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Combinatorial and Metric Graphs

Definition

A (combinatorial) graph is the set of vertices V and edges E , Gd = (V, E).

For u, v ∈ V we shall write u ∼ v if there is eu,v ∈ E connecting u and v .
The function deg : V → Z≥1 ∪ {∞} defined by

deg : v 7→ #{u ∈ V| u ∼ v} = #Ev
is called the (combinatorial) degree, where Ev := {eu,v ∈ E| u ∼ v}.

Assumptions

V and E are at most countable

Gd is connected and locally finite (deg(v) <∞ for all v ∈ V)

No loops or multiple edges

Definition

If every edge e ∈ E is assigned with a length |e| ∈ (0,∞), then G = (V, E , | · |) is

called a metric graph
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Quantum Graphs

Given a metric graph G = (V, E , | · |), we can identify each edge e ∈ E
with an interval (0, |e|) and hence introduce the Hilbert space

L2(G) :=
⊕
e∈E

L2(e) =
{
f = {fe}e∈E

∣∣ fe ∈ L2(e),
∑
e∈E
‖fe‖2

L2(e) <∞
}

Next equip G with a Schrödinger-type operator Hmax :=
⊕

e∈E He , where:

He = − d2

dx2
e

, dom(He) = H2(e).

To give H the meaning of a quantum mechanical energy operator, it must
be self-adjoint, that is, we need to add boundary conditions at the vertices.

Kirchhoff conditions: For all v ∈ V{
f is continuous at v ,∑

e∈Ev f
′
e (v) = 0.
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L2(e) =
{
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∣∣ fe ∈ L2(e),
∑
e∈E
‖fe‖2

L2(e) <∞
}

Next equip G with a Schrödinger-type operator Hmax :=
⊕

e∈E He , where:

He = − d2

dx2
e

, dom(He) = H2(e).

To give H the meaning of a quantum mechanical energy operator, it must
be self-adjoint, that is, we need to add boundary conditions at the vertices.

Definition

A quantum graph is a metric graph equipped with the operator H acting
as the negative second order derivative along edges and accompanied by
Kirchhoff vertex conditions
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Infinite Graphs (#V , #E =∞)

Assumptions

Gd is connected and locally finite (deg(v) <∞ for all v ∈ V)

No loops or multiple edges

No inessential edges (deg(v) 6= 2 for all v ∈ V)

`∗(E) := supe∈E |e| <∞

However,

Theorem (M. Solomyak’2003)

If `∗(E) =∞, then
σ̂(H) = R≥0.
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Infinite Graphs (#V , #E =∞)

Assumptions

Gd is connected and locally finite (deg(v) <∞ for all v ∈ V)

No loops or multiple edges

No inessential edges (deg(v) 6= 2 for all v ∈ V)

`∗(E) := supe∈E |e| <∞

PROBLEM #1:

The (minimal) operator H is symmetric, however, in contrast to the case
of finite graphs, it is not necessarily self-adjoint!
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Infinite Graphs: Self-adjointness

For p : E → (0,∞), define a path metric %p on V w.r.t. G by

%p(u, v) := inf
P={v0,...,vn} : u=v0, v=vn

∑
k

p(evk−1,vk ).

The infimum is taken over all paths connecting u and v .

Examples

Natural path metric %0 with p0 : e 7→ |e|.
Star metric %m with pm : eu,v 7→ m(u) + m(v) and m(v) :=

∑
e∈Ev |e|.

Theorem 1 (Exner–AK–Malamud–Neidhardt)

If (V, %m) is complete as a metric space, then H is self-adjoint.
In particular, H is self-adjoint if infv∈V m(v) = infv∈V

∑
e∈Ev |e| > 0.

Corollary ([EKMN])

If (G, %0) is complete as a metric space, then HG is self-adjoint.
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M. Keller and D. Lenz// J. reine Angew. Math. 666, 189–223 (2012).
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Infinite Graphs: Self-adjointness

•

Example 1.
• • • •

• • • • •

• • • • •

In

Example 1, (V, %m) is complete ⇔ L :=
∑

e∈E |e| = 1
2m(V) =∞.

Lemma

If m(V) <∞, then H is non-self-adjoint.

