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GENERATING FUNCTIONS FOR PLANE PARTITIONS
OF A GIVEN SHAPE

Christian Krattenthaler

Abstract. For fixed integers « and B, planar arrays of
integers of a gliven shape, in which the entries decrease at
least by « along rows and at least by B along columns, are

considered. For various classes of these (a,B)-plane
partitions we compute three different kinds of generating
functions. By a combinatorial method, determinantal

expressions are obtained for these generating functions. In
special cases these determinants may be evaluated by a simple
determinant  lemma. All  known results concerning plane
partitions of a given shape are included. Thus our approach
to computation of generating functions for plane partitions
of a glven shape provides a uniform proof method and ylelds
numerous generalizations of known results.

1. Introduction. Let D, denote the set of all r-tupels
A=(A1,Az,...,A,) of integers with A,2Apz---2A, . For A,u € D, we write
Al for Ay#Apt-#A, , Asp for {Ag+py,... A #e,) and Azp If A2y for
all i=1,2,...r.

Let «,8 be arbitrary Integers and A,u € D, with Azp. We call an array

n of integers of the form

1:1’““1 n1,u1+2 ............................ "1,7\1
1(2'l‘2+,| ce .1!2,“1+,| "2,u1+2 ..................... "2,)\2
(1.1
g T "r,k,
an (a,8)-plane partition of shape A/u if
Mij = W gt for Isisr, p;<jAi; (1.2)(a)

and

173



KRATTENTHALER

LS| = "1¢1,J*B for 1si<r, u.1<jSAh1 . (1.2)(b)

If u=0 we shortly say, mw is of shape A. The entries of m are called
parts of m. The sum of all parts of =, X My, is called the norm of =,
for which we write n(m). To give an example, the array my in Figure 1

below 1is a {(0,2)-plane partition of shape (8,6,€,2)/(3,2,0,-1). For the

766 31
8543
332211
4 11
Figure 1
norm of m, we have n(ny)=61. Obviously, a (0,0)-plane partition of

shape A/u containing only positive parts 1is an ordinary (skew)
plane partition, a (0,1)-plane partition containing only positive parts
is a column-strict (skew) plane partition, a (1,0)-plane partition
containing only positive parts is a row-strict (skew) plane partition,
and a (1,1)-plane partition containing only positive parts is a row and
column-strict (skew) plane partition. (See [21] for the terminology
concerning plane partitions.)

In this paper we compute generating functions for («,8)-plane
partitions subject to various restrictions. We shall consider three
types of generating functions, the part generating function, the norm
generating function and the trace generating function. The part

generating function for a certain class of (a,8)-plane partitions is

LI x (1.3)

where the sum is over all m being an element of that class of
(¢,8)-plane partitions and the product is over all parts mn;; of mn.
Thus, the plane partition ng in Figure 1 would contribute the term
xsx—,xszxsx‘zx;xzles to the sum in (1.3). The norm generating function
for a certain class of («,8)-plane partitions is
L ™ (1.4)
n
where the sum is over all m being an element of that class. For the
trace generating function (introduced by Gansner [4,5]) we need some
more definitions. The l-diagonal of an array m of the form (1.1) is the
sequence of parts m;; of m with j-i=l. The l-trace of =, denoted t(n),
is the sum of the parts of the l-diagonal of x. In our example my in

Figure 1 the 3-diagonal would be the set {7,4,1}, hence t53(my)=12. The
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trace generating function for a certain class of (a,8)-plane partitions

is
rn xf‘(") (1.5)
n lel
where the sum is over all m being an element of that class (Z is the
set of integers). Of course, (1.4) is a special case of both (1.3) and
(1.8) (xy=x for all ieZ).

With the help of an involution (given 1n section 4) and a
combinatorial lemma (Lemma 2.1), we obtain determinantal expressions
for these three types of generating functions for («,8)-plane
partitions of a given shape, where the parts are limited in each row by
different lower and upper bounds. (An expression for the part
generating function is obtained only if a+8=1.) In special cases these
determinants may be evaluated by a simple determinant lemma (Lemma
2.2). Thus in particular, all known results about generating functions
for the various kinds of plane partitions of a given shape (see
[1,2,3,4,5,14,20,21,22,24]) can be derived. These results were
originally obtained by a variety of methods (g-difference equations
[1, section 11.2; 3; 8,proof of Theorem 1; 14,sections IX,X], symmetric
functions [13,21], matrix correspondences [2], the Hillman-Grassl
correspondence [4,3], bijective proofs {17,18], which are based on the
Gessel-Viennot theory of nonintersecting paths [6,7;23, section 4.5],
Lie theory [15,16]). Unfortunately, these methods only apply for some
classes of plane partitions, while they are not applicable for other
classes. Our approach offers a uniform method of proving these plane
partition results. Moreover, it may be called "direct" in that it works
with tableaux (see section 3) only. We also give several
generalizations and new results.

Our derivation of the determinant formulas for the generating
functions for (a,B)-plane partitions 1is related to Gessel's and
Viennot's elegant method [7]), working with nonintersecting paths. Their
paper bases on a counting theorem for those nonintersecting paths. With
the help of this, they find a determinant formula for the generating
functions of, what they call, R-tableaux, a special case of which are
(a,7a)-reverse plane partitions. (We remark that a modification of our
involution of section 4 also could be used to prove this result about
R-tableaux.) Using simple combinatorial arguments, determinant formulas
for (a,B8)-reverse and ordinary plane partitions can be derived. The

determinant lemmas which they use are not so powerful as our Lemma 2.2,
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therefore they do not obtaln new closed forms for generating functions
of speclal classes of plane partitions. But they succeed in finding
some new evaluations for the cardinality of some special classes of
plane partitions. With the help of Lemma 2.2 we are able to generalize
these results. This will be the object of a forthcoming paper [12].
(Besides, among other results, Gessel’s and Viennot’s paper [7]
contains a lot of interesting combinatorial interpretations of special
numbers, such as Fibonomial coefficients, Bernoulli numbers, Stirling
numbers, Salié and Faulhaber numbers, etc.)

The outline of the paper is as follows. Section 2 contains the
combinatorial Lemma 2.1 and the determinant Lemma 2.2, which were
mentioned above. In section 3 we extend the notion of (a«,8)-plane
partitions to «a-tableaux and give generating functions for them. The
involution acting on «-tableaux which we use +to obtain the
determinantal expressions for the generating functions is explained and
discussed in section 4. Section 5 is devoted to results about part
generating functions. In fact the main result of this section, Theorem
5.1, generalizes the  Jacobi-Trudi identity for Schur  functions
[13,(5.4),(5.5); 24,Theorems 3.5 and 3.5*]. In section 6 we obtain
results for the norm generating function. Here, as special cases the
determinant formulas of MacMahon [14,sec.494,490], Carlitz [3,(6.12)],
Stanley [20], and the hook length formulae of Stanley [21,Theorem 15.3,
Propositions 18.3-18.5] are contained. Finally, in section 7 we
consider the trace generating function, thus extending the work of

Gansner [4,5] and Stanley (22].

