness

For $p: \mathcal{E} \rightarrow(0, \infty)$, define a path metric ϱ_{p} on \mathcal{V} w.r.t. \mathcal{G} by

$$
\varrho_{p}(u, v):=\inf _{\mathcal{P}=\left\{v_{0}, \ldots, v_{n}\right\}: u=v_{0}, v=v_{n}} \sum_{k} p\left(e_{v_{k-1}, v_{k}}\right) .
$$

The infimum is taken over all paths connecting u and v.

Examples

- Natural path metric ϱ_{0} with $p_{0}: e \mapsto|e|$.
- Star metric ϱ_{m} with $p_{m}: e_{u, v} \mapsto m(u)+m(v)$ and $m(v):=\sum_{e \in \mathcal{E}_{v}}|e|$.

Theorem 1 (Exner-AK-Malamud-Neidhardt)

If $\left(\mathcal{V}, \varrho_{m}\right)$ is complete as a metric space, then \mathbf{H} is self-adjoint. In particular, \mathbf{H} is self-adjoint if $\inf _{v \in \mathcal{V}} m(v)=\inf _{v \in \mathcal{V}} \sum_{e \in \mathcal{E}_{v}}|e|>0$.

The standard assumption for infinite QG is $\inf _{e \in \mathcal{E}}|e|>0$!

Infinite Graphs: Self-adjointness

For $p: \mathcal{E} \rightarrow(0, \infty)$, define a path metric ϱ_{p} on \mathcal{V} w.r.t. \mathcal{G} by

$$
\varrho_{p}(u, v):=\inf _{\mathcal{P}=\left\{v_{0}, \ldots, v_{n}\right\}: u=v_{0}, v=v_{n}} \sum_{k} p\left(e_{v_{k-1}, v_{k}}\right) .
$$

The infimum is taken over all paths connecting u and v.

Examples

- Natural path metric ϱ_{0} with $p_{0}: e \mapsto|e|$.
- Star metric ϱ_{m} with $p_{m}: e_{u, v} \mapsto m(u)+m(v)$ and $m(v):=\sum_{e \in \mathcal{E}_{v}}|e|$.

Theorem 1 (Exner-AK-Malamud-Neidhardt)

If $\left(\mathcal{V}, \varrho_{m}\right)$ is complete as a metric space, then \mathbf{H} is self-adjoint. In particular, \mathbf{H} is self-adjoint if $\inf _{v \in \mathcal{V}} m(v)=\inf _{v \in \mathcal{V}} \sum_{e \in \mathcal{E}_{v}}|e|>0$.

The standard assumption for infinite QG is $\inf _{e \in \mathcal{E}}|e|>0$!
围 M. Keller and D. Lenz// J. reine Angew. Math. 666, 189-223 (2012).

Infinite Graphs: Self-adjointness

Infinite Graphs: Self-adjointness

Example 1, $\left(\mathcal{V}, \varrho_{m}\right)$ is complete $\Leftrightarrow L:=\sum_{e \in \mathcal{E}}|e|=\frac{1}{2} m(\mathcal{V})=\infty$.

Infinite Graphs: Self-adjointness

Example 1, $\left(\mathcal{V}, \varrho_{m}\right)$ is complete $\Leftrightarrow L:=\sum_{e \in \mathcal{E}}|e|=\frac{1}{2} m(\mathcal{V})=\infty$.

Lemma

If $m(\mathcal{V})<\infty$, then \mathbf{H} is non-self-adjoint.

Infinite Graphs: Self-adjointness

Example 1.

Example 1, $\left(\mathcal{V}, \varrho_{m}\right)$ is complete $\Leftrightarrow L:=\sum_{e \in \mathcal{E}}|e|=\frac{1}{2} m(\mathcal{V})=\infty$.

Lemma

If $m(\mathcal{V})<\infty$, then \mathbf{H} is non-self-adjoint.
Hence, in Example 1, \mathbf{H} is self-adjoint $\Leftrightarrow\left(\mathcal{V}, \varrho_{m}\right)$ is complete!

Infinite Graphs: Self-adjointness

Example 1.

Example 1, $\left(\mathcal{V}, \varrho_{m}\right)$ is complete $\Leftrightarrow L:=\sum_{e \in \mathcal{E}}|e|=\frac{1}{2} m(\mathcal{V})=\infty$.

Lemma

If $m(\mathcal{V})<\infty$, then \mathbf{H} is non-self-adjoint.
Hence, in Example 1, \mathbf{H} is self-adjoint $\Leftrightarrow\left(\mathcal{V}, \varrho_{m}\right)$ is complete!

Open Problem:

Does the converse to Theorem 1 hold true in general?

Infinite Graphs $(\# \mathcal{V}, \# \mathcal{E}=\infty)$

Consider the discrete Laplacian h defined on $\ell^{2}(\mathcal{V} ; m)$ by

$$
(\tau f)(v):=\frac{1}{m(v)} \sum_{u \sim v} \frac{f(v)-f(u)}{\left|e_{u, v}\right|}, \quad v \in \mathcal{V}
$$

where $m(v):=\sum_{e \in \mathcal{E}_{v}}|e|$.

Infinite Graphs $(\# \mathcal{V}, \# \mathcal{E}=\infty)$

Consider the discrete Laplacian h defined on $\ell^{2}(\mathcal{V} ; m)$ by

$$
(\tau f)(v):=\frac{1}{m(v)} \sum_{u \sim v} \frac{f(v)-f(u)}{\left|e_{u, v}\right|}, \quad v \in \mathcal{V}
$$

where $m(v):=\sum_{e \in \mathcal{E}_{v}}|e|$.
τ is the combinatorial Laplacian iff \mathcal{G} is equilateral, i.e., $|e| \equiv 1$.

$$
\left(\tau_{\mathrm{comb}} f\right)(v):=\frac{1}{\operatorname{deg}(v)} \sum_{u \sim v} f(v)-f(u), \quad v \in \mathcal{V}
$$

R. R. Courant, K. Friedrichs \& H. Lewy // Math. Ann. 100, 32-74 (1928)

Infinite Graphs $(\# \mathcal{V}, \# \mathcal{E}=\infty)$

Consider the discrete Laplacian h defined on $\ell^{2}(\mathcal{V} ; m)$ by

$$
(\tau f)(v):=\frac{1}{m(v)} \sum_{u \sim v} \frac{f(v)-f(u)}{\left|e_{u, v}\right|}, \quad v \in \mathcal{V}
$$

where $m(v):=\sum_{e \in \mathcal{E}_{v}}|e|$.
τ is the combinatorial Laplacian iff \mathcal{G} is equilateral, i.e., $|e| \equiv 1$.

$$
\left(\tau_{\text {comb }} f\right)(v):=\frac{1}{\operatorname{deg}(v)} \sum_{u \sim v} f(v)-f(u), \quad v \in \mathcal{V}
$$

局 R. Courant, K. Friedrichs \& H. Lewy // Math. Ann. 100, 32-74 (1928)
P. Colin de Verdiére, Spectres de Graphes, SMF, Paris, 1998.