Hence, in Example 1, H is self-adjoint ⇔ (V, %m) is complete!

Open Problem:

Does the converse to Theorem 1 hold true in general?

Aleksey Kostenko Quantum Graphs 9 / 28



Infinite Graphs: Self-adjointness

•

Example 1.
• • • •

• • • • •

• • • • • In

Example 1, (V, %m) is complete ⇔ L :=
∑

e∈E |e| = 1
2m(V) =∞.

Lemma

If m(V) <∞, then H is non-self-adjoint.

Hence, in Example 1, H is self-adjoint ⇔ (V, %m) is complete!

Open Problem:

Does the converse to Theorem 1 hold true in general?

Aleksey Kostenko Quantum Graphs 9 / 28



Infinite Graphs: Self-adjointness

•

Example 1.
• • • •

• • • • •

• • • • • In

Example 1, (V, %m) is complete ⇔ L :=
∑

e∈E |e| = 1
2m(V) =∞.

Lemma

If m(V) <∞, then H is non-self-adjoint.

Hence, in Example 1, H is self-adjoint ⇔ (V, %m) is complete!

Open Problem:

Does the converse to Theorem 1 hold true in general?

Aleksey Kostenko Quantum Graphs 9 / 28



Infinite Graphs: Self-adjointness

•

Example 1.
• • • •

• • • • •

• • • • • In

Example 1, (V, %m) is complete ⇔ L :=
∑

e∈E |e| = 1
2m(V) =∞.

Lemma

If m(V) <∞, then H is non-self-adjoint.

Hence, in Example 1, H is self-adjoint ⇔ (V, %m) is complete!

Open Problem:

Does the converse to Theorem 1 hold true in general?

Aleksey Kostenko Quantum Graphs 9 / 28



Infinite Graphs: Self-adjointness

•

Example 1.
• • • •

• • • • •

• • • • • In

Example 1, (V, %m) is complete ⇔ L :=
∑

e∈E |e| = 1
2m(V) =∞.

Lemma

If m(V) <∞, then H is non-self-adjoint.

Hence, in Example 1, H is self-adjoint ⇔ (V, %m) is complete!

Open Problem:

Does the converse to Theorem 1 hold true in general?

Aleksey Kostenko Quantum Graphs 9 / 28



Infinite Graphs (#V , #E =∞)

Consider the discrete Laplacian h defined on `2(V;m) by

(τ f )(v) :=
1

m(v)

∑
u∼v

f (v)− f (u)

|eu,v |
, v ∈ V.

where m(v) :=
∑

e∈Ev |e|.

τ is the combinatorial Laplacian iff G is equilateral, i.e., |e| ≡ 1 .

(τcombf )(v) :=
1

deg(v)

∑
u∼v

f (v)− f (u), v ∈ V.

R. Courant, K. Friedrichs & H. Lewy // Math. Ann. 100, 32–74 (1928)

Y. Colin de Verdiére, Spectres de Graphes, SMF, Paris, 1998.

G. Davidoff, P. Sarnak and A. Valette, Elementary Number Theory, Group
Theory and Ramanujan Graphs, Cambridge UP, 2003.

W. Woess, Random Walks on Infinite Graphs and Groups, Cambridge Univ.

Press, Cambridge, 2000.

Aleksey Kostenko Quantum Graphs 10 / 28



Infinite Graphs (#V , #E =∞)

Consider the discrete Laplacian h defined on `2(V;m) by

(τ f )(v) :=
1

m(v)

∑
u∼v

f (v)− f (u)

|eu,v |
, v ∈ V.

where m(v) :=
∑

e∈Ev |e|.

τ is the combinatorial Laplacian iff G is equilateral, i.e., |e| ≡ 1 .

(τcombf )(v) :=
1

deg(v)

∑
u∼v

f (v)− f (u), v ∈ V.

R. Courant, K. Friedrichs & H. Lewy // Math. Ann. 100, 32–74 (1928)
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Infinite Graphs (#V , #E =∞)

Consider the discrete Laplacian h defined on `2(V;m) by

(τ f )(v) :=
1

m(v)

∑
u∼v

f (v)− f (u)

|eu,v |
, v ∈ V,

where m(v) :=
∑

e∈Ev |e|.

