One-Variable *q*-Analogues for Abhyankar's Inversion Formula

CHRISTIAN KRATTENTHALER

Institut für Mathematik, Universität Wien, Strudlhofgasse 4, A-1090 Vienna, Austria

Submitted by G.-C. Rota

Received January 17, 1988

Two types of q-extensions of Abhyankar's inversion formula for formal power series in a single variable are obtained. One type represents a new contribution to the Garsia-Gessel q-Lagrange inversion theory, the second to that of Hofbauer and the author. O 1989 Academic Press, Inc.

1. INTRODUCTION

Let f(z) be a formal power series (fps) over a field K_0 with characteristic zero subject to f(0) = 0 and f'(0) = 1. Then there exists the compositional inverse fps F(z) meaning $f(F(z)) = \sum_{i=1}^{\infty} f_i F^i(z) = F(f(z)) = z$. Given a formal Laurent series (fLs) g(z) over K_0 of the form

$$g(z) = \sum_{k \ge d} g_k z^k, \tag{1.1}$$

for a $d \in \mathbb{Z}$ (integers), and given f(z) as above, the formula of Abhyankar [1], rediscovered independently by Garsia and Joni [5, 6, 12] and Viskov [15], in the one variable case gives an expression in terms of f(z) and g(z) for the substitution of F(z) in g(z), namely

$$g(F(z)) = \sum_{k=0}^{\infty} \frac{D^k}{k!} (g(z) f'(z) G^k(z)), \qquad (1.2)$$

where G(z) = z - f(z) and D denotes the differential operator acting on z. (Note that, since the order of G(z) is at least two, the right-hand side of (1.2) is summable in the formal sense. The order of an fLs is the smallest integer d for which the coefficient of z^d is different from zero.) It turns out that Abhyankar's formula is equivalent with the Lagrange-Good formula [9; 12; 7, Part II], which in the one-variable case can be rewritten as [4, Identity I.5(a)]

$$\langle z^n \rangle g(F(z)) = \langle z^0 \rangle g(z) \frac{zf'(z)}{f^{n+1}(z)}, \qquad n \in \mathbb{Z},$$
 (1.3)

where $\langle z^n \rangle a(z)$ means the coefficient of z^n in a(z).

The crucial point for finding q-analogues of (1.2) is the existence of q-analogues of (1.3). Up to now three different types of q-analogues of the Lagrange formula have been discovered (see [11, 14] and the references cited there), two of which have general character. The first is due to Garsia [4]. The q-analogue of (1.2) coming out of his formula will be derived in Section 3. In Section 4 the q-Lagrange formula of Hofbauer [10] further developed by the author [13] will be applied to deduce a q-analogue of a formula similar to (1.2):

$$g(F(z)) = z \sum_{k=0}^{\infty} \frac{D^k}{k!} \left(g(z) \frac{f'(z)}{f(z)} G^k(z) \right).$$
(1.4)

Obviously (1.4) comes out of (1.2) by substituting g(z)/f(z) for g(z) in (1.2). Moreover, (1.4) and (1.2) are equivalent. In [5] Garsia and Joni give an alternative form of (1.2),

$$g(F(z)) = g(z) + \sum_{k=1}^{\infty} \frac{D^{k-1}}{k!} (g'(z) G^k(z)), \qquad (1.5)$$

which corresponds to a second form of the Lagrange formula in one variable [4, Identity I.5(b)]

$$\langle z^n \rangle g(F(z)) = \frac{1}{n} \langle z^{-1} \rangle \frac{g'(z)}{f^n(z)}, \qquad n \neq 0.$$
 (1.6)

In Garsia's q-Lagrange theory an analogue of (1.6) could not be found, but there is one for Hofbauer's. From this we are able to derive a q-analogue of (1.5), which also will be given in Section 4.

2. NOTATION AND PRELIMINARIES

We use the familiar standard q-notation $[\alpha]_q = (q^{\alpha} - 1)/(q - 1),$ $[n]_q! = [n]_q [n-1]_q \cdots [1]_q, [0]_q! = 1, (x;q)_{\infty} = \prod_{i=0}^{\infty} (1-q^i x) \text{ and }$

$$(x;q)_{\alpha} = (x;q)_{\infty} / (xq^{\alpha};q)_{\infty} = \sum_{k=0}^{\infty} (-1)^{k} q^{\binom{k}{2}} \begin{bmatrix} \alpha \\ k \end{bmatrix}_{q} x^{k}, \qquad (2.1)$$

where

$$\begin{bmatrix} \alpha \\ k \end{bmatrix}_q = [\alpha]_q [\alpha - 1]_q \cdots [\alpha - k + 1]_q / [k]_q!$$

The q-exponential function is $e_q(z) = \sum_{k=0}^{\infty} z^k / [k]_q!$. Alternative expressions are $e_q(z) \approx \prod_{k=0}^{\infty} (1 + (q-1)q^k z)^{-1}$ and $e_{1/q}(z) = \prod_{k=0}^{\infty} (1 + (1-q)q^k z)$. Finally we introduce the q-difference operator by

$$D_{q}f(z) = (f(qz) - f(z))/(q-1)z.$$
(2.2)

In the q-analogues of the Lagrange formula the powers $f^k(z)$ are replaced by q-powers, say $f_k(z)$, having the form $f_k(z) = \sum_{n \ge k} f_{nk} z^n$, where $k \in \mathbb{Z}$. In the limiting case $q \to 1$ the fLs $f_k(z)$ become powers of a single fps. Substitution of the sequence $f = (f_k(z))_{k \in \mathbb{Z}}$ of fLs into an fLs of the form (1.1) is defined by

$$g(\not e)(z) = \sum_{k \ge d} g_k f_k(z).$$

The inverse sequence $\mathscr{F} = (F_i(z))_{i \in \mathbb{Z}}$ of $\not = is$ the unique solution of the equations

$$F_l(f)(z) = z^l \quad \text{for} \quad l \in \mathbb{Z}.$$

It is easy to show [14, Section 3] that f is the inverse of \mathcal{F} , too, thus establishing

$$f_k(\mathscr{F}) = z^k$$
 for $k \in \mathbb{Z}$.