R G. Davidoff, P. Sarnak and A. Valette, Elementary Number Theory, Group Theory and Ramanujan Graphs, Cambridge UP, 2003.
W. Woess, Random Walks on Infinite Graphs and Groups, Cambridge Univ. Press, Cambridge, 2000.

Infinite Graphs $(\# \mathcal{V}, \# \mathcal{E}=\infty)$

Consider the discrete Laplacian h defined on $\ell^{2}(\mathcal{V} ; m)$ by

$$
(\tau f)(v):=\frac{1}{m(v)} \sum_{u \sim v} \frac{f(v)-f(u)}{\left|e_{u, v}\right|}, \quad v \in \mathcal{V}
$$

where $m(v):=\sum_{e \in \mathcal{E}_{v}}|e|$.
τ is the combinatorial Laplacian iff \mathcal{G} is equilateral, i.e., $|e| \equiv 1$.

$$
\left(\tau_{\text {comb }} f\right)(v):=\frac{1}{\operatorname{deg}(v)} \sum_{u \sim v} f(v)-f(u), \quad v \in \mathcal{V}
$$

Theorem (E. B. Davies'1992)

h is bounded iff the weighted degree Deg is bounded on \mathcal{V},

$$
\text { Deg : } v \mapsto \frac{1}{m(v)} \sum_{u \sim v} \frac{1}{\left|e_{u, v}\right|}=\frac{\sum_{e \in \mathcal{E}_{v}} 1 /|e|}{\sum_{e \in \mathcal{E}_{v}}|e|}
$$

Note that Deg is bounded on \mathcal{V} if $\ell_{*}(\mathcal{E}):=\inf _{e \in \mathcal{E}}|e|>0$.

Connections between \mathbf{H} and h

The kernel $\mathcal{L}=\operatorname{ker}\left(\mathbf{H}_{\max }\right)$ consists of piecewise linear functions on \mathcal{G}. Every $f \in \mathcal{L}$ can be identified with its values $\left\{f\left(e_{i}\right), f\left(e_{o}\right)\right\}_{e \in \mathcal{E}}$ on \mathcal{V}

Connections between \mathbf{H} and h

The kernel $\mathcal{L}=\operatorname{ker}\left(\mathbf{H}_{\max }\right)$ consists of piecewise linear functions on \mathcal{G}. Every $f \in \mathcal{L}$ can be identified with its values $\left\{f\left(e_{i}\right), f\left(e_{o}\right)\right\}_{e \in \mathcal{E}}$ on \mathcal{V} and

$$
\|f\|_{L^{2}(\mathcal{G})}^{2}=\sum_{e \in \mathcal{E}}|e| \frac{\left|f\left(e_{i}\right)\right|^{2}+\operatorname{Re}\left(f\left(e_{i}\right) f\left(e_{o}\right)^{*}\right)+\left|f\left(e_{o}\right)\right|^{2}}{3}
$$

Connections between \mathbf{H} and h

The kernel $\mathcal{L}=\operatorname{ker}\left(\mathbf{H}_{\max }\right)$ consists of piecewise linear functions on \mathcal{G}. Every $f \in \mathcal{L}$ can be identified with its values $\left\{f\left(e_{i}\right), f\left(e_{o}\right)\right\}_{e \in \mathcal{E}}$ on \mathcal{V} and

$$
\|f\|_{L^{2}(\mathcal{G})}^{2}=\sum_{e \in \mathcal{E}}|e| \frac{\left|f\left(e_{i}\right)\right|^{2}+\operatorname{Re}\left(f\left(e_{i}\right) f\left(e_{o}\right)^{*}\right)+\left|f\left(e_{o}\right)\right|^{2}}{3} .
$$

Now restrict ourselves to the subspace $\mathcal{L}_{\text {cont }}=\mathcal{L} \cap C_{c}(\mathcal{G})$. Clearly,

$$
\sum_{e \in \mathcal{E}}|e|\left(\left|f\left(e_{i}\right)\right|^{2}+\left|f\left(e_{o}\right)\right|^{2}\right)=\sum_{v \in \mathcal{V}}|f(v)|^{2} \underbrace{\sum_{e \in \mathcal{E}_{v}}|e|}_{=m(v)}=\|f\|_{\ell^{2}(\mathcal{V} ; m)}^{2}
$$

defines an equivalent norm on $\mathcal{L}_{\text {cont }}$.

Connections between \mathbf{H} and h

The kernel $\mathcal{L}=\operatorname{ker}\left(\mathbf{H}_{\max }\right)$ consists of piecewise linear functions on \mathcal{G}. Every $f \in \mathcal{L}$ can be identified with its values $\left\{f\left(e_{i}\right), f\left(e_{o}\right)\right\}_{e \in \mathcal{E}}$ on \mathcal{V} and

$$
\|f\|_{L^{2}(\mathcal{G})}^{2}=\sum_{e \in \mathcal{E}}|e| \frac{\left|f\left(e_{i}\right)\right|^{2}+\operatorname{Re}\left(f\left(e_{i}\right) f\left(e_{o}\right)^{*}\right)+\left|f\left(e_{o}\right)\right|^{2}}{3} .
$$

