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OPERATOR METHODS AND LAGRANGE INVERSION: 
A UNIFIED APPROACH TO LAGRANGE FORMULAS 

CH. KRATTENTHALER 

ABSTRACT. We present a general method of proving Lagrange inversion for- 
mulas and give new proofs of the s-variable Lagrange-Good formula [13] and 
the q-Lagrange formulas of Garsia [7], Gessel [10], Gessel and Stanton [11, 12] 
and the author [18]. We also give some q-analogues of the Lagrange formula 
in several variables. 

1. Introduction. Let f(z) be a formal power series (fps) and g(z) a formal 
Laurent series (fLs) with finitely many coefficients with negative index diSerent 
from zero (g(z) = Sk>l 9kZk for an integer 1). Let f(O) = 0 and f'(O) + O. The 
coefficients of the expansion 9(Z) = SkeZCkfk(Z) can be computed by the two 
versions of the Lagrange formula, the first of which can be written as 

(1.1) -1( -1)g'(z)f-n(z) for n + O, n E Z (integers), 

where (zk) means the coefficient Of zk; the second can be written as 

(1.2) Cn = (Z0)9(Zlfn+(()) for n E Z. 

These formulas are based on the orthogonality relation 

(zo ) f k (Z) * E n+ ( ( ) ) = bnk 

for all n, k E Z (Enk iS the Kronecker delta). 
Using Hofbauer's method [16] for an orthogonality relation (fk, fn) = bnk we 

can transfer certain properties of the sequence (fk)kez to the sequence (fk)kez, 
where (, ) denotes a bilinear form. Hofbauer used it to prove some one-variable 
Lagrange formulas. We extend this method in §4 by our Theorems 1 and 5 in order 
to give a unified "recipe" for proving Lagrange inversion formulas. All known finite- 
dimensional Lagrange formulas can be treated, as we show in §§5 to 8. Moreover 
we use this recipe to find new Lagrange inversion formulas. 

§5 deals with the Lagrange-Good formula [13]. Using our method, we give a 
short new proof in which the Jacobian appears in a natural way. We are also 
able to find multivariable generalizations even of (1.1), the "first version" of the 
Lagrange formula (identities (5.6) and (5.7)). 

Received by the editors November 1, 1985. 
1980 Mathematics Subject Classification (1985 Revision). Primary 05A19; Secondary 05A15, 

05A10. 
Key words and phrases. Lagrange inversion formula, q-Lagrange inversion formula, inverse re- 

lations, umbral operators, q-exponential function, q-Catalan numbers. 

(r)1988 American Mathematical Society 
0002-9947/88 $1.00 + $.25 per page 

431 



432 CH. KRATTENTHALER 

§6 contains a new and extended presentation of Garsia's q-Lagrange theory [7]. 
The main idea is to extend his definition of q-powers to powers with integral expo- 
nents. We show that all of Garsia's results remain true in this more general context. 
Garsia [7] points out the connection between his theory and Gessel's q-Lagrange 
theorem [1O, Theorem 6.9], but he is unable to prove it. Our extension to inte- 
gral powers together with Theorem 8, where we discover the connection between 
Garsia's "right" and "left" inverses, is the key for finding a new proof of Gessel's 
theorem, within the setting of Garsia's (extended) theory. (Gessel derives it as a 
special case of a noncommutative generalization of the Lagrange inversion formula.) 

In §7 Gessel and Stanton's [11, 12] q-Lagrange formula is discussed. Earlier Car- 
litz [2] proved an inverse relation which generalizes Gessel and Stanton's formula. 
We prove both of these results by our operator method and obtain multidimensional 
generalizations (Theorem 12, Corollary 13). 

§8 concerns our [18, 19] q-Lagrange formula. In trying to find an s-variable 
q-analogue of the Lagrange-Good formula, we succeed only when s = 2 (Theorems 
20, 22 and 23), where we find q-analogues for special cases of the two-variable 
Lagrange-Good formula. In Example 21 we give an application to MacMahon's 
q-Catalan numbers. 

2. Definitions. Let Z be the set of integers. For a natural number s Zs denotes 
the set of s-tuples with the integers as components. For m = (m1, . . ., m8) and n = 
(nl, . . ., n) E Zs we set as usual Iml = 28-1 mi, m + n = (m1 + n1, . . ., m8 + n) 
and m < n if and only if mi < ni for all integers i, 1 < i < s. If all mi's 
are nonnegative m! means ml! m8!. For the special vectors of Zs where all 
components are zero except the ith, which is 1, we write ei. The vector e is 
(1, 1, . . ., 1). For (0, 0, . . ., 0) we simply write 0. For a set of commuting variables 
{Zl X Z2 , . . ., Zk } we set zk = Zlkl * Z2k2 * * * zk9 where k E Zs 

In this paper sections in which only a single variable is considered are always 
separated from multivariable sections. Although multi-indices (elements of Z8) are 
not denoted differently than one-dimensional indices (the same is true for variables), 
no confusion should arise. In the multivariable sections we assume a fixed s E N 
(natural numbers) except in §8, where s = 2. 

Let A be a (commutative) integral domain with unity. We shall consider the A- 
module Ls(z) = Ls(zl, . . ., z) of all formal Laurent series having the form a(z) = 
En>kAnZn for some k E Zs and an E A. Adding elements of Ls(z) is done 
by adding the components. The multiplication of a(z) (as above) and b(z) = 
Em>l bmZm iS defined by 

a(z) b(z) = E Ean-mbmZn 
n>k+l m 

The inner sum Em an-mbm iS finite because of the special form of the elements of 
Ls(z); in fact n-k > m > 1. Of course (Ls(z), +, ) is an integral domain. 

Next we define some linear operators on Ls(z). Loa(z) denotes the coefficient of 
z° in a(z). The coefficient Of zn in a(z) is then LO(z-n a(z)), for which we write 
(zn)a(z). The partial differential operators Di are defined by DiZn = ni zn-ei . Fur- 
thermore for the q-analogues we need the operators si(qi) given by Ei(q)zn = qiniZnX 

where the qi's are indeterminates. Finally we introduce the partial q-difference 
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operators by 
D(ql) = [(qi-l)zi]-l (6i-I) 

denotes the identity operator). The bilinear form (a(z), b(z)) = Lo(a(Z) b(z)) will 
be crucially important. For a linear operator U on Ls(z), the adjoint operator U* is 
the operator which satisfies (Ua(z), b(z)) = (a(z), U*b(z)) for all a(z), b(z) E Ls(z). 

For the indeterminate q we define 
n-1 

(axq)n=I|(l-aqi), 
i=O 

[(R] = q _ 1, [n]! = [n] [n-1] [1], [0]! = 1 

and 
a [a] [(w-1] [(w-n + 1] _ (q ,q )n 

n [n]! (qX q)n 
The q-exponential series is 

°° zk 

k=O [k]! 
Alternative expressions are 

oo 00 

eq (z) = n (1 + (q-l)qkz)-1 and el/q (Z) = t| (1 + (1 _ q)qkz), 
k=O k=O 

where the infinite products converge as formal power series in q, yet may be viewed 
as formal power series in z. For a definition of infinite products of that type as 
fps in z see [7, p. 217]. In addition eq(z)-1 = e1/q(-z). For an introduction to 
our notation and q-identities see Cigler's paper [3]. Note that in the one-variable 
sections we write z for z1, D for D1, D(q) for D(ql), etc. 

3. Preliminaries. We start with a sequenee f = (fk(Z))kEzs of elements of 
Ls(z) having the form 

(3.1) fk(Z) = E fnkZn and fkk invertible in A. 
n>k 

We call f a diagonal sequence. 
Given another diagonal sequence g = (91 (Z))lEz9 where 91(Z) = Sk>l 9klZkx the 

substitution s(f) is the sequence (hl(z))lez9, where 

hl (Z) = E 9kl f k (Z) 

k>l 

or, more precisely, 
hl(z) = E E fnk9klZn 

n n>k>l 

This substitution is associative; the neutral element is the sequence 1 = (zn)nEz9. 
The sequence @ = (Fl(z))lez9 is called the inverse sequence or short inverse of f if 
W(f) = (zn)nEz9 This means that if we set 

(3.2) Fl (z) = E Fkl Zk X 
k>l 
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then 

(3b3) zl = E Fklfk(z) for all I E Z8. 
k>l 

Obviously for any diagonal sequence f there exists a uniquely determined inverse 
sequence W. In particular Fkk = fk-kl is invertible in A; therefore W is also a diagonal 
sequence. Comparing the coefficients Of zn in (3.3) leads to the relation 

(3o4) E fnkFkl = bnl 
n>k>l 

Defining the operator Ufzk = fk(z) by extending it linearly to Ls(z), we see that 
UfFt(z) = Zl by (3.3); moreover this implies Uf-1 = U. Applying Uf-1 to (3.1) 
yields 

(3f5) zk = E fnkFn(Z) 

n>k 

Again comparing the coefficients Of zm, we have 

(3.6) E Fmnfnk = bmk 
m>n>k 

Identities (3.3)-(3.6) are equivalent. The "inverse relations" [22, Chapters 2, 
3] are essentially based on identities (3.4) and (3.6), respectively. Concerning the 
connestion between inverse relations and the Lagrange formula, see [1, 18, 19 and 
12, Introduction]. In fact (3.4) and (3.6) simply say that the matrices (fnk)n,kEZ9 

and (Fkl)k,lEZs are inverses of each other. This point of view leads to the concept 
of "recursive matrices" introduced by Barnabei, Brini and Nicoletti (see [24] and 
the references cited there). 