Now, following Henrici [9], let us recall the proof of (1.2) starting from (1.3). Let f(z) = z - G(z); then by (1.3)

$$\langle z^n \rangle g(F(z)) = \langle z^0 \rangle g(z) \frac{zf'(z)}{f^{n+1}(z)}$$

$$= \langle z^0 \rangle g(z) f'(z) \frac{1}{z^n(1 - G(z)/z)^{n+1}}$$

$$= \langle z^0 \rangle g(z) f'(z) z^{-n} \sum_{m=0}^{\infty} {\binom{n+m}{m}} (G(z)/z)^m$$

$$= \sum_{m=0}^{\infty} \langle z^{n+m} \rangle {\binom{n+m}{m}} g(z) f'(z) G(z)^m$$

$$= \langle z^n \rangle \sum_{m=0}^{\infty} \frac{D^m}{m!} (g(z) f'(z) G(z)^m).$$

As this is valid for all $n \in \mathbb{Z}$, (1.2) follows. A proof of (1.5) starting from (1.6) proceeds quite analogously.

Considering this calculation we recognize that for transferring this proof to the q-case it is necessary to find a q-analogue of

$$z^{n+1}f^{-n-1}(z) = \sum_{m=0}^{\infty} \binom{n+m}{m} (G(z)/z)^m$$

for all $n \in \mathbb{Z}$, or, what is the same, for

$$z^{-n}f^{n}(z) = \sum_{m=0}^{\infty} (-1)^{m} {n \choose m} (G(z)/z)^{m}$$
(2.3)

for all $n \in \mathbb{Z}$. Indeed after having found the "right" q-analogues of $(G(z)/z)^m$ this can easily be done.

3. The q-Analogue Using Garsia's q-Powers

Here the powers $h^k(z)$ are replaced by the q-powers

$$h^{[k,q]}(z) = \begin{cases} h(z) \ h(qz) \cdots h(q^{k-1}z), & k > 0\\ 1, & k = 0\\ 1/h(z/q) \ h(z/q^2) \cdots h(z/q^{-k}), & k < 0, \end{cases}$$

where h(z) is an arbitrary fps. (For properties of these q-powers see [14, Section 6].) With the help of Garsia's [4] starring operator this could be written in a closed expression,

$$h^{[k,q]}(z) = h^*(z)/h^*(q^k z) \quad \text{for} \quad k \in \mathbb{Z}.$$

Let f(z) be an fps with f(0) = 0 and f'(0) = 1. It is the surprising result of Garsia [4, Theorem 1.1] that the inverse sequence of $f = (f^{\lfloor k,q \rfloor}(z))_{k \in \mathbb{Z}}$ also can be written in terms of q-powers, namely $\mathscr{F} = (F^{\lfloor l,1/q \rfloor}(z))_{l \in \mathbb{Z}}$, where the so called "right inverse" of f(z), F(z), satisfies F(f)(z) = z (vice versa, f(z) is called the "left inverse" of F(z)). The q-Lagrange formula [4, Theorem 1.2] reads

$$\langle z^n \rangle g(\mathscr{F})(z) = \langle z^0 \rangle g(z) \frac{q^n z f^0(q^n z)}{f^{[n+1,q]}(z)},$$
(3.1)

where the fps $f^{0}(z)$ is the q-analogue for f'(z) and is uniquely determined by

$$\langle z^{-1} \rangle \frac{f^0(q^n z)}{f^{[n+1,q]}(z)} = \delta_{n0}.$$
 (3.2)

 $(\delta_{kl}$ is the Kronecker delta.)

The next lemma essentially contains the wanted q-analogue of (2.3).

LEMMA 1. If h(z) is an fps with h(0) = 1 then for $k \in \mathbb{N}_0$ (non-negative integers) the fps

$$H^{(k,q)}(z) = \sum_{j=0}^{k} (-1)^{j} q^{\binom{k-j}{2}} {k \brack j}_{q} h^{[j,q]}(z), \qquad (3.3)$$

a q-analogue of $(1-h(z))^k$, is of order k. Moreover, there holds

$$h^{[n,q]}(z) = \sum_{k=0}^{\infty} (-1)^k {n \brack k}_q H^{(k,q)}(z)$$
(3.4)

for all $n \in \mathbb{Z}$.

Proof. First observe that, by using

$$\begin{bmatrix} k\\ j \end{bmatrix}_q = q^j \begin{bmatrix} k-1\\ j \end{bmatrix}_q + \begin{bmatrix} k-1\\ j-1 \end{bmatrix}_q$$
(3.5)