Now restrict ourselves to the subspace $\mathcal{L}_{\text {cont }}=\mathcal{L} \cap C_{c}(\mathcal{G})$. Clearly,

$$
\sum_{e \in \mathcal{E}}|e|\left(\left|f\left(e_{i}\right)\right|^{2}+\left|f\left(e_{o}\right)\right|^{2}\right)=\sum_{v \in \mathcal{V}}|f(v)|^{2} \underbrace{\sum_{e \in \mathcal{E}_{v}}|e|}_{=m(v)}=\|f\|_{\ell^{2}(\mathcal{V} ; m)}^{2}
$$

defines an equivalent norm on $\mathcal{L}_{\text {cont }}$. Moreover, for $f \in \mathcal{L}_{\text {cont }}$

$$
\begin{aligned}
(\mathbf{H} f, f)_{L^{2}(\mathcal{G})} & =\sum_{e \in \mathcal{E}} \int_{e}\left|f^{\prime}\left(x_{e}\right)\right|^{2} d x_{e}=\sum_{e \in \mathcal{E}} \frac{\left|f\left(e_{o}\right)-f\left(e_{i}\right)\right|^{2}}{|e|} \\
& =\frac{1}{2} \sum_{u, v \in \mathcal{V}} \frac{|f(v)-f(u)|^{2}}{\left|e_{u, v}\right|}=(\mathrm{h} f, f)_{\ell^{2}(\mathcal{V} ; m)} .
\end{aligned}
$$

Connections between \mathbf{H} and h

For $f \in \mathcal{L}_{\text {cont }}=\operatorname{ker}\left(\mathbf{H}_{\text {max }}\right) \cap C_{c}(\mathcal{G})$,

$$
(\mathbf{H} f, f)_{L^{2}(\mathcal{G})}=(\mathrm{h} f, f)_{\ell^{2}(\mathcal{V} ; m)}
$$

and

$$
\frac{1}{6}\|f\|_{\ell^{2}(\mathcal{V} ; m)}^{2} \leq\|f\|_{L^{2}(\mathcal{G})}^{2} \leq \frac{1}{2}\|f\|_{\ell^{2}(\mathcal{V} ; m)}^{2}
$$

Connections between \mathbf{H} and h

For $f \in \mathcal{L}_{\text {cont }}=\operatorname{ker}\left(\mathbf{H}_{\text {max }}\right) \cap C_{c}(\mathcal{G})$,

$$
(\mathbf{H} f, f)_{L^{2}(\mathcal{G})}=(\mathrm{h} f, f)_{\ell^{2}(\mathcal{V} ; m)}
$$

and

$$
\frac{1}{6}\|f\|_{\ell^{2}(\mathcal{V} ; m)}^{2} \leq\|f\|_{L^{2}(\mathcal{G})}^{2} \leq \frac{1}{2}\|f\|_{\ell^{2}(\mathcal{V} ; m)}^{2}
$$

Rayleigh's quotient

$$
\lambda_{0}(\mathbf{H}):=\inf \sigma(\mathbf{H})=\inf _{\substack{f \in H_{c}^{1}(\mathcal{G}) \\ f \neq 0}} \frac{(\mathbf{H} f, f)_{L^{2}(\mathcal{G})}}{\|f\|_{L^{2}(\mathcal{G})}^{2}} \leq \inf _{\substack{f \in \mathcal{L}_{\text {cont }} \\ f \neq 0}} \frac{(\mathbf{H} f, f)_{L^{2}(\mathcal{G})}\|f\|_{L^{2}(\mathcal{G})}^{2}}{} \leq 6 \lambda_{0}(\mathrm{~h}) .
$$

Connections between \mathbf{H} and h

For $f \in \mathcal{L}_{\text {cont }}=\operatorname{ker}\left(\mathbf{H}_{\text {max }}\right) \cap C_{c}(\mathcal{G})$,

$$
(\mathbf{H} f, f)_{L^{2}(\mathcal{G})}=(\mathrm{h} f, f)_{\ell^{2}(\mathcal{V} ; m)}
$$

and

$$
\frac{1}{6}\|f\|_{\ell^{2}(\mathcal{V} ; m)}^{2} \leq\|f\|_{L^{2}(\mathcal{G})}^{2} \leq \frac{1}{2}\|f\|_{\ell^{2}(\mathcal{V} ; m)}^{2}
$$

Rayleigh's quotient
$\lambda_{0}(\mathbf{H}):=\inf \sigma(\mathbf{H})=\inf _{\substack{f \in H_{c}^{1}(\mathcal{G}) \\ f \neq 0}} \frac{(\mathbf{H} f, f)_{L^{2}(\mathcal{G})}}{\|f\|_{L^{2}(\mathcal{G})}^{2}} \leq \inf _{\substack{f \in \mathcal{L}_{\text {cont }} \\ f \neq 0}} \frac{(\mathbf{H f}, f)_{L^{2}(\mathcal{G})}}{\|f\|_{L^{2}(\mathcal{G})}^{2}} \leq 6 \lambda_{0}(\mathrm{~h})$.
Theorem (von Below'1987,..., Cattaneo'1997,..., Pankrashkin'2012)
Let \mathcal{G} be equilateral $(|e|=1$ for all $e \in \mathcal{E})$ and $\sigma_{D}:=\left\{(\pi n)^{2}\right\}_{n \in \mathbb{N}}$. Then

$$
\sigma_{j}(\mathbf{H}) \backslash \sigma_{D}=\left\{\lambda \notin \sigma_{D} \mid 1-\cos (\sqrt{\lambda}) \in \sigma_{j}(h)\right\}, \quad j \in\{\mathrm{p}, \mathrm{ess}, \mathrm{ac}, \mathrm{sc}\}
$$

Connections between \mathbf{H} and h

For $f \in \mathcal{L}_{\text {cont }}=\operatorname{ker}\left(\mathbf{H}_{\text {max }}\right) \cap C_{c}(\mathcal{G})$,

$$
(\mathbf{H} f, f)_{L^{2}(\mathcal{G})}=(\mathrm{h} f, f)_{\ell^{2}(\mathcal{V} ; m)}
$$

and

$$
\frac{1}{6}\|f\|_{\ell^{2}(\mathcal{V} ; m)}^{2} \leq\|f\|_{L^{2}(\mathcal{G})}^{2} \leq \frac{1}{2}\|f\|_{\ell^{2}(\mathcal{V} ; m)}^{2}
$$