τ is the combinatorial Laplacian iff G is equilateral, i.e., |e| ≡ 1 .

(τcombf )(v) :=
1

deg(v)

∑
u∼v

f (v)− f (u), v ∈ V.

Theorem (E. B. Davies’1992)

h is bounded iff the weighted degree Deg is bounded on V,

Deg : v 7→ 1

m(v)

∑
u∼v

1

|eu,v |
=

∑
e∈Ev 1/|e|∑
e∈Ev |e|

Note that Deg is bounded on V if `∗(E) := infe∈E |e| > 0.
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Connections between H and h

The kernel L = ker (Hmax) consists of piecewise linear functions on G.
Every f ∈ L can be identified with its values {f (ei ), f (eo)}e∈E on V

and

‖f ‖2
L2(G) =

∑
e∈E
|e| |f (ei )|2 + Re (f (ei )f (eo)∗) + |f (eo)|2

3
.

Now restrict ourselves to the subspace Lcont = L ∩ Cc(G). Clearly,∑
e∈E
|e|(|f (ei )|2 + |f (eo)|2) =

∑
v∈V
|f (v)|2

∑
e∈Ev

|e|︸ ︷︷ ︸
=m(v)

= ‖f ‖2
`2(V;m)

defines an equivalent norm on Lcont . Moreover, for f ∈ Lcont

(Hf , f )L2(G) =
∑
e∈E

∫
e
|f ′(xe)|2dxe =

∑
e∈E

|f (eo)− f (ei )|2

|e|

=
1

2

∑
u,v∈V

|f (v)− f (u)|2

|eu,v |
=
(
hf , f

)
`2(V;m)

.
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∑
e∈E

∫
e
|f ′(xe)|2dxe =

∑
e∈E

|f (eo)− f (ei )|2

|e|

=
1

2

∑
u,v∈V

|f (v)− f (u)|2

|eu,v |
=
(
hf , f

)
`2(V;m)

.
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Connections between H and h
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Connections between H and h

For f ∈ Lcont = ker (Hmax) ∩ Cc(G),

(Hf , f )L2(G) =
(
hf , f

)
`2(V;m)

and
1

6
‖f ‖2

`2(V;m) ≤ ‖f ‖
2
L2(G) ≤

1

2
‖f ‖2

`2(V;m)

Rayleigh’s quotient

λ0(H) := inf σ(H) = inff ∈H1
c (G)

f 6=0

(Hf ,f )L2(G)

‖f ‖2
L2(G)

≤ inff ∈Lcont
f 6=0

(Hf ,f )L2(G)

‖f ‖2
L2(G)

≤ 6λ0(h).

Theorem (von Below’1987,..., Cattaneo’1997,..., Pankrashkin’2012)

Let G be equilateral (|e| = 1 for all e ∈ E) and σD := {(πn)2}n∈N. Then

σj(H) \ σD = {λ /∈ σD | 1− cos(
√
λ) ∈ σj(h)}, j ∈ {p, ess, ac, sc}
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f 6=0

(Hf ,f )L2(G)

‖f ‖2
L2(G)

≤ 6λ0(h).

Corollary

Let G be equilateral. Then λ0(H) = 1− cos(
√
λ0(h)). In particular,

2λ0(h) ≤ λ0(H) ≤ π2

4
λ0(h)
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(Hf , f )L2(G) =
(
hf , f

)
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6
‖f ‖2

`2(V;m) ≤ ‖f ‖
2
L2(G) ≤
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2
‖f ‖2

`2(V;m)

Rayleigh’s quotient

λ0(H) := inf σ(H) = inff ∈H1
c (G)

f 6=0

(Hf ,f )L2(G)

‖f ‖2
L2(G)

≤ inff ∈Lcont
f 6=0

(Hf ,f )L2(G)

‖f ‖2
L2(G)

≤ 6λ0(h).

Theorem 2 (Exner–AK–Malamud–Neidhardt)

λ0(H) > 0 ⇔ λ0(h) > 0

However, there is no nice formula like in the equilateral case!
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Estimates for λ0(H)

A huge literature in the case of finite graphs.