[2, p. 89], we get the recurrence relation

$$H^{(k,q)}(z) = q^{k-1} H^{(k-1,q)}(z) - H^{(k-1,q)}(qz) h(z),$$
(3.6)

for $k \ge 1$. From this identity, by an inductive argument, it can be derived that the order of $H^{(k,q)}(z)$ is k. Therefore the infinite formal sum

$$E^{[n,q]}(z) = \sum_{k=0}^{\infty} (-1)^k \begin{bmatrix} n \\ k \end{bmatrix}_q H^{(k,q)}(z)$$

is well defined. Rewriting (3.6), with k replaced by k + 1, as

$$H^{(k,q)}(qz) h(z) = q^k H^{(k,q)}(z) - H^{(k+1,q)}(z),$$

multiplying both sides of this identity by $(-1)^k \begin{bmatrix} n \\ k \end{bmatrix}_q$, and summing up over all $k \in \mathbb{N}_0$, leads to

$$E^{[n,q]}(qz) h(z) = \sum_{k=0}^{\infty} (-1)^{k} q^{k} \begin{bmatrix} n \\ k \end{bmatrix}_{q} H^{(k,q)}(z)$$
$$- \sum_{k=0}^{\infty} (-1)^{k} \begin{bmatrix} n \\ k \end{bmatrix} H^{(k+1,q)}(z)$$
$$= \sum_{k=0}^{\infty} (-1)^{k} \left(q^{k} \begin{bmatrix} n \\ k \end{bmatrix}_{q} + \begin{bmatrix} n \\ k-1 \end{bmatrix}_{q} \right) H^{(k,q)}(z)$$
$$= E^{[n+1,q]}(z),$$

by (3.5). As from the definition $E^{[0,q]} = h^{[0,q]}(z)$, by induction, $E^{[n,q]}(z) = h^{[n,q]}(z)$ for all $n \in \mathbb{Z}$ is proved, which is (3.4).

Before formulating the q-analogue of Abhyankar's formula it is convenient to adopt two further notations of Garsia's paper [4]. The unroofing operator \vee , acting on fLs of the form (1.1), is defined by

$$(g(z))^{\vee} = \sum_{k \ge d} g_k q^{\binom{k}{2}} z^k.$$
(3.7)

The q-substitution of F(z) into g(z) is denoted by

$$g(\overline{F})(z) = \sum_{k \ge d} g_k F^{[k,q]}(z).$$
(3.8)

THEOREM 2. For a given fps f(z) = zh(z) with h(0) = 1 let F(z) be the right inverse of f(z), $f^{0}(z)$ the q-analogue of f'(z) defined by (3.2). If

$$G^{(k,q)}(z) = q^{-2k} z^{k} H^{(k,q)}(z)$$

= $q^{-2k} \sum_{j=0}^{\infty} (-1)^{j} q^{\binom{k}{2} - j(k-1)} \begin{bmatrix} k \\ j \end{bmatrix}_{q} z^{k-j} f^{[j,q]}(z),$ (3.9)

 $(H^{(k,q)}(z)$ is given by (3.3)), then for g(z), an fLs of the form (1.1), holds

$$g(\bar{F})(z) = \left(\sum_{k=0}^{\infty} \frac{D_{1/q}^{k}}{[k]_{q}!} \left(g(z) f^{0}(z) G^{(k,q)}(qz)\right)\right)^{\vee}.$$
 (3.10)

Proof. Starting point is (3.1) with q replaced by 1/q. If $_1f(z)$ denotes the right inverse of F(z) then (3.1) reads

$$\langle z^n \rangle g(\bar{F})(z) = \langle z^0 \rangle g(z) \frac{q^{-n} z_{-1} f^0(q^{-n} z)}{\int_{1}^{[n+1]/q} (z)}.$$
 (3.11)

The connection between the right and left inverse of F(z) was discovered in [14, identity (6.19)]:

$$_{1}f(z) = q \frac{\tilde{f}_{0}(z/q)}{\tilde{f}_{0}(z)} f(z/q),$$
(3.12)

where

$$\tilde{f}_0(z) = \frac{zf^0(z)}{f(z)}$$
(3.13)

[14, identity (6.8)]. Moreover, it is proved in [14, Remark to identity (6.15)] that $\tilde{f}_0(z)$ is the same for the left and right inverse of F(z), i.e., $\tilde{f}_0(z) = {}_1 \tilde{f}_0(z)$, therefore

~

$$\tilde{f}_0(z) = \frac{z_{\rm L} f^0(z)}{{}_{\rm L} f(z)}.$$
(3.14)

Use of (3.12) turns (3.11) into

$$\langle z^n \rangle g(\bar{F})(z) = \langle z^0 \rangle g(z) \frac{q^{-n_z} f^0(q^{-n_z}) f_0(z)}{q^n f_0(q^{-n_z}) f^{[n,1/q]}(z/q) f^{(n-n_z)}}.$$

By (3.13) and (3.14) this is

$$\langle z^n \rangle g(\overline{F})(z) = \langle z^0 \rangle g(z)q^{-n} \frac{zf^0(z)}{f^{[n+1,1/q]}(z)},$$

and, after having replaced f(z) by zh(z),

$$\langle z^n \rangle g(\overline{F})(z) = q^{\binom{n}{2}} \langle z^0 \rangle g(z) f^0(z) z^{-n} h^{[-n-1,q]}(qz).$$

Application of (3.4) gives

$$\langle z^{n} \rangle \ g(\overline{F}(z)) = q^{\binom{n}{2}} \langle z^{0} \rangle \ g(z) \ f^{0}(z) z^{-n} \sum_{k=0}^{\infty} (-1)^{k} \left[\frac{-n-1}{k} \right]_{q} H^{(k,q)}(qz)$$

$$= q^{\binom{n}{2}} \sum_{k=0}^{\infty} \langle z^{n+k} \rangle q^{-k} \frac{[n+k]_{1/q} \cdots [n+1]_{1/q}}{[k]_{q}!}$$

$$\times g(z) \ f^{0}(z) z^{k} H^{(k,q)}(qz)$$

$$= q^{\binom{n}{2}} \langle z^{n} \rangle \sum_{k=0}^{\infty} \frac{D^{k}_{1/q}}{[k]_{q}!} (g(z) \ f^{0}(z) \ G^{(k,q)}(qz)).$$

To establish (3.10), both sides of the last equation have to be multiplied by z^n and then summed up over all $n \in \mathbb{Z}$.