Rayleigh's quotient

$$
\lambda_{0}(\mathbf{H}):=\inf \sigma(\mathbf{H})=\inf _{\substack{f \in H_{c}^{1}(\mathcal{G}) \\ f \neq 0}} \frac{(\mathbf{H} f, f)_{L^{2}(\mathcal{G})}}{\|f\|_{L^{2}(\mathcal{G})}^{2}} \leq \inf _{\substack{f \in \mathcal{L}_{\text {cont }} \\ f \neq 0}} \frac{(\mathbf{H} f, f)_{L^{2}(\mathcal{G})}}{\|f\|_{L^{2}(\mathcal{G})}^{2}} \leq 6 \lambda_{0}(\mathrm{~h}) .
$$

Corollary

Let \mathcal{G} be equilateral. Then $\lambda_{0}(\mathbf{H})=1-\cos \left(\sqrt{\lambda_{0}(\mathrm{~h})}\right)$. In particular,

$$
2 \lambda_{0}(\mathrm{~h}) \leq \lambda_{0}(\mathbf{H}) \leq \frac{\pi^{2}}{4} \lambda_{0}(\mathrm{~h})
$$

Connections between \mathbf{H} and h

For $f \in \mathcal{L}_{\text {cont }}=\operatorname{ker}\left(\mathbf{H}_{\text {max }}\right) \cap C_{c}(\mathcal{G})$,

$$
(\mathbf{H} f, f)_{L^{2}(\mathcal{G})}=(\mathrm{h} f, f)_{\ell^{2}(\mathcal{V} ; m)}
$$

and

$$
\frac{1}{6}\|f\|_{\ell^{2}(\mathcal{V} ; m)}^{2} \leq\|f\|_{L^{2}(\mathcal{G})}^{2} \leq \frac{1}{2}\|f\|_{\ell^{2}(\mathcal{V} ; m)}^{2}
$$

Rayleigh's quotient

$$
\lambda_{0}(\mathbf{H}):=\inf \sigma(\mathbf{H})=\inf _{\substack{f \in H_{c}^{1}(\mathcal{G}) \\ f \neq 0}} \frac{(\mathbf{H} f, f)_{L^{2}(\mathcal{G})}}{\|f\|_{L^{2}(\mathcal{G})}^{2}} \leq \inf _{\substack{f \in \mathcal{L}_{\text {cont }} \\ f \neq 0}} \frac{(\mathbf{H} f, f)_{L^{2}(\mathcal{G})}^{\|f\|_{L^{2}(\mathcal{G})}^{2}} \leq 6 \lambda_{0}(\mathrm{~h})}{}
$$

Theorem 2 (Exner-AK-Malamud-Neidhardt)

$$
\lambda_{0}(\mathbf{H})>0 \quad \Leftrightarrow \quad \lambda_{0}(\mathrm{~h})>0
$$

However, there is no nice formula like in the equilateral case!

Estimates for $\lambda_{0}(\mathbf{H})$

A huge literature in the case of finite graphs.

Estimates for $\lambda_{0}(\mathbf{H})$

A huge literature in the case of finite graphs. However, most of the estimates lead to trivial bounds in the case of infinite graphs (i.e., infinite length, infinitely many vertices etc.)

Estimates for $\lambda_{0}(\mathbf{H})$

A huge literature in the case of finite graphs. However, most of the estimates lead to trivial bounds in the case of infinite graphs (i.e., infinite length, infinitely many vertices etc.)

One can use volume growth estimates, aka Brooks-type bounds, since $\mathfrak{t}_{\mathbf{H}}[\cdot]=(\mathbf{H} \cdot, \cdot)_{L^{2}}$ is a regular local Dirichlet form and ϱ_{0} is intrinsic:
K.-T. Sturm, Analysis on local Dirichlet spaces I. Recurrence, conservativeness and L^{p}-Liuoville properties, J. reine Angew. Math. 456, 173-196 (1994).

Cheeger-type estimates for $\lambda_{0}(\mathbf{H})$

Let $\mathcal{K}_{\mathcal{G}}$ be the set of all finite, connected subgraphs of \mathcal{G}.
For $\widetilde{\mathcal{G}} \in \mathcal{K}_{\mathcal{G}}$, the boundary of $\widetilde{\mathcal{G}}$ (w.r.t. \mathcal{G}) is

$$
\partial_{\mathcal{G}} \widetilde{\mathcal{G}}:=\left\{v \in \tilde{\mathcal{V}} \mid \operatorname{deg}_{\widetilde{\mathcal{G}}}(v)<\operatorname{deg}_{\mathcal{G}}(v)\right\} .
$$

For a given finite subgraph $\widetilde{\mathcal{G}} \subset \mathcal{G}$ we then set

$$
\operatorname{deg}\left(\partial_{\mathcal{G}} \widetilde{\mathcal{G}}\right):=\sum_{v \in \partial \widetilde{\mathcal{G}}} \operatorname{deg}_{\widetilde{\mathcal{G}}}(v)
$$

The Cheeger (or isoperimetric) constant of a metric graph \mathcal{G} is defined by

$$
\alpha(\mathcal{G}):=\inf _{\widetilde{\mathcal{G}} \in \mathcal{K}_{\mathcal{G}}} \frac{\operatorname{deg}\left(\partial_{\mathcal{G}} \widetilde{\mathcal{G}}\right)}{\operatorname{mes}(\widetilde{\mathcal{G}})}
$$

where $\operatorname{mes}(\widetilde{\mathcal{G}})$ denotes the Lebesgue measure of $\widetilde{\mathcal{G}}, \operatorname{mes}(\widetilde{\mathcal{G}}):=\sum_{e \in \tilde{\mathcal{E}}}|e|$.