As indicated in the introduction, we need a sequence f= (fk(Z))keZ9 satisfying 
the orthogonality relation 

(3f7) ( fk (Z), fn (Z)) = bnk n 

Using (3.6) we get 

(3.8) fk (Z) = E Fkl Z 
l<k 

Analogously, by (3.4), 
Fn(Z) = E fnkz k. 

k<n 

4. The main theorems. 

THEOREM 1. Given M1 and M2 modules over the integral domain A, (,) a 
bilinear form from M1 x M2 into A, and I a set of indices, let (fk)kez be a sequence 
of elements of M1 with the property 

(4.1) (fk, h) = O for all k E I if and only if h = O. 
Let Uj and V denote linear operators on M1, V bijective, and let gy be arbitrary 
functions from I into A such that 

(4.2) Ujfk=gj(k)Vfk forallkEI andj=1, 2,...,r. 
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(4.3) For all indices m,n E I, m + n, there exists a j with 1 < j < r and 
gj (m) + gj (n) j 

Suppose there exist the adjoint operators of V, V-1 and Uj denoted by V*, V-1 
and Uj*(this means (VfXh) = (fX V*h) for all f E M1 and h E M2, etc.). 

(A) ff the system 

(4.4) Uj* hk = gj (k)V* hk, k E I, j = 1, 2, . . ., r, 

has a nontrivial solution (hk)kez i.e., hk + O for all k E I then (fk,V*hn) = 
(fk,V hk)Enk, where (fk,V hk) + O for all k E I. If (fk,V hk) is an invertible 
element of Afor allk E I, then there exists a (unique) sequence (fk)kez of elements 
of M2 satisfying 

(485) (fk, fn) = f5nkx n, k E I, 
and given by 

(4.6) fk = (fk,V hk) V hk 
(B) Let (fk)kez, Uj, V and gj be defined as above such that (4.1) and (4.2) hold. 

For a sequence (fk)kez satisfying (4.5) the equations 

(4.7) U;V 1 fk = gj(k)fkx k E I, j = 1, 2, . . . ,r, 

hold. 

PROOF. (A) Suppose (hk)keI satisfies (4.4). By using (4.2) we have 

gj(k) (fk, V*hn) = g; (k)(Vfk,hn) = (Ujfk,hn) 
= ( fkx U;hn) = 9i(Kn) (fk, V hn) 

From (4.3) this immediately implies (fk,V*hn) = O for n + k. For n = k suppose 
(fnXV*hn) = O for some n E I. Together with the above calculation this means 
(fkXV*hn) = O for all k E I. From (4.1) we conclude V*hn = O. It is easy to show 
that with our assumptions V* is bijective, and, therefore, hn = O, in contradiction 
to the condition hk 7& 0 for all k E I. 

Defining fk = (fk, V* hk)-1V*hk, we evaluate 

(fkx fn) = (fnxV hn) (fk,V hn) = f5nk 
The uniqueness of the sequence (fk)keI is obvious because of (4.1). 

(B) Suppose (fk, fn) = f5nk for all n, k E I by (4.2), we get 

(fkxU;V 1 fn) = (V lUjfkx fn) = gj (k) (fk, fn) 
= gj (n) fink = (fk, gj (n) fn ) 

which, combined with (4.1), proves (4.7). D 
We choose M1 = M2 = Ls(z) and I = Z8. A usually can be considered a field. 

In this case (fk, V*hk) in Theorem 1(A) automatically is invertible because it is not 
zero. For the q-analogues we choose A = K(q), the set of all rational functions in 
the indeterminates ql, q2, . . ., q8 over the field K. The bilinear form we use is (, ), 
as in §2. For the sequence (fk)keI we choose a diagonal sequence of Ls(z) (defined 
by (3.1)). Then condition (4.1) certainly holds. The Lagrange formulas then have 
the following form. 
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COROLLARY 2. Let (fk(z))kez9 be a diagonal sequence and Uj, V linear op- 
erators as in Theorem 1 satisfying (4.1)-(4.3). If 9(Z) E Ls(z) and (fk(z))kez9 
is given by (4.6), where the sequence (hk(z))kEz9, with hk(z) + O for all k E Z8, 
satisfies (4.4), then the following hold: The coefficients in the expansion 

9(Z)- E Ck fk (Z) 

kEZ9 

are computed by 

(4.8) Cn = (9(Z), fn (Z)) X 

or, if (fn X V* hn) and gy (n) are invertible in A, 

(4e9) Cn = 9j (n) -1 (fn X V* hn) -1 (U;g(z) X hn (Z)) . 

PROOF. The first formula is obvious because of (4.5). The second is just a 
rearrangement of the first, where we use (4.4) and (4.6). O 

The first version of Lagrange formula (1.1) corresponds to the second expression 
for Cn; the second version (1.2), to the first. When s = 1 in the "ordinary" Lagrange 
formula, the form (4.9) (i.e., the first version) is simpler and usually easier to use 
than (4.8) (the second version). Because of the complexity of the operators Uj, in 
general (4.9) will be rather complicated or even inapplicable. 

For a diagonal sequence (fk(Z))kEzs, the procedure of finding a Lagrange for- 
mula for this sequence is as follows: First we try to find a system of "eigenvalue" 
equations for the fk(Z)'S of the form (4.2) where the operators satisfy the condi- 
tions of Theorem 1. Then we establish the dual system (4.4) deduced from the 
system above. Next we try to find a sequence (hk(Z))keZs of nontrivial solutions 
of the dual system and from this compute (fk(Z))kEzs the system orthonormal to 
(fk(Z))kEzs. Having performed these steps, by Corollary 2 we get (two) Lagrange 
formulas for (fk(Z))kEzs. We demonstrate this method by deriving the classical 
Lagrange inversion formulas (1.1) and (1.2). 

But first we need the adjoint operators relative to the bilinear form (, ) which 
belong to the elementary operators introduced in §2. They are listed below. Given 
a(z) E Ls(z), the multiplication operator a(z) is defined by a(z)(b(z)) = a(z) b(z). 
Then 

(4.10) a(z)* = a(z), (ziDi)* =-ziDi, Ei(ql) = Ei(1/qi), 
(Z D (qi ) ) * =-1 Zi Di( 1 /qi ) = _ si( 1 /ql ) Zi Di(qi ) . 

These identities are easily verified. We prove the second. For all k, n E Z8, 

(ziDiZkXzn) = kidikX-n =-nibk,-n = (Z X-ZiDiZ ) 

By linearity we can extend this to a(z), b(z) E Ls(z): 

(ziDia(z),b(z)) = (a(z),-ziDib(z)). 

Next we introduce another class of operators, the shift operators. Given a se- 
quence f = (fk(z))kez9, we set 

fSifk = fk-elx fTifk = fk+el 
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F- 

If f = (fk(Z))kEI satisfies (3.7), then elementary considerations show that 

(4.11) fSt fk = fk+et fE = fTiX 

fTt fk = fk-ei fTt = fSix 

Moreover for Ua holds: 

(4.12) uaz k = fk(z). 

Now we turn to the one-variable Lagrange formula (see also [16]). We take A = K 
a field of characteristic zero, s = 1 and fk(Z) = f k(Z) for a fixed formal power series 
f(z) with f(O) = 0 and f'(O) + O. This assures us of (3.1). Hence f = (fk(z))kez 
is a diagonal sequence. Thus 

(4.13) zDfk(z) = k f( ) fk(Z) 

Now applying Theorem 1(A), for r = 1, U1 = zD, V = zf'(z)/f(z), gl(k) = k, and 
(4.10) we get the dual equation 

(4.14) -zDhk (z) = k ff(( )) hk (z), 

from which we immediately obtain hk(z) = f k(Z). So 

fk(z) = f( ))hk(Z) = fk+l() 

by (4.6) since 

(f (Z) fk+lt ) ) = to f( ) = 1. 

Corollary 2 then reads as follows. For g(z) E Ls(z) the coefflcients in the expan- 
sion g(z) = EkeZ ckfk(z) can be computed by 

cn = (g(z) f+(()) ) = (z°)g(z) f f+(() 

or 
cn = n (zDg (z), f -n (z) ) = (z - 1 ) 1 9' (Z) 

These are exactly formulas (1.2) and (1.1). 
In §6 it will be necessary to transfer eigenvalue equations of (fk(Z))kez of the 

form (4.2) to the inverse sequence (Fk(Z))kEZ We demonstrate this first for fk(z) = 
fk(Z) before stating a general result. Suppose F(f(z)) = z. The coefficients of the 
fps F(z) are determined uniquely. We start with (4.13), which can be rewritten as 

zDfk (z) = k (f ( ))ff( ( ) (f ( ))) fk (Z) * 

Since, as is well known, f'(F(z)) = l/F'(z), this is equivalent to 

(4.15) zDfk(z) = k T (f( ) ) fk(Z) 
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The dual identity for (fk(Z))kez is, according to Theorem 1(B) and using (4.10) 
and (4.11), 

-ZDf Ft (S) ) fk(k) = kfk(Z) 

Suppose tF'(t)/F(t) = JX o bjti. Then comparing the coefficients of z-l by (3.8), 
leads to 

00 

I¢iEk-ixl=k 

j=o 

Multiplying both sides by Zk and summing up over all k E Z yield, with respect to 
(3.2), 

I (( ) Fl (z) = zDFt (z), 

the eigenvalue equation for Fl (z) = Fl (z). 
The next theorem gives the general background of these considerations. But first 

we need some notation. 
DEFINITION 3. The linear operator c(f, d, C) is called a generalized shift for the 

sequence f = (fk(Z))kez9 of degree d E Zs and the associated sequence C = (ck)kez9 
with ck E A if 

(4.16) £(f, d, C)fk(Z) = Ckfk_d(Z). 