2. Preliminaries. Let S, denote the symmetric group of order r. If M
is a set with weight function w, acting on M, we write F(M;w) for the

generating function

T win .
neM

LEMMA 2.1. Let (Ma_.- o0eS,} be a collection of pairwise disjoint sets
with a weight function w acting on U Mo’ . Let M . be partitioned into

+ _ O€S, id _
two disjoint subsets, Mid and Mid , with Mid = Mid V] Mid . Assume a

welght-preserving involution ¢ acting on M 1d vl M‘:r satisfying the
o*id
following property, holding for all oe€S, : For every mw on which ¢ is

applicable, neMo, , there exists a transposition (i,j), 1si,jsn, for
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which ¢(n) € Mo'(i,j)' Then

FIMY ;w) = § sgno F(M_w) .

id [
oeS,
PROOF. By definition, ¢ maps an element of M;d v U M_ onto an
o even
o#id
element of U Ma_ , and vice versa. Since the M‘r’s are palirwise
o odd
disjoint and ¢ is weight preserving, we have
FIM, ;w)+ L FIM;w)= T F(M_;w).
id [
o even o odd
o#1d
This leads to
+ -
F(Mid;w) = F(Mid;w) - F(Mid;W)
= F(M, ;w) + Y sgn o F(IM_;w)
id oxid ¢
= F sgnaF(M‘r;w) . |

ceS,

Next we prove the promised determinant lemma.

LEMMA 2.2. Let Xi,...,X,43,...,A},B,,...,B, be indeterminates. Then

det  ((X #A.)  +(Xg+Apa1 (X #By) - (X +By)) =
I1ss,tsr
= H (Xx-xJ) H (Bi-AJ) s
1si< jsr 2sisjsr
with the convention that empty products (like (X +A4,)-""(Xg+Ay,q) for
=r) are set equal to one.
PROOF. Subtract the (r-1)’th column from the r’th, the (r-2)’th from

the (r-1)'th,...,the first from the second to obtain
det ((Xg+A) -+ (Xg+Aye1 )(X,#+By) - (X, +Bp)) =
= (Bp~A M (B,q=Ap_q ) +(By=Ap) det (X +4,) (X g+Aps1)(Xg#+Byy )+ (X +By)) .

Next, in the determinant on the right-hand side of this equation
subtract the (r-1)’th column from the r’th,...,the second from the
third. This time the expression (B, 1~A.)(B,_o~4,.q)-(By-43) can be
factored out on the right-hand side. This process is continued until

det (X, +A,) "~ (Xo+Ay,1) (X +By) - (Xg+Bp)) =

= I (B;i-4j) det((X +A,) --(X,+A,q)) .
2sis jsr

The determinant on the right-hand side of this equation is a polynomlal
In Xy,Xp,...,X. with degree (J) . Since for X_=X_ , where 1ss;<spsr,
2 Sy Sp
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the determinant vanishes, it may be factorized

det ((Xg#4,) +(Xg+Apeq)) = T (X-Xy) - p(Xy,....X,) ,
1si< jsr
where p(X,,...,X;) 1is some polynomial in X,;,...,X,. . But the degree of

0 x;-xy) is (;) , therefore p(X,,...,X.) is 1identical to a
1si< jsr
constant, which is easily seen to be equal to one. l

It 1is convenient to state +two 1limiting cases of Lemma 2.2

separatedly.
LEMMA 2.2.1.
det ((Xg+A)(Xg*Apy)) = T (X;-X)) .
1ss,t=<r 1si< jsr
PROOF. Divide both sides of Lemma 2.2 by I (B;-4;) and let Bj—w
2sis jsr

for j=2,3,...,r. 1

LEMMA 2.2.2.
det (X +By)--+(Xg+Bp)) = I (X;=X;) .
1ss, tsr 1si< jsr

PROOF. Divide both sides of Lemma 2.2 by It (A;-B;) and let Aj—w
2sis j<r
for j=2,3,...,r. |

3. a~Tableaux. In the proofs of the generating function theorems we
shall work with "a-tableaux". By this notion we mean the folllowing
extension of the notion "(«,B)-plane partition”.

DEFINITION 3.1. Let A,u be arbitrary r-tupels of integers with Az,
An array m of the form (1.1) is called an a-tableaux of shape A/u if
the condition {(1.2}a) holds. The entries of an a-tableaux are called
parts. All other notions, such as norm, norm generating function, part
generating function, trace generating function, etc., are also extended
to a-tableaux (see section 1).

Thus, for a-tableaux we only have a restriction on the rows, but none
on the columns. Note that in Definition 3.1 we did not require that

A.u € D, . To give an example, the array in Figure 2
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675
3

-
[\ el

Figure 2

is a (-1)-tableaux of shape (1,0,1)/(5,3,2).

The difficulty in counting (i.e. finding generating functions for)
(a,8)-plane partitions lies in the fact that there are restrictions on
both rows and columns ((1.2)(a) and (b)). However, Iin an a-tableaux the
rows are mutually independent, since ({1.2)(b) must not hold. Therefore
it is easy to find generating functions for a-tableaux of a given
shape. The relevant results which we need in the following sections are
summarized in the propositions below.

For any integer a« and x=(...x_4,Xg,Xy,...) let

h(oc)

n (x;A4,B) = § xll---x

Lo

where the sum is over all {i,...{, satisfying i;s4, i,2B, and {ijzij,+ta
for  j=1,2,...n-1.  Obviously, hr(lo)(x;A,B) and h’(ll)(x;A,B) are the
complete symmetric function of degree n and the elementary symmetric
function of degree n in the variables xg,...,x, , respectively. Then we

have

PROPOSITION 3.2. The part generating function for a-tableaux T of
shape A/p in which the first part in row i is at most a; and the last
part in row i is at least b; is

(a) ,_.
11] hki_ufx,ai,bi) . I

Next, for the indeterminate x we Introduce the "x-notations"

B1=1-x2, [nl=(11[2]--[n], [O1=1,
n] _ [nl!
k| = TkIln-kIt°’
[+
(@;x) = I (=-ax?),
«© J’O

(a;x)

g = (a;x) / (axB;x)‘m .

Then we have

PROPOSITION 3.3. The norm generating function for a-tableaux T of
shape A/p in which the first part in row i is at most a; and the last
part in row { is at least b; is
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x

. _ Afmhy
b; (A H)ﬂx[ 2 [ax“bi‘“(hi"M"‘)*Ai‘M]
i

Ay

PROOF. In Proposition 3.2 set x1=xi for all Integers i. We have

Jkey
h () ((...,xl,...);ai,b,) =¥ x ALy (3.3.1)
Ay
where the sum is over all PO with jy=a; , j zb and
S JM"M J1=4G§ J7‘1'l‘1 i

JizJista.  Performing the index transformation Jp:=j+a(l-A;+u;)-b; we

get the conditions

Jysa;-alA;-p-1)-b; , J

20 and J;zJp - (3.3.2)
Ay =

Hence, the right-hand side of (3.3.1) becomes

bi(li"ﬂi)‘ﬂl[xxé‘l‘] J1+”.JA-—'
x T x iTHy
where the J;'s satisfy (3.3.2). But, because of (3.3.2), the sum in
this expression 1is the generating function for linear partitions with

at most (A;-p;) parts and largest part = (a;-a(d;-p;-1)-b;) . This

proves the proposition using [1, Theorem 3.1]. I
(-]
Let us write x(m,») for the formal product M x; , and x{m,n) for
i=m+1

x(m,n)/x(n,»). Then we have

PROPOSITION 3.4. The trace generating function for a«a-tableaux T of
shape A/u in which the first part in row i is at most a; and the last
part in row { is at least b; is