Cheeger-type estimates for $\lambda_{0}(\mathbf{H})$

Let $\mathcal{K}_{\mathcal{G}}$ be the set of all finite, connected subgraphs of \mathcal{G}.
For $\widetilde{\mathcal{G}} \in \mathcal{K}_{\mathcal{G}}$, the boundary of $\widetilde{\mathcal{G}}$ (w.r.t. \mathcal{G}) is

$$
\partial_{\mathcal{G}} \widetilde{\mathcal{G}}:=\left\{v \in \tilde{\mathcal{V}} \mid \operatorname{deg}_{\widetilde{\mathcal{G}}}(v)<\operatorname{deg}_{\mathcal{G}}(v)\right\} .
$$

For a given finite subgraph $\widetilde{\mathcal{G}} \subset \mathcal{G}$ we then set

$$
\operatorname{deg}\left(\partial_{\mathcal{G}} \widetilde{\mathcal{G}}\right):=\sum_{v \in \partial \widetilde{\mathcal{G}}} \operatorname{deg}_{\widetilde{\mathcal{G}}}(v)
$$

The Cheeger (or isoperimetric) constant of a metric graph \mathcal{G} is defined by

$$
\alpha(\mathcal{G}):=\inf _{\widetilde{\mathcal{G}} \in \mathcal{K}_{\mathcal{G}}} \frac{\operatorname{deg}\left(\partial_{\mathcal{G}} \widetilde{\mathcal{G}}\right)}{\operatorname{mes}(\widetilde{\mathcal{G}})}
$$

where $\operatorname{mes}(\widetilde{\mathcal{G}})$ denotes the Lebesgue measure of $\widetilde{\mathcal{G}}, \operatorname{mes}(\widetilde{\mathcal{G}}):=\sum_{e \in \tilde{\mathcal{E}}}|e|$.
Theorem 3 (AK-Nicolussi)

$$
\lambda_{0}(\mathbf{H}) \geq \frac{1}{4} \alpha(\mathcal{G})^{2}
$$

Cheeger-type estimates for $\lambda_{0}(\mathbf{H})$

The Cheeger inequality for finite graphs was proved in
S. Nicaise, Spectre des réseaux topologiques finis, Bull. Sci. Math., II. Sér., 111, 401-413 (1987).

However, the isoperimetric constant is defined (for finite graphs) by

$$
\widetilde{\alpha}(\mathcal{G}):=\inf _{\substack{U \subset \mathcal{G} \\ U \text { is open }}} \frac{|\partial U|}{\min \left(|U|,\left|U^{c}\right|\right)} .
$$

Cheeger-type estimates for $\lambda_{0}(\mathbf{H})$

The Cheeger inequality for finite graphs was proved in
S. Nicaise, Spectre des réseaux topologiques finis, Bull. Sci. Math., II. Sér., 111, 401-413 (1987).

However, the isoperimetric constant is defined (for finite graphs) by

$$
\widetilde{\alpha}(\mathcal{G}):=\inf _{\substack{U \subset \mathcal{G} \\ U \text { is open }}} \frac{|\partial U|}{\min \left(|U|,\left|U^{c}\right|\right)} .
$$

In fact, for infinite graphs (having infinite total length)

$$
\widetilde{\alpha}(\mathcal{G})=\alpha(\mathcal{G})
$$

Cheeger-type estimates for $\lambda_{0}(\mathbf{H})$

The discrete isoperimetric constant for h was introduced in
國 F. Bauer, M. Keller, and R. K. Wojciechowski, Cheeger inequalities for unbounded graph Laplacians, J. Eur. Math. Soc. 17, 259-271 (2015).

$$
\alpha_{d}(\mathcal{V}):=\inf _{\substack{X \subset \mathcal{V} \\ X \text { is finite }}} \frac{\#(\{e \in \mathcal{E} \mid e \text { connects } X \text { and } \mathcal{V} \backslash X\})}{\sum_{v \in X} m(v)}
$$

and

$$
\lambda_{0}(\mathrm{~h}) \geq \frac{1}{2} \alpha_{d}(\mathcal{V})^{2} .
$$

Cheeger-type estimates for $\lambda_{0}(\mathbf{H})$

The discrete isoperimetric constant for h was introduced in
F. Bauer, M. Keller, and R. K. Wojciechowski, Cheeger inequalities for unbounded graph Laplacians, J. Eur. Math. Soc. 17, 259-271 (2015).

$$
\alpha_{d}(\mathcal{V}):=\inf _{\substack{X \subseteq \mathcal{V} \\ X \text { is finite }}} \frac{\#(\{e \in \mathcal{E} \mid e \text { connects } X \text { and } \mathcal{V} \backslash X\})}{\sum_{v \in X} m(v)}
$$

and

$$
\lambda_{0}(\mathrm{~h}) \geq \frac{1}{2} \alpha_{d}(\mathcal{V})^{2} .
$$

Lemma (AK-Nicolussi)

$$
\frac{1}{\alpha_{d}(\mathcal{V})} \leq \frac{2}{\alpha(\mathcal{G})} \leq \frac{1}{\alpha_{d}(\mathcal{V})}+\ell^{*}(\mathcal{G})
$$

Cheeger-type estimates for $\lambda_{0}(\mathbf{H})$

The discrete isoperimetric constant for h was introduced in
F. Bauer, M. Keller, and R. K. Wojciechowski, Cheeger inequalities for unbounded graph Laplacians, J. Eur. Math. Soc. 17, 259-271 (2015).

$$
\alpha_{d}(\mathcal{V}):=\inf _{\substack{X \subset \mathcal{V} \\ X \text { is finite }}} \frac{\#(\{e \in \mathcal{E} \mid e \text { connects } X \text { and } \mathcal{V} \backslash X\})}{\sum_{v \in X} m(v)}
$$

and

$$
\lambda_{0}(\mathrm{~h}) \geq \frac{1}{2} \alpha_{d}(\mathcal{V})^{2} .
$$

Lemma (AK-Nicolussi)

$$
\frac{1}{\alpha_{d}(\mathcal{V})} \leq \frac{2}{\alpha(\mathcal{G})} \leq \frac{1}{\alpha_{d}(\mathcal{V})}+\ell^{*}(\mathcal{G})
$$

In particular, this implies $\lambda_{0}(\mathbf{H})>0$ if $\alpha_{d}(\mathcal{V})>0$.