EXAMPLE 3. The standard example for Garsia's q-theory is the case f(z) = z/(1-z), thus h(z) = 1/(1-z). From (3.6), by induction, we gain

$$H^{(k,q)}(z) = (-1)^k q^{k^2 - k} \frac{z^k}{(z;q)_k},$$
(3.15)

so

$$G^{(k,q)}(qz) = (-1)^k q^{k^2 - k} \frac{z^{2k}}{(qz;q)_k}.$$
(3.16)

Since $f^{0}(z) = 1/(1-z)(1-z/q)$, which can easily be checked in (3.2), by (3.10) we obtain the expansion

$$g(\overline{F})(z) = \left(\sum_{k=0}^{\infty} (-1)^k q^{\binom{k}{2}} \frac{D_{1/q}^k}{[k]_{1/q}!} \left(g(z) \frac{z^{2k}}{(z/q;q)_{k+2}}\right)\right)^{\checkmark}.$$
 (3.17)

By the Lagrange formula (3.1) for g(z) = z, it turns out that F(z) = z/(1 + z/q), therefore (3.17) for g(z) = z' leads to

$$\frac{q^{\binom{l}{2}}z^{l}}{(-z/q;q)_{l}} = \left(\sum_{k=0}^{\infty} (-1)^{k} q^{\binom{k}{2}} \frac{D_{1/q}^{k}}{[k]_{1/q}!} \left(\frac{z^{2k+l}}{(z/q;q)_{k+2}}\right)\right)^{\vee}.$$
 (3.18)

Equating coefficients of z^n and some manipulation furnish the q-binomial identity

$$\begin{bmatrix} -l \\ n-l \end{bmatrix}_{q} = \sum_{n=0}^{n-l} q^{k(k+1)} \begin{bmatrix} -n-1 \\ k \end{bmatrix}_{q} \begin{bmatrix} n-l+1 \\ n-k-l \end{bmatrix}_{q},$$
(3.19)

which is a special case of q-Vandermonde convolution [2, identity (18)].

Another choice is

$$g(z) = (z/q; q)_{-l} = 1/(1 - z/q^2)(1 - z/q^3) \cdots (1 - z/q^{l+1}).$$

Again for $g(\overline{F})(z)$ a closed expression can be obtained. The equation $f_l(\underline{F})(z) = z^l$ in our example is

$$q^{\binom{l}{2}} \sum_{i=0}^{\infty} \left[\frac{l+i-1}{i} \right]_{q} q^{-\binom{i+l}{2}} z^{i+l} (-z;q)_{-i+l} = z^{l}.$$
(3.20)

After division of z', substitution of q'z, and multiplication of $(-z; q)_i$ on both sides of this identity, we obtain

$$\sum_{i=0}^{\infty} \left[\frac{l+i-1}{i} \right]_{q} q^{-\binom{i}{2}} z^{i} (-z;q)_{-i} = (-z;q)_{l}.$$
(3.21)

Changing q into 1/q and replacing z by z/q^2 turns (3.21) into

$$\sum_{i=0}^{\infty} q^{-i(l+1)} \begin{bmatrix} l+i-1\\i \end{bmatrix}_{q} q^{\binom{i}{2}} z^{i} / (-z/q;q)_{i}$$
$$= (-z/q^{l+1};q)_{l},$$

which is equivalent with

$$g(\vec{F})(z) = (-z/q^{l+1}; q)_l.$$
(3.22)

Therefore, for $g(z) = (z/q; q)_{-l}$, (3.17) yields

$$(-z/q^{l+1};q)_{l} = \left(\sum_{k=0}^{\infty} (-1)^{k} q^{\binom{k}{2}} \frac{D_{1/q}^{k}}{[k]_{1/q}!} \left(\frac{z^{2k}}{(z/q^{l+1};q)_{k+l+2}}\right)\right)^{\vee}.$$
 (3.23)

Next we consider the uniform example for g(z) containing the preceding two choices of g(z) as special cases. Set $g(z) = z'(z/q;q)_m$; then the generalization of (3.22) is

$$g(\vec{F})(z) = q^{\binom{l}{2}} z^{l} / (-z/q; q)_{l+m}, \qquad (3.24)$$

valid for all $l, m \in \mathbb{Z}$. Indeed, to establish (3.24), quite similar considerations like that which led from (3.20) to (3.22), have to be done. Hence, by combining (3.17) and (3.24), we get the expansion

$$\frac{q^{\binom{l}{2}}z^{l}}{(-z/q;q)_{l+m}} = \left(\sum_{k=0}^{\infty} (-1)^{k} q^{\binom{k}{2}} \frac{D_{1/q}^{k}}{[k]_{1/q}!} \left(\frac{z^{2k+l}}{(q^{m-1}z;q)_{k-m+2}}\right)\right)^{\vee}.$$
 (3.25)

This time, equating coefficients of z^n on both sides of (3.25) leads to

$$\begin{bmatrix} -l-m\\ n-l \end{bmatrix}_{q} = \sum_{k=0}^{l} q^{k(k-m+1)} \begin{bmatrix} -n-1\\ k \end{bmatrix}_{q} \begin{bmatrix} n-l-m+1\\ n-k-l \end{bmatrix}_{q}, \quad (3.26)$$

which by change of variables is seen to be equivalent with the q-Vandermonde convolution formula [2, identity (18)].

4. The q-Analogue Involving Hofbauer's q-Powers

The essential definition is

DEFINITION 4. The fps $\varphi_{\alpha}(z), \alpha \in \mathbb{R}$ (real numbers), are called q-powers for a fixed fps $\varphi(z)$, if $\varphi_{\alpha}(0) = 1$ for all α and

$$D_{q}\varphi_{\alpha}(z) = [\alpha]_{q}\varphi(z)\varphi_{\alpha}(z).$$
(4.1)

By (4.1) $\varphi_{\alpha}(z)$ is uniquely determined for all $\alpha \in \mathbb{R}$. Obviously in the case q = 1, where D_q becomes the ordinary derivative, the fps $\varphi_{\alpha}(z)$ are powers of an fps $\overline{\varphi}(z)$ with $\varphi(z) = \overline{\varphi}'(z)/\overline{\varphi}(z)$.