A -i-1
I [x(ﬂi-i.lri)b‘ [ n x(ui-l.l)a] t(?«x—i/ui-i;ai—a(hi—ui—’l)—bi)] ,
i l=p;-i

where t(p/q;m) is the coefficient of Z" in
p
1/ I (1-x(q,)z) .
l=q

PROOF. Referring to the definition of the trace generating function

we obtain for the trace generating function for a-tableaux the

expression
J1 J
e ARy
I;I T xu‘—i+1 x?t‘-i , (3.4.1)
where the sum is over all jl""’jki—ui with  jj=a; , jh_uizbi and
Jizjiu1*e , such as In Proposition 3.3. Perform the same index
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transformation. Then the right-hand side of (3.4.1) may be rewritten in

the form
A -i-1 Ja J
I x(ui—i,?«l-i)b‘ O x(u-t,0* T x . ox A
- . py—i+t Ai-i
i l=py~i
where the sum is over all J;,...,J satisfying (3.3.2). It is a

Ay
simple matter of fact that this sum is equal to the coefficlent of
Zai—a(Ai—ui-'])—bi in

A -l
1/ 0 (-xlpy-il)z) . |
l=“i—i
When there is no upper bound on the parts of the a-tableaux, we

obtaln a simpler expression.

PROPOSITION 3.5. The trace generating function for a-tableaux T of
shape A/u in which the last part in row i is at least b; is
A -1 A;-i

1 [x(ui-i,).i-i)b‘ O olp-i,00% fI (1—x(ui—t,l))—1] . |
i l=}11‘i l=“i—i+1

4. The involution. In this section we construct and investigate the
involution which 1is crucial to apply Lemma 2.1 to the computation of
plane partition generating functions. It was inspired by Zeilberger’s
[25] reflection proof for the n-candidate ballot problem and the
author’s paper [11] about generating functions for plane partitions
with unrestricted part magnitude. Subsequently, in Theorem 4.2 we gilve
the properties of this involution which we wuse iIn the following

sections.

DEFINITION 4.1. Let «,8 be arbitrary lintegers, v be an r-tupel of
integers and AeD, . For an «-tableaux Tt of shape A/v the map WO!.B is
defined in three steps:

(A) Consider all pairs (45,7 41,§) of parts of T with

T1§<Ty4y, B . (4.4.1)

(By convention this inequality is also considered to be valid (if
Ti+1,5 does not exist and j=py, .) Let J be the largest integer

with T, .<t, +8 for some i. Let I be the smallest integer with

iJ i, J
T, ,<t

1J I+’I,J+B :
among them, highest pair satisfying (4.4.1) in the tableaux T.)

(The idea is to search for the right-most and,
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(B) (a) VRV - Let K be the smallest integer with TI,K<rI+1,K+B .
(®) v 1141 Let K be the smallest integer with
1.'[’ K_1>rI+1,K+1+2a+B—2 . (By convention this inequality is also
considered to be valid if T I+1,K+1 does not exist and K=A I+1')

(C) The image of Tt under application of ¢°¢B is the tableaux T’,
which is obtained by leaving all rows of T unchanged with the

exception of the I'th and (I+1)'th row. Here we set

, T JjzK
R { T . ~(1-a-B) J<K
I+, j#
and
' Ty, jogt 1B JsK

Geometrically, T’ is obtained from T the following way:

TI,VI+1 e Tpgeq| Tk
TI+1,vI,,+‘| .................. Treq, k| Tret,ke1 o
j Ya,B
TI+1’VI“+1—(1—(X"B) .......... rI+1’K—(1—a—B)l Tyg creerreeeeeaeene
rI'vI+1+(‘1—a—B). e e ‘TI,K—1+(1_°L_B) tI+1,K+1"'
Following Zellberger [25], for €S, we define
ea‘:=(1—c'(1),2—<r(2),...,r-tr(r)). o a=(a,,...,a,) we write a =

=(a°_(1),...,ao_(r)). The set of a-tableaux of shape A/u in which the
first part in row { is at most g; and the last part in row i is at
least b; is denoted by Ta(A/u;a,b), where b=(by,...,b,). The subset of
Ta(A/u;a,b) cc:ntaining all (a,B)-plane partitic_)_ns of Ta(k/u;a,b) is
denoted by Ta'B(A,u;a,b). its complement by Ta’B(A/u;a,b). It will be

proved in the theorem below, that Po 8 satisfies all conditions
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required to apply Lemma 2.1 with M°_=Ta(7\/uo_+eo,;ac+(1—a—8)ea’,b).
+ L+ -
Mid—Ta'B(A/u,a,b) and Mid_ —Ta,B(A/u,a,b). We give three weights for

which pa,B Is welght-preserving, wp (for a+B8=1), wn , and wt y

respectively. Applicatlon of Lemma 2.1 then leads to the results

concerning part generating functions (section 5), norm generating
functions (section 6), and trace generating functions (section 7),

respectively.

THEOREM 4.2. Let o,8 be lintegers and A,u,a,b be r-tupels of integers
such that A,u € D, and

aim([li'“"ﬂi¢1)"‘(1'8) z a;,; and bxm(hx'?‘hJ)"'“—B) 2 by (4.2.1)
for i=1,2,...,r-1. Po 8 satisfies the following properties:
(A) 'pa,B is an involution on
Ta'B(A/u;a,b) v U Ta(A/“a-+eo';ao-+(1‘¢_B)eo"b)' If Tt is an element
oeS,
o*id

of the domain of wa’B , TE€E Ta(A/uofea‘;a‘r+(1—a—8)e0_,b), there
exists a transposition (I,I+1) with
(t) € Ta(A/u

+(1-a-Ble ).

a8 o1, 1+0) o (1, 1+1) (1, 1+1) ot1,141°°
(B) Po 1 is weight-preserving with respect to the weight

wp(’r) =11 xTxJ .

where the product is over all parts T,; of T.
(C) P 8 is weight-preserving with respect to the weight
’ r
n(m)+(1-a-) L [;*]
wlt) = x s=1

n

where A/v is the shape of T.

(D) Py 8 is weight-preserving with respect to the weight

,
w,(t) = I x(v,-s,w)s(a+ﬁ-1) I x‘t‘(").
s=1 leZ

where A/v is the shape of T.