Cheeger-type estimates for $\lambda_{0}(\mathbf{H})$

The combinatorial isoperimetric constant of a graph \mathcal{G}_{d} was introduced in
目 J. Dodziuk and W. S. Kendall, Combinatorial Laplacians and isoperimetric inequality, in: K. D. Elworthy (ed.), "From local times to global geometry, control and physics", pp. 68-74, 1986.

$$
\alpha_{\text {comb }}(\mathcal{G}):=\inf _{\substack{X \in \mathcal{G} \\ X \text { is finite }}} \frac{\#(\{e \in \mathcal{E} \mid e \text { connects } X \text { and } \mathcal{V} \backslash X\})}{\sum_{v \in X} \operatorname{deg}(v)}
$$

Cheeger-type estimates for $\lambda_{0}(\mathbf{H})$

The combinatorial isoperimetric constant of a graph \mathcal{G}_{d} was introduced in
國 J. Dodziuk and W. S. Kendall, Combinatorial Laplacians and isoperimetric inequality, in: K. D. Elworthy (ed.), "From local times to global geometry, control and physics", pp. 68-74, 1986.

$$
\alpha_{\text {comb }}(\mathcal{G}):=\inf _{\substack{X \subset \mathcal{G} \\ X \text { is finite }}} \frac{\#(\{e \in \mathcal{E} \mid e \text { connects } X \text { and } \mathcal{V} \backslash X\})}{\sum_{v \in X} \operatorname{deg}(v)}
$$

It is easy to see that

$$
\frac{\alpha_{\mathrm{comb}}(\mathcal{V})}{\ell^{*}(\mathcal{G})} \leq \alpha_{d}(\mathcal{V}) \leq \frac{\alpha_{\mathrm{comb}}(\mathcal{V})}{\ell_{*}(\mathcal{G})}
$$

Cheeger-type estimates for $\lambda_{0}(\mathbf{H})$

The combinatorial isoperimetric constant of a graph \mathcal{G}_{d} was introduced in
围 J. Dodziuk and W. S. Kendall, Combinatorial Laplacians and isoperimetric inequality, in: K. D. Elworthy (ed.), "From local times to global geometry, control and physics", pp. 68-74, 1986.

$$
\alpha_{\text {comb }}(\mathcal{G}):=\inf _{\substack{X \subset \mathcal{G} \\ X \text { is finite }}} \frac{\#(\{e \in \mathcal{E} \mid e \text { connects } X \text { and } \mathcal{V} \backslash X\})}{\sum_{v \in X} \operatorname{deg}(v)}
$$

It is easy to see that

$$
\frac{\alpha_{\mathrm{comb}}(\mathcal{V})}{\ell^{*}(\mathcal{G})} \leq \alpha_{d}(\mathcal{V}) \leq \frac{\alpha_{\mathrm{comb}}(\mathcal{V})}{\ell_{*}(\mathcal{G})}
$$

and hence

$$
\frac{2 \alpha_{\mathrm{comb}}(\mathcal{V})}{\ell^{*}(\mathcal{G})\left(1+\alpha_{\mathrm{comb}}(\mathcal{V})\right)} \leq \alpha(\mathcal{G}) \leq \frac{2 \alpha_{\mathrm{comb}}(\mathcal{V})}{\ell_{*}(\mathcal{G})}
$$

In particular, this implies $\lambda_{0}(\mathbf{H})>0$ if $\alpha_{\text {comb }}(\mathcal{V})>0$ and $\ell^{*}(\mathcal{G})<\infty$.

Buser-type estimates for $\lambda_{0}(\mathbf{H})$

Bounds from above via isoperimetric constants:

Buser-type estimates for $\lambda_{0}(\mathbf{H})$

Bounds from above via isoperimetric constants:
Theorem 4 (AK-Nicolussi)

$$
\lambda_{0}(\mathbf{H}) \leq \frac{\pi^{2}}{2 \ell_{*}(\mathcal{E})} \alpha(\mathcal{G})
$$

This estimate becomes trivial if $\ell_{*}(\mathcal{E})=\inf |e|=0$.

Buser-type estimates for $\lambda_{0}(\mathbf{H})$

Bounds from above via isoperimetric constants:
Theorem 4 (AK-Nicolussi)

$$
\lambda_{0}(\mathbf{H}) \leq \frac{\pi^{2}}{2 \ell_{*}(\mathcal{E})} \alpha(\mathcal{G})
$$

This estimate becomes trivial if $\ell_{*}(\mathcal{E})=\inf |e|=0$.
Corollary (AK-Nicolussi)
If $\ell^{*}(\mathcal{E})=\sup |e|<\infty$ and $\ell_{*}(\mathcal{E})=\inf |e|>0$, then

$$
\lambda_{0}(\mathbf{H})>0 \quad \Leftrightarrow \quad \alpha(\mathcal{G})>0 \quad \Leftrightarrow \quad \alpha_{\text {comb }}(\mathcal{G})>0
$$

Examples: Trees

A connected graph without cycles is called a tree.

Examples: Trees

A connected graph without cycles is called a tree.

Bethe lattice (Cayley tree or regular tree \mathbb{T}_{3})

Examples: Trees

A connected graph without cycles is called a tree.

Spanning tree for the hyperbolic $(4,5)$-tessellation

Examples: Trees

A connected graph without cycles is called a tree. Define

$$
\begin{aligned}
& \ell_{\text {ess }}^{*}(\mathcal{G}):=\underset{e \in \mathcal{E}}{\lim \sup }|e|, \\
& \mathrm{K}(\mathcal{G}):=\frac{\operatorname{deg}_{*}(\mathcal{V})-2}{\operatorname{deg}_{*}(\mathcal{V})-1}, \quad \mathrm{~K}_{\text {ess }}(\mathcal{G}):=\frac{\operatorname{deg}_{*}^{\text {ess }}(\mathcal{V})-2}{\operatorname{deg}_{*}^{\text {ess }}(\mathcal{V})-1},
\end{aligned}
$$

where $\operatorname{deg}_{*}(\mathcal{V}):=\inf _{v \in \mathcal{V}} \operatorname{deg}(v)$ and $\operatorname{deg}_{*}^{\operatorname{ess}}(\mathcal{V}):=\liminf _{v \in \mathcal{V}} \operatorname{deg}(v)$.

Examples: Trees

A connected graph without cycles is called a tree. Define

$$
\begin{aligned}
\ell_{\text {ess }}^{*}(\mathcal{G}):=\underset{e \in \mathcal{E}}{\lim \sup }|e|, \\
\mathrm{K}(\mathcal{G}):=\frac{\operatorname{deg}_{*}(\mathcal{V})-2}{\operatorname{deg}_{*}(\mathcal{V})-1}, \quad \mathrm{~K}_{\mathrm{ess}}(\mathcal{G}):=\frac{\operatorname{deg}_{*}^{\text {ess }}(\mathcal{V})-2}{\operatorname{deg}_{*}^{\text {ess }}(\mathcal{V})-1},
\end{aligned}
$$

where $\operatorname{deg}_{*}(\mathcal{V}):=\inf _{v \in \mathcal{V}} \operatorname{deg}(v)$ and $\operatorname{deg}_{*}^{\text {ess }}(\mathcal{V}):=\liminf _{v \in \mathcal{V}} \operatorname{deg}(v)$.