This time the q-analogue of (2.3) reads

LEMMA 5. If $\varphi_x(z)$ are q-powers for $\varphi(z)$ then for all $k \in \mathbb{N}_0$ the fps

$$H_{k}^{(q)}(z) = \sum_{j=0}^{k} (-1)^{j} q^{-\binom{k-j}{2}} \begin{bmatrix} k \\ j \end{bmatrix}_{1/q} \varphi_{-j}(z)$$
(4.2)

(the q-analogue of $(1 - h(z))^k$, where h(z) corresponds to $1/\bar{\varphi}(z)$) has order k. Moreover,

$$\varphi_{-n}(z) = \sum_{k=0}^{\infty} (-1)^k {n \brack k}_{1/q} H_k^{(q)}(z)$$
(4.3)

for all $n \in \mathbb{Z}$ (even for all $n \in \mathbb{R}$).

Proof. By the defining relation (4.1), we have

$$D_{q}H_{k}^{(q)}(z) = \sum_{j=0}^{k} (-1)^{j} q^{-\binom{k-j}{2}} {k \brack j}_{1/q} [-j]_{q} \varphi(z) \varphi_{-j}(z)$$
$$= [-k]_{q} \varphi(z) \sum_{j=1}^{k} (-1)^{j} q^{-\binom{k-j}{2}} {k-1 \brack j-1}_{1/q} \varphi_{-j}(z),$$

and after remembering (3.5)

$$D_{q}H_{k}^{(q)}(z) = [-k]_{q} \varphi(z) \sum_{j=0}^{k} (-1)^{j} q^{-\binom{k-j}{2}} \\ \times \left(\begin{bmatrix} k \\ j \end{bmatrix}_{1/q} - q^{-j} \begin{bmatrix} k-1 \\ j \end{bmatrix}_{1/q} \right) \varphi_{-j}(z) \\ = [-k]_{q} \varphi(z) (H_{k}^{(q)}(z) - q^{-k+1} H_{k-1}^{(q)}(z)).$$
(4.4)

First the constant term of $H_k^{(q)}(z)$ has to be evaluated:

$$H_{k}^{(q)}(0) = \sum_{j=0}^{k} (-1)^{j} q^{-\binom{k-j}{2}} \begin{bmatrix} k \\ j \end{bmatrix}_{1/q} = (-1)^{k} (1; 1/q)_{k} = \delta_{k0}.$$

Again, reasoning inductively, $H_k^{(q)}(z)$ is seen to be of order k. Therefore the infinite formal sum

$$F_n^{(q)}(z) = \sum_{k=0}^{\infty} (-1)^k {n \brack k}_{1/q} H_k^{(q)}(z)$$

546

is well defined. After having multiplied both sides of (4.4) by $(-1)^k [_k^n]_{1/q}$ and after summation with respect to $k \in \mathbb{N}_0$, we get by renewed use of (3.5)

$$D_{q}F_{n}^{(q)}(z) = [-n]_{q} \varphi(z) \sum_{k=0}^{\infty} (-1)^{k} \left(\begin{bmatrix} n-1\\k-1 \end{bmatrix}_{1/q} + q^{-k} \begin{bmatrix} n-1\\k \end{bmatrix}_{1/q} \right) H_{k}^{(q)}(z)$$
$$= [-n]_{q} \varphi(z) F_{n}^{(q)}(z).$$

Comparison with (4.1) completes the proof of (4.3) because of the uniqueness of the q-powers $\varphi_{\alpha}(z)$.

Perhaps it is interesting to note that there is a result which in a way is dual to Lemma 5. We will state it without proof, because it runs in the same manner as that of Lemma 5.

PROPOSITION 6. With the assumptions of Lemma 5 the fps

$$\bar{H}_{k}^{(q)}(z) = \sum_{j=0}^{k} (-1)^{j} q^{\binom{k-j}{2}} \begin{bmatrix} k \\ j \end{bmatrix}_{q} \varphi_{j}(z)$$
(4.5)

are of order k. Moreover, there holds

$$\varphi_n(z) = \sum_{k=0}^{\infty} (-1)^k {n \brack k}_q \bar{H}_k^{(q)}(z).$$
 (4.6)

The reason why by Lemma 5 we do get a q-analogue of Abhyankar's formula, but we do not by trying with Proposition 6 is that there exists a q-Lagrange formula for the sequence $(z^k/\varphi_k(z))_{k \in \mathbb{Z}}$, but there is none for the sequence $(z^k/\varphi_{-k}(z))_{k \in \mathbb{Z}}$.

Let $f = (f_k(z))_{k \in \mathbb{Z}}$ be the sequence of fLs defined by

$$f_k(z) = z^k / \varphi_k(z). \tag{4.7}$$

 $\mathscr{F} = (F_l(z))_{l \in \mathbb{Z}}$ denotes the inverse sequence of \not . Then the Lagrange formula [13, Theorem 1 (A) for $\lambda = \mu = 0$, $\Phi(z) = 0$] can be rewritten as

$$\langle z^n \rangle g(\mathscr{F})(z) = \langle z^0 \rangle g(z)(1 - (z/q) \varphi(z/q)) z^{-n} \varphi_n(z/q).$$
 (4.8)