All operators previously defined (with the exception of Uf) are generalized shifts 
(or sums of them): 

Zim = c(1,-mei, (l)kez9)n 

Di = £(1, ei, (ki)keZ9)n 

ziDi = £(1, O, (ki)kEZ9 ), 

Ei(q ) = (1 °n (qi )keZ9), 

f Si = £ (f, ei X (l)keZ9 ), 
fTi = £(f, -ein (l)kez9) 

Note that the weak composition rule 

(4.17) £'f' dl, C)£(f, d2, ) = £(f, dl + d2 (ck-d2 bk)kez9 ) 
holds. Moreover, writing 

z (f, d, C) fk (z) = Ck f S fk (Z), 

where fSd = Hts-1 fSidi (d = (dl,...,ds)), by applying Theorem 1(B), gives 

£ (f, d, C) -f S fk (Z) = Ck fk (Z) 

or, after substituting k + d for k, 

£(f, d, C) fk(z) = Ck+dfk+d (z). 

Therefore 

£ (f, d, (Ck ) kE Z9 ) = c ( f, -d, (Ck+d ) kEZ9 ) e (4.18) 
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LEMMA 4* Let f = (fk(Z))keZ9 be a diagonal sequence with inverse sequence 
W= (Fl(z))lEz9, d E Z8, and C an arbitrary sequence of elements of A. Then the 
operator identities 

(4.19) Ua£(f, d, C) = £(1, d, C)UA 

and 

(4.20) Ua£(1, d, C) = £(@, dX C)Ua 

hold. 

PROOF. This is easily verified by applying both sides of (4.19) to fk(Z) and 
both sides of (4.20) to Zk, respectively. o 

For convenience we write *£(f, d,C) = £(l,d,C) and *£(l,d,C) = £(@, d,C). 

THEOREM 5. Let f = (fk(Z))kez9 be a diagonal sequence with inverse sequence 
@ = (Fl(z))lez8 and L = {Ln/n E N} a set of generalized shifts for either f or 1. 
Mi(L) denote monomials of elements of L. Then 

E Mi (L) = O if and only if E Mi (*L) = O, 

where Mi(*L) means the monomial obtained from Mi(L) by replacing each Ln by 
*Ln . 

PROOF . BY Lemma 4, UaLn = *LnU. This implies UaMi (L) = Mi (*L)Ua and 

UaEMi(L) = EMi(*L)U@. 

i i 

Since Ua is bijective, the equivalence of the above operator identities is proved. o 
Let us try out this result by applying it to (4.15), which in this new terminology 

is written 
00 

£(1, O, (k)ksz)-, bt £(f,-i, (k)keZ) = 0, 
i=o 

where °°0 bt 1zi = F(z)/zF'(z), by definition. By Theorem 5, which simply says 
that f is to be replaced by 1 and 1 by @, respectively, this becomes 

00 

c(@, O, (k)kez)-E bt c(1,-i, (k)kEZ) = O. 

i=o 

Applying this identity to Fl (z) gives 

kFI(z)- (())zDFI(z) = O 

and 
zDFI (z) = k ( ( ) ) Fl (z), 

as desired. 
From Theorem 1 and Definition 3 the eigenvalue equation (4.2) could also be 

written 
Uj fk(Z) = Ec(f, 0, (9j(n))nEzs ) fk(Z)* 
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This equation is valid for all fk(Z), which is supposed to be a diagonal sequence; 
hence 

Uj = V £ (f, O, (gj (n))nEZ9 ) ̂  

Then the adjointed operators must also be equal. 

U; = £ (f, O, (gj(n) )neZ9)v* 

by (4.18). This identity is applied to V*-lfk(z) to get 

U;V lfk(Z) = 9j(k)fk(Z)) 

which is (4.7). 
5. The Lagrange-Good formula. In this section we start with s fps fi(z) 

(i = 1,2,...,s) in the rariables z1,...,z8 with coefficients in the integral domain 
A and the property fi(z)lzi=o = O and (Difi)(Z)lZi=o is invertible in A for all i. 
Setf(z) = (i1(z),f2(z),...,f(z)). Thenthesequencef= (fk(z))kez9,where 
fk(Z) = fkl (Z)fk2 (Z) * * * fk9 (Z) iS a diagonal sequence. Differentiation with respect 
to Zi yields 

(5.1) ziDif k (z) = kj zi (Dify ) (z) fk (z) i = 1 2 s 

From these s equations we are able to compute the ki's by Cramer's rule, and thus 
we will get s eigenvalue equations in the sense of Theorem 1. 

We write for convenience [f](z) for the matrix 

{Zi(Difi)(Z) A 

t fi(z) Ji j=l 
Its determinant is denoted by Af(z) . Let tii f (z) be the determinant of the matrix 
obtained from [f](z) by omitting the ith row and jth column. Then 

s \ 

(5.2) t( l)j li\ f(z)z D ) fk(z) = kji\Z(z)fk(z) j = 1, 2, . . ., s. 
1=1 

With Uj = EI=l(-l)i+lAlyf(z)zlDlX V = Af(z) and gj(k) = kj, we can apply 
Theorem 1, since all other conditions are satisfied. First we compute U;: 

* 

Uj* = t (-l)J+lAljf(z)zlDl j 

\1=1 / 

=-Et-l)i+lZlDl<tjf(Z) 
1=1 

=-(-l)i+lalif(z)zlDl-(-l)j+lzl(DlAljf)(z). 

1=1 1=1 

We shall show that the second sum in this expression is equal to zero. When this 
is done (4.4) reads 

s \ 

_ Et-l)i+lAlif(z)zlDl) hk(z) = kjAf(Z)hk(Z) 

1=1 
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By comparing this relation with (5.2), we immediately get the solutions 

hk(z) = f (z). 

Since (fk(z)v*hk(z)) = LoAf(z) = 1, by (4.6) we obtain 

(5A3) fk(Z) = tf(Z)f (Z) = Z fk+e(z) X 

with bf(z)/6z the Jacobian of f. 
We now must prove EI=l(-l)j+lzl(DlAljf)(z) = O. Let S8 be the set of bijec- 

tions on the set of integers between 1 and s. Then 
(5.4) 

Et-l)j+lzl(DlAljf)(z) 
1=1 

( i s j ) 

= E sgn7rE tI Z(t)(D1r(i)rt)(z) 

k#j isj,k 

{ Z1r( j)z1r(k) (D1r(j) D1r(k) fk) (Z) Z1r(j) (D1r(j) fk) (Z)Z1r(k) (D1r(k) fk) (Z) 8 

V fk (Z) fk (Z) J 

= E sgn7rEA(f,j,k,) 

ES8 kk - # j 

= EsgnlrA(f,j,k,lr). 
k=l v;rES k#j 8 

We divide Ss into two classes for fixed j and k: (lk j = {ala(j) < a(k)} and 

(2k j the complementary set with respect to S; i.e., (2k j = {ala(j) > a(k)}. We 
introduce the map tjk from (lk j onto (2) j by tjka = (a(j)a(k))a = a(jk). This 
implies sgn(tjka) =-sgn a. Obviously tjk is a bijection for all k # j. Furthermore 
we note A(f, j, k, 7r) = A(f, j, k, tjkT). Hence 

E sgn7rA(f,j,k,) 
1rS8 

= E sgn 7rA(f, j, k, 7r) + E sgn xA(f, j, k, ) 
1rE S 8, k, j E 8, k, j 

= E (sgn 7rA(f, j, k, 7r) + sgn tjk 7rA(f, j, k, tjkT)) 

1rS8,k,j 

=0. 

This is valid for each k; therefore (5.4) is equal to zero, as desired. 
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Combined with Corollary 2, this completes the proof of 

THEOREM 6 (LAGRANGE-GOOD FORMULA). The coefficients in the expan- 
ston 

9(Z) = E ckfk(z 

kEZ8 

are computed by 

(5 5) ( ( ) ze 66 (z) /6z ) ( -e) 9(Z) 66 (z) /6z z 

This is the analogue for (1.2). 
Trying to get an analogue of (1.1) by (4.9) we get (if nj is invertible in A) 

(5.6) n-1 (z°) ( _l)i+lAlyf(z)zlDl9(z) j (Z) 

1 = 1 

for j = 1, 2, . . ., s. These s formulas are put together in a symmetrical formula by 
multiplying the jth formula by nj Inl-1 and then summing over all j. The result 
1S 

) Inl-l(z°) E (_l)i+lAlyf(z)zlDl9(z) z (Z) 
I,j= 1 

(if Inl is invertible in A), but it seems to be only of theoretical interest if s > 1, 
since there is no improvement to formula (5.5) (which is the case for s = 1), because 
in (5.7) S2 determinants have to be computed, in (5.5) only one. 

R E M A R K. (1) In the proofs of the Lagrange-Good formula the Jacobian of f (Z) 

isusually "pulledoutofahat"; generally (e.g., in [16, 24, 27]) toZe(66(Z)/6Z)fk(Z) 

= bke iS first proved. The advantage of our proof is that the Jacobian of f(z), or 
better \ f (Z), appears naturally when transforming system (5.1) to system (5.2) in 
order to get eigenvalue equations which can be treated by Theorem 1. 