PROOF. (A) Recalling Definition 4.1.(A), is applicable on

12

a-tableaux violating the column-condition T, JZT‘::?’ jtB at least once,
and on «-tableaux of shape A/v with ve¢D, . (The second fact is due to
the convention we made in Interpreting the Inequality t;;<t;,,, J+B.)
Let T € Ta(A/pa_+ea,;a¢+(1—a-B)eo_,b) and I be the index which was defined
In Definition 4.1.(A). From Definition 4.1.(C) it is clear that the

shape of wa (tr) is A/v, where v is obtained from u°,+e0_ by leaving all

B
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coordinates of u°_+ec unchanged with the exception of the I'th and
(I+1)’th, which are given by v1=[u°_+eo_]l,1-‘l and VI*‘=[“o-+eo-]1+1'
Hence, v1=uc,( LI +1)+e0_( 1,I+1) ° Arguing similarly, we obtain the part
restrictions for q’a,B(t)' Of course we only have to concentrate on the
I'th and (I+1)’th row. The parts In the I'th row of ¢a,B(T) are at most
[ac+(1—a—8)ea_h.1-(1-a—ﬁ) and at least b; , the parts in the (I+1)’th
row are at most [a‘r+(1—a—8)eo_]l+(1—a—ﬁ) and at least by, , which after
a little calculation leads to the desired row bounds stated above. (At
this point the inequalities (4.2.1) were needed. ) Hence,

(t) € Ta(x/u +(1-a~Ble ). That

o1, 1+ 8o (1, 1+1) %o (1, 1+1) o(1,1+41)°

is an involution is clear from the definition.

a8

"
«,B
(B) In case B=1-a we have (1-a-8)=0, therefore the multiset of parts

of ¢, B(T) is identically with that of .

(C) Let T € T (A/p_+e ;a +(1-a-B)e ,b) and I be the index defined in
« o o o o

Definition 4.1.1. Then we have

n(t) - (1-a—B)([u¢+e¢11-lu‘r+eo_11ﬂ+1)
+o(I+1)) .

"(Wa,B(r))

n(t) - (1—«-8)(510,(I)—U(I)-M‘r(“ﬂ

Therefore we get

n(g, (1)) + (1-a-g) 21[["0(1,1+1)+e0'(1,1+1)]s] =
. or 5

(e (1) ny 3 [ln_ve ]
n(t)=(1-a=B) (k1) =o (D=p p qyrelTH)) + (1o B)s§1[ %7 ]+

+(1—a-B)(u°_(I)+I-¢r(I))-(1-a-B)(nc_(I+1)+I-¢r(I+1))

L (lu +e ]
n(t) + % [utr (4 s]
s=1 2

hence wn(goa'B(r)) = wn('r).

(D) With the assumptions of (C) we have

t;W’ (t)) _ t(t)
Ix %F  =xu ey ~¥F (" o ]
leZ l o(I+1) o(I) e l

Therefore we get

x(#w(I)‘V(I),w)MB-'] ﬁ ( (s) )s(a+;3—1)
a+B-1 1x Po(s)™@s7>®

~o(I+1),») s=

w,p (t))
t a,B
X(MO‘(I+1)

. _ _ atB-1, t (7)
X(“cr(IM) cr(I+1),uo_(I) o(I)) lIEIZ[xl ]

= wt(t)
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5. Part generating functions. Let B=1-«. Then Theorem 4.2.(B) can be

applied to compute part generating functions.
THEOREM 5.1. Let A,u € D, and a,b be r-tupels of integers satisfying
a;+x = a;,q9 and byjta = by, for i=12,...,r-1.

The part generating function for (ea,1-a)-plane partitions of shape A/u
in which the first part in row i is at most a; and the last part in row

i is at least b; is

(a)
det [h e (x;at,bs)]
1ss, tsr Agmsthytt
PROOF. Ve apply Lemma 2.1 with M°_=T“(A/po_+e¢;aa_,b),

+ + - -
Mid-—Ta’,l_a(A/u,a,b), Mid_Ta."—a()‘/“;a'b)' go—q:a’B, and w—wp. Because of
Theorem 4.2.(A),(B) all assumptions of Lemma 2.1 are satisfied. Since
by Proposition 3.2

r
F(Ta(x/u¢+e¢;aa,b);wp) = JIh (x;a

),
s=1 }‘s_s-“‘r(s)m(S)

o(s)’ bs
the theorem follows. | |

For =0 and a=1 we obtain the generalized Jacobi-Trudl identities for
flagged Schur functions [24,Theorems 3.5 and 3.5*1:

COROLLARY 5.2. Let A,u,a,b € D.. The part generating function for
column-strict plane partitions of shape A/p in which the first part in
row i is at most a; and the last part in row i is at least b; Is

det

(x;a",bs)] »
1ss,tsr

[hhs-s—upt

where h,(x;A,B) is the complete symmetric function of order n in the

variables xg,...,Xp - |

COROLLARY §&5.3. Let A,y € D, and a,b be r-tupels of integers
satisfying

a;+1 =z a;,q and b;#1 2 by,y for i=1,2,...,r-1.

The part generating function for row-strict plane partitions of shape
A/u in which the first part in row { is at most a; and the last part in
row i is at least b; is

det

(x;at.b.)] )
1ss, tsr

[eA s—S—Hy
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where e (x;A,B) is the elementary symmetric function of order n in the

variables Xg,...,.xp - I

6. Norm generating functions. This sectlon contains applications of
Theorem 4.2.{C). Our first result generalizes Stanley’s
[20,Prop. 21.2], MacMahon’s [14,sec.484], Carlitz’s [3,(6.12)] and

Gordon's [8,Theorem 1] determinant formulas.

THEOREM 6.1. Let A,u € D, and a,b be r-tupels of integers satisfying
(4.2.1). The norm generating function for (a,B)-plane partitions of
shape A/u in which the first part in row t is at most a; and the last
part in row i is at least b; is

det [le(s,t) [(1-0()(7«s-;tz;f_i(s—that—bsm]] ,
1=s,t<r sTSTHyH

where

Ni(s,t) = by(A—s—py+t)+(1-a-B) [[“t+;_t] - (‘2"-]] +o {A‘—S;""ﬁ]

+
I:ROOF. We apply_ Lemma 2.1 with Ma—Ta(A/u¢+e¢;aV+(1—a—8)eo_,b), M1 &=
=Ta,3(k/u;a,b), M1d=Ta'B(7\/u;a,b), ¢=¢0¢.B and w=w . Because of
Theorem 4.2.(A),(C) all assumptions of Lemma 2.1 are satisfied. Since
by Proposition 3.3

F(Ta()\/u‘r+ec;aa‘+(1*a-8)ea_,b);wn) =

r

L [“a’(s)*’;ﬂr(S)]

- xs- 1 ﬁ xNz(S,o’(s)l [(1-0&)05-;10_(5) }-B(s-o(s) )+ac(s)—bs+a:|
o=1 As—s-u«(s)ﬂr(s)

where
No(s,t) = bg(Ag—s-py+t)+a (A‘_sg‘“t] ,

the theorem follows. | |

For A,u € D, we define an (a,B)-reverse plane partition of shape A/u
to be an array m of integers of the form (1.1) with
LINEL I FURPeY for sisr, pi<ja; (6.2)(a)
and
R8BS Wy, for si<r, py<jsAi, - (6.2)(b)

Let p be the rotation which maps m onto n’ by

Mij = Mpojer, r-jo1 - (6.3)
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If m is an (a,B)-reverse plane partition of shape A/u in which the
first part in row i is at least b; and the last part in row i is at
most a; , we obtain p(n) to be an («,8)-plane partition of shape A'/y’
in which the first part in row i is at most a,_;,; and the last part in
row it 1is at least by, , where A’=(r-p, ,...,r-pp ,r-i;) and

w=(r-A,,...,r-Az,r-1;). Thus Theorem 6.1 implies:

COROLLARY 6.4. Let A,pu € D, and a,b be r-tupels of integers
satisfying

ay+a(dg 1A )+(1-B) = ay_y and by+a(y,_y-u)+(1-B) = b;_, (6.4.1)

for i=2,3,...,r. The norm generating function for (a,B)-reverse plane
partitions of shape A/u in which the first part in row i is at least b

and the last part in row i is at most a; is

det [xN3(s,t) [(1—01)(7«,-;1._)—B(s—t)+as—b,,+a]] ’
AS_S_“t+t

1=s, t=r

where

“Agtt-s -A Ag—S—py+t
N3(s,t) = bt(A,—s—ut+t)+(1—a—B)[[ s 2 ]—[ 2‘]]+a[ s 2“" ]l

REMARK. We also could prove Corollary 6.4 by modifying the involution
Po 8 suitably. For sake of simplicity, we decided to derive it from
Theorem 6.1.