However, most of the
estimates lead to trivial bounds in the case of infinite graphs (i.e., infinite
length, infinitely many vertices etc.)

One can use volume growth estimates, aka Brooks-type bounds, since
tH[·] = (H·, ·)L2 is a regular local Dirichlet form and %0 is intrinsic:

K.-T. Sturm, Analysis on local Dirichlet spaces I. Recurrence,
conservativeness and Lp-Liuoville properties, J. reine Angew. Math.
456, 173–196 (1994).
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Cheeger-type estimates for λ0(H)

Let KG be the set of all finite, connected subgraphs of G.
For G̃ ∈ KG , the boundary of G̃ (w.r.t.G) is

∂GG̃ :=
{
v ∈ Ṽ| degG̃(v) < degG(v)

}
.

For a given finite subgraph G̃ ⊂ G we then set

deg(∂GG̃) :=
∑
v∈∂G̃

degG̃(v).

The Cheeger (or isoperimetric) constant of a metric graph G is defined by

α(G) := inf
G̃∈KG

deg(∂GG̃)

mes(G̃)
,

where mes(G̃) denotes the Lebesgue measure of G̃, mes(G̃) :=
∑

e∈Ẽ |e|.

Theorem 3 (AK–Nicolussi)

λ0(H) ≥ 1
4α(G)2
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Cheeger-type estimates for λ0(H)

The Cheeger inequality for finite graphs was proved in

S. Nicaise, Spectre des réseaux topologiques finis, Bull. Sci. Math., II.
Sér., 111, 401–413 (1987).

However, the isoperimetric constant is defined (for finite graphs) by

α̃(G) := inf
U⊂G

U is open

|∂U|
min(|U|, |Uc |)

.

In fact, for infinite graphs (having infinite total length)

α̃(G) = α(G)
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Cheeger-type estimates for λ0(H)

The discrete isoperimetric constant for h was introduced in

F. Bauer, M. Keller, and R. K. Wojciechowski, Cheeger inequalities for
unbounded graph Laplacians, J. Eur. Math. Soc. 17, 259–271 (2015).

αd(V) := inf
X⊆V

X is finite

#({e ∈ E| e connects X and V\X})∑
v∈X m(v)

and

λ0(h) ≥ 1

2
αd(V)2 .

Lemma (AK–Nicolussi)

1

αd(V)
≤ 2

α(G)
≤ 1

αd(V)
+ `∗(G)

In particular, this implies λ0(H) > 0 if αd(V) > 0.
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Cheeger-type estimates for λ0(H)

The combinatorial isoperimetric constant of a graph Gd was introduced in

J. Dodziuk and W. S. Kendall, Combinatorial Laplacians and isoperimetric
inequality, in: K. D. Elworthy (ed.), “From local times to global geometry,
control and physics”, pp. 68–74, 1986.

αcomb(G) := inf
X⊆G

X is finite

#({e ∈ E| e connects X and V\X})∑
v∈X deg(v)

.

It is easy to see that

αcomb(V)

`∗(G)
≤ αd(V) ≤ αcomb(V)

`∗(G)
.

and hence
2αcomb(V)

`∗(G)(1 + αcomb(V))
≤ α(G) ≤ 2αcomb(V)

`∗(G)
.

In particular, this implies λ0(H) > 0 if αcomb(V) > 0 and `∗(G) <∞.
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Buser-type estimates for λ0(H)

Bounds from above via isoperimetric constants:

Theorem 4 (AK–Nicolussi)

λ0(H) ≤ π2

2 `∗(E)
α(G)

This estimate becomes trivial if `∗(E) = inf |e| = 0.

Corollary (AK–Nicolussi)

If `∗(E) = sup |e| <∞ and `∗(E) = inf |e| > 0, then

λ0(H) > 0 ⇔ α(G) > 0 ⇔ αcomb(G) > 0

Aleksey Kostenko Quantum Graphs 21 / 28



Buser-type estimates for λ0(H)

Bounds from above via isoperimetric constants:

Theorem 4 (AK–Nicolussi)

λ0(H) ≤ π2

2 `∗(E)
α(G)

This estimate becomes trivial if `∗(E) = inf |e| = 0.