The q-analogue of (1.4) is the contents of

THEOREM 7. For a given fps $\varphi(z)$ let the sequence $f = (f_k(z))_{k \in \mathbb{Z}}$ be defined by (4.7), where the q-powers $\varphi_x(z)$ are given by (4.1). If

$$G_{k}^{(q)}(z) = q^{2k} z^{k} H_{k}^{(q)}(z)$$

= $q^{2k} z^{k} \sum_{j=0}^{k} (-1)^{j} q^{-\binom{k-j}{2}} \begin{bmatrix} k \\ j \end{bmatrix}_{1/q} \varphi_{-j}(z),$ (4.9)

then for g(z), an fLs of the form (1.1), holds

$$g(\mathscr{F})(z) = z \sum_{k=0}^{\infty} \frac{D_q^k}{[k]_{1/q}!} \times (g(z) z^{-1} (1 - (z/q) \varphi(z/q)) G_k^{(q)}(z/q)).$$
(4.10)

Remark. In the case q = 1 as mentioned above, $\varphi_k(z)$ are powers of an fps $\bar{\varphi}(z)$ and $\varphi(z)$ is the analogue for $\bar{\varphi}'(z)/\bar{\varphi}(z)$. Therefore $f_k(z)$ are powers of $f(z) = z/\bar{\varphi}(z)$ and $z^{-1}(1 - (z/q) \varphi(z/q)) \rightarrow f'(z)/f(z)$ for $q \rightarrow 1$.

Proof. According to (4.8) and (4.3),

$$\langle z^{n} \rangle g(\mathscr{F})(z) = \langle z^{0} \rangle g(z)(1 - (z/q) \varphi(z/q)) z^{-n} \varphi_{n}(z/q) = \langle z^{0} \rangle g(z)(1 - (z/q) \varphi(z/q)) z^{-n} \sum_{k=0}^{\infty} (-1)^{k} \times \left[\frac{-n}{k} \right]_{1/q} H_{k}^{(q)}(z/q) = \sum_{k=0}^{\infty} \langle z^{n+k-1} \rangle q^{k} \frac{[n+k-1]_{q} [n+k-2]_{q} \cdots [n]_{q}}{[k]_{1/q}!} \times g(z) z^{-1}(1 - (z/q) \varphi(z/q)) z^{k} H_{k}^{(q)}(z/q) = \langle z^{n-1} \rangle \sum_{k=0}^{\infty} \frac{D_{q}^{k}}{[k]_{1/q}!} \times (g(z) z^{-1}(1 - (z/q) \varphi(z/q)) G_{k}^{(q)}(z/q)).$$

Multiplication of both sides of this equation by z^n and summation over all $n \in \mathbb{Z}$ furnish (4.10).

Next we derive the q-analogue of (1.5).

THEOREM 8. With the assumptions of Theorem 7,

$$g(\mathscr{F})(z) = g(z) + \sum_{k=1}^{\infty} q^{-k} \frac{D_q^{k-1}}{[k]_{1/q}!} (D_q(g(z)) G_k^{(q)}(z)).$$
(4.11)

Proof. The q-Lagrange formula corresponding to (1.6) is

$$\langle z^n \rangle g(\mathscr{F})(z) = \frac{1}{[n]_q} \langle z^{-1} \rangle D_q(g(z)) z^{-n} \varphi_n(z), \qquad n \neq 0$$
 (4.12)

[13, Theorem 1 (B) for $\Phi(z) = 0$). Therefore for $n \neq 0$, by (4.3), we get

$$\langle z^{n} \rangle g(\mathscr{F})(z) = \frac{1}{[n]_{q}} \langle z^{-1} \rangle D_{q}(g(z)) z^{-n} \sum_{k=0}^{\infty} (-1)^{k} \\ \times \left[\frac{-n}{k} \right]_{1/q} H_{k}^{(q)}(z) \\ = \frac{1}{[n]_{q}} \langle z^{n-1} \rangle D_{q}(g(z)) + \sum_{k=1}^{\infty} \langle z^{n+k-1} \rangle q^{k} \\ \times \frac{[n+k-1]_{q} [n+k-2]_{q} \cdots [n+1]_{q}}{[k]_{1/q}!} D_{q}(g(z)) z^{k} H_{k}^{(q)}(z)$$

$$(4.13)$$

$$= \langle z^{n} \rangle g(z) + \langle z^{n} \rangle \sum_{k=1}^{\infty} q^{-k} \frac{D_{q}^{k-1}}{[k]_{1/q}!} (D_{q}(g(z)) G_{k}^{(q)}(z)).$$
(4.14)

This leaves us to prove that (4.14) is true for n = 0, too.

By (4.13) and (4.4) the right-hand side of (4.14) for n = 0 can be transformed as follows:

$$\begin{split} \langle z^{0} \rangle \ g(z) + \langle z^{0} \rangle \sum_{k=1}^{\infty} q^{-k} \frac{D_{q}^{k-1}}{[k]_{1/q}!} (D_{q}(g(z)) \ G_{k}^{(q)}(z)) \\ &= \langle z^{0} \rangle \ g(z) + \langle z^{-1} \rangle \ D_{q}(g(z)) \sum_{k=1}^{\infty} \frac{q^{\binom{k}{2}+1}}{[k]_{1/q}} H_{k}^{(q)}(z) \\ &= \langle z^{0} \rangle \ g(z) - \langle z^{-1} \rangle \ g(z) \ q^{-1} D_{1/q} \left(\sum_{k=1}^{\infty} \frac{q^{\binom{k}{2}+1}}{[k]_{1/q}} H_{k}^{(q)}(z) \right) \\ &= \langle z^{0} \rangle \ g(z) - \langle z^{-1} \rangle \ g(z) \ D_{q} \left(\sum_{k=1}^{\infty} \frac{q^{\binom{k}{2}+1}}{[k]_{1/q}} H_{k}^{(q)}(z/q) \right) \\ &= \langle z^{0} \rangle \ g(z) - \langle z^{-1} \rangle \ g(z) \ \sum_{k=1}^{\infty} \frac{q^{\binom{k}{2}}}{[k]_{1/q}} \\ &\times (H_{k}^{(q)}(z/q) - q^{-k+1} H_{k-1}^{(q)}(z/q)) \ \varphi(z/q) \\ &= \langle z^{0} \rangle \ g(z) - \langle z^{-1} \rangle \ g(z) \ q^{-1} \varphi(z/q) \\ &= \langle z^{0} \rangle \ g(z) - \langle z^{-1} \rangle \ g(z) \ q^{-1} \varphi(z/q) \\ &= \langle z^{0} \rangle \ g(z) (1 - (z/q) \ \varphi(z/q)) = \langle z^{0} \rangle \ g(\mathcal{F})(z). \end{split}$$