Theorem 5 (AK-Nicolussi)

Assume \mathcal{G} is a rooted tree without loose ends. Then

$$
\lambda_{0}(\mathbf{H}) \geq \frac{\mathrm{K}(\mathcal{G})^{2}}{4 \ell^{*}(\mathcal{G})^{2}}, \quad \quad \lambda_{0}^{\text {ess }}(\mathbf{H}) \geq \frac{\mathrm{K}_{\mathrm{ess}}(\mathcal{G})^{2}}{4 \ell_{\text {ess }}^{*}(\mathcal{G})^{2}}
$$

Examples: Trees

A connected graph without cycles is called a tree. Define

$$
\begin{aligned}
& \ell_{\text {ess }}^{*}(\mathcal{G}):=\underset{e \in \mathcal{E}}{\lim \sup }|e|, \\
& \mathrm{K}(\mathcal{G}):=\frac{\operatorname{deg}_{*}(\mathcal{V})-2}{\operatorname{deg}_{*}(\mathcal{V})-1}, \quad \mathrm{~K}_{\text {ess }}(\mathcal{G}):=\frac{\operatorname{deg}_{*}^{\text {ess }}(\mathcal{V})-2}{\operatorname{deg}_{*}^{\text {ess }}(\mathcal{V})-1},
\end{aligned}
$$

where $\operatorname{deg}_{*}(\mathcal{V}):=\inf _{v \in \mathcal{V}} \operatorname{deg}(v)$ and $\operatorname{deg}_{*}^{\text {ess }}(\mathcal{V}):=\liminf _{v \in \mathcal{V}} \operatorname{deg}(v)$.

Theorem 5 (AK-Nicolussi)

Assume \mathcal{G} is a rooted tree without loose ends. Then

$$
\lambda_{0}(\mathbf{H}) \geq \frac{\mathrm{K}(\mathcal{G})^{2}}{4 \ell^{*}(\mathcal{G})^{2}}, \quad \quad \lambda_{0}^{\text {ess }}(\mathbf{H}) \geq \frac{\mathrm{K}_{\mathrm{ess}}(\mathcal{G})^{2}}{4 \ell_{\mathrm{ess}}^{*}(\mathcal{G})^{2}}
$$

In particular, $\lambda_{0}(\mathbf{H})>0$ if and only if $\ell^{*}(\mathcal{G})<\infty$ and the spectrum of \mathbf{H} is purely discrete if and only if $\ell_{\text {ess }}^{*}(\mathcal{G})=0$.

Examples: Trees

A connected graph without cycles is called a tree. Define

$$
\begin{aligned}
\ell_{\text {ess }}^{*}(\mathcal{G}):=\underset{e \in \mathcal{E}}{\lim \sup }|e|, \\
\mathrm{K}(\mathcal{G}):=\frac{\operatorname{deg}_{*}(\mathcal{V})-2}{\operatorname{deg}_{*}(\mathcal{V})-1}, \quad \mathrm{~K}_{\mathrm{ess}}(\mathcal{G}):=\frac{\operatorname{deg}_{*}^{\text {ess }}(\mathcal{V})-2}{\operatorname{deg}_{*}^{\text {ess }}(\mathcal{V})-1},
\end{aligned}
$$

where $\operatorname{deg}_{*}(\mathcal{V}):=\inf _{v \in \mathcal{V}} \operatorname{deg}(v)$ and $\operatorname{deg}_{*}^{\text {ess }}(\mathcal{V}):=\liminf _{v \in \mathcal{V}} \operatorname{deg}(v)$.

Theorem 5 (AK-Nicolussi)

Assume \mathcal{G} is a rooted tree without loose ends. Then

$$
\lambda_{0}(\mathbf{H}) \geq \frac{\mathrm{K}(\mathcal{G})^{2}}{4 \ell^{*}(\mathcal{G})^{2}}, \quad \quad \lambda_{0}^{\mathrm{ess}}(\mathbf{H}) \geq \frac{\mathrm{K}_{\mathrm{ess}}(\mathcal{G})^{2}}{4 \ell_{\mathrm{ess}}^{*}(\mathcal{G})^{2}}
$$

In particular, $\lambda_{0}(\mathbf{H})>0$ if and only if $\ell^{*}(\mathcal{G})<\infty$ and the spectrum of \mathbf{H} is purely discrete if and only if $\ell_{\text {ess }}^{*}(\mathcal{G})=0$.

For radial trees this was proved by M. Solomyak in 2004.

Examples: Antitrees

Figure: Example of an antitree with $s_{n}=n+1$.
S_{n} is the n-th combinatorial sphere, and $s_{n}:=\# S_{n}$ is the number of vertices in S_{n}.

Examples: Antitrees

Set $\ell_{n}:=\sup _{v \in S_{n}, u \in S_{n+1}}\left|e_{u, v}\right|$ for all $n \in \mathbb{Z}_{\geq 0}$, and

$$
\mathrm{K}_{0}:=1, \quad \mathrm{~K}_{n+1}:=1-\frac{s_{n}}{s_{n+2}}, \quad n \in \mathbb{Z}_{\geq 0}
$$

Examples: Antitrees

Set $\ell_{n}:=\sup _{v \in S_{n}, u \in S_{n+1}}\left|e_{u, v}\right|$ for all $n \in \mathbb{Z}_{\geq 0}$, and

$$
\mathrm{K}_{0}:=1, \quad \mathrm{~K}_{n+1}:=1-\frac{s_{n}}{s_{n+2}}, \quad n \in \mathbb{Z}_{\geq 0}
$$

Theorem 6 (AK-Nicolussi)
Let $\mathcal{G}=\mathcal{A}$ be an antitree. Then

$$
\lambda_{0}(\mathbf{H}) \geq \frac{1}{4} \mathrm{~K}(\mathcal{A})^{2}, \quad \quad \lambda_{0}^{\mathrm{ess}}(\mathbf{H}) \geq \frac{1}{4} \mathrm{~K}_{\mathrm{ess}}(\mathcal{A})^{2}
$$

where

$$
\mathrm{K}(\mathcal{A}):=\inf _{n \geq 0} \frac{\mathrm{~K}_{n}}{\ell_{n}} \quad \text { and } \quad \mathrm{K}^{\text {ess }}(\mathcal{A}):=\liminf _{n \rightarrow \infty} \frac{\mathrm{~K}_{n}}{\ell_{n}} .
$$