It seems  unlikely that the determinants in  Theorem 6.1 or
Corollary 6.4 can be simplified significantly in general. But there are
several special cases In which Lemma 2.2 may be applied to obtain
closed forms for these determinants. The first such evaluation ylelds a
generalization of Stanley’s celebrated hook-content formula [21,Theorem

15.3]. For definition of hook lengths and contents of a shape we refer
the reader to [21,Definition 15.4].

THEOREM B6.5. Let AeD, and Az0. The norm generating function for
(«,B)-plane partitions of shape A in which the first part in row i is
at most a+(1-B)i (or equivalently, myy<a+1-B) and the last part in
row i is at least b-aA+(1-B)i is

L [a+a-b+1+cy] - -[a+a-b+1+cp]

[hyl---[hp]

r

where p=|A|, Ng= L A(-ed;/2+(2-B)i+b—w/2-1), and ¢; and h; are the
ix1

contents and hook lengths of the shape A , respectively.

PROOF. Evidently, the row bounds satisfy (4.2.1). Setting p=0,
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a;=a+(1-B)i, and b;=b-ar;+(1-8){ in Theorem 6.1 we obtain for the

desired generating function the expression

Ns, Ag-s+t+a+a-b
X det[[ A s+t ]] y

r
where Ng=N,~ L A;{i-1). Taking some factors out of the determinant
i=1

leads to
As—s+t+ata-b -
det[[ Aymstt ]] -

x det ([A -s+r]---[A,—s+t+1]1[A -s+t+a+ta-bl- - - [A,—s+2+a+a-b])

r
IT (A;-i+1+a+a-b]!
i=1 x

r
{a+a-b1!" II [A,-1+r]!
i=1

r r
I (A;-i+1+a+a-b]! L (A -1)(r-1)
= _i=1 xi=1 x

la+a-b]!" TI [A;-i+r]!
i=1

x det((x_k‘*’s-xr) L. (x_ks+s—xt+1 )} (x—A,+s_xt+a+a—b) .. -(x—As+s—x2+a+a_b)).
Now Lemma 2.2 with x1=x_h+t, a=-x', and Bl=—xl+a+a—b can be applied
to get

r r
[A;-i+1+a+a-b]! A =1)r-1)
det A —s+t+a+a-b ‘[Il 1 x1§1 i y
Ag-s+t ;¥
[a+a-b]!" II (A -t+r ]!
i=1
x M GMTRNT) o adtrerh
1si<jsr 2si<jsr
r
r
- I (a-t-ag+y] I [A;-i+a+a-b+1]!
= xuzxMH g 1si< jsr i=1
r r
IT (A -i+riy I [a+a-b+1-L ]!
i=1 i=1

The first quotient in the last line is equal to /[h]--:[h,], (using
[13,p.9,Example 1(4}]), the latter is equal to [a+a—b+1+cy)---
---[a+a-b+1+c,], (using [13,p.10,Example 31). |

Stanley’s theorem [21,Theorem 15.3] is the special case «=0, B=1, b=1
of Theorem 6.5.

There is another case in which the determinant in Theorem 6.1 can be
evaluated. It generalizes one of the main results of MacMahon on plane

partitions [14,sec.429,proof in sec.494].

THEOREM 6.6. Let AeD, and A20. The norm generating function for
(«,8)-plane partitions of shape A in which the first part in row i is
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at most a-Bi (or equivalently, myy<a-B) and the last part in row i Iis
at least b+(1-a)A;-Bi is
«Ne [a+a-b-cy]):--[a+a-b-c,]
[hyl--+lh;]

where p= Ne— Z A ((~a/2A-Bi+b—~a/2), and ¢y and h; are the
contents and hook lengths of the shape A , respectively.

PROOF. Evidently, the row bounds satisfy (4.2.1). Setting u=0,
a;=a-Bi and b;=b+(1-a)A;-Bi In Theorem 6.1 we obtain for the desired

generating function the expression

N. tAg-s) [ata-b
xT.det [x [A,—s+t]] »

where N;=Ng- I i(A;-1). Taking some factors out of the determinant we
i=1

get
det [xt(As—s) [a+a—b ] ] - la+a-blt" N
Ag—s+t r r
I A -i+r)! 1 [-A+i-1+a+a-b]!
i=1 i=1
x det(xt(A'_S)[A s—S+rle e [A g—s+t+1][-A +s=t+1+a+a~b]+ - :[-A +s-1+a+a-b])
r
_ la+a-b]lt" . I (ray-DHava-b-i+1)(r-i+1)) (7))
T r xli=l -1 2 X

IT [A;~i+r]t II [-A;+i-1+a+a-b]!
i=1 i=1

A,+Ss r

x det((x M**S_x )---(x_A‘+s-xt+1 —7\,+s_xt—1-a—a+b).__(x-)\,+s_x‘l—a—a+b)‘

Mo

Application of Lemma 2.2 with Xi=x—7“+[. A1=—xi, and Bx=—xi—1—a‘a+b
glves
t(Ag-s)[a+ta-b _
det [x A -5+t =
r r
- [a+a-b]! . L (ra i)+ (ara-b-i+1)(r-i+1)) (;)
r r xi=1 (-1) ° x

IT [A;-i+r]t II [-A +i-1+a+a-b]!
i=z1 i=1

x T oMM -k tT1Taete,

=t<jsr 2sisjsr
i 1(a -t) I y-i-a,+j] la+a-b] 1T lata-beds j-i]
= xitr Isti<y=sr 2sisjsr
r r
II [A-ter] I [a+a-b-a,+1-1]1
1=1 (v

Again, the first quotient in the last line is equal to 1/[h ] [hyl
By considerations which are similar to those in [13,p.10,Example 3], it
can be shown that the second quotient is equal to
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[a+x-b-c,])---[a+a-b-c,], which completes the proof. |

The special case a=B=0, A;=c, b=1-c of Theorem 6.6 gives MacMahon’s
formula [14,sec.429], see also [21,Theorem 18.1; 3,(6.12)] for other
proof's and other formulations of the resulting product. If we set a=1,
B=0, b=1, we obtain Stanley’s hook-content formula [21,Theorem 15.3] a
second time (but formulated with the conjugate shape; see [21,p.167]
for definition of conjugation}). This is because the reflection at the
main diagonal 1is a norm- (since even part-) preserving bijection
between row-strict and column-strict plane partitions of conjugate
shape.

Next we turn our attention to cases of simplification of the
determinant in Corollary 6.4. Our first result unifies two further
results of Stanley [21,Propositions 18.4 and 18.5].