The last step was performed by remembering (4.8). The second step used the fact that the adjoint of D relative to the bilinear form $\langle a(z), b(z) \rangle = \langle z^{-1} \rangle a(z) \cdot b(z)$ is $-q^{-1}D_{1/q}$. (For a more detailed discuss-

sion of this concept concerning Lagrange inversion we refer the reader to [11, 14].)

Concluding we give some examples for these two theorems.

EXAMPLE 9. For $\varphi(z) = -1/(1-z)$ the corresponding q-powers are given by $\varphi_{\alpha}(z) = (z; q)_{\alpha}$ [13, Example 3]. From (4.4) we get by induction

$$H_{k}^{(q)}(z) = (-1)^{k} q^{-k^{2}} z^{k}(z;q)_{k}$$

= $\frac{(-1)^{k} q^{-k^{2}} z^{k}}{(1-z/q)(1-z/q^{2})\cdots(1-z/q^{k})};$ (4.15)

thus

$$G_{k}^{(q)}(z/q) = (-1)^{k} q^{-k^{2}} z^{2k} (z/q; q)_{-k}$$

= $(-1)^{k} q^{-k^{2}} \frac{z^{2k}}{(1-z/q^{2})\cdots(1-z/q^{k+1})}.$ (4.16)

Since $1 - z\varphi(z) = 1/(1 - z)$, by (4.10),

$$g(\mathscr{F})(z) = z \sum_{k=0}^{\infty} (-1)^{k} q^{-k^{2}} \frac{D_{q}^{k}}{[k]_{1/q}!} \times \left(g(z) \frac{z^{2k-1}}{(1-z/q)\cdots(1-z/q^{k+1})}\right).$$
(4.17)

The Lagrange formula (4.8) for $g(z) = z^{t}$ leads to

$$F_{l}(z) = \sum_{n=l}^{\infty} (-1)^{n-l} q^{\binom{n-l}{2}} {\binom{n-1}{n-l}}_{q} z^{n}$$

which, of course, in view of Example 3 is the same as

$$F_l(z) = \left(\left(\frac{z}{1+z/q} \right)^{\lfloor l, 1/q \rfloor} \right)^{\vee}.$$

Therefore the q-Abhyankar formula (4.17) for $g(z) = z^{l}$ gives

$$F_{l}(z) = z \sum_{k=0}^{\infty} (-1)^{k} q^{-\binom{k+1}{2}} \frac{D_{q}^{k}}{[k]_{q}!} \times \left(\frac{z^{2k+l-1}}{(1-z/q)\cdots(1-z/q^{k+1})}\right).$$
(4.18)

550

Equating coefficients of z^n on both sides of (4.18) leads after some simplification to the q-Vandermonde convolution

$$\begin{bmatrix} -l \\ n-l \end{bmatrix}_{q} = \sum_{k=0}^{n-l} q^{-(n+k)(n-k-l)} \begin{bmatrix} -n \\ k \end{bmatrix}_{q} \begin{bmatrix} n-l \\ n-k-l \end{bmatrix}_{q},$$
(4.19)

which again is a special case of [2, identity (18)]. (4.11), the second form of the q-Abhyankar formula, reads

$$g(\mathscr{F})(z) = g(z) + \sum_{k=1}^{\infty} (-1)^{k} q^{-\binom{k}{2}} \frac{D_{q}^{k-1}}{[k]_{q}!} \times (D_{q}(g(z))) \frac{z^{2k}}{(1-z/q)\cdots(1-z/q^{k})}.$$
(4.20)

Next we take $g(z) = z'/(z; q)_m$. For this choice of g(z) we obtain just in the same manner as (3.24),

$$g(\mathscr{F})(z) = q^{-\binom{l}{2}} (z^{l}(-z;q)_{m-l})^{\vee}.$$
(4.21)

From (4.17) and (4.20) therefore we get the expansions

$$q^{-\binom{l}{2}}(z^{l}(-z;q)_{m-l})^{\vee} = z \sum_{k=0}^{\infty} (-1)^{k} q^{-\binom{k+1}{2}} \frac{D_{q}^{k}}{[k]_{q}!} \left(\frac{z^{2k+l-1}}{(z/q^{k+1};q)_{k+m+1}}\right)$$
(4.22)

and

$$q^{-\binom{l}{2}}(z^{l}(-z;q)_{m-l})^{\vee} = \frac{z^{l}}{(z;q)_{m}} + \sum_{k=1}^{\infty} (-1)^{k} q^{-\binom{k}{2}} \times \frac{D_{q}^{k-1}}{[k]_{q}!} \left(\frac{([l] + q^{l}[m-l]z)z^{2k+l-1}}{(z/q^{k};q)_{k+m+1}} \right).$$
(4.23)