(2) Brini [24] and Henrici [27] extend the Lagrange-Good formula to a larger 
set of series. For a fixed s E N consider fLs of the form 

(5.8) a(z) = E alzl, 
IEZ8 

where for all m E Z there is only a finite number of al's with 111 < m which are 
different from zero. Let the set of all fLs of the form (5.8) be denoted by Ls(z). 
Then Brini and Henrici start with f?,(Z) E Ls(z) of the form 

(5 9) f?,(Z) = btzt + , btlzl, i = 1, 2, . . ., s, 
111>2 

where the bt's are invertible in A. They show that the Lagrange-Good formula 
remains true for these more general series. To establish this we can use our proof 
of Theorem 6 verbatim. The only difference is that when applying Theorem 1 and 
Corollary 2 we have to take M1 = M2 = Ls(z) instead of Ls(z). 

Concluding, we turn our attention to Abhyankar's [23] inversion formula, re- 
discovered independently by Garsia and Joni [8, 9, 17] and Viskov [28]. Let 



OPERATOR METHODS AND LAGRANGE INVERSION 443 

f?(z) (i = 1,2,...,s) be fLs of the form (5.9) and b? = 1, f = (fk(Z))kEZ8 and 
a = (Fl(z))lez8 its inverse sequence, where F(z) = (F1 (z), * * *, F(z)) with F(z) 
being of the form (5.9), too. (Such a system F(z) does exist; see [24, 27].) Ab- 
hyankar's formula gives an expression in terms of f? for the umbral operator Ua, 
i.e., the substitution by the inverse sequence W. The above-mentioned authors only 
prove it for f? being fps of the form (5.9). A slight modification of Henrici's [27] 
proof establishes its validity even for fLs of the form (5.9) with b? = 1. 

THEOREM 7. Let f?(z), F?(z) (i = 1,2,...,s) be defined as above. Then 

(5.10) Ua = E ! ,5f (Z)Gm(z) 
m>O 

where G? (z) = Z?-f? (Z) z 

PROOF Let 9(Z) = Ske.Zfi Ckfk(Z). Then by definition of Ua, 

UW9(Z) = E ckzk 

kEZ8 

Therefore Cn = (Zn)Ua9(Z). But considering Remark (2) above, we can compute 
Cn by the Lagrange-Good formula (5.5). Hence 

(5.11) (zn)Uag(z) = (Z )Z 9(Z) 6f (Z)/Ez 

v (z°)g(z)(Ef (z)/Ez)z-n 
(1-G(z)/z)n+e 

= (z )9(Z)^Z(Z)Z , ( m ) (G(z)/z) 

E (zn+m) ( n + m ) 6^f (Z)G(z)m 
m>O 

( ) E m! bz( ) ( ) 9( ) 
m>O 

Note that the application of the multinomial theorem was possible because the 
order (for definition see [27, (1.3)]) of G?(z)/z? is at least 1, since the f?'s are of 
the form (5.9) and bt = 1. Equation (5.11) holds for all n E Z8; therefore 

U@g(z) = E D bf (z)Gm(z)9(z) 
m>O 

which is true for all g(z) E Ls(z). This furnishes the operator identity (5.10). O 
The generalization of Theorem 6 to Ls(z) seems to be a little artificial, but there 

are beautiful applications which can be found in [27, §5]. For surveys and references 
concerning multivariable Lagrange formulas, see [27 and 26, Part II]. 

6. Garsia's q-analogue of the Lagrange formula. Here we take s = 1 and 
A = K(q) to be the set of all rational functions over a field K in the indeterminate 
q. Let f(z) be an fps (in one variable z) over K(q) with f(O) = 0 and f'(O) # O. 
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The powers f k (z) are replaced by the "q-powers" f (z) * f (qz) f (qk- 1 z) for k E N. 
To apply our method, we need an extension for k E Z. Hence we define 

ft ) f(z) f(qk-1z) for k>O, 
f[k,q] (Z) = t 1 for k = O, 

t f(z/q)f(z/q2)*** f(z/q-k) for k < 0. 
With the help of Garsia's [7] starring operator this could be written in closed form: 

f [kXq](z) = f *(z)/ f *(qkz) for k E Z 
This definition warrants the following properties for k, I E Z: 

(6.1) f[kXq](z) . f[l,q](qkz) = f[k+l,q](z) 

(6.2) f [kXq] (z)/f [lXql (z) = f [k-IXq] (qlz) 

(6.3) l/z[k,q](z) = ft-k,1/q](z/ 

(6.4) f[k,q](z) = f[k,1/q](qk- 

These identities are easily verified by trying all cases. 
Let fk(z) = f[k,q](z). Then f = (fk(z))kez is a diagonal sequence. Then 

f[l,q] (z)X[kXq] (qZ) = f[k+l,q] (Z) 

by (6.1) But this is 
f(Z)6(q)fk(Z) = fTfk(Z). 

By Theorem 1(B) the dual equation would be, by (4.10) and (4.11), 

6( 1/q) q(z) f Tfk (z) = fk (Z) 

This leads to 
fk+ 1 (Z) = fk (qZ) / f (Z) X 

and therefore we get 

(6.5) fk(z) = fo(qkz)/f [k'ql (Z) 

which is proved inductively. The orthogonality relation (3.7) then becomes 

(6.6) tof[k,q](z) f[ ( ]( )) = bnk 

Using (6.2) and replacing z by q-nZ give 

Lo f (Z) fO (Z) = bnk X 

or, using (6.3), 
fO(Z) 

° f [n-k, l/ql (z/q) nk 

Setting n- k = m, we get 

Lo f [m,1/ql (Z/q) amO 
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Since fo(Z) iS an fps, the last identity does not give any information about fo(Z) 

when m < O. For m > O we have 

(6.7) (zo) z ( / ) f( / m) = EmO 

By this identity the coefficients of fo(Z) can be successively evaluated. By compar- 
ing with Garsia [7, identity (1.7)], we see that our fo(Z) iSX in Garsia's notation, 
zf°(z)/f(z) or, vice versa, 

X O(z) = (f(z)/Z)fO(Z) 

(In our context this is to be regarded as a definition. Moreover we remark that in 
Garsia's paper the roles of f (Z) and F(z) are exchanged.) 

With his roofing and starring operations, Garsia is able to give an explicit expres- 
sion for his f°(z). This cannot be deduced by our method (starring is a nonlinear 
operator). We refer the reader to Garsia's paper. We intend to give a survey of 
the usefulness of our method by deriving and extending Garsia's results that do 
not involve roofing or starring operations within our setting, finding some new ones 
((6.14), (6.24), Theorems 8 and 10), and proving Gessel's [10] q-Lagrange theorem. 

Next we study properties of the inverse sequence W = (Fk(z))kEz. Equation 
(3.3) in terms of the q-powers fk(z) = f[k,q](z) becomes, for I = 1, 

00 

(6.9) E Ft 1 t [tXq] (z) = z. 
t=1 

We denote the fps F1(z) = °°-1 Ft1zt by F(z). Substituting z for qkz and multi- 
plying by f [k,q](z) transform (6.9) into 

00 

E Ft1 t [k+tXq] (z) = qkzf [k,q] 

t=1 

with respect to (6.1). In the operator terminology of §4 this is 
00 

E £(f,-i, (Fjl)jez) = £(1,-1, (l)jeZ)£(f, o, (qi)jeZ) 
t=1 

The dual equation, according to Theorem 5, is 
00 

E £(1,-i, (Fjl)jez) = £(R,-1, (l)jeZ)£(l,O, (qi)jez) 
t=1 

or, in terms of the elementary operators, 

F(z) = aTe(q). 

Applying this operator identity to s(l/q)Fl(z) yields 

F(z)Ft (z/q) = Fl+l (Z). 

Combining this with F1(z) = F(z), we get immediately the surprising beautiful 
form 

Fl(z) = F[l l/q](z) (6.10) 



446 CH. KRATTENTHALER 

From this point of view Garsia calls F(Z) the right inverse of f(z) (and f(z) the 
left inverse of F(Z)). 

As a corollary we get 

(6.11)(1) E akZk-E bk f [kXq] (Z 

k k 

if and only if 

(6.11)(2) E alF[t'l/q] (Z) = E blzl. 
l l 

The second equation is derived from the first by applying the operator Uf-1, and 
vice versa. 

By (6.5) the Lagrange formula (4.8) reads as follows: The coefficients in the 
expansion 

(6.12) g(z) = E Ck f [kXq] (Z 

kEZ 

where g(z) E Ls(z), are given by 

(6.13) cn = ( g (z) f[0 (q ( )) ) = (z° ) g (z) f[0 (q] ( ) 

(By comparing with (1.2) we note that fo(z) is the q-analogue for zf'(z)/f(z); 
hence f°(z) by (6.8) for f'(z).) 

Interesting new facts arise by studying the adjoint of Ua. First we find an ex- 
pression for the coefficients Of fO(z)z[nXq](z) For g(z) = z-k the Lagrange formula 
yields for the expansion (6.12) 

c L (z-k fo(q Z) ) 

On the other hand, by applying (6.11) to (6.12) we get 

Cn = (Zn)F[-k'l/q](z) = to(z-nF[-kXl/q](z)) 

Therefore by changing n into-n, we get 

Lo(znF[-k 1/q](z)) = Lo (z-k ff[0(q]( ))) . 