THEOREM 6.7. Let AeD, and A20. The norm generating function for
(«x,B)-reverse plane partitions of shape A in which the first part in
row i is at least b-(1-B)i (or equivalently, mwy;zb-1+8) and the last
part in row it is at most a+ad;-(1-B)i is

e [a+a-b+1+cy]- - < [a+a-b+1+cp]

[hyl-++[h,]

where p=|A|, N3=1g:lhi(aAi/2+Bi+b-a/2—‘l), and ¢; and h; are the contents
and hook lengths of the shape A , respectively.

PROOF. Evidently, the row bounds satisfy (6.4.1). Setting u=0,
aj=a+or—-(1-B)i, and b;=b—(1-8)i in Corollary 6.4 we obtain for the
desired generating function the expression

Ny, Ag-s+l+a+a-b
xMo-get ([Pt

r

where Ng=Ng- ¥ A;(i-1). This determinant has already been evaluated in
ir1

the proof of Theorem 6.5. |

Stanley’'s result about the norm generating function for column-strict
reverse plane partitions [21,Proposition 18.4] comes out of the above
theorem setting «=0, B=1, and b=1. His generating function for row and
column-strict reverse plane partitions [21,Proposition 18.6] 1is the

limiting case a=8=1, b=1, a—w of Theorem 6.7.

THEOREM 6.8. Let AeD, and A20. The norm generating function for
(a,8)-reverse plane partitions of shape A In which the first part in
row i is at least b+Bi (or equivalently, ny,2b+8) and the last part
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in row i is at most a-(1-a)A;+Bi is

Mo [a+a-b-c]---[a+a-b-c,]
[hy]:++[hp]

where p=|A|, Nm=l§:17\1(a1\1/2+81+b—a/2), and ¢; and h; are the contents
and hook lengths of the shape A , respectively.

PROCF. Evidently, the row bounds satisfy (6.4.1). Setting u=0,
a;=a-(1-a)A;+8i, and b;=b+Bi in Corollary 6.4 we get the expression

x"“'det [xt(R.-s) [;J'Nf;!:t] ] i

r

where N;;=N;o- L i(A;~1). This determinant has been evaluated in
i=1

Theorem 6.6.

For a=1, B=0, and b=1 we obtain Stanley’s result about column-strict
reverse plane partitions [21,Proposition 18.4] another time, this time
in "conJjugate" formulation. The hook formula for the norm generating
function for reverse plane partitlons with unrestricted part magnitude
[21,Proposition 18.3] is derived letting a=8=0, b=1 and a—w.

Concluding this section we derive a nice result of Bender and Knuth
[2,Theorem 2*]. In our context the proof again degenerates to a

determinant evaluation.

THEOREM 6.9. The norm generating function for r-rowed plane
partitions with largest part sm and exactly k parts in the last row is

Tk [kem-1 T2
k i=0 m+i]! -

PROOF. In Theorem 6.1 let a=8=0, A;—w for i{=1,...,r-1, and A=k,
u=0, ay=m, b=1 for i=1,...,r-1, and b,=1. Thus we obtaln the
determinant

8-t
(2) 1

<
X Tmes-tl o S s

X Ir'ow r

r-t

(2 )t k+m-1
k-r+t

For t=r,r-1,...,2 subtract the (t-1)’th column times xt_1[m-t+2] from

the t'th. The effect of this 1is that the first row becomes

(//Im0,0,...,0). Therefore the above expression may be written in the

form
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o)

2

1
x m—! row s, s<r-1

k-r-r+2 {r-2!
x

TmTr oet

r-t
C212t 1 xum-17_r2 k+m-1
x k-r+t+1] > [m-t+1] K-r+t row r—14

This process is iterated and after some manipulation finally results in

the expression

e e g, G
X {=olm+i]} x
r-i-1
r-1 ( )
rei+l 2 k+m-1 =1
x g 0™ e 2 e [ i tmer2-a =

r-2 r-1 .
= L [k+m—1] T [r;1] LIS N e o

1zolm+i]! k 1=0

The sum in the last line is equal to x(r-1)k, which is easily seen by

g-Vandermonde summation [18,App.IV.1]. I

Similarly we could derive Gansner’s theorem [5,Theorem 4.5], which is a

generalization of the above theorenm.

7. Trace generating functions. Trace generating functions were first
considered by Stanley [21,22]. He welghted each plane partition by its
norm and its O-trace (the sum of the parts on the main diagonal, cf.
section 1). He also considered enumeration by "conjugate trace" (we
give the definition below). Gansner [4,5] generalized Stanley’s trace
definitions and obtalned nice expressions for the (generalized) trace
generating function (as defined in section 1) for several classes of
plane partitions.

In this section we glve determinant formulas for the trace generating
function of (a,8)-plane partitions of a given shape. Stanley’s and
Gansner’s results are obtailned as special cases, again when applying
Lemma 2.2 (or 1its sublemmas 2.2.1 or 2.2.2, respectively). Also
contained are some new computations for the O-trace generating
function.

We begin with the general result

THEOREM 7.1. Let A,u € D, and a,b be r-tupels of integers satisfying
(4.2.1). The trace generating function for (a,B)-plane partitions of
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shape A/p in which the first part in row i is at most a; and the last
part in row i is at least b, is

_qyAs—s—1
det [x(ut-t,m,,—s»‘)b'x(u,_—t.M.-s)smﬂ3 D nn x(urt.l)a X
1ss, tsr t=p, -t

x t(?\,-—s/u,_—t;—a(h,-u,,)+(1—B)(s—t)+a._—b,+a)].

(t{(p/q;m) was defined in Proposition 3.4.) The (trace generating
function for (a,8)-plane partitions of shape A in which the last part
in row i is at least b; is

stasg-1t S

det [x(ut—t,A,-s)b'x(ut—t,p,—s) I x(ut-t,e)a x
1ss, t=sr t=py -t
Ag-S -1
x I (1-x(py-t,8)) ]
£=}l'_-t+1

PROOF. The argulng is Just as In the proof of Theorem 5.1, with the
exception that here instead of Theorem 4.2.(C) we have to use 4.2.(D),
and instead of Proposition 3.3 we have to use Propositions 3.4 and 3.5,

respectively. |

Consider an («,8)-plane partition m and the action of the rotation p
on m, which was defined in (6.3). p 1is "almost" trace-preserving, in
the sense that ¢(p(n))=t_(nr) for all integers 1. Respecting this
matter of fact, Theorem 7.1 can be converted in the analogous result
for (a,B)-reverse plane partitions, such as before Corollary 6.4 was

derived from Theorem 6.1.

THEOREM 7.2. Let A,y € D, and a,b be r-tupels of integers satisfying
(6.4.1). The trace  generating  function  for («,B)-reverse  plane
partitions of shape A/p in which the first part in row i is at least b
and the last part in row i Is at most a; is '

o Ag—S
det [x(ut—t,k,-s)b‘x(ht—t,A,-s)t“ B ' (a0 x
1ss, tsr L=Ay~t+1

x t’(h,—s/ut—t;-a(l,—ut)+(1-B)(s-t)+a,—bt+a)] ,
where t'(p/q;m) is the coefflcient of Z" in

p
17 1 (1-x(¢,p)z) .
t=q

The trace generating function for (a,B8)-reverse plane partitions of
shape A in which the first part in row i is at least by is
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Ag-S
det [x(u,,—t,h,—s)b‘x(kt—t,l,—s)t“_a-ﬂ) T x(ea-5%x
1ss,t=r =y -4
Ag—s5-1 -1
x I (1=-x(&,xg-5)) ] N |
£=“t-t

Since they are easler to handle, we turn our attention first to

determinant evaluations for («,8)-reverse plane partitions.