For the latter expression we used

$$D_q \frac{z^l}{(z;q)_m} = \frac{([l] + q^l[m-l]z)z^{l-1}}{(z;q)_{m+1}}.$$

EXAMPLE 10. Take $\varphi(z) = 1$, then [13, Example 2] $\varphi_{\alpha}(z) = e_q([\alpha]_q z)$; hence in this case,

$$H_{k}^{(q)}(z) = \sum_{j=0}^{k} (-1)^{j} q^{-\binom{k-j}{2}} {k \brack j}_{1/q} e_{q}([-j]_{q}z).$$
(4.24)

Comparison with [3, Example at the bottom of p. 536] unveils the connection with the q-Stirling numbers of second kind introduced by Gould [8]. In [3] Cigler obtains an expression for the generating function of Gould's q-Stirling numbers of the second kind which is quite similar to (4.24):

$$[k]_{q}! \sum_{n=k}^{\infty} \frac{S_{q}(n,k)}{[n]_{q}!} z^{n}$$

= $\sum_{j=0}^{k} (-1)^{k+j} q^{\binom{j}{2} + j(k+1)} {k \choose j}_{q} e_{q}([j]_{q}z).$ (4.25)

Comparing the coefficients of z^m in (4.24) and (4.25) implies

$$H_{k}^{(q)}(-qz) = (-1)^{k} q^{-\binom{k}{2}} [k]_{1/q}! \sum_{n=k}^{\infty} \frac{S_{1/q}(n,k)}{[n]_{q}!} z^{n};$$
(4.26)

therefore

$$G_{k}^{(q)}(z/q) = q^{-\binom{k}{2}} [k]_{1/q}! \sum_{n=2k}^{\infty} (-1)^{n} q^{3k-2n} \frac{S_{1/q}(n-k,k)}{[n-k]_{q}!} z^{n}.$$
(4.27)

Now we are ready to apply Theorems 7 and 8. (4.10) reads

$$g(\mathscr{F})(z) = z \sum_{k=0}^{\infty} q^{-\binom{k}{2}} D_q^k \left(g(z) \, z^{-1} (1 - z/q) \right)$$
$$\times \sum_{n=2k}^{\infty} (-1)^n \, q^{3k-2n} \, \frac{S_{1/q}(n-k,k)}{[n-k]_q!} \, z^n \right); \tag{4.28}$$

by (4.11) we get

$$g(\mathscr{F})(z) = g(z) + \sum_{k=1}^{\infty} q^{-\binom{k}{2}} D_q^{k-1} \left(D_q(g(z)) \right)$$
$$\times \sum_{n=2k}^{\infty} (-1)^n q^{2k-n} \frac{S_{1/q}(n-k,k)}{[n-k]_q!} z^n \right).$$
(4.29)

By the q-Lagrange formula (4.12) it is possible to evaluate $F_l(z)$:

$$F_{I}(z) = \sum_{n=1}^{\infty} \frac{[I]_{q} [n]_{q}^{n-I-1}}{[n-I]_{q}!} z^{n}.$$
(4.30)

Setting g(z) = z' in (4.29) and equating coefficients of z^n of both sides leads by a short calculation finally to the well-known identity [8, identity (3.7)]

$$[-n]_{q}^{j} = \sum_{k=0}^{j} q^{\binom{k}{2}} \begin{bmatrix} -n \\ k \end{bmatrix}_{q} [k]_{q}! S_{q}(j,k), \qquad (4.31)$$

where we set n - l = j.

By (4.28), similarly, a q-identity involving q-Stirling numbers could be derived. We will omit it here because it is more complicated than (4.31) (which is due to the term (1 - z/q) on the right-hand side of (4.28)) and therefore of less interest.

References

- 1. S. S. ABHYANKAR, Lectures in algebraic geometry, Notes by Chris Christensen, Purdue University, 1974.
- 2. J. CIGLER, Operatormethoden für q-Identitäten, Monatsh. Math. 88 (1979), 87-105.
- 3. J. CIGLER, Operatormethoden für q-Identitäten III: Umbrale Inversion und die Lagrange'sche Formel, Arch. Math. 35 (1980), 533-543.
- 4. A. M. GARSIA, A q-analogue of the Lagrange inversion formula, Houston J. Math. 7 (1981), 205-237.
- 5. A. M. GARSIA AND S. A. JONI, A new expression for umbral operators and power series inversion, *Proc. Amer. Math. Soc.* 64 (1977), 179–185.
- 6. A. M. GARSIA AND S. A. JONI, Higher dimensional polynomials of binomial type and formal power series inversion, *Comm. Algebra* 6 (1978), 1187–1215.
- GESSEL, A combinatorial proof of the multivariable Lagrange inversion formula, J. Combin. Theory Ser. A 45 (1987), 178–196.
- 8. H. W. GOULD, q-Stirling numbers of first and second kind, Duke Math. J. 28 (1961), 281-289.
- 9. P. HENRICI, Die Lagrange-Bürmannsche Formel bei formalen Potenzreihen, Jahresber. Deutsch. Math.-Verein 86 (1984), 115-134.
- 10. J. HOFBAUER, A q-analog of the Lagrange expansion, Arch. Math. 42 (1984), 536-544.
- 11. J. HOFBAUER, Lagrange-Inversion in "La 6-éme session du Seminaire Lotharingien de Combinatoire," publication de l'IRMA n° 191/S-05, Strasbourg, 1982.
- 12. S. A. JONI, Lagrange inversion in higher dimensions and umbral operators, *Linear Multi*linear Algebra 6 (1978), 111-121.
- 13. C. KRATTENTHALER, A new q-Lagrange formula and some applications, *Proc. Amer. Math. Soc.* **90** (1984), 338–344.
- 14. C. KRATTENTHALER, Operator methods and Lagrange inversion—A unified approach to Lagrange formulas, *Trans. Amer. Math. Soc.* **305** (1988), 431–465.
- 15. O. V. VISKOV, Inversion of power series and the Lagrange formula, *Soviet Math. Dokl.* 22 (1980), 330–332.