On the left side we substitute q-kz for z; on the right, qnZ for z. This is allowed 
because Lo(a(z)) = Lo(a(pz)) for all a(z) E Ls(z) and constant p. Together with 
(6.2) this leads to- 

Lo(zn/F[k l/q] (Z)) = Lo(z-kfo(z)f[n q] (Z)) 

or 

(6.14) (zk)fo(z) z [nXq](z) = (z-n)l/F[k 1/q](z) 

This identity plays a significant role in the proof of Gessel's theorem [10, Theorem 
6.9]. In addition, it is easy to extend Garsia's q-Lagrange inversion formulas [7, 
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identity (1.10) and 25, identity (5.6)] to integral n and arbitrary b(z) E Ls(z) with 
the help of (6.14). In fact each of them valid for all n E Z and 40(z) E Ls(z) is 
equivalent to (6.14). 

In particular, we get, for n = O, 

(zk)f0(Z) = (Z )F[k,l/q](z) 

After we substitute qk-lz instead of z on the right side, (6.4) implies 

(6.15) (zk)fO(Z) = (Z°)F[kq]( ) (= (Z°)Ft-k,q](z)) 

This briefly means, if we remember (6.11), that fo(z) is the same for the left and 
right inverses of F(z). (6.14) for n = 1 and k + 1 instead of k is 

(6.16) (z ) z f0(Z) = (Z )F[k+l l/q](z)' 

which turns out to be Garsia's coefficient representation of his f°(z) [7, Theorem 
1.3]; compare to (6.8). 

Now we consider U. 

(Z X UA Ft-n,l/q] (z) ) (U@z X Ft-n,l/q] (z) ) 

( ( )' F[-n l/q](Z) ) 

= LoF[k+nXl/q](qnz) 

by (6.2). Using (6.3), we rewrite (6.14), for n= O, as 

(Z )f0(z) = (z°)Ft kXl/q](qz) = LoFt-kxl/q](p 
for an arbitrary constant p. Therefore 

( aFt-n,l/q](z)) = (z k n)fO(z) = (zk k (z) n 
As valid for all k E Z 

Ua F[-n,l/q] (z) = fO (Z)Zn n 

After using (6.3) again, we get 

(6.17) fo (z) - 1 Ua 6(q) F[n q] (z) = zn 
But according to (4.12) and (6.5), 

(6.18) fo (z)-l ua 6(q) zn = qn fo (z)-l f _n (Z) 
_ qn f0(q Z) 1 

f0(Z) f [ 'q] (Z) 
= (qf0(Z/q)f (Z)) 
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Therefore the right inverse of F(z) is q(fo(z/q)/fo(z))f(z/q) This proves 

THEOREM 8. Let f (z) be the left inverse and 1 f (z) the right inverse of F(z) . 
The coefficient Of zn Of the fps fo(z) is defined by (6815) Then the relation 

(6.19) lf(Z) = q(fo(Z/q)/fo(Z)) f(Z/q) 

holds, and the operator identity 

(6a20) Ua = f0(Z)Ul fe( /q) 

where 1 f = (1 f [kX 1/q] (z)) kEZ . 

Quite analogously read the results for F(z), namely 

(6.21) l F(z) = - -°(( )) F(qz) 

if l F(z) denotes the left inverse of f (z) and 

(6e22) Uf* = Fo(z)Ul as(q). o 

Because Ua = Uf-1, we have by (6f20) and (6f22) that 

(6f23) fo(z) U1 fe(1/q) = s(1/q) u- Fo(z)- 

Combining (6a8) and (6a19) yields 

1 f (Z) fo(Z)/z = z (Z/q) 

and, analogously, 
1F(z)Fo(z)/z = °F(qz) . 

(Garsia has to distinguish between f°(z) and °f(z) or F°(z) and °F(z), respec- 
tively, because these fps are not independent of whether we take the right or left 
inverse. The advantage of our fo(z) is that we need not bother about this. For 
clarity f°(z) arises by taking the right inverse of f(z); °f(z), by taking the left 
inverse of f (z) or, in other words, the coefficient of Zk in f°(z) is given by the right 
side of (6016) and the coefficient of Zk in °f(z) is given by the right side of (6X16) 
after q iS replaced by l/q and F is replaced by 1F. The same holds analogously for 
F°(z) and °F(z).) 

Moreover, we state the operator identities 
U1 fl lf(Z)E(l/q) = ZU-1 

and 
U- l 1 W l F(z)E(q) = zUl a, 

which are verified by applying 1 f [nX 1/q] (z) and 1 F[nXq] (z), respectively. Then (6X23) 
reduces to 

(6.24) 
f°(z)Ul f = U-a1 °F(Z) -1 
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Garsia's q-analogues of the chain rule for derivatives are special cases of this oper- 
ator identity. Here it is convenient to adopt Garsia's notation for his q-analogue of 
functional composition: 

(f) = kft 'q](Z) or b(F) = ¢IF[l l/q](z) 
k I 

respectively, with b(z) = Sk bkZk an element of Ls(z). Applying (6.24) to °F(z) 
then yields 

(6.25) f ° (z)°F(1 f ) = 1 

[7, Theorem 2.6]. By (6.19) and (6.8) we know that 

f [k,l/q] (z) = qk f°(Z/q ) f[k+l,l/q] (z) . _ 

which transforms the last identity into 
oo 

(6.26) E °Fk qkf[k+lXl/q](z)fo(z/qk) = Z 
k=O 

([7, Theorem 1.4], where q iS replaced by l/q. The equality of fo(Z) and Garsia's 
eq(z) are proved in Theorem 8). Applying (6.24) to 1 yields 

(6.27) f ° (Z) = 0F- 1 (q) 

which is another q-analogue of fq (Z) = F' ( f (z) ) - 1. 
Now we are in a position to give a new proof of Gessel's (strong) theorem [1O, 

Theorem 6.9], which in our notation reads as follows. 

THEOREM 9 (GESSEL). Let f(z) satisfy 
oo 

(6. 28) f (Z) = qZ E 9n f [n Xq] (z) 

n=O 

with 9(Z) = E°n°=o 9nZn an fps with 9(0) # O. Let f (Z) satisfy 

(6.29) a (z) = _ E 9 E [n,l/q](z) 
n=O 

Then there for n, k E Z, 

(6.30) (zn) fO(z) z [kXq] (z) = q(n+1) (zn-k)9[n,l/ 

holds, where fo (Z) = ( 1-d (z) ) - 1 with 

(6.31 ) d(z) = z E 9i+ j+ 1 f [iXq] (z) z [ j, l /q] 

i,j=O 

PROOF. Division by zf (Z) and substitution of z/q instead of z turn (6.28) into 
oo 

(6.32) _ = E 9n+1n[n,q](z). 

n=-1 
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But f°n°=-l 9n+lzn = g(z)/z. If we set F(z) = z/g(z) then F[-l l/q](z/q) = 
g(z)/z. By (6.11) we obtain that the left inverse of F(z/q) exactly satisfies (6.32). 
Therefore (because of uniqueness) f(z) must be the left inverse of F(z/q). Since 
U6:(q)[F(z/q)][l l/ql = zlX we get f(z) = Uas(q)z = q(Uaz). Uaz is the left inverse 
of F(z); therefore f(z)/q is the left inverse of F(z). Similar considerations starting 
with (6.29) show that qf(z) is the right inverse of F(z). This and (6.19) give 

(6.33) f(z) = q-l f0(Z/q) f(z/q) 

where fo(z) is defined as in Theorem 8. 
Since (6.30) is obviously just a rearrangement of (6.14) with n and k exchanged, 

only 1-1/fo(z) = d(z) is left to be proved. We have 

1 - 1 1 (f ( ) - 1) 

1 (l_E(l/q))_l (f (z)_f (Z)) 

fo(z) ) ( f0(Z) E gn+lft Xql(z) 

( q ) ( q ) n--1 ( q ) ) 
by (6.28) and (6.29). Using (6.33) and (6.4), we obtain 

fo (z) fo (z) 1-s ( l /q) ( 9n+ 1 (zf0 (z) f (z) 

- qn+ 1 fo ( qn+ 1 ) q ( qn+ 1 ) ) ) 
1 E 1-S(l/q)n+ [ ] 

oo n 
= 1 E 9n+1 {6(l/q) (zfO(z)f[n, 

f0(Z) n=O i=0 

Z 9z+j+1q i f-q( ) ) f[j,1/q] ( Z ) f[t 

Again using (6.33), we get the desired equation 
00 

1 - - = Z E 9t+i+lf[tXq] (z)f[j,l/q] (z) o 

fo (Z) ,j=0 

The next theorem adds another identity of this rather strange type; it is a q- 
analogue of the chain rule for derivatives. 
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THEOREM 10. Let F(z) = n=l Fnznn f(z) be the left inverse and 1 f(z) the 
right inverse of F(z) and f°(z) as in (6.8). Then 

oo 

(6.34) ^ F+ j+ 1 f [t 'q] (qz) 1 f [i l /q] (z) f ° (z) = 1. 
,j=O 

PROOF. BY (6.19) and (6.8), 
oo 

(1-6(l /q) ) E FX+j+1 j[X'q] (qZ) 1 q[i' 1/q] (Z) f ° (z) 
,j=O 

= (1 - s( /q)) E Fi+j+l fli ql (qz)qj f0; lq ) f[j,1/s] (Z) f0(Z) z (Z) 

oo n 
= (1 _ 6(l/q) ) ¢ Fn+l ¢ g(l/q) j f0 (Z) f[n+l,ql (z) 

n=O j=O 

= E Fn+1 (1 _ g(l/q)n+1 ) fo(Z) f[n+1,q] 
n=O 

= z E Fn+l f [n+l'q] (z)-f0(Z) E Fn+l lf[n+lXl/q 
n=O n=O 

- - 

fo (Z) fo (Z) 
= z- z=O. 

z z 

Therefore-the left-hand side of (6.34) is equal to a constant, which is easily evaluated 
by setting z = 0. o 