THEOREM 7.3. Let AeD, and Az0. The trace generating function for
(«,B)-reverse plane partitions of shape A in which the first part in
row t is at least b~(1-B)i is

M (1=x(y-j,a;-1))
1s{ < jsr
—_ r Ai"t"']
i=-i+1 i n

i=1 &=-r

r i A‘_t
Il [x(—i,)\‘—i)bwl 1 I x(t.?\‘-l)a]
i=1

(1-x(8,x;-1))

PROOF. In the second expression of Theorem 7.2 set u=0 and
b;=b-(1-B)i. Thus we obtain for the desired generating function the

expression
b~(1-B)t t-a-g) 275 «
det [x(—t.?«s—s) x(Ay-t,A,-S) M x(&az~s) x
1=s,tsr i=-t+1
Ag—s-1 -1
x I (1=-x(&,r4~5) ]
i=-t
Taking some factors out of the determinant yields
r A _qAg-i A -1 ~
1 [x(—i,?\i—l)b =Blon-0" 1 T xttA-0% T (x(8,2,-1)) 1] x
i=1 e=—i+1 b=r

x det((x(A,-s,0)-x(r,0)] - - - (x(A -5, 0)-x(~t-1,0))x(A4-5,0)" ")

Once agalin this determinant can be evaluated by Lemma 2.2, this time
taking X;=x(A;-1,0), A;=-x(-i,0), and B;=0. |

THEOREM 7.4. Let AeD, and A20. The trace generating function for
(a,B)-reverse plane partitions of shape A in which the first part in
row 1 is at least b+8i is
-1 O (1-x(aj-4,A;-1))

H a) 1si<jsr
I x(t,hs—t)] oA ST

=-i I I (-x(e,2a,-1)
i=1 =-r

begi A

[ R |

[x(-i.ki—i)

i=1

PROOF. Here, in the second expression of Theorem 7.2 set u=0 and
b;=b+Bi. Then for the desired generating function we get the expression
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t(1-«-B) Aﬁ's

=-t+1

det [x(—t,x,-s)b+8tx(7\,_—t,7\,—s) x(E,A g-s)" x
1ss, tsr
Ag-s1 -
x II  (1-x(L,A,~s) ] .
t=-t
After taking some factors out of the determinant we obtain
r gy A=t Ay-i-1 -
I [xt-ta,-0%Bh0a,-0" T x(6a-0% T (1-x(2,2,-1)) 1] x
=1 =—1i+1 b=—1r

x det(x(A,-5,0)-x(-r,0)): - (x(A-s,0)-x(~t-1,0))) .

The determinant is evaluated using Lemma 2.2.1 with X;=x(a;-i,0) and
Ai=‘x(_i.0). l

For B=b=1 Theorem 7.3 contains Gansner’'s result [4,Theorem 5.1], it |is

also a special case of Theorem 7.4 (8=1, b=0).

Determinant evaluations for trace generating functions for

(a,B)-plane partitions of shape A become very intricate. This is caused
Ag~S _

by the term I (1-x(-t,2)) 1 occuring In the second expression of
E=—t+1

Thecrem 7.1 for u=0. Only for rectangular shapes we succeed in finding

a closed form by applying one of our determinant lemmas, thus

generalizing Gansner’s [5,Theorem 4.2].

THEOREM 7.5. The trace generating function for (a,B)-plane partitions
consisting of r rows and c¢ columns in which the last part in row I is

at least b-Bi is
r
ol [(x(—i,c—t)b_m

c-i-1
i=1 =-

x(-t.e)“] M Cext-t, -\
1sisr
15 jsc

PROOF. Setting 7\=(cr). u=0, and b;=b-Bi in Theorem 7.1 we obtain for

&=-i

the deslred generating function the expression

c-s-1 c-s
det [x(—t,c—s)"“f’sx(—t,—s)s““ﬁ‘” I x-t,0% 1 (1—x(—t,¢)'1].
1ss, tsr g=-t P=—t+1

Taking some factors out of the determinant gives

c-i-1 « c-1 -1
M x(0,-0% M (-x(~i, ) ] x
=i =-i+1

x det ((x(0, =t )-x(0,c=1)) * -+ (x(0, ~t)-x(0,c-5+1))) .

r
I (x(—i,c—i)b_mx(—i,o)t_
i=1

1

The computation is completed by applying Lemma 2.2.2 with X;=x(0,-1)
and B;=-x(0,c-i+1). ||
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A little bit more 1is possible If we concentrate on the norm and
O-trace only. In (1.5) set x;=x for all integers 1 different from zero
and xg=xy. Then iIn the generating function (1.5) the coefficlent of

xnyt counts plane partitions with norm n and O-trace t.

THEOREM 7.6. Let AeD, , Az0, with A=k for i>k. The norm and O-trace
generating function for (a,B)~plane partitions of shape A in which the
last part in row 1 is at least b—aA(+(1-B)i is

k(b")-(”m(k:) Nk x)y 1sigjsrmrt—)‘ﬁj]
y x t=1(y;x)x —iar r ,
! IT [i-1]
f o

with the N, of Theorem 6.5.

PROOF. In the second expression of Theorem 7.1 we set x;=x for iz0,
xg=xy, u=0, and b;=b-aA;+(1-B)i. After some simplification we obtain
for the desired generating function the expression

bk+(1a-)(*"!

) r -
y 2 M i qet (ARt
i=1 1=s,tsr

)As—s+1) . (7.6.1)
where Ng comes from the proof of Theorem 6.5 and x(d4)=1 If 4 Is true
and x(4)=0 otherwise. To evaluate the determinant we first reduce it by
column operations. For t=r,r~1,...,2 subtract the (t-1)'th column from
the t'th. The effect 1is that the (k+1)’th row becomes (1,0,...,0)
(since Ay ,1=k). After expanding the determinant according to the

(k+1)'th row and taking some factors out of the determinant we get

L ssk
(yxt;x)A —s+1
det d =
1ss,tsr - 1 s>k
(€ 2N 2 NP
1 ssk
x Gk L k=141 (y"t‘x)a -s42
=y MIag-i+1] I (x ~1) det P
i=1 t=k+2 1ss, tsr-1 I s>k
{x ;X)k—s+1
This reduction is continued. After (r-k) steps we arrive at
oo
_ L () r-k,k r-j+1
det = yk(r k) 1=ih1 2 1 [I'[ -+ 01 (K i+‘l_1)] .
Jj=1\=1 i=k+2
x det  ( lyxtix) )
P g—s+r-k+1