Corollary (AK–Nicolussi)

If `∗(E) = sup |e| <∞ and `∗(E) = inf |e| > 0, then

λ0(H) > 0 ⇔ α(G) > 0 ⇔ αcomb(G) > 0

Aleksey Kostenko Quantum Graphs 21 / 28



Buser-type estimates for λ0(H)

Bounds from above via isoperimetric constants:

Theorem 4 (AK–Nicolussi)

λ0(H) ≤ π2

2 `∗(E)
α(G)

This estimate becomes trivial if `∗(E) = inf |e| = 0.

Corollary (AK–Nicolussi)

If `∗(E) = sup |e| <∞ and `∗(E) = inf |e| > 0, then

λ0(H) > 0 ⇔ α(G) > 0 ⇔ αcomb(G) > 0

Aleksey Kostenko Quantum Graphs 21 / 28



Examples: Trees

A connected graph without cycles is called a tree.

Bethe lattice (Cayley tree or regular tree T3)
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Examples: Trees

A connected graph without cycles is called a tree.

 ���

Spanning tree for the hyperbolic (4,5)-tessellation
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Examples: Trees

A connected graph without cycles is called a tree. Define

`∗ess(G) := lim sup
e∈E

|e|,

K(G) :=
deg∗(V)− 2

deg∗(V)− 1
, Kess(G) :=

degess
∗ (V)− 2

degess
∗ (V)− 1

,

where deg∗(V) := infv∈V deg(v) and degess
∗ (V) := lim infv∈V deg(v).

Theorem 5 (AK–Nicolussi)

Assume G is a rooted tree without loose ends. Then

λ0(H) ≥ K(G)2

4 `∗(G)2
, λess

0 (H) ≥ Kess(G)2

4 `∗ess(G)2
.

In particular, λ0(H) > 0 if and only if `∗(G) <∞ and
the spectrum of H is purely discrete if and only if `∗ess(G) = 0.

For radial trees this was proved by M. Solomyak in 2004.
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Examples: Antitrees

S0

S1

S2

S3

Figure: Example of an antitree with sn = n + 1.

Sn is the n-th combinatorial sphere, and
sn := #Sn is the number of vertices in Sn.
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Examples: Antitrees

Set `n := supv∈Sn, u∈Sn+1
|eu,v | for all n ∈ Z≥0, and

K0 := 1, Kn+1 := 1− sn
sn+2

, n ∈ Z≥0.

Theorem 6 (AK–Nicolussi)

Let G = A be an antitree. Then

λ0(H) ≥ 1

4
K(A)2, λess

0 (H) ≥ 1

4
Kess(A)2.

where
K(A) := infn≥0

Kn
`n

and Kess(A) := lim infn→∞
Kn
`n

.

In particular, if infn Kn > 0, then:

(i) λ0(H) > 0 if and only if `∗(G) <∞,

(ii) the spectrum of H is purely discrete if and only if `∗ess(G) = 0.
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Examples: An antitree with αcomb = 0 and `∗ = 0

Consider a particular example: fix q ∈ Z≥1 and s ∈ R≥0 and set

sn = (n + 1)q, |eu,v | = (n + 1)−s , (u, v) ∈ Sn × Sn+1.

Denote the corresponding Hamiltonian by Hq,s .

Notice that Kn → 0 as n→∞.

Theorem 7 (AK–Nicolussi)

Let G = Aq,s . Then:

(i)
λ0(Hq,s) = λess

0 (Hq,s) = 0

if and only if s ∈ [0, 1).

(ii) If s ≥ 1, then the operator Hq,s is uniformly positive and

1

4
≤ λ0(Hq,s) ≤ π2, λess

0 (Hq,s) =

{
q2, s = 1,

+∞, s > 1.
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Further examples

Cayley graphs of finitely generated (infinite) groups.

Locally finite tilings in the plane (in progress...)

...

P. Exner, A. Kostenko, M. Malamud, and H. Neidhardt, Spectral
theory of infinite quantum graphs, preprint, arXiv:1705.01831 (2017).

A. Kostenko and N. Nicolussi, Spectral estimates for infinite quantum
graphs, preprint, arXiv:1711.02428 (2017).

Thank you for your attention!
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