Obviously more identities of this type can be obtained in a similar manner. 
Indeed, a beautiful theory can be developed. But unfortunately it seems that only 
in Carlitz's special case, that is, f(z) = z/(l-z) can the fps f°(z) and fo(z) be 
evaluted concretely. (There 

f (Z) = (1 _ z)(l _ Z/q) and f0(Z) = 1- z/q ) 

A slight generalization of this example can be obtained from the same considerations 
Gessel makes in order to expand his q-Lagrange inversion formula of [11] to the 
inversion formula of [12]. (Riordan does the same in the opposite direction, when 
he derives the inverse relations of Legendre type by those of the Chebyshev type 
in [22, §2.5].) We only briefly state the result of this procedure, making use of the 
terminology of [18], namely 

(6.35) P> (l, z) = e ( /(1 )) = (-l)kq(2) k Zkx 

which is a q-analogue for (1 - z)a. Let d be a natural number. Then for f (z) = 
Z/p(qd)(l zd) and fk(Z) = f[k,q / ](Z), 

f (Z) = (qd) (l -dZd) f0( ) 1 _ q dZd 

(fk(Z) of course is an analogue for Zk/(l _ Zd)k/d.) The corresponding Lagrange 
formulas appear in [12 and 19]. 
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7. The q-Lagrange inversion formula of Gessel and Stanton, a general- 
ization by Carlitz. Let K be a field of characteristic zero. Gessel and Stanton's 
[11] formula essentially is a q-analogue of the inverse relations of Gould type [22, 
p. 52]. As application of our operator method in connection with this Lagrange 
formula has already been discussed by Hofbauer in [16]. We shall only state the 
result and leave the details to the reader. 

The sequence (fk(Z))kEz with 

(7.1) nEk (qxqjn-k 

where A,p E K, satisfies the eigenvalue equation 

(Z + l)E(q) fk(Z) = qk(fk(Z) + AZE(P)E(q) fk(Z)) 

The sequence (hk(Z))keZ7 given by 

hk(Z) = E ( P q jP )k-I (_l)k-I -I 

satisfies the dual eigenvalue equation 

s( /q)(Z + l)hk(z) = qk(hk(Z) + A6(l/P)6(l/q)zhk(z)) 

Therefore the wanted sequence (fk(Z))kez is, by (4 6), 

(7.2) E (Apk q , p )k-I 1 (1-Ap q )(-1) z 

(Indeed Gessel and Stanton's notation differs from ours by the factor q(2)+( 2 ), but 
obviously both inverse relations are equivalent. Our choice of constants warrants 
the condition fkk = 1 for all k.) 

If q = pc-l, A = pa and p 1, then this inverse relation turns into the classical 

Gould-type relation if c # 1: 

{a +n+ck-k-10 
fnk = t n-k ) 

if and only if 

Fkl = (-l)k-l + k ( k+ I ) 

(The factors (c-l)k-n and (c-l)l-k are negligible.) In [14] Gould and Hsu found 
a generalization of this inverse relation, which can be written as 

(7 3)(1) fnk (n-k) 

if and only if 

(7.3)(2) al+l + kbl+l (k - 1) 

for arbitrary aj, bj E K. 



OPERATOR METHODS AND LAGRANGE INVERSION 453 

Carlitz [2] gave a q-extension of this generalized Gould-type illverse relation 
which contains the above-stated formula of [11] as a special case. His viewpoint is 
quite different, though. Whereas Carlitz restricts his interest to inverse relations, 
Gessel and Stanton apply their formula to derive transformations of basic hyper- 
geometric series, Rogers-Ramanujan identities, etc. The next theorem presents 
Carlitz's inverse relation in a somewhat modified form. 

THEOREM 11 (CARLITZ). Let aj, bj be elements of K(q). Then 

(784)(1) fnk = J k+l( j + q bj) (n-k) 

if and only if 

(7.4) (2) Fkl = (-l ) k I 1 + l qk l+ l tij=l + l (aj + q bj ) 

PROOF. TO apply Theorem 1 we let A = K(q). Set 

j ( ) E rl=k+1(aj + q bj) (n2 k) n 

Then 

(£(1, 0, (aj)jEz)z + l)E(q)fk(z) = q (fk(Z)-c(1, 0, (bj)jez)z6(q) fk(z)), 

which we prove by comparing coefficients Of zn. The dual equation for the aux- 
iliary sequence (hk(Z))kEZ then becomes, from (4.10), (4.18), and because of 1 = 
(Z )kEZ, 

s(l/q)(zz(l,O, (a_j)jEz) + l)hk(Z) 

= qk(hk(Z)-fE;(l/q)z(lx 0, (b_j)jEz)hk(z)). 

Comparing coefficients of z-l leads to 

ql (al+l hk,l+l + hk,l ) = q (hkl-q bl+l hk,l+l ) 

or 
al+l + qkbl+ 

hkl =- 1-qk_I hksl+lx 

from which we obtain 

hkl = (_l)k-I rli=l+l(aj + qkbj) 

by setting hkk = 1. Then a short calculation shows that, by (4.6), 

fk(Z) Et-1) 1 + qk 1+1 J=1+1 (aj + qkbj) _I 

which completes the proof. O 
Gessel and Stanton's formula arises from (7.4) by setting ay = 1 and bj = 

-Api-1. Their method of proving their formula in [12] also suffices to show (7.4); 
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moreover, (7.4) seems to be the most general inverse relation which can be proved 
by this method. 

In [4] Egorychev found two generalizations to several variables for the Gould-type 
inverse relations for the case q = 1, namely 

(7 5) fnk = ( + Ei-l (n; + Ctki-k )-1) 

a + Li=l c ki (kl-11 * * ks-18) 

and 

_1 ( nj kj ) 

Fkl=(-l)lk-ll (1+ i(+ 111)) H ( j jlk -Ij j )' 

or equivalently 

(7 7) fnk = rI (ai + cj|k| + nj-kj-1) 

( )Ik-ll ( Sci(kg-li)) n (aj+cjlkl) 

Here n, k, I are multi-indices. The multinomial coefficient 

{ M 0 
t N1 * * Ns J 

in (7.5) means 
M! 

N1! * * * Ns!(M-N1-* * *-Ns)! s 

These relations are proved by the Lagrange-Good inversion treated in §5. For (7.5) 
we have to observe that for the sequence 

( s zkj ) 

the sequence fk (Z) by (5.3) is 

fk(z) = (1 + 1 _ ,s z ) (tI kj ) (1-E Zi) 

(7.7) corresponds to the pair 

¢ k, 

l7Il (1 Zj )aj+Cj IkI 
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and 

( i= l i ) J _1 Zj' 

In (7.6) the roles of fnk axld Fkl have to be exchanged. Then the relation corre- 
sponds to the above pair with the expression (1 + Ei8=1(cizi/(l-Zi))) shifted from 
fk (Z) to fk (Z) i 

To find a q-analogue for the first expression, one might try for fnk the expression 

(Aplklqlkl . . . qk8 X p)ln-kl 

(q1, q1)n1-k1 * * * (qs, q)n8-k8 
times suitable powers of the qi. It is not difficult to obtain the missing term either by 
finding the "right" eigenvalue equations for fk(Z) or by extending Gessel's original 
proof (in [12]) of his one-variable inverse relation to s variables. Once having done 
this it is easy to extend even the more general Theorem 11 to s variables. The 
result is 

THEOREM 1 2. Let aj, bj be elements of K(q1, q2, . . ., q ,). Then 

(7. 8) ( 1 ) (q1, q1 ) n l-kl * (qs; q; ) n -ke 7,- 

if and only if 

(7.8)(2) Fkl =(_1)1k_11 alll+l + q1 qsJblll+l fl J-|g| +l(aj + qlkl k qk 8 bj) s 
alll+l + q1l . . . q ,8blll+l (q1, q1)k1-11 * * * (qs, q)k8-18 i= 

i-l 

where Ki =-ki (kr-Ir) 
r=l 

PROOF. To apply Theorem 1 we need to take A = K(q1,r,q,) Set fk(z) = 
5£¢n>k fnkZn For the linear operator £(1, 0, (alyl)yEz8 ) we write, for short, A and 
for (1,°, (blyl);ezs) we write B. Then 

(7.9) (AEzi61 6 +61 6, ) fk(Z) 

= ql1 qs 8 (fk(Z)-'gBE ZiEl Ei fk(Z)) X 

which again is proved by comparing coefficients Of zn. The dual equation for the 
sequence (hk(z))kEzs is then 

( £( /ql ) Si /q')ZiA + S( /q ) ' Ss /q8)) hk(Z) 

= ql ' ' ' qS (hk(Z)-E Sl / ) S( /q')Zi%*) hk(Z) 
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Since by (4.18), A*z-l = alllz-l and B*z-l = blllz-l, comparing the coefficients of 
z-l leads to a recursion relation for the coefficients of hk(Z) which finally gives 

h ( 1)1 k-1| -111 +1 (ai + ql * * * qs 9 bj) n K 

(ql, ql)kl-11 (qs, q8)k9-19 i=l 

By (4.6) we get, after a short calculation, 

fk(Z) = (_l)lk 11 |ll+lql q blll+ 
l<k alll+l +q1 * q sblll+ 

rllkllll+l(aj +qll ...qs bj) n K,Z-I 

(ql, ql)kl-11 (qs, q8)k9-19 i=l 

for Ki =-ki Er-l (kr-Ir) as desired. z 

REMARK. We did not mention specifically that it is not self-evident that appli- 
cation of Theorem 1(A) to (7.9) is possible. What has to be checked is condition 
(4.3). In this case this is qlkl * * * qsk9 = ql 1 * * * q89 if and only if n = k. A single 
equation is enough information to compute fk(Z) by Theorem 1, although fk(Z) 

is an s-variable fps. Normally when dealing with s variables we need s equations, 
such as in §5 (yet it is not difficult to add to (7.9) (s- 1) similar equations). 