1ss, t<sk
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K r-k-1 k {y;x)

k(r-k) N12 [a ~{+r-k ]! i
=y x I —f—]—_ Imounrg — x
=1 Aty

=1 (y"X)A‘—i+r+1
x det ((x_k—yxls—sv—k) . -(x—t—1—yx>“_5+r_k)) ,
1=s, t=sk
r ' r-k ' k
where Nio= L () - YL () + Yi(i-1). The determinant in the last
1zk+1 2 i=1 2 i=1

Ay -i+r-k

line is computed by Lemma 2.2.1 with X;=-yx and A1=x-i. Some

simplification finally ylelds the claimed expression. l
The companion of Theorem 7.6 is

THEOREM 7.7. Let AeD, , Az0, with A;=k for i>k. The norm and O-trace
generating function for (a,B)-plane partitions of shape A in which the
last part in row i is at least b+(1-a)A;-Bi is

k
_ k41 . I [A‘_[-AJ*"”
ok-(a+B)(*; )+1§17«1x~8 ko lyx), 1si< jsr
Y =153 e " '
i IT (i)
i=1

with the Ng of Theorem 6.6.
PROOF. Setting x;=x for i#0, xg=xy, u=0 and b;=b+(1-a)A;~Bl in the
second expression of Theorem 7.1 after some manipulation yields the

expression

r r
K(o-1+(1--8)(S") N-(2))- T [7‘* ;”] T -i+1) r »
x i=1 (-1)i=1 I [i-1]'  x
i=1
(yERZS) -t -1y

’

y

x det ( 1

1ss, t=sr A‘—SM)

where N, appears in the proof of Theorem 6.6. The determinant is the
same as that in (7.6.1), but with x and y belng replaced by their

reciprocals. It has already been evaluated In the proof of Theorem 7.6.

There is not much hope to find a simple closed form for the norm and
O-trace generating function for the classes of («,B)-plane partitions
considered in Theoremm 7.6 or 7.7, respectively, when the shape A is
arbitrary. As the example r=3, A=(A,,2,,1), Ay=2, shows, 1t s
impossible to find a product similar to those in Theorem 7.6 or 7.7,
respectively, for the generating functions. But, at least, the
rxr-determinant obtained by Theorem 7.1 can be reduced to a

kxk-determinant.

THEOREM 7.8. Let AeD, , Az0, with A<t for i>k. The norm and O-trace
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generating function for (a,8)-plane partitions of shape A in which the
last part in row 1 is at least b-eA;+(1-B)i is

r
k Ag-s+1
M [t-a,-11 (x® x)
yNist14(_1)(2) 1= k41 ! det gtd
r k 1ss, tsk \( xAs-s+2_ x) ,
I [i-11 1T (yx;x) J y 3 X)gees
ix1 is1 Ay—i+1
K+, ¢ r
where Ni3=k(b+k)-(a+8)( 2 )+‘ E:HM , N“=i21}\i(-ocAs/2+(1—B)i+b-a/2) +

r r
(-3 -2y , and g(t)=t-1+ ¥ x(tzk-A;+1).
37 akerl 2 1okl

PROOF. The second expression of Theorem 7.1 with x;=x if i20, xg=xy,
u=0, and b;=b-ar;+(1-B)i implies that the desired generating function
is equal to

bk+(1-a-g) (<"

) r -
y 2 3 Ns 1 -1 et (1/(yx(7‘3“)xt;x

i=1 )As_s'ﬂ) ’

where Ng appears Iin the proof of Theorem 86.5. For t=r,r-1,...,2 we
subtract the (t-1)’th column from the t’th in the determinant. We get

x(Agzs), A -s+t__t-1
det (1/(yx(A'ZS)xt;x)A _s4q) = det [y 2 (X zsgxt—1 )
s s H
1ss, t=r 1ss, tsr iy x 'X)As‘s*z
r
= x(z) det (yxm*‘“)(x?‘s s*1)
x(AsZS) t—1_
1ss,tsr\(y x 'x)R,‘S*'Z

For t=r,r-1,...,3, etc., we iterate this procedure. This furnishes

(A 2zs) t
det 1/(yx s % x) =
1ss,t5r( A,—s+1)
(r::l) (—1)t_1yx(h'25)(t_1)(xh‘-SM;x)t__,l
=Xx det ~ (A =5) ]
(y™' 7% 7 x;x)

1ss, tsr A s+t

Let s>k. Then, by the assumptions of the Theorem, we have A,Ls. It is

easy to see that because of this all entries in the s'th row are zero

_(s—A,
except the (s-Ag)'th, which is equal to x 2 [s-Ag—11!. Next the
determinant 1is expanded according to the rows k+1,k+2,...,r. Thus, a
kxk-determinant times some polynomial in x Is obtained. The final step

is to take some factors out of the determinant. I

The companion of Theorem 7.8 1s derived similarly as Theorem 7.7 was

derived from the proof of Theorem 7.6.
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THEOREM 7.8. Let AeD, , Az0, with A;<i for i>k. The norm and O-trace
generating function for («,8)-plane partitions of shape A in which the
last part in row i is at least b+(1~a)A Bl is

r
-S+
N N (k) H [l-?\l—ﬂ! (XA‘ s 1;x)g“>
y 18y V18(_q) 2 ;=k+1 det
1ss, tsk \(yx o752,
n [i-1]1 n (yx; x) a1 s, yx 3 X)gcey
i=1

k+1

where Ny5=bk- (a+B)( )+ E Ay and Nig= E A ((1~e)A/2-Bi+b-o/2-1/2) +

+( )+ E [A‘ “2] Z Ai g(t) was defined in the previous Theorem. ||

In [22] Stanley introduced the notion of "conjugate trace" of a plane
partition. The conjugate trace t*(n) of a plane partition n 1is the
number of parts my; of m with =m ;zi. An immediate check shows that the

involution (introduced in Definition 4.1) is conjugate

L
0,0
trace-preserving. Intending to enumerate plane partitions by their norm
and conjugate trace, for a plane partition m we define

wt"(") = xn(")yt'(") .

Since for the wt,—generating function for r-rowed O-tableaux we have
-1

,
. . . _ -1 (aizi) l_
F(T (0/0;a,0);w,,) = 11=11n 0 [(y" x ’x)ai~t+1] ,

it is no difficulty to obtain a determinantal expression for the norm
and conjugate trace generating function for r-rowed plane partitions
with largest part sa. (Here a is an r-tupel of integers, the shape /0
consists of r rows unrestricted to the right-hand side.) The arguments
in the proof of Theorem 6.1 only have to be modified. The resulting
determinant then 1is computed as usually, thus establishing an

alternative proof of Stanley’s result [22,Theorem 2.2].

THEOREM 7.10. The norm and conjugate trace generating function for
r-rowed plane partitions with largest part sa is
g 1
17 11 (yx";x)
i=1 r
PROOF. Regarding Theorem 4.2.(C) for a=8=0 and the consideratlons
above, it 1s seen that ¢0 0 is weight-preserving with respect to the

weight ¢
n(m)+(® 2

)
Wiy (M) = x yt’(n) .

This enables us to apply Lemma 2.1 with M0_=T°(m/eo_;(a,...,a)+ea_,0),
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etc., ¢=¢0 0" We obtain

(l-t) B
det [x 2/[s—‘l]!(();((azt)xs;x)a_tM) 1]

1ss,tsr

for the desired generating function. This determinant has already been

evaluated in the proof of Theorem 7.7 (set A;=a). | |
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