Examples: Antitrees

Set $\ell_{n}:=\sup _{v \in S_{n}, u \in S_{n+1}}\left|e_{u, v}\right|$ for all $n \in \mathbb{Z}_{\geq 0}$, and

$$
\mathrm{K}_{0}:=1, \quad \mathrm{~K}_{n+1}:=1-\frac{s_{n}}{s_{n+2}}, \quad n \in \mathbb{Z}_{\geq 0}
$$

Theorem 6 (AK-Nicolussi)

Let $\mathcal{G}=\mathcal{A}$ be an antitree. Then

$$
\lambda_{0}(\mathbf{H}) \geq \frac{1}{4} \mathrm{~K}(\mathcal{A})^{2}, \quad \quad \lambda_{0}^{\mathrm{ess}}(\mathbf{H}) \geq \frac{1}{4} \mathrm{~K}_{\mathrm{ess}}(\mathcal{A})^{2} .
$$

where

$$
\mathrm{K}(\mathcal{A}):=\inf _{n \geq 0} \frac{\mathrm{~K}_{n}}{\ell_{n}} \quad \text { and } \quad \mathrm{K}^{\text {ess }}(\mathcal{A}):=\liminf _{n \rightarrow \infty} \frac{\mathrm{~K}_{n}}{\ell_{n}} .
$$

In particular, if $\inf _{n} \mathrm{~K}_{n}>0$, then:
(i) $\lambda_{0}(\mathbf{H})>0$ if and only if $\ell^{*}(\mathcal{G})<\infty$,
(ii) the spectrum of \mathbf{H} is purely discrete if and only if $\ell_{\text {ess }}^{*}(\mathcal{G})=0$.

Examples: An antitree with $\alpha_{\text {comb }}=0$ and $\ell_{*}=0$

Consider a particular example: fix $q \in \mathbb{Z}_{\geq 1}$ and $s \in \mathbb{R}_{\geq 0}$ and set

$$
s_{n}=(n+1)^{q}, \quad\left|e_{u, v}\right|=(n+1)^{-s}, \quad(u, v) \in S_{n} \times S_{n+1}
$$

Denote the corresponding Hamiltonian by $\mathbf{H}_{q, s}$.

Examples: An antitree with $\alpha_{\text {comb }}=0$ and $\ell_{*}=0$

Consider a particular example: fix $q \in \mathbb{Z}_{\geq 1}$ and $s \in \mathbb{R}_{\geq 0}$ and set

$$
s_{n}=(n+1)^{q}, \quad\left|e_{u, v}\right|=(n+1)^{-s}, \quad(u, v) \in S_{n} \times S_{n+1}
$$

Denote the corresponding Hamiltonian by $\mathbf{H}_{q, s}$.
Notice that $\mathrm{K}_{n} \rightarrow 0$ as $n \rightarrow \infty$.

Examples: An antitree with $\alpha_{\text {comb }}=0$ and $\ell_{*}=0$

Consider a particular example: fix $q \in \mathbb{Z}_{\geq 1}$ and $s \in \mathbb{R}_{\geq 0}$ and set

$$
s_{n}=(n+1)^{q}, \quad\left|e_{u, v}\right|=(n+1)^{-s}, \quad(u, v) \in S_{n} \times S_{n+1}
$$

Denote the corresponding Hamiltonian by $\mathbf{H}_{q, s}$.
Notice that $\mathrm{K}_{n} \rightarrow 0$ as $n \rightarrow \infty$.

Theorem 7 (AK-Nicolussi)

Let $\mathcal{G}=\mathcal{A}_{q, s}$. Then:
(i)

$$
\lambda_{0}\left(\mathbf{H}_{q, s}\right)=\lambda_{0}^{\text {ess }}\left(\mathbf{H}_{q, s}\right)=0
$$

if and only if $s \in[0,1)$.

Examples: An antitree with $\alpha_{\text {comb }}=0$ and $\ell_{*}=0$

Consider a particular example: fix $q \in \mathbb{Z}_{\geq 1}$ and $s \in \mathbb{R}_{\geq 0}$ and set

$$
s_{n}=(n+1)^{q}, \quad\left|e_{u, v}\right|=(n+1)^{-s}, \quad(u, v) \in S_{n} \times S_{n+1}
$$

Denote the corresponding Hamiltonian by $\mathbf{H}_{q, s}$.
Notice that $\mathrm{K}_{n} \rightarrow 0$ as $n \rightarrow \infty$.

Theorem 7 (AK-Nicolussi)

Let $\mathcal{G}=\mathcal{A}_{q, s}$. Then:
(i)

$$
\lambda_{0}\left(\mathbf{H}_{q, s}\right)=\lambda_{0}^{\text {ess }}\left(\mathbf{H}_{q, s}\right)=0
$$

if and only if $s \in[0,1)$.
(ii) If $s \geq 1$, then the operator $\mathbf{H}_{q, s}$ is uniformly positive and

$$
\frac{1}{4} \leq \lambda_{0}\left(\mathbf{H}_{q, s}\right) \leq \pi^{2}, \quad \lambda_{0}^{\mathrm{ess}}\left(\mathbf{H}_{q, s}\right)= \begin{cases}q^{2}, & s=1 \\ +\infty, & s>1\end{cases}
$$

Further examples

Further examples

Cayley graphs of finitely generated (infinite) groups.

Further examples

Cayley graphs of finitely generated (infinite) groups.
Locally finite tilings in the plane (in progress...)

Further examples

Cayley graphs of finitely generated (infinite) groups.

Locally finite tilings in the plane (in progress...)

埋
P. Exner, A. Kostenko, M. Malamud, and H. Neidhardt, Spectral theory of infinite quantum graphs, preprint, arXiv:1705.01831 (2017).
(Rostenk and N. Nicolussi, Spectral estimates for infinite quantum graphs, preprint, arXiv:1711.02428 (2017).

Thank you for your attention!