The special case for b; =-Api and aj = 1 is the q-analogue of (7.5). 

COROLLARY 13. The following inverse relation holds: 

(7.10)(1) f (A I Iq1 ; qs J X P)ln-kl n K, 

where 
(n -k ) t- 

if and only if 

(7.10)(2) F = (-l)lk-11 (1-A I Iq qs ) 

(7.10) (AplkI-lqk1 . . . qk9 p-1)1k 11 s 
(q1, q1)k1_11 (qs, q8)k9-19 i=l 

By setting qi = pCi-lx A = pa and p > 1, we get the inverse relation (7.5) 
(again after deleting the factors (cl _ l)kn-nl (c, - l)ks-ns and (cl - l)l1-kl 
(Cs-1)19-k9) 

Concluding, we remark that the inversion formulas of [12] are proved in a similar 
manner. 

8. The author's q-analogue. This section deals with the q-analogue given in 
[15, 18, 19]. Here we do not have such an extensive theory as in §6, but there are 
many examples, which yield q-extensions of Riordan's inverse relations (see [19]), 
special polynomials, etc. Let s = 1 and A = K(q) for a field K. 
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The essential definition is 
DEFINITION 14. The fps ,>(z), a E R, are called q-powers for a fixed fps p(z) 

if ,>(0) 7& 0 for all a and 

(8.1) D(q) pa (z) = [a] f (z) f t (z). 
Obviously in the case q = 1 the fps ,>(z) (save a constant) are powers of an fps 
p(z) with p(z) = '(z)/p(z). If we write (8.1) as 

(8.2) 6(q) Wa (Z) = (1 + (qa-1)z(z))pa (z), 

we obtain, by successive use of this formula, 

(ptt ) rl°° o(l + (qa-l)qiz<(>(qjz)) 

or, by Garsia's notion of starring [7], 

(8.3) 'R( ) (1 + (qa-l)z(p(z)) 

A short evaluation shows that for a, b E R(C) and m E N, 
EXAMPLE 15. eqm ((a [cx] + b)zm )/eqm (bZm ) are q-powers corresponding to 

(p(Z) = a[m]zm-l/(l + (qm _ l)bZm) 

This is the most general known example for q-powers in the sense of Definition 14, 
but it suffices for the applications. 

Let ,>(z) and ¢,>(z,l be q-powers for p(z) and b(z), respectively. Then we 
consider the sequence f = (fk(Z))keZ, where 

(8.4) ) pk+A (qZ)/-k-z (Z) 

By (8.2) we get for fk(Z), 

(8.5) S(q) fk(Z) = qk ( (( k+A 1) ( z)) fk(Z)v 

and, after a short calculation, 

(8v6) (6(q)(1-z9(z))-q HZ¢(z))fk(z) = qk(_q>E(q)Z9(Z) + 1-Z¢(z))fk(z). 

Thus the dual equation for the auxiliary sequence (hk(Z))kEZ, by (4E4), is 

(8 7) ((1-z(z))E(1/q)-q-HZ¢(z))hk(z) = q (-q Z9(Z)6 +1 Z¢( )) k( ) 

or, equivalently, 

6(l/q)hk(z) = qk 1 +(( k+A 1) ( ) hk(Z)' 

then finally 

k( ) q 1 + (q-k_H _ l)qz¢(qz) k( ) 

Thus 

(8.8) hk (z) = (>k+> (qZ)/¢-k-z (qz) 
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and, by (4.6), 

(8q9) fk(z) = ( q Z(p(Z)6 + 1 z¢b(z))hk(z) 
(_qk+)z<p(z) (l + (q-k 8 _ 1)z4?(z)) 

+ (1 Z¢(Z))(1 + (qk+A _ l)Z9(Z)))9k+>(Z)/¢-k-z(qz) 

(1 Z9(Z)-Z¢(Z) + (1-qA-)Z29(Z)¢(z))fk+A(Z)/¢-k-H (qz) 

The necessary condition (fk(Z) fk(Z)) = 1 is easily verified. Thus we get the 
Lagrange formula 

THEOREM 16. The coefficients in the expansion 

(8. 10) 9 (Z) = E k wk+ A (qZ) /-k-8 (Z) 

withg(z)ELs(z),908(z)and4?ot(z)beingq-powersfor9(z)and4?(z),respectively, 
are given by 

(8.11) Cn = (9(Z), (1-Z9(Z)-Z(Z) + (1 _ qA-/j)Z2(p(Z)b(Z 

>n+)v (z)/4?-n-p (qZ) \ 
zn / 

= (Z )g(z)(l-Z9(Z)-Z¢(Z) + (1 _ q>-H)z29(Z)¢(Z)) 

>n+)v (Z) /4?-n-.s (qZ) z 

zn 

In [18] also an analogue of the first version (1.1) of the Lagrange formula is 
obtained. This shall be generalized here. First recall the case q = 1. There the 
expansion (8.10) corresponds to an expansion of the form 

g(z) E Ck f (Z) 

if we assume limq_1 ,> (z) = pt (z), limq q 1 ¢,> (z) = r (z), z/p(z)b(z) = f (z) 

and T> (Z)pA (Z) = a(z). Then by (1.1), 

1 ( -1)(g(z) a(z))'f-n(z) for n 7& O. 

The q-analogue of this formula is 

THEOREM 1 7. The coefficients in the expansion 

(8. 1 2) kE Z (>k+ A (Z) /-k-H (Z) 

with the assumptions of Theorem 1, for n # O are given by 

(8. 1 3) Cn = [ ] (Z-1 ) D (q) ( 9(Z) (PA (z) ) (>n+A (Z) /-n-/J, (qZ) 
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PROOF. This time we start with the sequence f = (fk(Z))kEz, where 

(8.14) f ( ) zkeRA(z)/<>_>s(Z) 

By (8.2) we get, after a short calculation (analogous to that which yielded (8.6)), 

{ 1 - Z(p(Z) (q) q Z4?( ) 8 8 ( ) 

1 + (qA-l)Z9(Z) 1 + (q-H-l)Z¢(Z) J 

( 1 + (qA-l )z(>(z) 1 + (q-H-l )z¢(z) ) 

which is equivalent to 

(8Z15) zD fk(Z) = [k] ( 1 + (qA _ l)z(p(z)S + 1 + (q-H-l)z¢(z)) fk(Z) 

Thus the dual equation for the sequence (hk(Z))kEZX remembering (4.10), is 

(8.16) --zD(1/q) hk(z) 

= [k] ( E 1 + (qA-l)z(p(z) + 1 + ( -/ 1) ¢( )) hk(Z) 

which finally leads to (quite analogously to the considerations which proved (8.8)) 

(8.17) hk(z) = (>kk+At )/4?-k-Is(qZ) 

Therefore by Corollary 2 we get, by letting U = zD(q), g(k) = [k], after having 
compared (8.15) and (4.2): 

The coefficients in the expansion 

zk<p9v (Z)/4?_8; (Z) 
g(z) E k (>k+)K(z)/4?-k-Is(Z) 

are given by (for n 7& 0) 

Cn = [ ] (zD(q)g(z) (>n+A(Z)/4?-k-fil(qZ)) 

But after multiplying both sides of (8.12) by px(z)/b_H(z), we see that this is 
equivalent to (8.13). o 

REMARK. (1) In [18] only the special case A = ,u = O is proved. 
(2) Indeed here we have analogues of both types of the Lagrange formula. For 

lack of identities similar to (6.1)-(6.4) this theory seemingly cannot be further 
developed. In particular we are not able to say something reasonable about the 
inverse sequence a in contrast to Garsia's theory. (Via (8.15) and Theorem 5 
we could get a recursive formula for the Fl(z). It is omitted here, because it is 
usable only in special cases.) The reason is that the fps p(z) seems to be the only 
connection between the powers ,>(z). 
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EXAMPLE 18. This example should demonstrate use of our Theorem 16 and 
17. It concerns the problem of finding q-analogues of Euler's [5] formula 

(8.18) E n! ( ) E 
n=O 

An equivalent form of (8.18) is 

(8.19) 1 = E ( !) (b+n)z 

A reasonable analogue for enZ, or better e(b+n)Z/ebzX in view of Example 15, is 
el/q((b + q-1[n]l/q)z)/el/q(bz)* In Example 15 q has to be replaced by 1/q, and 
a is set equal to q-1 Then these fps turn out to be 1/q-powers corresponding to 
p(z) = 1/q(1 + (q-l )bz). (The choice of the base 1/q instead of q will be explained 
later.) Theorem 17 for A = ,u = 0, b(z) = O and q replaced by l/q gives: If 

/q kE el/q((b + q-l [k]l/q)z)/el/q(bz) 

then for n > 1, 

Cn = [ ] (z-1 )D(l/q) (el/ (bz)) . el/q ((b + q- 1 [n] l/s)z)/el /s (bz) 

1 ( -1 bel/q((b + q-l [n]l/q)z) 

[n] l /q ) zn 

= q(2) [ ]! (b + q-l[n]l/ )n-l 

Of course co = 1 and Cn = O for n negative. The desired analogue for (8.19) is 
therefore 

(8.20) 1 = E q[ ]! b(b + q-n[n])n-l ((b + -n 

The similar formula 

(8.21) 1-z(l + (q-l)b) E [n]l (b + q [n]) el/ ((b + q-n[n])Z) ' 

which is easily proved by Theorem 16, is a q-analogue for the well-known identity 

(8.22) 1 _ z E n! e(b+n)z 
n=O 

If we multiply (8.21) by 1 - z(1 + (q - l)b) and then add to (8.20), we obtain 
00 {nA 

(8.23) 2 = E q[ ]! (b + q-n[n])n-l(((l-z) + z(l-q)b)(qnb + [n]) + b) 
zn 

el/q((b + q-n[n])Z) 
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which is valid in the sense of fps. In [1, identity (7.48)] Askey and Ismail evaluated 
the right side of (8.23) if O < q < 1, b > O and z = 1. The result is a curious 
q-analogue for the special case of (8.19), where z = 1: 

(8.24) 1 = E q[ ]! b(b + q-n[n])n-1(2 _ qn + b(l _ q)qn)e / (b + q-n[n]) 

(e1/q(z) converges for all z E C if Iql < 1; therefore we took 1/q instead of q.) Since 
the right sides of (8.20) and (8.21) turn out to be analytic functions for Rez > O 
because there the series uniformly converge, two questions arise: 

(1) Is it possible to evaluate the right sides of (8.20) and (8.21) for O < q < 1 or 
even Iql < 1? (Both (8.20) and (8.21) are wrong in this case.) 

(2) What is the relationship between (8.24) and q-Lagrange inversion? (Askey 
and Ismail obtain (8.24) in connection with an orthogonality relation for q-Carlitz- 
Karlin-McGregor polynomials.) 

What can be shown is that (8.20) and (8.21) (and therefore (8.23)) hold for q > 1 
and lZl < 1/1l+(q-l)bl after e1/q((b+q-n[n])z)-l is replaced by eq(-(b+q-n[n])z). 
(In the fps-sense both expressions are identical, but for q > 1 only the second 
converges for all n E N and z E C.) This is proved by proving uniform convergence 
of the right sides of (8.20) and (8.21) for lZl < r, r being fixed with O < r < 
1/1l + (q - l)bl, and using Weierstrass's double series theorem. 

For O < q < 1 this argument does not work, because there does not even exist a 
neighborhood of O where for all n the functions zn/el/q((b+q-n[n])z) are analytic. 

After this excursion we turn to the problem of finding q-analogues of the s- 
variable Lagrange-Good formula. At first sight this seems to be easily established 
by suitable extensions of the q-powers ,>(z) to s variables. But even for s = 2 

great difficulties arise. Still we succeed in establishing some special two-dimensional 
formulas. 

LEMMA 19. Let p0g(z1) and b08 (Z2) be q-powers for p(z1) and ¢(Z2) respec- 
tively. Then 
(1) 

kl zk2 

kl +k2 +A (qZl )/¢-kl-k2-y (Z2) 

satisfies the system 

(I) (q (1 - Z2¢(z2)) - 61 62 Zl9(Zl))fklsk2(ZlXZ2) 

= q kl >E(q)(l - Zl9(zl) - Z2¢(z2) + Zl9(Zl)Z2¢(Z2)(1 - q )) 

* fkl ,k2 (Z1 Z2); 

(II) ( - q HZ2¢(z2) +61 62 (1 - Zl9(Zl)))fklsk2(Zl,Z2) 

= qk26(q)(l - Zl9(Zl) - Z2¢(Z2) + Zl9(Zl)Z2¢(Z2)(l - q )) 

* fkl ,k2 (Z1 Z2) 

(2) 

hkl ,k2 (Z1 Z2 ) = l +k2 +A (qZl ) /40-kl-k2-y (qZ2 ) 



462 CH. KRATTENTHALER 

satisfies the dual system 

(I ) (q (l-Z2b(z2 ))-Z1 p(Z1 )61 ) 62 /q) )hkl ,k2 (Z1 Z2 ) 

= q kl )K(1-Zl(p(Zl)-Z24?(z2) + Zl9(2l)Z2¢(Z2)(1-q )) 

* fy( /q) hk1 ,k2 (Z1, Z2); 

(II ) (-q ll Z24?(Z2) + (1-Z1 (p(Z1 ))fi( /q) fi2l/q) )hkl ,k2 (Z1 Z2) 

= qk2 (l-Z1 p(Z1)-Z24?(Z2) + Z1(p(Z1)Z24?(Z2)(1-q )) 

* fy( l /q) hk1 ,k2 (Z1 Z2 ) X 

(3) By (4.6), 
fkl ,k2 (Z1 Z2) = (1-Z19(Z1)-Z29(Z2 ) + Z19(Z1)Z2¢(Z2)(1-q )) 

>kl +k2+A (Z1)/4?-k1-k2-s(qZ2) 0 
kl k2 

Z1 Z2 

The proof of this lemma is straightforward. 
Equation (4.8) then gives 

THEOREM 20. With the assumptions of Lemma 19 and 9(Z1, Z2) E Ls(z1, Z2)n 

the coefficients in the expansion 

9 (Z1 X Z2 ) = E Ck (>k 1 +k2 +A (qzl ) /¢-k 1-k2-H (Z2 ) 

are computed by 

Cn = (ZO)9(Zl, Z2)(1-Zl (p(Zl )-Z24?(Z2) + Zl (p(Zl )Z2¢'(Z2)(1-q )) 

>n 1 +n2 +A (Z1 ) /4?-n 1-n2-y (qZ2 ) z 

nl n2 
Z1 Z2 

Obviously this theorem intimately corresponds to Theorem 16. Indeed the proof 

of the orthogonality relation in [18, Lemma 1] is easily converted to obtain the 

orthogonality relation which proves Theorem 20 by q-differentiation with respect 

to z1 and Z2 at the same time (meaning the operator Dzql)z2 = (E(lq)E(q) -1)/(q- l)). 

EXAMPLE 21. This short application of Theorem 20 concerns the q-Catalan 

numbers treated by MacMahon [20, p. 214; 21, pp. 1345, 1429] and Furlinger and 

Hofbauer [6]. They are able to compute a generating function of those numbers 

C(q) ' A. 
n VXy. 

(8.25) z = E ( _ q-n z Z q) n (-qzz, q)n 

If we write Cnq)(X) = kRnk(q)xk, the coefficients rnk(q) are q-Runyon numbers. 

We compute them by Theorem 20. It is convenient to first set z = Z2 and x = z1 /Z2 . 

Then (8.25) becomes, by (6.35), 

(8n26) Z2 = E q-(2) ,k rnk (q)Zlkz2n 

n= 1 Pn (1 _ q n Z2 )Pnq) (1-qzl ) 

- E q rk1 +k2 ,k1 (q)zl 1 z2k2 

kl ,k2 Pkl +k2 (1 qZl )Pkl +k2 (1 q Z2) 
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where 
{kl + k2 0 
t 2 ) 

According to Example 15, p(q) (1, -z) are q-powers for 1/(1 +z) if we set a = 1, b = 
-1/(1-q) and m = 1. By setting p(q)(z1) = p(q)(1, -z1) and 40a(z) = p(q)(1, -z2) 
and applying Theorem 20 to (8.26), we get (S = ,u = 0) 

q:Crkl+k2,kl (q) = (zo)Z2 (1- 1 + - 1 + ) 

. Pkl+k2 (1, Z1)/Pkl)+k2 ((1,-q-k1-k2+ 
zkl zk2 

(1-zlz2) Pkl +k2-1 (1,-qZl ) 

Zlk1 Z2k2 1 Pkq)+k -1 (l, _q-kl-k2+ 

After setting n = kl + k2, k = kl, we obtain, by (6.35), 

q (2)rnk(q) = q( + )+(n2k)-n(n-k-1) n-1- n-1 

_ q(2)+( 2 )-n(n-k-2) n-1 n-1 

= q (2)+k +k [n-1]!2 
[k]![n-k]![k + l]![n-k - 1]! 

* ([n-k][k + 1]-q[k][n - k-1]) 
= q-(2)+k2+k [n - lAl [n] 

and finally 

(8.27) rnk(q) = qk +k[ ] k k+ 1 

Two further two-dimensional q-Lagrange formulas are stated below. The proofs 
are quite similar to that of Theorem 20. A more detailed discussion of two- 
dimensional q-Lagrange formulas is the object of another paper. 

THEOREM 22. With pO(z) and bO(z) being q-powers for p(z) and b(z), the 
coefficients in the expansion 

kE (>(k z +k2 )/2+A (qZl Z2 ) /¢-(k g +k2 )/2-z (Z1 Z2 ) 

are given by 

Cn = (Z°)9(Z)(l-ZlZ29(ZlZ2)-ZlZ2¢(ZlZ2) + Zl2Z229(ZlZ2)¢(ZlZ2)(l-qA 8)) 

9(nl +n2 )/2+A (Z1 Z2)/¢-(nl +n2)/2-z (qZl Z2) . o 
nl n2 

Z1 Z2 
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THEOREM 23. With the assumptions of Theorem 22, the coef7icients in the 
expansson 

g (Z) = E Ck f kl + x (qZ1 Z2) /4> k2-y (Z1 Z2) 

can be evaluated by 

Cn = (Z°)9(Z)(l-ZlZ2(p(Z1Z2)-ZlZ2¢(Z1Z2) 

+ Z1 Z2 (R (Z1 Z2) ¢ (Z1 Z2) (1-qA-8+n 1-n 

>nl+>(ZlZ2)/¢'-n2-H(qZlZ2) o 
nl n2 

Z1 Z2 
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